UCC5870QDWJRQ1 [TI]

适用于 IGBT/SiC MOSFET 的汽车类 3.75kVrms 30A 单通道功能安全隔离式栅极驱动器 | DWJ | 36 | -40 to 125;
UCC5870QDWJRQ1
型号: UCC5870QDWJRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 IGBT/SiC MOSFET 的汽车类 3.75kVrms 30A 单通道功能安全隔离式栅极驱动器 | DWJ | 36 | -40 to 125

栅极驱动 双极性晶体管 驱动器
文件: 总119页 (文件大小:4249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
UCC5870-Q1 具有高级保护功能、适用于汽车应用30A 隔离IGBT/SiC  
MOSFET 栅极驱动器  
1 特性  
2 应用  
• 分离输出驱动器以提供峰值30A 的拉电流和峰  
30A 的灌电流  
• 栅极驱动强度动态可调  
• 具150ns最大值传播延迟和可编程最小脉冲  
抑制的互锁和击穿保护  
• 混合动力汽车和电动汽车牵引逆变器  
• 混合动力汽车和电动汽车电源模块  
3 说明  
UCC5870-Q1 器件是一款高度可配置的隔离式单通道  
栅极驱动器在电动汽车/混合动力汽车应用中用于驱  
动高功率 SiC MOSFET IGBT。该器件提供功率晶  
体管保护如基于分流电阻器的过流保护、基于  
NTC 的过热保护以及 DESAT 检测还在这些故障期  
间提供可选的软关断或两级关断。为了进一步缩小应用  
尺寸UCC5870-Q1 集成了在开关期间可用的 4A 有  
源米勒钳位以及在驱动器未通电时可用的有源栅极下  
拉电阻。集成的 10 ADC 可用于监控多达六个模拟  
输入以及栅极驱动器温度从而增强系统管理。集成的  
诊断和检测功能可简化符合 ASIL-D 标准的系统的设  
计。这些功能的参数和阈值可使用 SPI 接口进行配  
因此该器件几乎可与任何 SiC MOSFET IGBT  
一同使用。  
• 支持初级侧和次级侧主动短(ASC)  
• 可配置功率晶体管保护  
– 基DESAT 的短路保护  
– 基于分流电阻器的过流和短路保护  
– 基NTC 的过热保护  
– 在功率晶体管发生故障时提供可编程软关断  
(STO) 和两级关(2LTOFF) 保护  
功能安全合规型  
专为功能安全应用开发  
提供可使ISO 26262 系统设计达ASIL D 等级  
的文档  
• 集成型诊断:  
– 针对保护比较器的内置自(BIST)  
IN+ 至晶体管栅极路径完整性  
– 功率晶体管阈值监测  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
– 内部时钟监测  
UCC5870-Q1  
SSOP (36)  
12.8mm × 7.5mm  
– 故障警(nFLT1) 和警(nFLT2) 输出  
• 集成4A 有源米勒钳位或可选的米勒钳位晶体管  
外部驱动器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 高级高压钳位控制  
VI/O  
15V to 30V  
• 内部和外部电源欠压和过压保护  
• 有源输出下拉特性在低电源或输入悬空的情况下  
默认输出低电平  
• 提供内核温度检测和过热保护  
VCM = 1000V 共模瞬态抗扰(CMTI) 的最  
小值100 kV/μs  
VCC1  
VCC2  
GND2  
GND1  
MCU  
DESAT  
nFLT1  
GND2  
nFLT2/DOUT  
VCECLP  
IN+  
IN-  
VBST  
OUTH  
OUTL  
VEE2  
nCS  
CLK  
SDI  
• 可通SPI 对器件进行重新配置、验证、监控和诊  
CLAMP  
SDO  
Safety  
ASC  
GND2  
• 用于功率晶体管温度、电压、电流监测的集成10  
ADC  
• 安全相关认证:  
ASC_EN  
Controller  
GND2  
AIx[1:6]  
VREF  
VREG1  
GND1  
VREG2  
VEE2  
GND2  
-12V to 0V  
GND1  
– 符UL 1577 标准且长1 分钟3750 VRMS  
隔离计划)  
GND2  
VEE2  
• 具有符AEC-Q100 标准的下列特性:  
简化原理图  
– 器件温度等040°C 125°C 环境工作温  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4b  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD86  
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.1 Application Information............................................. 99  
8.2 Typical Application Using Internal ADC  
Reference and Power FET Sense Current  
Monitoring..................................................................101  
8.3 Typical Application Using DESAT Power FET  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................7  
6.5 Power Ratings ............................................................7  
6.6 Insulation Specifications ............................................ 7  
6.7 Electrical Characteristics ............................................8  
6.8 SPI Timing Requirements ........................................ 15  
6.9 Switching Characteristics .........................................15  
6.10 Typical Characteristics............................................17  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................52  
7.5 Programming............................................................ 54  
7.6 Register Maps...........................................................59  
8 Applications and Implementation................................99  
Monitoring..................................................................105  
9 Power Supply Recommendations..............................108  
9.1 VCC1 Power Supply............................................... 108  
9.2 VCC2 Power Supply............................................... 108  
9.3 VEE2 Power Supply................................................108  
9.4 VREF Supply (Optional)..........................................108  
10 Layout.........................................................................109  
10.1 Layout Guidelines................................................. 109  
10.2 Layout Example.................................................... 110  
11 Device and Documentation Support........................ 111  
11.1 Documentation Support.........................................111  
11.2 Receiving Notification of Documentation Updates.111  
11.3 支持资源................................................................ 111  
11.4 Trademarks............................................................111  
11.5 静电放电警告......................................................... 111  
11.6 术语表....................................................................111  
12 Mechanical, Packaging, and Orderable  
Information...................................................................111  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (November 2020) to Revision C (July 2021)  
Page  
• 将峰值电流更新为 30A 的典型值并添加了功能安全信息....................................................................................1  
• 更新了“特性”中的峰值功能安全要点.............................................................................................................. 1  
• 更新了“特性”中的 Q100 要点.........................................................................................................................1  
Removed values from VCECLP and DESAT components as these are customer selected.............................. 3  
Updated drive strength to 30 A to align with typical value................................................................................ 24  
Updated secondary side TSD behavior to clarify the functions operation........................................................ 44  
Added information about gate monitoring during secondary side ASC operation............................................ 45  
Corrected equation........................................................................................................................................... 49  
Corrected CONTROL2 bit name in list............................................................................................................. 50  
Corrected CONTROL2 bit name.......................................................................................................................54  
Corrected OVLO1_LEVEL selections...............................................................................................................59  
Updated DESATTH description for clarity.........................................................................................................59  
Updated SPI_FAULT description for clarity.......................................................................................................59  
Corrected OR_NFLT1_SEC and OR_NFLT2_SEC descriptions......................................................................59  
Removed graph to prevent confusion. .............................................................................................................99  
Changes from Revision A (June 2020) to Revision B (November 2020)  
Page  
• 将销售状态从“预告信息”更新为“初始发行版”............................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
2
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. (DWJ) 36-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
1
GND1  
NC  
G
Primary Side Ground. Connect all GND1 pins together and to the PCB ground plane on the primary side.  
No internal connection. Connect to GND1.  
2
3
NC  
No internal connection. Connect to GND1.  
4
NC  
No internal connection. Connect to GND1.  
5
NC  
No internal connection. Connect to GND1.  
Active Short Circuit Enable Input. ASC_EN enables the ASC function and forces the output of the driver to  
the state defined by the ASC input. If ASC is high, OUTH is pulled high. If ASC is low, OUTL is pulled low.  
See the Active Short Circuit (ASC) section for additional details.  
6
7
ASC_EN  
nFLT1  
I
Fault Indicator Output 1. nFLT1 is used to interrupt the host when a fault occurs. Faults that are unmasked  
pull nFLT1 low when the fault occurs. nFLT1 is high when all faults are either non-existent or masked. See  
the Fault and Warning Classification section for additional details.  
O
Fault Indicator Output 2. nFLT2 is used to interrupt the host when a fault occurs. Additionally, nFLT2 may  
be configured as DOUT to provide the host controller a PWM signal with a duty cycle relative to the ADC  
input of interest. Faults that are unmasked pull nFLT2 low when the fault occurs. nFLT2 is high when all  
faults are either non-existent or masked. See the Fault and Warning Classification or DOUT Functionality  
section for additional details.  
8
nFLT2/DOUT  
O
Primary Side Power Supply. Connect a 3V to 5.5V power supply to VCC1. Bypass VCC1 to GND1 with  
ceramic bulk capacitance as close to the VCC1 pin as possible. See the VCC1, VCC2, VEE2 Bypass  
Capacitors section for more details on selecting the values.  
9
VCC1  
ASC  
IN–  
P
I
Active Short Circuit Control Input. ASC sets the drive state when ASC_EN is high. If ASC is high, OUTH is  
pulled high. If ASC is low, OUTL is pulled low. See the Active Short Circuit Support (ASC) section for  
additional details.  
10  
11  
Negative PWM Input. IN- is connected to the IN+ from the opposite arm of the half-bridge. If IN+ and IN-  
overlap, the Shoot Through Protection (STP) fault is asserted. See the Shoot-Through Protection section  
for additional details.  
I
Positive PWM Input. IN+ drives the state of the driver output. With the driver enabled, when IN+ is high,  
OUTH is pulled high. When IN+ is low, OUTL is pulled low. Drive IN+ with a 1kHz to 50kHz PWM signal,  
with a logic level determined by the VCC1 voltage. IN+ is connected to the IN- of the opposite arm of the  
half-bridge. If IN+ and IN- overlap, the Shoot Through Protection (STP) fault is asserted. See the Shoot-  
Through Protection section for additional details.  
12  
IN+  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
SPI Clock. CLK is the clock signal for the main SPI interface. The SPI interface operates with clock rates  
up to 4MHz. See the SPI Communication section for more details.  
13  
CLK  
nCS  
I
SPI Chip Selection Input. nCS is an active low input used to activate the SPI slave device. Drive nCS low  
during SPI communication. When nCS is high, the CLK and SDI inputs are ignored. See the SPI  
Communication section for more details.  
14  
I
SPI Data Input. SDI is the data input for the main SPI interface. Data is sampled on the falling edge of CLK,  
SDI must be in a stable condition to ensure proper communication. See the SPI Communication section for  
more details.  
15  
16  
SDI  
I
SPI Data Output. SDO is the data output for the main SPI interface. Data is clocked out on the falling edge  
of CLK, SDO is changed with a rising edge of CLK. See the SPI Communication section for more details.  
SDO  
O
Internal Voltage Regulator Output. VREG1 provides a 1.8V rail for internal primary-side circuits. Bypass  
VREG1 to GND1 with at least 4.7µF of ceramic capacitance. Do not put any additional load on VREG1.  
17  
18  
VREG1  
GND1  
P
G
Primary Side Ground. Connect all GND1 pins together and to the PCB ground plane on the primary side.  
Secondary Negative Power Supply. Connect all VEE2 supply inputs together. Connect a -12V to 0V power  
supply to VEE2. The total voltage rail from VCC2 to VEE2 must not exceed 30V. Bypass VEE2 to GND2  
with at least 1uF of ceramic capacitance as close to the VEE1 pin as possible. See the VCC1, VCC2, and  
VEE2 Bypass Capacitors section for more details on selecting the values.  
19  
20  
VEE2  
P
P
Internal voltage regulator output. VREG2 provides a 1.8V rail for internal secondary-side circuits. Bypass  
VREG2 to VEE2 with at least 4.7µF of ceramic capacitance. Do not put any additional load on VREG2.  
VREG2  
Analog Input 6. AI6 is a multi-function input. It is configurable as an input to the internal ADC, a power FET  
current sense protection comparator input, and an ASC input for the secondary side. See the Integrated  
ADC for Front-End Analog (FEA) Signal Processing section for details on configuring AI6 to be read by the  
ADC. See the Shunt Resistor based Overcurrent Protection (OCP) and Short Circuit Protection (SCP)  
section for details on configuring AI6 as a power FET current sense protection input. Finally, see the Active  
Short Circuit Support (ASC) section for details on configuring AI6 as an ASC input.  
21  
22  
AI6  
AI5  
I
I
Analog Input 5. AI5 is a multi-function input. It is configurable as an input to the internal ADC, a power FET  
over temperature protection comparator input, and an ASC_EN input for the secondary side. See the  
Integrated ADC for Front-End Analog (FEA) Signal Processing section for details on configuring AI5 to be  
read by the ADC. See the Temperature Monitoring and Protection for the Power Transistors section for  
details on configuring AI5 as a power FET over temperature protection input. Finally, see the Active Short  
Circuit Support (ASC) section for details on configuring AI5 as an ASC_EN input.  
Analog Input 4. AI4 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input. See the Integrated ADC for Front-End Analog (FEA) Signal  
Processing section for details on configuring AI4 to be read by the ADC. See the Shunt Resistor based  
Overcurrent Protection (OCP) and Short Circuit Protection (SCP) section for details on configuring AI4 as a  
power FET current sense protection input.  
23  
24  
25  
26  
AI4  
AI3  
AI2  
AI1  
I
I
I
I
Analog Input 3. AI3 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input. See the Integrated ADC for Front-End Analog (FEA) Signal  
Processing section for details on configuring AI3 to be read by the ADC. See the Temperature Monitoring  
and Protection for the Power Transistors section for details on configuring AI3 as a power FET over  
temperature protection input.  
Analog Input 2. AI2 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input. See the Integrated ADC for Front-End Analog (FEA) Signal  
Processing section for details on configuring AI2 to be read by the ADC. See the Shunt Resistor based  
Overcurrent Protection (OCP) and Short Circuit Protection (SCP) section for details on configuring AI2 as a  
power FET current sense protection input.  
Analog Input 1. AI1 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input. See the Integrated ADC for Front-End Analog (FEA) Signal  
Processing section for details on configuring AI1 to be read by the ADC. See the Temperature Monitoring  
and Protection for the Power Transistors section for details on configuring AI1 as a power FET over  
temperature protection input.  
Internal ADC Voltage Regulator Output. VREF provides an internal 4V, reference for the ADC. Bypass  
VREF to GND2 with at least 1uF of ceramic capacitance. If an external reference is desired, disable the  
internal VREF using the SPI register, and connect a 4V reference supply to VREF. Loads up to 5mA on  
VREF are allowed.  
27  
28  
VREF  
P
Gate Drive Common Input. Connect GND2 to the power FET source/ IGBT emitter. All AIx inputs, VREF,  
and DESAT are referenced to GND2.  
GND2  
G
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
4
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Miller Clamp Input. The CLAMP input is used to hold the gate of the power FET strongly to VEE2 while the  
power FET is "off". CLAMP is configurable as an internal Miller clamp, or to drive an external clamping  
circuit. When using the internal clamping function, connect CLAMP directly the power FET gate. When  
configured as an external clamp, connect CLAMP to the gate of an external pulldown MOSFET. See the  
Active Miller Clamp section for additional details.  
29  
CLAMP  
IO  
Secondary negative power supply. Connect all VEE2 supply inputs together. Connect a -12V to 0V power  
supply to VEE2. The total voltage rail from VCC2 to VEE2 must not exceed 30V. Bypass VEE2 to GND2  
with at least 1uF of ceramic capacitance as close to the VEE2 pin as possible. Additional capacitance may  
be needed depending on the required drive current. See the VCC1, VCC2, VEE2 Bypass Capacitors  
section for more details on selecting the values.  
30  
31  
VEE2  
P
Negative Gate Drive Voltage Output. When the driver is active, OUTL drives the gate of the power FET low  
when INP is low. Connect OUTL to the gate of the power FET through a gate resistor. The value of the gate  
resistor is chosen based on the slew rate required for the application. See the OUTH/ OUTL Outputs  
section for details on choosing the gate resistor.  
OUTL  
O
Positive Gate Drive Voltage Output. When the driver is active, OUTH drives the gate of the power FET high  
when INP is high. Connect OUTH to the gate of the power FET through a gate resistor. The value of the  
gate resistor is chosen based on the slew rate required for the application. See the OUTH/ OUTL Outputs  
section for details on choosing the gate resistor.  
32  
33  
OUTH  
VBST  
O
P
Bootstrap Supply. VBST supplies power for the OUTH drive. Connect a 0.1µF ceramic capacitor between  
VBST and OUTH.  
VCE Clamp Input. VCECLP clamps to a diode above the VCC2 rail and indicates a fault when the voltage  
at VCECLP is above the VCECLPth threshold. Bypass VCECLP to VEE2 with ceramic capacitor and, in  
parallel, connect a resistor. Additionally, connect VCECLP to the anode of a zener diode to the collector of  
the power FET. For details on selecting the values and ratings for the required components, see the  
VCECLP Input section.  
34  
35  
VCECLP  
I
Secondary Positive Power Supply. Connect a 15V to 30V power supply to VCC2. The total voltage rail from  
VCC2 to VEE2 must not exceed 30V. Bypass VCC2 to GND2 and VCC2 to VEE2 with bulk ceramic  
capacitance as close to the VCC2 pin as possible. Additional capacitance may be needed depending on  
the required drive current. See the VCC1, VCC2, VEE2 Bypass Capacitors section for more details on  
selecting the values.  
VCC2  
P
Desaturation based Short Circuit Detection Input. DESAT is used to detect a short circuit in the power FET.  
Bypass DESAT to GND2 with a ceramic capacitor to program the DESAT blanking time. In parallel, connect  
a schottky diode with the cathode connected to the DESAT. Additionally, connect DESAT to a resistor to the  
anode of a diode to the collector of the power FET to adjust the DESAT protection threshold. DESAT  
detects a fault when the VCE voltage of the power FET exceeds the defined threshold while the power FET  
is on. See the DESAT based Short Circuit Protection (DESAT) section for additional details.  
36  
DESAT  
I
(1) P = Power, G = Ground, I = Input, O = Output, - = NA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
VCC1  
VCC2  
VEE2  
VSUP2  
Supply voltage primary side referenced to GND1  
6
33  
V
V
V
V
V
Positive supply voltage secondary side referenced to GND2  
Negative supply voltage output side referenced to GND2  
0.3  
0.3  
15  
Total supply voltage output side (VCC2 - VEE2  
)
33  
0.3  
VOUTH, VOUTL Voltage on the driver output pins referenced to GND2  
VCC2+0.3  
V
EE20.3  
Voltage on IO pins (ASC, ASC_EN, CLK, IN+, IN-, nCS,  
nFLTx, SDI, SDO) on primary side referenced to GND1  
VIOP  
VCC1+0.3  
V
0.3  
VCLAMP  
VDESAT  
VCECLP  
VREG1  
VREG2  
VREF  
VBST  
VAI  
Voltage on the Miller clamp pin referenced to GND2  
Voltage on DESAT referenced to GND2  
Voltage on VCECLP referenced to GND2  
Voltage on VREG1 referenced to GND1  
Voltage on VREG2 referenced to VEE2  
Voltage on VREF referenced to GND2  
Voltage on VBST referenced to OUTH  
Voltage on the analog inputs referenced to GND2  
Junction temperature  
VCC2 +0.3  
V
V
V
V
EE20.3  
0.3  
EE20.3  
0.3  
0.3  
0.3  
-0.3  
VCC2 +0.3  
VCC2 +0.3  
V
2
2
V
V
5.5  
5.3  
5.5  
150  
150  
V
V
V
0.3  
40  
TJ  
oC  
oC  
Tstg  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner pins (GND1 and VEE2)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VCC1  
VCC2  
VEE2  
VSUP2  
VIH  
Supply voltage input side  
3
15  
5.5  
Positive supply voltage secondary side (VCC2 - GND2)  
Negative supply voltage output side (VEE2 - GND2)  
30  
V
0
V
12  
15  
Total supply voltage output side (VCC2 - VEE2  
)
30  
V
High-level IO voltage (ASC, ASC_EN, IN+, IN-, nCS, SCLK, SDI)  
Low-level IO voltage (ASC, ASC_EN, IN+, IN-, nCS, SCLK, SDI)  
Source current for primary side outputs (nFLT2, SDO)  
Sink current for primary side outputs (nFLTx, SDO)  
Driver output source current from OUTH (1)  
0.7*VCC1  
0
VCC1  
V
VIL  
0.3*VCC1  
V
IOHP  
IOLP  
IOH  
5
5
mA  
mA  
A
15  
15  
IOL  
Driver output sink current into OUTL (1)  
A
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
6
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VAI*  
Voltage on analog input (AI) pins referenced to GND2  
Output voltage at VREG1 referenced to GND1 (2)  
Output voltage at VREG2 referenced to VEE2(3)  
Ouput voltage at VBST referenced to OUTH(4)  
Voltage on the VREF pin vs GND2(5)  
0
VREF+0.1  
V
V
V
V
V
VVREG1  
VVREG2  
VVBST  
VVREF  
1.8  
1.8  
Vcc2 + 4.5  
4
0
4.1  
Common mode transient immunity rating (dV/dt rate across the isolation  
barrier)  
CMTI  
100  
kV/us  
fPWM  
fSPI  
PWM input frequency (IN+ and IN- pins)  
SPI clock frequency  
50  
4
kHz  
MHz  
TJ  
Maximum junction temperature  
PWM input pulse width (IN+ and IN- pins)  
150  
40  
tPWM  
250  
ns  
(1) External gate resistor needs to be used to limit the max drive current to be not more than 15A.  
(2) Connect a decoupling capacitor of 0.1uF+4.7uF between VREG1 and GND1. Do not connect external supply.  
(3) Connect a decoupling capacitor of 0.1uF+4.7uF between VREG2 and VEE2. Do not connect external supply.  
(4) Connect a decoupling capacitor of 100nF between VBST and OUTH. Do not connect external supply.  
(5) Connect a decoupling capacitor of 1.0uF on the VREF pin.  
6.4 Thermal Information  
UCC5870  
THERMAL METRIC(1)  
DWJ  
UNIT  
36 SOIC  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
50.6  
17.5  
21.3  
5.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
20.2  
N/A  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
50  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides) TA = 125C  
PD1  
PD2  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
TA = 125C  
TA = 125C  
450  
6.6 Insulation Specifications  
PARAMETER  
SPECIFIC  
ATION  
TEST CONDITIONS  
UNIT  
PACKAGE SPECIFICATIONS  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
8
8
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
> 17  
600  
µm  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.6 Insulation Specifications (continued)  
SPECIFIC  
ATION  
PARAMETER  
TEST CONDITIONS  
According to IEC60664-1  
UNIT  
Material group  
I
I-IV  
I-III  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category  
UL 1577  
CIO  
Barrier capacitance, input to output(2)  
Insulation resistance, input to output(2)  
2
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
10^12  
10^11  
10^9  
RIO  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
VTEST = VISO = 3750 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 4500 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
3750  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator onthe printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases.Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these  
specifications.  
(2) All pins on each side of the barrier tied together creating a two-pin device.  
6.7 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIT+  
UVLO threshold of VCC1 rising  
UVLO threshold of VCC1 rising  
UVLO threshold of VCC1 falling  
UVLO threshold of VCC1 falling  
UVOV1_LEVEL = 0  
2.6  
4.5  
2.3  
4.2  
2.75  
4.65  
2.45  
4.35  
2.9  
4.8  
2.6  
4.5  
V
V
V
V
(UVLO1)  
VIT+  
UVOV1_LEVEL = 1  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
(UVLO1)  
VIT-  
(UVLO1)  
VIT-  
(UVLO1)  
VHYS  
UVLO threshold hysteresis of VCC1  
VCC1 UVLO detection deglitch time  
OVLO threshold of VCC1 falling  
0.30  
20  
V
µs  
V
(UVLO1)  
tUVLO1  
VIT-  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
3.7  
5.2  
4.0  
5.5  
3.85  
4.0  
5.5  
4.3  
5.8  
(OVLO1)  
VIT-  
OVLO threshold of VCC1 falling  
OVLO threshold of VCC1 rising  
OVLO threshold of VCC1 rising  
5.35  
4.15  
5.65  
0.30  
V
V
V
V
(OVLO1)  
VIT+  
(OVLO1)  
VIT+  
(OVLO1)  
VHYS  
OVLO threshold hysteresis of VCC1  
VCC1 OVLO detection deglitch time  
(OVLO1)  
tOVLO1  
20  
16  
14  
12  
10  
µs  
V
UVLO2TH = 00b  
UVLO2TH = 01b  
UVLO2TH = 10b  
UVLO2TH = 11b  
15.2  
13.3  
11.4  
9.5  
16.8  
14.7  
12.6  
10.5  
V
VIT+  
UVLO threshold voltage of VCC2  
rising with reference to GND2  
(UVLO2)  
V
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
8
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
14.25  
12.35  
10.45  
8.55  
TYP  
15  
13  
11  
MAX  
15.75  
13.65  
11.55  
9.45  
UNIT  
UVLO2TH = 00b  
UVLO2TH = 01b  
UVLO2TH = 10b  
UVLO2TH = 11b  
V
V
V
V
VIT-  
UVLO threshold voltage of VCC2  
falling with reference to GND2  
(UVLO2)  
9
VHYS  
UVLO threshold voltage hysteresis of  
VCC2  
1
V
(UVLO2)  
tUVLO2  
VCC2 UVLO detection deglitch time  
20  
23  
21  
19  
17  
24  
22  
20  
18  
µs  
V
V
V
V
V
V
V
V
OVLO2TH = 00b  
OVLO2TH = 01b  
OVLO2TH = 10b  
OVLO2TH = 11b  
OVLO2TH = 00b  
OVLO2TH = 01b  
OVLO2TH = 10b  
OVLO2TH = 11b  
21.85  
19.95  
18.05  
16.15  
22.8  
20.9  
19  
24.15  
22.05  
19.95  
17.85  
25.2  
23.1  
21  
VIT-  
OVLO threshold voltage of VCC2 falling  
with reference to GND2  
(OVLO2)  
VIT+  
OVLO threshold voltage of VCC2 rising  
with reference to GND2  
(OVLO2)  
17.1  
18.9  
VHYS  
OVLO threshold voltage hysteresis of  
VCC2  
1
V
(OVLO2)  
tOVLO2  
VCC2 OVLO detection blanking time  
20  
3  
5  
8  
10  
2  
4  
7  
9  
µs  
V
V
V
V
V
V
V
V
UVLO3TH = 00b  
UVLO3TH = 01b  
UVLO3TH = 10b  
UVLO3TH = 11b  
UVLO3TH = 00b  
UVLO3TH = 01b  
UVLO3TH = 10b  
UVLO3TH = 11b  
3.15  
5.25  
8.4  
2.85  
4.75  
7.6  
VIT-  
UVLO threshold voltage of VEE2 falling  
with reference to GND2  
(UVLO3)  
10.5  
2.1  
9.5  
1.9  
4.2  
3.8  
VIT+  
UVLO threshold voltage of VEE2 rising  
with reference to GND2  
(UVLO3)  
7.35  
9.45  
6.65  
8.55  
VHYS  
UVLO threshold voltage hysteresis of  
VEE2  
1
V
(UVLO3)  
tUVLO3  
VEE2 UVLO detection blanking time  
20  
5  
µs  
V
V
V
V
V
V
V
V
OVLO3TH = 00b  
OVLO3TH = 01b  
OVLO3TH = 10b  
OVLO3TH = 11b  
OVLO3TH = 00b  
OVLO3TH = 01b  
OVLO3TH = 10b  
OVLO3TH = 11b  
5.25  
7.35  
10.5  
12.6  
6.3  
4.75  
6.65  
9.5  
7  
VIT+  
OVLO threshold voltage of VEE2 rising  
with reference to GND2  
(OVLO3)  
10  
12  
6  
11.4  
5.7  
8.4  
8  
7.6  
VIT-  
OVLO threshold voltage of VEE2  
falling with reference to GND2  
(OVLO3)  
11.55  
13.65  
11 10.45  
13 12.35  
VHYS(OVL OVLO threshold voltage hysteresis of  
1
V
VEE2  
O3)  
tOVLO3  
IQVCC1  
IQVCC2  
IQVEE2  
VEE2 OVLO detection blanking time  
Quiescent Current of VCC1  
Quiescent Current of VCC2  
Quiescent Current of VEE2  
20  
7.7  
15  
15  
0.1  
µs  
mA  
mA  
mA  
V/µs  
No switching, VCC1 = 5V  
No switching, VCC2 = 20V, VEE2 = -10V  
No switching, VCC2 = 20V, VEE2 = -10V  
tRP(VCC1) Slew rate of VCC1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V/µs  
V/µs  
tRP(VCC2) Slew rate of VCC2  
0.1  
0.1  
tRP(VEE2) Slew rate of VEE2  
LOGIC IO  
Input-high threshold voltage of primary  
IO (IN+, IN-, ASC, and ASC_EN)  
Input rising, VCC1 = 3.3V  
Input rising, VREF=4V  
VCC1 = 3.3V  
0.7*VCC1  
3.0  
V
V
V
V
VIH  
Input-high threshold voltage of  
secondary IO in ASC mode (AI5, and  
AI6)  
Input-low threshold voltage of primary  
IO (IN+, IN-, ASC, and ASC_EN)  
0.3*VCC1  
1.5  
VIL  
Input-low input-threshold voltage of  
secondary IO in ASC mode (AI5 and  
AI6)  
Input falling  
Input hysteresis voltage of primary IO  
(IN+, IN-, ASC, and ASC_EN)  
VCC1=3.3V  
0.1*VCC1  
0.5  
V
V
VHYS(IN)  
Input hysteresis voltage of secondary IO  
in ASC mode (AI5, and AI6)  
Leakage current on the input IO pins  
ASC, ASC_EN, IN+, IN-, CLK, and SDI  
VIO = GND1, VIO is the voltage on IO pins  
VIO = VCC1, VIO is the voltage on IO pins  
5
µA  
ILI  
Leakage current on nCS  
Pullup resistance for nCS  
5
µA  
RPUI  
40  
40  
100  
kΩ  
Pulldown resistance for ASC, ASC_EN,  
IN+, IN-, CLK, and SDI  
100  
kΩ  
RPDI  
Pulldown resistance for AI5 and AI6 in  
ASC mode  
800  
1200  
kΩ  
V
VOH  
VOL  
Output logic-high voltage (SDO)  
4.5mA output current, VCC1 = 5V  
4.5mA sink current, VCC1 = 5V  
0.9*VCC1  
Output logic-low voltage (nFLT1, nFLT2,  
and SDO)  
0.1*VCC1  
V
FREQ_DOUT = 00b  
FREQ_DOUT = 01b  
FREQ_DOUT = 10b  
FREQ_DOUT = 11b  
VAI* = 0.36 V  
13.9  
27.8  
55.7  
111.4  
10  
kHz  
kHz  
kHz  
kHz  
%
fDOUT  
Output frequency of DOUT pin  
DDOUT  
Duty of DOUT  
VAI* = 1.8 V  
50  
%
VAI* = 3.24 V  
90  
%
Leakage current on pin nFLT*  
Leakage current on pin SDO  
Pullup resistance for pin nFLT*  
nFLT* = HiZ, VCC1 on nFLT* pin  
nCS = 1  
5
5
µA  
µA  
5  
5  
40  
ILO  
RPUO  
100  
kΩ  
DRIVER STAGE  
High-level output voltage (OUT and  
OUTH)  
VCC2 –  
VOUTH  
VOUTL  
IOUTH  
IOUTL  
IOUT = -100 mA  
IOUT = 100 mA  
V
mV  
A
0.033  
Low-level output voltage (OUT and  
OUTL)  
33  
IN+= high, IN- = low, VCC2 - VOUTH = 5  
V
Gate driver high output current  
Gate driver low output current  
15  
15  
IN- = low, IN + = high, VOUTL - VEE2 = 5  
V
A
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
10  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUTL - VEE2 = 6 V and STO_CURR =  
00b, 100to 150℃  
0.24  
0.3  
0.36  
A
VOUTL - VEE2 = 6 V and STO_CURR =  
01b, 100to 150℃  
0.48  
0.72  
0.96  
0.6  
0.9  
1.2  
0.72  
1.08  
1.44  
A
A
A
Driver low output current during SC and  
OC faults  
ISTO  
VOUTL - VEE2 = 6 V and STO_CURR =  
10b, 100to 150℃  
VOUTL - VEE2 = 6 V and STO_CURR =  
11b, 100to 150℃  
ACTIVE MILLER CLAMP  
Low-level clamp voltage (internal Miller  
ICLP = 100 mA  
100  
mV  
clamp)  
VCLP  
Miller clamp current  
MCLPTH=11b, VCLAMP = VEE2+4 V  
MCLPTH = 00b  
3.2  
1.2  
1.6  
2.25  
3
A
V
V
V
V
1.5  
2
1.8  
2.5  
3.75  
5
MCLPTH = 01b  
Clamp threshold voltage with reference  
to VEE2  
VCLPTH  
MCLPTH = 10b  
3
MCLPTH = 11b  
4
CLAMP output voltage in external Miller  
clamp mode  
VECLP  
4.5  
5
13  
13  
5.5  
V
CLAMP pulldown resistance in external  
Miller clamp mode  
RECLP_PD  
CLAMP pull-up resistance in external  
Miller clamp mode  
RECLP_PU  
SHORT CIRCUIT CLAMPING  
Clamping voltage (VOUTH - VCC2, VCLAMP IN+= high, IN- = low, tCLP = 10us, IOUTH or  
VCLP-OUT  
0.8  
1.6  
V
- VCC2  
ACTIVE PULLDOWN  
VOUTSD Active shut-down voltage on OUTL  
VOUTSD Active shut-down voltage on OUTL  
)
ICLAMP = 500 mA  
IOUTL = 30mA, VCC2 = open  
IOUTL = 0.1xIOUTL, VCC2 = open  
1.55  
2.5  
V
V
DESAT SHORT-CIRCUIT PROTECTION  
DESATTH = 0000b  
DESATTH = 0001b  
DESATTH = 0010b  
DESATTH = 0011b  
DESATTH = 0100b  
DESATTH = 0101b  
DESATTH = 0110b  
DESATTH = 0111b  
DESATTH = 1000b  
DESATTH = 1001b  
DESATTH = 1010b  
DESATTH = 1011b  
DESATTH = 1100b  
DESATTH = 1101b  
DESATTH = 1110b  
DESATTH = 1111b  
2.25  
2.7  
2.5  
3
2.75  
3.3  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.15  
3.6  
3.5  
4
3.85  
4.4  
4.05  
4.5  
4.5  
5
4.95  
5.5  
4.95  
5.4  
5.5  
6
6.05  
6.6  
DESAT detection threshold voltage wrt  
VDESATth  
GND2  
5.85  
6.3  
6.5  
7
7.15  
7.7  
6.75  
7.2  
7.5  
8
8.25  
8.8  
7.65  
8.1  
8.5  
9
9.35  
9.9  
8.55  
9
9.5  
10  
10.45  
11  
DESAT voltage with respect to GND2  
VDESATL  
1
V
when OUTL is driven low  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 00b  
0.555  
0.6  
0.645  
0.7525  
0.86  
mA  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 01b  
0.6475  
0.74  
0.7  
0.8  
1
mA  
mA  
mA  
ICHG  
Blanking capacitor charging current  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 10b  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 11b  
0.925  
1.075  
IDCHG  
tLEB  
tDESFLT  
tDESFLT  
Blanking capacitor discharging current  
DESAT leading edge blanking time  
DESAT pin glitch filter  
V(DESAT) - GND2 = 6 V  
14  
127  
90  
mA  
ns  
158  
158  
316  
250  
190  
401  
DESAT_DEGLITCH=0  
DESAT_DEGLITCH=1  
ns  
DESAT pin glitch filter  
270  
ns  
tDESAT  
(90%)  
DESAT protection reaction time from  
event to action (includes deglitch time)  
VDESAT>VDESATth to VOUTL 90% of VCC2  
CLOAD = 1 nF, DESAT_DEGLITCH=0  
,
160 +  
tDESFLT  
ns  
OVERCURRENT PROTECTION  
OCTH = 0000b  
OCTH = 0001b  
OCTH = 0010b  
OCTH = 0011b  
OCTH = 0100b  
OCTH = 0101b  
OCTH = 0110b  
OCTH = 0111b  
OCTH = 1000b  
OCTH = 1001b  
OCTH = 1010b  
OCTH = 1011b  
OCTH = 1100b  
OCTH = 1101b  
OCTH = 1110b  
OCTH = 1111b  
SCTH = 00b  
170  
220  
270  
315  
360  
410  
460  
520  
570  
610  
660  
710  
760  
807  
855  
902  
460  
700  
945  
1185  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
500  
750  
1000  
1250  
100  
200  
400  
800  
225  
275  
330  
375  
440  
475  
525  
575  
630  
690  
740  
790  
840  
893  
945  
998  
530  
785  
1050  
1312  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
ns  
VOCth  
Over current detection threshold voltage  
SCTH = 01b  
VSCth  
Short circuit protection threshold  
SCTH = 10b  
SCTH = 11b  
SC_BLK = 00b  
SC_BLK = 01b  
SC_BLK = 10b  
SC_BLK = 11b  
ns  
Short circuit protection blanking time with  
reference to system clock  
tSCBLK  
ns  
ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
12  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
500  
MAX  
UNIT  
ns  
OC_BLK = 000b  
OC_BLK = 001b  
OC_BLK = 010b  
OC_BLK = 011b  
OC_BLK = 100b  
OC_BLK = 101b  
OC_BLK = 110b  
OC_BLK = 111b  
1000  
1500  
2000  
2500  
3000  
5000  
10000  
150  
ns  
ns  
ns  
Over current protection blanking time  
with reference to system clock  
tOCBLK  
ns  
ns  
ns  
ns  
tSCFLT  
tOCFLT  
Short circuit protection deglitch filter  
Over current protection deglitch filter  
50  
50  
200  
200  
ns  
150  
ns  
Short circuit protection reaction time from VAIx > VSCth to VOUTL at 90% of VCC2,  
175  
+ tSCFLT  
tSC(90%)  
ns  
ns  
event to action (includes deglitch time)  
CLOAD = 1nF, tSCBLK expired  
Over current protection reaction time  
from event to action (includes deglitch  
time)  
VAIx > VOCth to VOUTL at 90% of VCC2,  
CLOAD = 1nF, tOCBLK expired  
175 +  
tOCFLT  
tOC(90%)  
TWO-LEVEL TURN-OFF PLATEAU VOLTAGE LEVEL  
2LOFF_VOLT = 000b  
5
6
6
7
7
8
V
V
2LOFF_VOLT = 001b  
2LOFF_VOLT = 010b  
7
8
9
V
2LOFF_VOLT = 011b  
8
9
10  
11  
12  
13  
14  
V
Plateau voltage (w.r.t. GND2) during two-  
V2 LOFF  
level turnoff  
2LOFF_VOLT = 100b  
9
10  
V
2LOFF_VOLT = 101b  
10  
11  
12  
11  
V
2LOFF_VOLT = 110b  
12  
V
2LOFF_VOLT = 111b  
13  
V
2LOFF_TIME = 000b  
150  
300  
450  
600  
1000  
1500  
2000  
2500  
0.3  
0.6  
0.9  
1.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A
2LOFF_TIME = 001b  
2LOFF_TIME = 010b  
2LOFF_TIME = 011b  
Plateau voltage during two-level turnoff  
hold time  
t2 LOFF  
2LOFF_TIME = 100b  
2LOFF_TIME = 101b  
2LOFF_TIME = 110b  
2LOFF_TIME = 111b  
0.24  
0.48  
0.72  
0.96  
0.36  
0.72  
1.08  
1.44  
2LOFF_CURR = 00b, 100to 150℃  
2LOFF_CURR = 01b, 100to 150℃  
2LOFF_CURR = 10b, 100to 150℃  
2LOFF_CURR = 11b, 100to 150℃  
A
Discharge current for transition to  
plateau voltage level  
I2 LOFF  
A
A
HIGH VOLTAGE CLAMPING  
VCE clamping threshold with respect to  
VEE2  
VCECLPTH  
1.5  
2.2  
2.9  
V
VCECLPHY  
VCE clamping threshold hysteresis  
VCE clamping intervention-time  
200  
30  
mV  
ns  
S
tVCECLP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
200  
300  
400  
MAX  
UNIT  
ns  
VCE_CLMP_HLD_TIME = 00b  
VCE_CLMP_HLD_TIME = 01b  
VCE_CLMP_HLD_TIME = 10b  
VCE_CLMP_HLD_TIME = 11b  
ns  
tVCECLP_H  
VCE clamping hold on time  
LD  
ns  
ns  
OVERTEMPERATURE PROTECTION  
TSD_SET Overtemperature protection set for driver  
155  
135  
°C  
°C  
Overtemperature protection clear for  
TSD_CLR  
driver  
TWN_SET Overtemperature warning set for driver  
TWN_CLR Overtemperature warning clear for driver  
130  
110  
°C  
°C  
°C  
mA  
mA  
mA  
mA  
V
THYS  
Hysteresis for thermal comparators  
20  
0.1  
0.3  
0.6  
1
TEMP_CURR = 00b, Tj = 100C to 150C  
TEMP_CURR = 01b, Tj = 100C to 150C  
TEMP_CURR = 10b, Tj = 100C to 150C  
TEMP_CURR = 11b, Tj = 100C to 150C  
TSDTH_PS = 000b  
0.097  
0.291  
0.582  
0.97  
0.103  
0.309  
0.618  
1.03  
Bias current for temp sensing diode for  
pins AI1, AI3, and AI5  
ITO  
0.95  
1
1.05  
TSDTH_PS = 001b  
1.1875  
1.425  
1.6625  
1.9  
1.25  
1.5  
1.75  
2
1.3125  
1.575  
1.8375  
2.1  
V
TSDTH_PS = 010b  
V
TSDTH_PS = 011b  
V
The threshold of power switch over  
temperature protection.  
VPS_TSDth  
TSDTH_PS = 100b  
V
TSDTH_PS = 101b  
2.1375  
2.375  
2.6125  
2.25  
2.5  
2.75  
250  
500  
750  
1000  
2.3625  
2.625  
2.8875  
V
TSDTH_PS = 110b  
V
TSDTH_PS = 111b  
V
PS_TSD_DEGLITCH = 00b  
PS_TSD_DEGLITCH = 01b  
PS_TSD_DEGLITCH = 10b  
PS_TSD_DEGLITCH = 11b  
ns  
ns  
ns  
ns  
tPS_TSDFL Power switch thermal shutdown deglitch  
time  
T
GATE VOLTAGE MONITOR  
Gate monitor threshold value with  
reference to VCC2  
VGMH  
IN+= high and IN- = low  
IN + = low and IN- = high  
V
V
4  
3  
2  
Gate monitor threshold value with  
reference to VEE2  
VGML  
2
3
4
GM_BLK = 00b  
GM_BLK = 01b  
GM_BLK = 10b  
GM_BLK = 11b  
500  
1000  
2500  
4000  
250  
ns  
ns  
Gate voltage monitor blanking time after  
tGMBLK  
driver receives PWM transition  
ns  
ns  
tGMFLT  
IVGTHM  
Gate voltage monitor deglitch time  
ns  
Charge current for VGTH measurement VCC2 - VOUTH = 10V  
2
mA  
Delay time between VGTH measurement  
control command to gate voltage  
sampling point.  
tdVGTHM  
2300  
3.6  
µs  
V
ADC  
Full scale input voltage range for A1 to  
A6  
FSR  
0
3.636  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
14  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4
MAX  
UNIT  
Accuracy of external reference directly  
affects the accuracy of the ADC  
Required voltage for external VREF  
Internal VREF output voltage  
V
VREF  
4
V
External reference, VREF = 4V  
Internal reference  
-1.2  
-4  
1.2  
9
LSB  
LSB  
LSB  
LSB  
INL  
Integral non-linearity  
External reference, VREF = 4V  
Internal reference  
-0.75  
-0.75  
0.75  
0.75  
DNL  
Differential non-linearity  
External ADC reference turn on delay  
time from VCC2 > VIT-(UVLO2)  
tADREFEXT  
ITO2  
VIT-(UVLO2) to 10% of VREF  
10  
µs  
µA  
ms  
µs  
Pull up current on AI2,4,6 pins  
VAI2,4,6= VREF/2, ITO2_EN=H  
ADC in hybrid mode configuration  
10  
0.4  
5.1  
7.5  
15  
IN+ hold time to cause switchover  
between center mode and edge mode  
thybrid  
tCONV  
tRR  
Time to complete ADC conversion  
Time between ADC conversions in Edge ADC in edge mode or hybrid mode (after  
mode tHYBRID) configuration  
µs  
6.8 SPI Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSPI  
SPI clock frequency(1)  
SPI clock period(1)  
4
tCLK  
250  
90  
90  
50  
30  
45  
tCLKH  
CLK logic high duration(1)  
CLK logic low duration(1)  
ns  
tCLKL  
ns  
tSU_NCS time between falling edge of nCS and rising edge of CLK(1)  
ns  
tSU_SDI  
tHD_SDI  
tD_SDO  
setup time of SDI before the falling edge of CLK(1)  
SDI data hold time (1)  
ns  
ns  
time delay from rising edge of CLK to data valid at SDO$$blue|[[\1]]  
60  
ns  
tHD_SDO SDO output hold time(1)  
40  
50  
ns  
tHD_NCS time between the falling edge of CLK and rising edge of nCS(1)  
ns  
tHI_NCS  
tACC  
SPI transfer inactive time(1)  
250  
ns  
nCS low to SDO out of high impedance$$blue|[[\1]]  
time between rising edge of nCS and SDO in tri-state$$blue|[[\1]]  
60  
30  
80  
50  
ns  
tDIS  
ns  
(1) Ensured by bench char.  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
OUTH rise time  
OUTL fall time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
150  
150  
150  
50  
UNIT  
ns  
tr  
tf  
CLOAD = 10 nF  
CLOAD = 10 nF  
ns  
tPLH, tPHL Propagation delay from INP to OUTx  
CLOAD = 0.1 nF, tGLITCH_IO = 00b  
CLOAD = 0.1 nF  
ns  
tsk(p)  
tsk-pp  
fmax  
Pulse skew |tPHL - tPLH  
|
20  
20  
ns  
Part-to-part skew - same edge  
Maximum switching frequency  
CLOAD = 0.1 nF  
50  
ns  
CLOAD = 0.1 nF, ADC disabled  
50  
kHz  
Delay from fault detection to nFLT1 pin  
goes LOW.  
tdFLT1  
5
CLOAD = 100pF, REPU = 10kΩ  
μs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.9 Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from fault detection to nFLT2 pin  
goes LOW.  
tdFLT2  
25  
CLOAD = 100pF, REPU = 10kΩ  
μs  
Required hold time for ASC after  
ASC_EN transition  
tASC_EN  
1
μs  
tASC_DLY  
ASC rising  
ASC falling  
AI6 rising  
AI6 falling  
2
μs  
μs  
μs  
μs  
Delay from the ASC edge to OUTx  
transition (primary side)  
0.1  
1.8  
0.3  
tASC_DLY  
Delay from the AI6 (ASC) edge to OUTx  
transition (secondary side)  
PWM input mute time in case of DESAT,  
SC, and PS_TSD fault  
tMUTE  
PWM_MUTE_EN = 1  
10  
ms  
IO_DEGLITCH = 00b  
IO_DEGLITCH = 01b  
IO_DEGLITCH = 10b  
IO_DEGLITCH = 11b  
TDEAD = 000000b  
TDEAD = 000001b  
TDEAD = 000010b  
TDEAD = 000011b  
TDEAD = 000100b  
TDEAD = 111111b  
0
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Deglitch time for the primary side IO pins  
(exclude nCS, CLK, SDI, and SDO pins)  
tGLITCH_IO  
140  
210  
0
93  
159  
105  
175  
245  
315  
4445  
154  
228  
tDEAD  
Dead time for shoot through protection  
225  
302  
291  
376  
4178.3  
4748.8  
System start-up time (from power ready  
to nFLTx pins go high)  
tSTARTUP  
tVREGxOV  
5
ms  
VREG1 and VREG2 overvoltage  
detection deglitch time  
30  
μs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
16  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.10 Typical Characteristics  
6-1. IOUTH vs. Temperature  
6-2. IOUTL vs. Temperature  
6-3. Internal Miller Clamp Current vs. Temperature  
6-4. VCC1 Quiescent Current vs. Temperature  
6-5. VCC2 Quiescent Current vs. Temperature  
6-6. Propagation Delay vs. Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
6-7. Rise/Fall Time vs. Temperature  
6-9. UVLO2 Error vs. Temperature  
6-11. VCC1 OVLO Error vs. Temperature  
6-8. UVLO Threshold Error vs. Temperature  
6-10. VEE2 UVLO Error vs. Temperature  
6-12. VCC2 OVLO Error vs. Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
6-14. DESAT Threshold Error vs. Temperature  
6-16. SC Threshold Error vs. Temperature  
6-18. VCECLP Intervention Time vs. Temperature  
6-13. VEE2 OVLO Error vs. Temperature  
6-15. OC Threshold Error vs. Temperature  
6-17. Overcurrent Protection Response Time vs. Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
6-19. nFLT1 Response Time vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
20  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The UCC5870-Q1 is a platform supporting device, targeted for EV/HEV traction inverter applications. The  
flexibility of SPI programming of blanking times, deglitches, thresholds, function enables, and fault handling allow  
the UCC5870-Q1 to support a wide variety of IGBT or SiC power transistors that are used across all EV/HEV  
traction inverter applications. UCC5870-Q1 integrates all of the protection features required in most traction  
inverter applications. Additionally, the 30A gate drive capability eliminates the need for external booster circuit,  
reducing overall solution size. The integrated Miller clamp circuit holds the gate off during transient events and  
can be configured to use the internal 4A pulldown, or drive an external n-channel MOSFET. Advanced, internal  
capacitor-based isolation technology maximizes CMTI performance, while minimizing the radiated emissions.  
All of the protections for the power transistor are integrated into the UCC5870-Q1. It supports DESAT and  
resistor based overcurrent protection. A negative temperature coefficient power transistor temperature sensor  
monitor is built into the device to alert the host and prevent damage from over-temperature conditions in the  
switch. A zener-breakdown based clamping function is integrated to reduce the gate drive, and thereby the  
overshoot energy, when over voltage spikes occur during turn-off caused by inductive kick-back. Real time gate  
monitoring is integrated to ensure proper connection to the power transistor and alert the host to a fault in the  
gate driver path.  
A 10-bit ADC is built-in to the UCC5870-Q1 to provide information on power switch temperature, gate driver  
temperature, or any voltage that must be monitored on the secondary (high-voltage) side of the gate driver.  
There are six inputs (AIx) available to measure voltages with the ADC. This is convenient for acquire information  
on the DC-LINK voltage, or for measuring the VCE/VDS voltage of the power transistor during operation. The  
ADC features "center mode" operation to ensure low noise measurements, or can be used in a traditional "edge  
mode" to achieve as many measurements as possible during a PWM cycle. In addition to reading back the ADC  
information over SPI, a DOUT function provides a feedback signal representing one of the user-selected AIx  
voltages that can be monitored real-time on the primary side.  
The UCC5870-Q1 integrates many safety diagnostics that enable designers to more easily implement an ASIL  
rated system. There are diagnostics for all of the protection features, as well as latent fault detection for circuits  
in the gate driver IC itself. The faults are indicated using open-drain outputs, and the specific fault is easily  
determined using the SPI readback. In addition to all of the safety diagnostic features, the IC integrates a  
primary side and secondary side "active short circuit" circuits to provide the system designer with a secondary  
path to control a zero-vector state for the traction inverter in the case of motor controller failure.  
备注  
Throughout the document, "*" are used as wild cards (typically to indicate numbers such as AI* means  
AI1 - AI6. Additionally, SPI bits are referred to in the following convention: REGNAME[BITNAME]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Power Supplies  
The device uses three external supplies for power. VCC1 supplies the low voltage primary side that interfaces  
with the controller. VCC2 and VEE2 provide the gate drive supplies for the power FET. In addition, there are 3  
integrated supplies (VREG1, VREG2, and VREF) used to power internal circuits.  
7.3.1.1 VCC1  
VCC1 supports an input range of 3V to 5.5V in order to support both 3.3V and 5V controller signaling. VCC1 is  
monitored with both an undervoltage and overvoltage comparator circuit to ensure valid operation. UV and OV  
conditions of VCC1 are recorded in STATUS2[UVLO1_FAULT] and STATUS2[OVLO_FAULT1],  
respectively(STATUS2). See the Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO) section for  
more specifics regarding the OV and UV functions.  
7.3.1.2 VCC2  
VCC2 operates within an input range of 15V and 30V, allowing for use in IGBT and SiC applications. VCC2 is  
monitored with both an undervoltage and overvoltage comparator circuit to ensure valid operation. UV and OV  
conditions of VCC2 are recorded in STATUS3[UVLO2_FAULT] and STATUS3[OVLO2_FAULT], respectively  
(STATUS3 ). See the Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO) section for more specifics  
regarding the OV and UV functions.  
7.3.1.3 VEE2  
VEE2 operates with an input range of -12V to 0V, allowing a negative gate bias on the power FET during turn-off  
in both IGBT and SiC applications. This prevents the power FET from unintentionally turning on due to current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
22  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
inducted from the Miller effect. For operation with a unipolar supply, connect VEE2 to GND2. VEE2 is monitored  
with both an undervoltage and overvoltage comparator circuit to ensure valid operation. UV and OV conditions of  
VEE2 are recorded in STATUS3[UVLO3_FAULT] and STATUS3[OVLO3_FAULT], respectively (STATUS3 ). See  
the Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO) section for more specifics regarding the OV  
and UV functions.  
7.3.1.4 VREG1  
VREG1 is internally generated from VCC1. VREG1 regulates to 1.8V, and supplies internal circuits on the  
primary side. VREG1 requires a 4.7µF bypass capacitance from VREG1 to GND1 for proper operation. The  
current out of VREG1 is limited and this current limit is monitored. If the current limit is active for the deglitch  
time, a internal regulation overcurrent fault is recorded in STATUS2[VREG1_ILIMIT_FAULT]. If unmasked,  
nFLT1 goes low. Additionally, VREG1 is monitored for both undervoltage and overvoltage conditions. Any  
VREG1 UV fault is recorded in STATUS2[INT_REG_PRI_FAULT] (STATUS2 ). Any OV condition on VREG1  
causes the VREG1 output to latch off and shuts down the device. This action results in a secondary  
communication failure, which shuts down the driver output according to CFG10[FS_STATE_INT_COMM_SEC]  
bit (CFG10). The VCC1 and VCC2 power must be recycled in order to restart the device.  
7.3.1.5 VREG2  
VREG2 is internally generated from VCC2. VREG2 regulates to 1.8V with respect to VEE2, and supplies internal  
circuits on the secondary side. VREG2 requires a 4.7µF bypass capacitance from VREG2 to VEE2 for proper  
operation. The current out of VREG2 is limited and this current limit is monitored. If the current limit is active for  
the deglitch time, a internal regulation overcurrent fault is recorded in STATUS3[VREG2_ILIMIT_FAULT]  
(STATUS3). If unmasked, nFLT1 goes low. Additionally, VREG2 is monitored for both undervoltage and  
overvoltage conditions. Any VREG2 OV/UV faults are recorded in STATUS3[INT_REG_SEC_FAULT]  
(STATUS3 ). Any OV condition on VREG2 causes the VREG2 output to latch off and shuts down the driver  
output. The VCC2 power must be recycled in order to restart the driver output. Additionally, the driver must be  
reconfigured to ensure correct operation.  
7.3.1.6 VREF  
VREF is the reference for the ADC. VREF requires a 4V supply for the ADC to function properly. The error of the  
VREF translates directly to the error at the ADC. VREF is selectable to be powered internally, or alternatively, an  
external precision reference may be used to enhance the accuracy of the ADC. Use the CFG8[VREF_SEL]  
(CFG8) bit to select between the internal and external reference. The current out of VREF is limited and this  
current limit is monitored. If the current limit is active for the deglitch time, a internal regulation overcurrent fault is  
detected. Additionally, VREF is monitored for both undervoltage and overvoltage conditions. When any  
VREFILIM and/or OV/UV faults occur, the faults are recorded in STATUS5[ADC_FAULT] (STATUS5). If  
unmasked, nFLT1 goes low.  
7.3.1.7 Other Internal Rails  
There are several internal rails that are used to power the device. All of the internal rails are monitored for OV  
and UV conditions. Any OV/UV faults are recorded in the STATUS2[INT_REG_PRI_FAULT] (STATUS2) and  
STATUS3[INT_REG_SEC_FAULT] (STATUS3) bits.  
Bootstrap (VBST) and charge pump circuits generate the 4.5V power supply for the high side NMOS of internal  
driver stage. The implementation diagram is shown in 7-1. The external cap on BST is charged to 4.5V while  
OUTL is on (MN2 is on). While OUTH is on (MN1 is on), the capacitor voltage is stacked above OUTH and  
supplies the gate drive for the high-side NMOS. Under most conditions, the bootstrap circuit is used and the  
timing operates as shown in 7-2. However, for slow switching frequencies at high duty cycles the external  
capacitor may not be able to charge enough during the OUTH off time to supply the gate drive for the entire on-  
time. In these conditions, the charge pump circuit is used to hold the voltage across the bootstrap capacitor. .  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Implementation diagram of bootstrap and charge pump circuits.  
7-2. Timing diagram of bootstrap circuit.  
7.3.2 Driver Stage  
The driver stage is an integrated, 30-A current buffer. The high output drive capability enables the device to  
directly drive power transistors with current ratings up to 1000A without an external buffer. The drive strength is  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
selectable to 16.7%, 33%, or 100% using CFG8[IOUT_SEL] (CFG8). The output drive is split, enabling users to  
customize rise and fall times independently. .  
7.3.3 Integrated ADC for Front-End Analog (FEA) Signal Processing  
A 10bit ADC is integrated to enable the user to digitally monitor up to 6 analog input voltages (AI*). Additionally,  
the junction temperature of the device is available as well as an input for measuring the VTH of the power FET.  
The ADC has a full scale voltage range of 0 to 3.6V, requiring 4V at VREF (either internal or external). The ADC  
conversions are aligned with the INP signal to ensure the least amount of noise coupling from the switching  
transients of the power transistors (TI proprietary). Once a conversion is complete, the conversion results are  
transferred to the primary side of the device with inter-die communication and the result is stored in the  
ADCDATA* registers. The last ADC result is always available in the register. Every ADC conversion is recorded  
with time stamp information for that conversion. The time stamp is the INP cycle where the measurement occurs.  
Once the ADC and the driver are enabled, the time stamp increments with every INP low to high edge. If a fault  
occurs, or the duty cycle is such that a transition is not seen on INP, the TIME_STAMP does not update.  
VAI* = VADC (in decimal) × 3.519mV  
(1)  
(2)  
Die Temperature (C) = VADC(in decimal) * 0.7015°C - 198.36  
The AI* inputs are configurable by the user to enable/disable bias currents and comparator monitoring AI1, AI3,  
and AI5 are specially designed to monitor the temperature diode that is integrated into the power FET module,  
while A2, A4, and A6 are designed to measure the power FET current, typically from an integrated sense FET in  
the module. However, the inputs are not required to be used in these functions, and are configurable to measure  
any voltage up to 3.6V regardless of the source. The implementation of ADC sensing circuits is presented in 图  
7-3.  
7-3. Block diagram of implementation of ADC processing for the case where three power transistors  
are connected in parallel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.3.1 AI* Setup  
AI5 and AI6 are dual purpose inputs. By default, these inputs are configured to be control inputs for the  
secondary side ASC function (see the ASC section for more details). If AI5 and AI6 are to be used as current  
sense/ temperature sense/ ADC inputs, write CFG8[AI_ASC_MUX] = 1 (CFG8) to disable the ASC functionality.  
All of the AI* inputs have current sources that may be enabled using the CFG3[ITO1_EN] bit (CFG3) for AI1,3,5  
and the CFG3[ITO2_EN] bit (CFG3) for the AI2,4,6. Additionally, the AI1, AI3, and AI5 inputs are designed with a  
zero-temperature coefficient bias current (IZTC) to bias the NTC diodes integrated into the external power switch  
module. Use CFG3[AI_IZTC_SEL] bits (CFG3) to enable the required bias currents for the application. The AI*  
inputs require an RC filter for most accurate results. See the 8.2.2.6 section for details on selecting the correct  
RC values.  
7.3.3.2 ADC Setup and Sampling Modes  
The ADC is enabled/disabled with SPI communication to CFG7[ADC[ADC_EN] (CFG7). The 6 AI inputs as well  
as the die junction temperature are selectable to measure with the ADC. Additionally, the channels are  
selectable as to when it is samples with respect to the INP switching cycle. Use the  
ADCCFG[ADC_ON_CH_SEL_*] bits (ADCCFG) to select the channels to be measured while INP is high. The  
sampling order for the PWM ON cycle round robin is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp. Use the  
ADCCFG[ADC_OFF_CH_SEL_*] bits () to select the channels to be measured while INP is low. Use the  
CFG7[ADC_SAMP_MODE] bits (ADCCFG) to select one of 3 sampling modes for the ADC. Three modes are  
available to ensure the least amount of switching noise in the measurement. The three modes are Center  
Aligned mode (CFG7[ADC_SAMP_MODE]=0b00), where each selected channel is sampled in the center of the  
ON/OFF time of the INP input (depending on the setting), Edge Mode (CFG7[ADC_SAMP_MODE] = 0b01),  
where the ADC conversions begin after rising or falling edge (depending on the setting), and Hybrid mode  
(CFG7[ADC_SAMP_MODE] = 0b10), which is a combination of both modes. The maximum INP frequency  
supported in order to get at least one full ADC conversion per PWM cycle is 30kHz.  
7.3.3.2.1 Center Sampling Mode  
When using Center sampling mode (CFG7[ADC_SAMP_MODE]=0b00), the center is calculated for the ON or  
OFF time on INP (depending on the channel selection setup) based on the previous switching cycle. One  
channel is sampled during each ON or OFF time depending on the channel selections. The timing for Center  
mode is illustrated in the following figures.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
26  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-4. ADC center sampling mode  
7-5. ADC center sample mode timing chart  
7.3.3.2.2 Edge Sampling Mode  
Edge Mode (CFG7[ADC_SAMP_MODE] = 0b01) begins the ADC conversions based on the INP edge. When  
INP transitions, the ADC begins conversions for the round robin after the programmable delay time  
(programmed using CFG7[ADC_SAMP_DLY]). The channels selected for the PWM ON time are sampled after a  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
rising edge of INP, while the channels selected for the PWM OFF time are sampled after a falling edge. The  
round robin continues until the next edge of INP. The timing for Edge mode is illustrated in the following figures.  
7-6. ADC edge sampling mode  
7-7. ADC Edge sampling mode timing chart  
7.3.3.2.3 Hybrid Mode  
Hybrid Mode (CFG7[ADC_SAMP_MODE]=0b10) operates using a combination of the modes. Center mode is  
used until the INP period is greater than the hybrid period (thybrid) when edge mode is used. The timing for Hybrid  
mode is illustrated in the following figures.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
28  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-8. ADC Hybrid sampling mode timing chart  
7.3.3.3 DOUT Functionality  
The device also provides an analog feedback functionality for the ADC for applications that do not want to  
maintain continuous SPI communication. When enabled, the DOUT output provides a PWM signal with a duty  
cycle proportional to the signal that is selected to be monitored. Any of the AI* inputs and the TJ are available for  
monitoring on the DOUT output. As there is only one DOUT output, only one channel is selectable. Typically,  
DOUT is either directly monitored by the MCU, or run through an RC filter to convert it to an analog voltage that  
may be digitized and monitored by the host controller.  
In order to use the DOUT function, the nFLT2 pin must be reconfigured to select the DOUT functionality using  
the CFG1[NFLT2_DOUT_MUX] bit (CFG1 ). When the DOUT mode is selected, any warning or fault that was  
selected to report to nFLT2 now reports to nFLT1 automatically. Additionally, the frequency of DOUT is  
selectable between 4 options using the DOUTCFG[FREQ_DOUT] bits (DOUTCFG ). Select the channel to be  
monitored, using the DOUTCFG[DOUT_TO_AI*] bits (for the AI* inputs, DOUTCFG  
)
or the  
DOUTCFG[DOUT_TO_TJ] bit (DOUTCFG ) for the die junction temperature. If multiple channels are selected in  
the register, the duty cycle constantly changes as the ADC cycles through each channel read. It is recommended  
to only select one channel at a time for the DOUT function. In addition to this setup, the ADC must be enabled  
and setup correctly to read the desired channel to be monitored. See the ADC section for details on configuring  
the ADC. If a fault occurs that stops the driver output and ADC measurements, the DOUT output continues and  
represents the last good ADC reading.  
7.3.4 Fault and Warning Classification  
The device integrates extensive error detection and monitoring features. These features allow the design of a  
robust system that protects against a variety of system related failure modes. When one of the monitored  
warnings or faults occurs, if unmasked, the nFLT1 output (for faults) or the nFLT2 output (for warnings) pulls low.  
All of the fault and warning bits have corresponding configuration bits that allow the user to mask the error or  
fault from showing up on the nFLT* output. The naming convention is straightforward. The mask bit is in a CFG*  
register and is named the same as the fault with the addition of an "_P". For example, a power FET short circuit  
current fault is indicated in the register bit STATUS3[SC_FAULT] (STATUS3)and the mask bit is  
CFG9[SC_FAULT_P] (CFG9). Throughout this document, the different warning/error bit locations are indicated in  
the functional description of the block where the warning/fault is monitored. When masked, the nFLT* indication  
does not occur, but the STATUS* bits still indicate the warning/fault condition. The device classifies error events  
into two categories, Warnings and Faults, and takes different device actions depending on the error  
classification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
The Warning error class is used to report non-critical fault conditions. Warning errors are only reported with no  
action taken to affect the gate driver output or any other block. When a warning condition occurs, it is reported in  
on of the STATUS* registers and, if unmasked, the nFLT2 output is driven low. The nFLT2 indication for warning  
is cleared by a successful SPI read of the corresponding status register. Once cleared, warning indication is not  
repeated until the warning condition is removed and reapplied. For example, in an over temperature warning  
condition, after reading/clearing the bit the temperature must cool down to the normal operating range and then  
heat up again to the over temperature warning threshold for the error flag to be reasserted. The status bit always  
indicates the current state of the warning, and is not cleared until the error condition is removed.  
The Fault error class is used to report critical fault conditions. Fault errors have the ability to shut down the gate  
driver when they occur. When a fault condition occurs, it is reported in one of the STATUS* registers and, if  
unmasked, the nFLT1 output is driven low. Many faults have a corresponding configuration bit that enables the  
user to select the functional safe state of the driver when that fault occurs when the fault is not masked. These  
bits are in the CFG* registers, with bit names that start with "FS_STATE_". Throughout this document, the  
FS_STATE locations are indicated in the functional description of the block where the fault is monitored. The  
available options for the output state, depending on the fault, are PL (OUTL pulled low), PH (OUTH pulled high),  
or no action (gate driver output ignores the fault and continues normal operation). Faults are cleared when the  
condition is removed, and the CONTROL2[CLR_STAT_REG] bit (CONTROL2) is written. Fault indication  
reasserts as long as the fault condition exists and is unmasked. 7-1 provides an extensive list and details for  
the available faults and warnings.  
7-1. Fault and Warning Operating Modes (default)  
DRIVER OUTPUT  
(Default Action and  
Control bit)  
nFLT1  
(Default Action  
and Control bit)  
NAME(1)  
INDICATOR BIT  
SPI  
nFLT2  
Recovery operation  
D (Not latched. SPI  
is re-enabled if  
VCC1 voltage is  
above the UV  
threshold)  
PL  
Assert  
CFG2[UVLO1_FA  
ULT_P]  
STATUS2[UVLO1_FAULT]  
= 1  
System (MCU) to re-configure the device.  
Rewrite all SPI configurable registers.  
UVLO of VCC1 fault  
CFG3[FS_STATE_UVLO1  
_FAULT]  
-
D(Not latched. SPI  
is re-enabled if  
VCC1 voltage is  
below the OV  
threshold)  
PL  
Assert  
CFG2[OVLO1_FA  
ULT_P]  
System (MCU or other controller) to cycle  
VCC1 and re-configure the device. Rewrite  
all SPI configurable registers.  
STATUS2[OVLO1_FAULT]  
= 1  
OVLO of VCC1 fault  
CFG3[FS_STATE_OVLO1  
_FAULT]  
-
PL  
Assert  
CFG9[UVLO23_F  
AULT_P]  
STATUS3[UVLO2_FAULT]  
= 1  
System (MCU) to re-configure the device.  
Rewrite all SPI configurable registers.  
UVLO of VCC2 fault  
OVLO of VCC2 fault  
UVLO of VEE2 fault  
OVLO of VEE2 fault  
CFG11[FS_STATE_UVLO2  
]
E
E
E
E
-
-
-
-
PL  
Assert  
CFG9[OVLO23_F  
AULT_P]  
System (MCU or other controller) to cycle  
VCC2 and re-configure the device. Rewrite  
all SPI configurable registers.  
STATUS3[OVLO2_FAULT]  
= 1  
CFG11[FS_STATE_OVLO  
2]  
PL  
Assert  
CFG9[UVLO23_F  
AULT_P]  
STATUS3[UVLO3_FAULT]  
= 1  
CFG11[FS_STATE_UVLO3  
]
CLR_STAT_REG=1  
CLR_STAT_REG=1  
PL  
Assert  
CFG9[OVLO23_F  
AULT_P]  
STATUS3[OVLO3_FAULT]  
= 1  
CFG11[FS_STATE_OVLO  
3]  
STATUS1[GD_TWN_PRI_F  
AULT] = 1 (primary)  
STATUS4[GD_TWN_SEC_  
FAULT] = 1 (secondary)  
Assert  
Driver IC over  
temperature warning  
CFG2[GD_  
TWN_PRI_  
FAULT_P]  
NA  
E
E
-
-
STATUS4[GD_TSD_SEC_F  
AULT] = 1  
Additionally, the  
STATUS2[CLK_MON_PRI_  
FAULT] 1 and  
System to cycle VCC2 power and re-  
configure the device after allowing the  
device to cool. Rewrite all SPI configurable  
registers.  
Driver IC over  
temperature shutdown  
fault (secondary)  
Assert  
CFG9[GD_TSD_  
FAULT_P]  
PL  
PL  
-
STATUS2[INT_COMM_PRI  
_FAULT] indicate faults  
Driver IC over  
temperature shutdown  
fault (primary)  
System to re-configure the device. Rewrite  
all SPI configurable registers.  
-
D
E
-
-
-
Assert  
CFG9[OC_FAULT  
_P]  
Power transistor over  
current fault  
PL  
STATUS3[OC_FAULT] = 1  
CLR_STAT_REG=1  
CLR_STAT_REG=1  
CFG10[FS_STATE_OCP]  
STATUS3[SC_FAULT] = 1  
PL  
Assert  
CFG9[SC_FAULT  
_P]  
Power transistor short  
circuit fault  
or  
STATUS3[DESAT_FAULT]  
= 1  
CFG10[FS_STATE_DESA  
T_SCP]  
E
-
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
30  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Fault and Warning Operating Modes (default) (continued)  
DRIVER OUTPUT  
(Default Action and  
Control bit)  
nFLT1  
(Default Action  
and Control bit)  
NAME(1)  
INDICATOR BIT  
SPI  
nFLT2  
Recovery operation  
PL  
Assert  
CFG9[PS_TSD_F  
AULT_P]  
Power transistor over  
temperature fault  
STATUS3[PS_TSD_FAULT]  
= 1  
CFG10[FS_STATE_PS_TS  
D]  
E
-
CLR_STAT_REG=1  
Not  
Assert  
CFG9[GM_FAUL  
T_P]  
Gate voltage monitor  
fault  
HiZ  
Asserted  
CFG9[GM_  
FAULT_P]  
STATUS3[GM_FAULT] = 1  
E
CLR_STAT_REG=1  
CLR_STAT_REG=1  
CFG10[FS_STATE_GM]  
PL  
Assert  
CFG2[STP_FAUL  
T_P]  
PWM shoot through fault  
and STP diagnostic  
STATUS2[STP_FAULT] = 1 CFG3[FS_STATE_STP_FA  
ULT]  
E
-
-
-
PL  
STATUS4[CLK_MON_SEC  
CFG11[FS_STATE_CLK_  
_FAULT] = 1  
D(Not latched. SPI  
is re-enabled if the CFG2[CLK_MON  
clock recovers)  
Assert  
System (MCU or other controller) to cycle  
VCC1 and re-configure the device. Rewrite  
all SPI configurable registers.  
Clock monitor fault  
(primary)  
MON_SEC_FAULT]  
_SEC_FAULT_P]  
Assert  
CFG2[CLK_MON  
_PRI_FAULT_P]  
System (MCU or other controller) to cycle  
VCC2 and re-configure the device. Rewrite  
all SPI configurable registers.  
Clock monitor fault  
(secondary)  
STATUS2[CLK_MON_PRI_  
PL  
E
FAULT] = 1  
PL  
STATUS2[INT_REG_PRI_F CFG3[FS_STATE_INT_RE  
Assert  
CFG2[INT_REG_  
PRI_FAULT_P]  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Internal regulator UVLO  
fault  
AULT] = 1 (priamry)  
G_PRI_FAULT] (primary)  
E
-
STATUS3[INT_REG_SEC_ CFG10[FS_STATE_INT_R  
FAULT] = 1 (secondary)  
EG_SEC_FAULT]  
(secondary)  
PL  
STATUS2[INT_REG_PRI_F CFG3[FS_STATE_INT_RE  
AULT] = 1 (primary) G_PRI_FAULT] (primary)  
STATUS3[INT_REG_SEC_ CFG10[FS_STATE_INT_R  
Assert  
CFG2[INT_REG_  
PRI_FAULT_P]  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Internal regulator OVLO  
fault  
E
D
-
-
FAULT] = 1 (secondary)  
EG_SEC_FAULT]  
(secondary)  
Results in a secondary  
internal communication  
fault. See the internal  
communication fault line for  
behavior  
System (MCU or other controller) to cycle  
VCC1 and re-configure the device. Rewrite  
all SPI configurable registers.  
VREG1 OVLO fault  
VREG2 OVLO fault  
-
Assert  
Results in a  
primary internal  
communication  
fault. See the  
internal  
communication  
fault line for  
behavior  
Results in ia primary  
internal communication  
fault. See the internal  
communication fault line for  
behavior  
System (MCU or other controller) to cycle  
VCC2 and re-configure the device. Rewrite  
all SPI configurable registers.  
-
E
-
NA  
Not Asserted  
Assert  
System (MCU or other controller) to cycle  
SPI clock fault  
SPI address fault  
SPI CRC fault  
STATUS2[SPI_FAULT] = 1 CFG3[FS_STATE_SPI_FA  
ULT]  
E
E
E
CFG2[SPI_FAUL CFG2[SPI_ VCC1 and re-configure the device. Rewrite  
T_P]  
FAULT_P]  
all SPI configurable registers.  
NA  
STATUS2[SPI_FAULT] = 1 CFG3[FS_STATE_SPI_FA  
ULT]  
Not Asserted  
Assert  
System (MCU or other controller) to cycle  
CFG2[SPI_FAUL CFG2[SPI_ VCC1 and re-configure the device. Rewrite  
T_P]  
FAULT_P]  
all SPI configurable registers.  
NA  
STATUS2[SPI_FAULT] = 1 CFG3[FS_STATE_SPI_FA  
ULT]  
Not Asserted  
Assert  
System (MCU or other controller) to cycle  
CFG2[SPI_FAUL CFG2[SPI_ VCC1 and re-configure the device. Rewrite  
T_P]  
FAULT_P]  
all SPI configurable registers.  
Assert  
PL  
CFG2[CFG_CRC  
_PRI_FAULT_P]  
(primary)  
CFG9[CFG_CRC  
_SEC_FAULT_P]  
(secondary)  
STATUS2[CFG_CRC_PRI_ CFG3[FS_STATE_CFG_C  
RC_PRI_FAULT] (primary)  
STATUS4[CFG_CRC_SEC CFG10[FS_STATE_CFG_  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Configuration register  
CRC fault  
FAULT] = 1 (primary)  
E
-
_FAULT] = 1 (secondary)  
CRC_SEC_FAULT]  
(secondary)  
Assert  
Assert  
CFG2[CFG  
PL  
CFG2[CFG_CRC _CRC_PRI  
_PRI_FAULT_P] _FAULT_P] System (MCU or other controller) to cycle  
STATUS2[TRIM_CRC_PRI  
_FAULT] = 1 (primary)  
TRIM_CRC_SEC_FAULT =  
1 (secondary)  
Always PL (primary)  
CFG11[FS_STATE_TRIM_  
CRC_SEC_FAULT]  
(secondary)  
TRIM CRC fault  
E
(primary)  
(primary)  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
CFG9[CFG_CRC CFG9[CFG  
_SEC_FAULT_P] _CRC_SEC  
(secondary)  
_FAULT_P]  
(secondary)  
Assert  
Assert  
CFG2[BIST  
CFG2[BIST_PRI_ _PRI_FAUL  
STATUS2[BIST_PRI_FAUL  
T] = 1 (primary)  
STATUS4[BIST_SEC_FAU  
LT] = 1 (secondary)  
FAULT_P]  
(primary)  
T_P]  
(primary)  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Clock monitor BIST fault  
PL  
E
CFG9[BIST_SEC CFG9[BIST  
_FAULT_P]  
(secondary)  
_SEC_FAU  
LT_P]  
(secondary)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Fault and Warning Operating Modes (default) (continued)  
DRIVER OUTPUT  
(Default Action and  
Control bit)  
nFLT1  
(Default Action  
and Control bit)  
NAME(1)  
INDICATOR BIT  
SPI  
nFLT2  
Recovery operation  
Assert  
Assert  
CFG2[BIST  
CFG2[BIST_PRI_ _PRI_FAUL  
STATUS2[BIST_PRI_FAUL  
T] = 1 (primary)  
STATUS4[BIST_SEC_FAU  
LT] = 1 (secondary)  
FAULT_P]  
(primary)  
T_P]  
(primary)  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Analog BIST fault  
PL  
E
CFG9[BIST_SEC CFG9[BIST  
_FAULT_P]  
(secondary)  
_SEC_FAU  
LT_P]  
(secondary)  
Not Asserted  
CFG2[INT_COM  
M_PRI_FAULT_P  
]
PL  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Internal Communication STATUS2[INT_COMM_PRI  
CFG3[FS_STATE_INT_CO  
MM_PRI_FAULT]  
E
-
fault (primary)  
_FAULT]=1  
Asserted  
CFG9[INT_COM  
M_SEC_FAULT_  
P]  
PL  
System (MCU or other controller) to cycle  
VCC1/VCC2 and re-configure the device.  
Rewrite all SPI configurable registers.  
Internal Communication STATUS3[INT_COMM_SE  
CFG10[FS_STATE_INT_C  
OMM_SEC_FAULT]  
E
E
-
-
fault (secondary)  
C_FAULT]=1  
PL  
CFG3[FS_STATE_PWM_C  
HK]  
Assert  
CFG2[PWM_CHK  
_FAULT_P]  
STATUS1[PWM_COMP_C  
HK_FAULT] = 1  
PWM check fault  
Not Asserted  
CFG7[ADC_FAU  
LT_P]  
NACFG7[FS_STATE_ADC  
_FAULT]  
System (MCU or other controller) to cycle  
VREF bias and write CLR_STAT_REG=1  
VREF UV/OV fault  
STATUS5[ADC_FAULT] = 1  
E
E
-
-
STATUS3[VCEOV_FAULT]  
= 1  
VCE over voltage fault  
STO  
NA  
-
-
E
Very likely that this  
fault causes a  
VREG1 UV which  
disbles SPI  
Assert  
CFG2[VREG1_ILI  
MIT_FAULT_P]  
System (MCU or other controller) to cycle  
VCC1 and re-configure the device. Rewrite  
all SPI configurable registers.  
STATUS2[VREG1_ILIMIT_  
FAULT] = 1  
VREG1 overcurrent fault  
VREG2 overcurrent fault  
-
Assert  
CFG9[VREG2_ILI  
MIT_FAULT_P]  
System (MCU or other controller) to cycle  
VCC2 and re-configure the device. Rewrite  
all SPI configurable registers.  
STATUS3[VREG2_ILIMIT_  
FAULT] = 1  
NA  
NA  
E
E
-
-
Assert  
CFG7[ADC_FAU  
LT_P]  
System (MCU or other controller) to cycle  
VREF bias and write CLR_STAT_REG=1  
VREF overcurrent fault STATUS5[ADC_FAULT] = 1  
(1) E - Enabled, PL = Pull Low, D = Disabled, HiZ = High Impedance, NA - No Action, STO - Soft Turn-Off  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
32  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.5 Diagnostic Features  
Diagnostics are available covering the following functions:  
Undervoltage and overvoltage monitoring on VCC1, VCC2, and VEE2 power supplies  
Undervoltage and overvoltage monitoring on internal power supplies used for its supporting circuits  
Clock monitor on logic clock  
Configuration Data CRC  
SPI CRC  
TRIM RC  
Built-in self-test (BIST) diagnostics for VCC1, VCC2, VEE2, and internal regulator UV/OV monitoring  
functions, and main clocks.  
DESAT detection function and function diagnostic  
Power transistor OCP, SCP, and TSD comparators and comparator diagnostics  
Power transistor high voltage clamping circuit detection and function diagnostics  
Active Miller clamp diagnostic  
7.3.5.1 Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO)  
UVLO functions are implemented for all three gate driver power supplies VCC1, VCC2, and VEE2. The VCC1  
UVLO/OVLO ensures a valid supply is connected for the required logic interface. The UVLO/OVLO for VCC2  
and VEE2 ensures valid supplies based on the type of transistor used. The UVLO function prevents overheating  
damage to the IGBTs/MOSFETs from being under-driven. The OVLO functions are implemented to prevent gate  
oxide degradation (shortened lifetime) of the IGBTs/MOSFETs from an over-voltage supply at turned on. The  
device powers up when a valid VCC1 supply (VIT+(UVLO1) < VVCC1 < VIT+(OVLO1)) and non-UV VCC2 supply  
(VVCC2 > VIT+(UVLO2)) are connected. The driver outputs are high impedance until the valid supplies are  
connected and the internal supplies are in regulation. While the driver output is high impedance, the output to  
the gate of the external power switch is held low with a passive and active pulldown circuit. See the 7.3.5.2  
section for more details. Once valid supplies are connected and internal supplies are valid, the output state is  
determined by the Enable/Disable Driver command any fault conditions that exist. SPI communication is  
unavailable while VCC1 is lower than the UVLO1 threshold.  
The OVLO and UVLO functions are enabled/disabled using the following bits: CFG1[UV1_DIS] for VCC1 UVLO,  
CFG1[OV1_DIS] for VCC1 OVLO, CFG4[UV2_DIS] for VCC2 UVLO,CFG4[OV2_DIS] for VCC2 OVLO, and  
CFG4[UVOV3_EN] for both the OVLO and UVLO for VEE2. The UVLO and OVLO thresholds for VCC1, VCC2  
and VEE2 are programmable in order to customize the driver for different types of power transistors. Use the  
CFG1[UVLO1_LEVEL] and CFG1[OVLO1_LEVEL] (for VCC1), CFG7[UVLO2TH] and CFG7[OVLO2TH] (for  
VCC2), and CFG7[UVLO3TH] and CFG7[IOVLO3TH] (for VEE2) bits to set the desired threshold. See CFG1  
and CFG7.  
The fault status for the OVLO and UVLO function are located in STATUS2[UVLO1_FAULT] for VCC1 UVLO,  
STATUS2[OVLO1_FAULT]  
for  
VCC1  
OVLO,  
STATUS3[UVLO2_FAULT]  
for  
VCC2  
UVLO,  
STATUS3[OVLO2_FAULT] for VCC2 OVLO, STATUS3[UVLO3_FAULT] for VEE2 UVLO, and  
STATUS3[OVLO3_FAULT] for VEE2 OVLO. See STATUS2 and STATUS3 for additional details. The timing  
diagrams for the VCC1 and VCC2 UVLO and OVLO functions are shown in and 7-10, respectively. The VEE2  
timing diagram is shown in 7-11.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-9. Illustration of UVLO and OVLO timing schemes of VCC1.  
7-10. Illustration of UVLO and OVLO timing schemes of VCC2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
34  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-11. Illustration of UVLO and OVLO timing schemes of VEE2  
7.3.5.1.1 Built-In Self Test (BIST)  
7.3.5.1.1.1 Analog Built-In Self Test (ABIST)  
The device automatically runs diagnostics on all of the under-voltage and over-voltage comparators monitoring  
VCC1, VCC2, VEE2, and internal regulators during the power up process. During the self-test of the  
comparators, an over-voltage and under-voltage condition is simulated. The actual monitored voltage rails  
remain unchanged and the disturbance is not observable. A failure in the ABIST for the primary side sets the  
STATUS2[BIST_PRI_FAULT] (STATUS2) and for the secondary side sets the SATUS4[BIST_SEC_FAULT]  
(STATUS4).  
7.3.5.1.1.2 Function BIST  
In addition to the automatic analog BIST, there are BIST diagnostics available for DESAT, the PWM signal (INP)  
check, STP, Gate Voltage Monitoring, SCP/OCP, PS_TSD, and VCECLP. Details for the functionality of each of  
these tests are provided in the CONTROL1 (CONTROL1) and CONTROL2 (CONTROL2) register bit  
descriptions.  
7.3.5.1.1.3 Clock Monitor  
The device integrates clock monitor functions to identify clock faults during operation. The Clock monitor detects  
internal oscillator failures:  
Oscillator clock stuck high or stuck low  
Clock frequency is out of range ±30%  
The clock monitor is enabled during a power-up event after the power-on reset is released. The clocks on the  
primary side and secondary side are monitored. In the event of a clock fault on the primary side, the  
STATUS4[CLK_MON_SEC_FAULT] bit (STATUS4 ) is set, the driver is forced to the state determined by the  
CFG11[FS_STATE_CLK_MON_SEC_FAULT] bit (CFG11) and, if unmasked, the nFLT1 output pulls low. In the  
event of a clock fault on the secondary side, the STATUS2[CLK_MON_PRI_FAULT] bit (STATUS2 ) is set, and, if  
unmasked, the nFLT1 output pulls low. The secondary side clock monitor has no effect on the gate driver output  
state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.5.1.1.3.1 Clock Monitor Built-In Self Test  
The clock monitor circuit integrates a diagnostic that checks the integrity of the monitoring circuit. The diagnostic  
is run automatically during the startup process. Additionally, a simulated clock monitor fault is generated by  
writing the CONTROL1[CLK_MON_CHK_PRI] bit ( 图  
7-72) for the primary side and the  
CONTROL2[CLK_MON_CHK_SEC] bit (7-73) for the secondary side. When enabled, the enabled diagnostics  
emulates clock failure that causes a clock monitor fault. During this self-test, the actual oscillator frequency is not  
changed.  
7.3.5.2 CLAMP, OUTH, and OUTL Clamping Circuits  
Integrated diodes prevent the OUTH and CLAMP outputs from exceeding VCC2. The short circuit clamping  
function clamps the voltages at the driver output (OUTH) and active Miller clamp (CLAMP) outputs to be slightly  
higher than VCC2 during power switch short circuit conditions. The clamped gate voltage limits the short circuit  
current and prevents the IGBT/MOSFET gate from overvoltage breakdown or degradation. The internal diodes  
conduct up to 500 mA current for a duration of 10us, and a continuous current of 20mA. Use external Schottky  
diodes to improve current conduction capability, if needed.  
While VCC2 is unpowered, the gate of the external power switch is held off with an active pulldown circuit. If the  
OUTL suddenly rises due to ramping VCC2 during power up, the active pulldown function pulls the IGBT/  
MOSFET gate to the low state and maintains the OUTL voltage below VOUTSD. See 7-12 for a drawing of the  
clamping circuits.  
7-12. CLAMP, OUTH, and OUTL Clamping Circuits  
7.3.5.3 Active Miller Clamp  
The Active Miller clamp function (CLAMP output) is used to prevent the power transistor from false turn-on due  
Miller capacitance induced current. The active Miller clamp adds a low impedance path between power transistor  
gate terminal and VEE2 to pull the gate of the external FET hard to VEE2, bypassing any external gate resistors.  
The Miller clamp engages when the OUTH voltage falls below the VCLPTH, which is selected using the  
CFG5[MCLPTH] bits (CFG5). Additionally, the Miller clamp is enabled/disabled using the CFG4[MCLP_DIS] bit  
(CFG4). The status of the Miller clamp is available in the STATUS3[MCLP_STATE] bit (STATUS3).  
If additional pulldown strength is required, the CLAMP output is configured to drive an external Miller clamp FET.  
Use the CFG4[MCLP_CFG] bit to select between the internal and external Miller clamp (CFG4). This option can  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
be configured through the register. The implementation block diagram and timing scheme are shown in 7-13  
and 7-15 respectively.  
7-13. Block diagram of implementation of internal Miller clamp function.  
7-14. Block diagram of implementation of external Miller clamp function.  
7-15. Timing scheme of implementation of Miller clamp function.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.5.4 DESAT based Short Circuit Protection (DESAT)  
DESAT protection prevents the power transistor from damage in case of short circuit faults. The DESAT input  
monitors the VCEsat (IGBT)/VDSon (MOSFET) through an external resistor and diode network (R1, C1, D1 and  
D2 in 7-16). The D1 diode protects the driver IC from high voltage when the power transistor is OFF. The  
resistor, R1, limits the negative voltage applied on the DESAT input during switching transitions. While the power  
FET is ON, an internal current source, ICHG, forward biases the DESAT diode and dumps into the collector/drain  
of the external power switch. Under normal conditions, the VCEsat/VDSon is less than a few volts, however, during  
short circuit faults the VCEsat/VDSon may rise up to the DC bus voltage when the power transistor operates in the  
linear region. In this situation, the D1 diode is reverse biased, so the internal current source charges the blanking  
capacitor (C1) Once the voltage on the DESAT input charges up to the selected threshold (VDESATth),the driver  
output is pulled into the safe state defined by the CFG10[FS_STATE_DESAT_SCP] bit (CFG10), the fault is  
indicated in the STATUS3[DESAT_FAULT] (STATUS3), and, if unmasked, the NFLT1 output pulls low. The turn-  
off of the driver output during a DESAT fault is selectable between normal, soft turn-off (STO), or two-level turnoff  
(2LTO) dictated by the CFG5[2LTOFF_STO_EN] bits (CFG5). See the 7.3.5.9and 7.3.5.8 for additional  
details on STO and 2LTO, respectively. The blanking capacitor is fully discharged at the falling edge of the PWM  
signal using the internal discharge current (IDCHG). In addition to the blanking time, DESAT is deglitched to  
prevent false triggering during transitions. The deglitch is selectable using the CFG4[DESAT_DEGLITCH] bit  
(CFG4).  
The DESAT threshold is selectable using the CFG5[DESATTH] bits (CFG5), and the DESAT charging current  
(ICHG) is selectable, using the CFG5[DESAT_CHG_CURR] bits (CFG5), to control the blanking time (tDS_BLK).  
The discharge current is enabled/disabled using the CFG5[DESAT_DCHG_EN] bit (CFG5). The DESAT  
protection function is enabled or disabled using the CFG4[DESAT_EN] bit (CFG4). The implementation diagram  
and timing schemes of DESAT based short circuit protection are presented in 7-16 and 7-17 respectively.  
See the 8.3.1.1section for details on selecting the R1, C1, and D1 values.  
7-16. Block diagram of implementation of DESAT protection function.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
38  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-17. Timing scheme of implementation of DESAT protection function (safe state is LOW).  
7.3.5.5 Shunt Resistor based Overcurrent Protection (OCP) and Short Circuit Protection (SCP)  
The device designates three AI* inputs (AI2, AI4, AI6) to support shunt resistor based OCP and SCP in order to  
support up to three power transistors in parallel. Shunt resistor based OCP/SCP protections are intended for  
power transistors with integrated current sense FETs. The mirrored power transistor currents is fed into a  
resistor, and the voltage is monitored at the AI* input. Once the voltage at the AI* input exceeds the threshold  
programmed using CFG6[OCTH] (for OCP, CFG6) or CFG6[SCTH] (for SCP, CFG6), the fault is indicated in the  
STATUS3[OC_FAULT] (for OCP, STATUS3) or the STATUS3[SC_FAULT] (for SCP, STATUS3), and if unmasked,  
nFLT1x is pulled low and the driver output goes to the state defined by CFG10[FS_STATE_OCP] (for OCP,  
CFG10) or CFG10[FS_STATE_SCP] (for SCP, CFG10). The turn-off of the driver output during a OCP or SCP  
fault is selectable between normal, soft turn-off (STO), or two-level turnoff (2LTO) dictated by the  
CFG5[2LTOFF_STO_EN] bits (CFG5). See the Soft Turn-off (STO) and Two-Level Turn-Off for additional details  
on STO and 2LTO, respectively. A blanking time is used for both OCP and SCP to prevent unwanted false  
protection triggering during transitions and is selectable in CFG6[OC_BLK] (for OCP, CFG6)) or CFG6[SC_BLK]  
(for SCP, CFG6)). Once the blanking time expires, any SCP/OCP fault must exist for the deglitch time before the  
fault is registered. Enable/disable which AI* inputs are to be used for SCP/OCP using the  
DOUTCFG[AI*OCSC_EN] bits (DOUTCFG). The OCP and SCP functions are enabled for the selected AI*  
inputs using the CFG4[OCP_DIS] (for OCP, CFG4) and CFG4[SCP_DIS] (for SCP, CFG4) bits. Please note that  
if AI6 is to be used for OCP/SCP, the CFG8[AI_ASC_MUX] bit (CFG8) must be configured as an ADC input. The  
implementation diagram and timing schemes for the shunt resistor based OCP and SCP are presented in Block  
diagram of implementation of shunt resistor based OCP and SCP functions and Timing scheme of  
implementation of shunt resistor based OCP function (safe state is LOW) respectively.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-18. Block diagram of implementation of shunt resistor based OCP and SCP functions.  
7-19. Timing scheme of implementation of shunt resistor based OCP function (safe state is LOW)  
Current sources are available for AI2, AI4, and AI6 as open pin diagnosis tools. Enable the current sources  
using the CFG3[ITO2_EN] bit (CFG3). When enabled, the AI2, AI4, AI6 inputs are pulled high if left  
unconnected.  
7.3.5.6 Temperature Monitoring and Protection for the Power Transistors  
The device designates three AI* inputs (AI1, AI3, AI5) to support NTC diode sensing for up to three power  
transistors in parallel. The temperature protection is intended for power transistors with integrated temperature  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
sensing diodes. The AI* input provides a zero-TC current that biases the integrated diode, and the voltage is  
monitored at the AI* input. The bias current is controlled using CFG3[ITO1_EN] (CFG3) as a master enable, and  
then using CFG3[AI_IZTC_SEL] (CFG3) to select which AI* output is to receive the bias current. Once the  
voltage at the AI* input falls below the threshold programmed using CFG6[TSD_PS] (CFG6), the fault is  
indicated in the STATUS3[PS_TSD_FAULT] (STATUS3), and if unmasked, nFLT1 is pulled low and the driver  
output goes to the state defined by CFG10[FS_STATE_PS_TSD] (CFG10). The turn-off of the driver output  
during an PS_TSD fault is selectable between normal, soft turn-off (STO), or two-level turnoff (2LTO) dictated by  
the CFG5[2LTOFF_STO_EN] bits. See the 7.3.5.9 and 7.3.5.8 for additional details on STO and 2LTO,  
respectively. Any PS_TSD fault must exist for the deglitch time programmed using the  
CFG4[PS_TSD_DEGLITCH] bits (CFG4) before the fault is registered. Enable/disable which AI* inputs are to be  
used for PS_TSD using the DOUTCFG[AI*PS_TSD_EN] bits (DOUTCFG). The temperature monitoring function  
is enabled for the selected AI* inputs using the CFG4[PS_PS_TEMP_EN] bit (CFG4). Please note that if AI5 is  
to be used for power switch temperature monitoring, the CFG8[AI_ASC_MUX] bit (CFG8) must be configured as  
an ADC input. The implementation diagram and timing schemes of PS_TSD are presented in 7-20 and 图  
7-21 respectively.  
7-20. Block diagram of implementation of PS temperature monitoring function.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-21. Timing scheme of implementation of PS_TSD function.  
7.3.5.7 Active High Voltage Clamping (VCECLP)  
The active high voltage clamping feature protects power transistors from over-voltage damage during switching  
transitions, while reducing the power dissipated in the external TVS clamp diodes protecting the power FET.  
During turn-off, the VCECLP input is monitored. Once the VCE of the FET increases to turn on the external TVS  
diode, the RC network on the VCECLP input is charged up. Once the VCECLP input reaches the clamp  
threshold (VCECLPTH), OUTL drive strength changes to the ISTO setting in order to slow down the turn off and  
reduce the overshoot. The high voltage clamping remains active for a predefined time tVCECLP_HLD. The OV  
condition is reported in STATUS3[VCEOV_FAULT] (STATUS3). The implementation and timing diagrams for the  
active high voltage clamping are presented in 7-22 and 7-23, respectively. The VCECLP feature is  
enabled/disabled using the CFG4[VCECLP_EN] bit (CFG4).  
7-22. Block diagram of implementation of active high voltage clamping function.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
42  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-23. Timing scheme of implementation of active high voltage clamping function.  
7.3.5.8 Two-Level Turn-Off  
The two-level turn-off (2LTOFF) function limits the transistor current during shutoff during certain fault conditions.  
The 2LTOFF function is enabled for PS_OC, PS_SC, PS_TSD, and/or DESAT faults using the  
CF5[2LTOFF_STO_EN] bits (CFG5). When 2LTOFF is triggered, the gate of the power transistor is controlled to  
operate the transistor in the linear region where the channel current is controlled by the voltage level on the gate  
terminal. The power transistor current is reduced by controlling the gate voltage to a intermediate voltage, or  
plateau voltage, (V2LOFF) for t2LOFF, and then ramping the gate down to turn the power transistor off. While  
2LTOFF is active, OUTL sinks current to discharge the gate capacitor of the power switch to the plateau voltage.  
The gate discharge current is programmable using the CFG8[GD_2LOFF_CURR] bits (CFG8). The plateau  
voltage level and duration are configured using the CFG8[GD_2LOFF_VOLT] and CFG8[GD_2LOFF_TIME] bits  
(CFG8), respectively. After holding the plateau voltage for the programmed time, the gate is discharged fully  
using the soft turn-off current or pulled low as normal with the OUTL driver. Enable the soft turn off current using  
the CFG8[GD_2LOFF_STO_EN] bit (CFG8). The implementation diagram and timing scheme are presented in  
7-24 and 7-25, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-24. Block diagram of implementation of two-level turn-off function  
HIGH  
LOW  
LOW  
IN+  
IN-  
VDESATth  
DESAT  
OUTH  
GND2  
HIGH  
HiZ  
HiZ  
OUTL  
LOW  
ON  
CLAMP  
CTRL  
OFF  
V2LOFF  
VCLPth  
VGE  
t2LT t2LOFF  
tLEB  
tDS_BLK  
tDESFLT  
tMUTE  
tLEB tDS_BLK  
tDESFLT  
7-25. Timing scheme of implementation of two-level turn-off function  
7.3.5.9 Soft Turn-Off (STO)  
The soft turn-off (STO) function prevents power transistors from OV damage because of parasitic loop  
inductance induced voltage spikes on VCE. The STO slows down the turn-off process that to limit the di/dt rate,  
and thus limits the loop inductance induced voltage spikes. During STO, the OUTL drive strength is reduced to  
the threshold programmed using the CFG5[STO_CURR] bits (CFG5). The STO function is enabled for PS_OC,  
PS_SC, PS_TSD, and/or DESAT faults using the CF5[2LTOFF_STO_EN] bits (CFG5).  
7.3.5.10 Thermal Shutdown (TSD) and Temperature Warning (TWN) of Driver IC  
Gate driver temperature monitoring prevents driver IC from damage during overheating conditions. Both the  
primary and secondary sides of the driver utilize thermal warning and shutdown comparators to help prevent  
damage due to high temperatures. When a thermal warning is detected on the primary side, the  
STATUS1[GD_TWN_PRI_FAULT] (STATUS1) is set and, if unmasked, the nFLT2 output is pulled low. If over  
temperature event is detected on the primary side, the device transitions to the RESET state where the driver  
output is held low. Once the device cools, the device must be reconfigured as described in the Programming  
section before enabling the driver output.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
44  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
When a thermal warning is detected on the secondary side, the STATUS4[GD_TWN_SEC_FAULT](STATUS4) is  
set and, if unmasked, the nFLT2 output is pulled low. When a thermal shutdown is detected on the secondary  
side, the driver is disabled, , the STATUS4[GD_TSD_SEC_FAULT] (STATUS4), is set and, if unmasked, the  
nFLT1 output is pulled low. The status register flag for TSD may not be set depending on the timing of the  
thermal event, however the nFLT1 indicator will be pulled low. In the case of the secondary thermal shutdown  
event, the clock monitor and inter-die communication faults will likely be indicated. This is expected behavior due  
to the secondary side being shutdown and not communicating to the primary side. Once the driver cools and  
communication is reestablished, the device must be reconfigured as described in the Programming section  
before turning on the driver output. A blanking time is inserted to prevent unwanted false triggering of the  
protection circuits.  
7-26. Timing scheme of implementation of driver IC TSD function.  
7.3.5.11 Active Short Circuit Support (ASC)  
The active short circuit (ASC) function allows the system to force the state of the power transistor regardless of  
the PWM input. For cases where the main MCU is not available due to fault or otherwise, a secondary control  
circuit drives the ASC_EN input high to force the output of the device to the state defined by the ASC input. For  
the primary side, two dedicated inputs are available for the ASC control. The ASC control is also available on the  
secondary side using the AI5 and AI6 inputs. To configure the device with the secondary ASC function, the  
CFG8[AI_ASC_MUX] bit (CFG8) must be configured in ASC mode. In this configuration, AI5 is ASC_EN and AI6  
is the ASC input. The operation is identical to what is described for the primary side. Please note that if AI5/AI6  
are to be used for the ASC function they are unavailable for OCP/SCP and PS temperature monitoring. When  
using the secondary side ASC, it is possible that the GM_FAULT will be set (when enabled) if the IN+ state is  
different than the ASC state. There will be no fault action taken, but the STATUS3[GM_FAULT] will be set. The  
implementation flow of ASC function is presented in 7-27. This implementation assumes both primary and  
secondary ASC are used. The secondary ASC covers the failure mode where VCC1 power is down. The primary  
and secondary ASC functions can be used independently. If both ASC functions are enabled, the secondary  
ASC has highest priority. The ASC functions are available in all operation states, assuming there is a valid power  
supply (VCC1 and VCC2 for ASC/ASC_EN or VCC2 for AI5/AI6).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-27. ASC implementation Flowchart  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
46  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-28. ASC implementation logic.  
7.3.5.12 Shoot-Through Protection (STP)  
The shoot through protection function (STP) provides an additional layer of protection from shoot through  
conditions due to incorrect PWM commands from MCU. The output of the driver uses IN+ and the  
complementary PWM signal provided to the IN- input to set the output state of the driver. Both the IN+ and IN-  
inputs are deglitched by tGLITCH, which is programmable using CFG1[IO_DEGLITCH] bits (CFG1). There are two  
available version of STP, IN+/IN- safety interlock and automatic dead-time. The safety interlock function is  
enabled by setting the CFG1[TDEAD] bits (CFG1) to 0b000000 (tDEAD = 0). When using the safety interlock STP,  
if IN+ and IN- are both high at the same time, a shoot-through condition (STP fault) is detected. During an STP  
fault, the STATUS2[STP_FAULT] bit (STATUS2 ) is set, and, if unmasked, the nFLT1 output pulls low. The output  
of the driver is forced to the state defined by CFG3[FS_STATE_STP_FAULT] (CFG3 ). When the tDEAD is non-  
zero (CFG1[TDEAD] 0b000000, dead time is added to the falling edge of IN- by the device. In these cases,  
when IN+ goes high, the device waits until the deglitched falling edge of IN-, then OUTH pulls high tDEAD after  
the deglitched IN- is low. The implementation diagram and timing schemes are presented in 7-29 and 7-30  
respectively.  
7-29. Block diagram of implementation of STP function.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-30. Timing scheme of implementation of STP function.  
7.3.5.13 Gate Voltage Monitoring and Status Feedback  
The integrity of the PWM channel is monitored end to end using two checks. The first check monitors the  
communication across the isolation channel. The received state on the secondary side is communicated back o  
the primary side to ensure the two match. If there is a mismatch between the IN+ state and the received IN+  
state, the STATUS1[PWM_COMP_CHK_FAULT] bit (STATUS1) is set, if unmasked, nFLT1 pulls low, and the  
driver output is forced ot the state defined by CFG3[FS_STATE_PWM_CHK] (CFG3). The second check  
monitors the actual gate voltage of the power transistor to ensure the gate is in the correct state. The monitored  
gate voltage is first converted to logic state and indicated in the STATUS3[GM_STATE] bit (STATUS3). The  
converted gate voltage logic state is then compared with the input PWM (IN+) signal. The mismatch of the two  
signals causes a gate voltage monitor fault condition where the STATUS3[GM_FAULT] bit (STATUS3 ) is set, the  
driver output is forced to the state defined by CFG10[FS_STATE_GM] (CFG10 ), and, if unmasked, nFLT1 pulls  
low. Blanking time relative to the driver outputs is used to prevent false reporting of the gate voltage monitor  
error during driver transitions. During 2LTOFF transitions, the blanking time starts after the 2LTOFF plateau timer  
expires in order to prevent false GM faults during the transition. Alternatively, the GM fault may be disabled  
during STO and 2LTOFF using the CFG5[GM_STO2LTO_DIS] bit (CFG5). The blanking time is adjustable using  
the CFG4[GM_BLK] bits (CFG4). Additionally, the gate monitoring function may be disabled entirely using the  
CFG4[GM_EN] bit (CFG4). The implementation block diagram and timing schemes are presented in 7-31 and  
7-32.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
48  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-31. Block diagram of implementation of gate voltage monitor function.  
7-32. Timing scheme of implementation of gate voltage monitor function.  
7.3.5.14 VGTH Monitor  
The VGTH Monitor function is used to measure the gate threshold voltage of the power transistor during power  
up. When enabled using the CONTROL2[VGTH_MEAS] bit (CONTROL2), the switch between DESAT and  
OUTH is turned on. A constant current source charges the gate capacitance of the power transistor and the gate  
voltage ramps up gradually. Once the channel starts to conduct, the gate voltage is naturally held at the  
threshold voltage level as the power transistor in a diode configuration. After the blanking time, tdVGTHM, the  
integrated ADC samples the gate voltage, and reports the measurement in register ADCDATA8. The  
measurement is actually a divided down version (divided by 8) of the gate voltage. The actual threshold voltage  
is calculated as:  
VGTH = VADCDATA8 × 8  
(3)  
This measurement is then used by the MCU to judge the health of the power transistor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-33. VGTH monitoring circuit current flow while charging the gate capacitance  
7-34. VGTH monitoring circuit current flow while the power transistor is in diode configuration  
7.3.5.15 Cyclic Redundancy Check (CRC)  
the device uses a cyclic redundancy check (CRC) to ensure data integrity for the configuration of the device  
while the driver output is active, the SPI communications (both transmitted and received), and the internal non-  
volatile memory that store the trim information that ensures the performance of the device. The CRC represents  
the remainder of a process analogous to polynomial long division, where the protected data is divided by the  
polynomial. The device uses the CRC8 polynomial X8 + X2 + X + 1 with a 0xFF initialization (to catch leading 0  
errors) for its calculations.  
7.3.5.15.1 Calculating CRC  
The calculation process begins by initializing the command frame by XORing it with the current CRC (0xFF for  
the very first command frame). Next, the XOR'd value is divided by the polynomial. The result is used as the  
CRC for the next frame. Repeat the process until all of the frames are run through the calculation. Note that the  
CRC is updated internal with every 16-bits, so the actual read/write command byte must be included in the  
calculation. See 7-36 for an example calculation.  
7.3.5.16 Configuration Data CRC  
When the device transitions to the ACTIVE state, the contents of configuration and control registers are  
protected by CRC engine. The configuration CRC is enabled using the CFG8[CRC_DIS] bit (CFG8). The  
registers protected by the CRC include:  
CFG1 - CFG11  
ADCCFG  
DOUTCFG  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
50  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
GD_ADDRESS[GD_ADDR] (no MSB)  
SPITEST  
CONTROL1  
CONTROL2, excluding the MSB (CONTROL2[CLR_STAT_REG])  
The CRC fault detection is performed every tCRCCFG (typically 2 ms). If the calculated CRC8 checksum for the  
configuration registers does not match the CRC8 checksum calculated upon entering the Active state, the  
STATUS2[CFG_CRC_PRI_FAULT]  
(for  
a
primary  
side  
CRC  
fail,  
STATUS2)  
or  
the  
STATUS4[CFG_CRC_SEC_FAULT] (for a secondary side CRC fail, STATUS4) bit is set and, if unmasked, the  
nFLT1 output goes low. Additionally, for the secondary side CRC failure, the driver output is forced to the state  
defined by CFG11[FS_STATE_CFG_CRC_SEC_FAULT] (CFG11).  
Diagnostics for the CRC check are available. Use the CONTROL1[CFG_CRC_CHK_PRI] (CONTROL1) to  
induce a CRC error on the primary side. CONTROL2[CFG_CRC_CHK_SEC] (CONTROL2) to induce a CRC  
error on the secondary side. Writing to any of the "RESERVED" bits in the configuration registers also induces a  
CRC fault.  
7-35. Configuration Data CRC Check Timing  
7.3.5.17 SPI Transfer Write/Read CRC  
The CRC checks for SPI transfer are continuously updated as SPI traffic is received/ sent. The CRC is updated  
with every 16-bits that are received. An example of calculating the SPI CRC for a sent command is given in 图  
7-36. In this set of commands, we are updating the configuration for CFG1 and then doing a CRC comparison on  
that command.  
7-2. Example of CRC Calculation While Updating CFG1  
Command  
Purpose  
CRC Before  
CRC_After  
Change the SPI address pointer to CFG1  
register  
0xFC00  
0xFF (Initialized)  
0x3F  
0xFA58  
0xFB2A  
Update the high byte with 0x58 configuration  
Update the low byte with 0x2A configuration  
0x3F  
0x23  
0x23  
0xC4  
Change the SPI address point to CRCDATA  
register  
0xFC13  
0xFA30  
0xC4  
0x28  
0x28  
Update the CRC_TX bits with the calculated  
CRC  
0x30 (written to the CRC_TX bits)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-36. Calculating CRC for a Set of Commands  
7.3.5.17.1 SDI CRC Check  
The SDI CRC checksum data is continuously calculated as SPI data frames are received. Once the MCU writes  
to the to CRCDATA[CRC_TX] bits (CRCDATA). The write to these bits triggers a comparison of the data in the  
CRC_TX bits with the internally calculated CRC. Once the comparison is complete, the CRC calculation logic is  
reset (reset value = 0xFF). When there is a mismatch between CRC_TX data and CRC calculated internally, the  
STATUS2[SPI_FAULT] bit (STATUS2) is and, if unmasked, the nFLT1 output pulls low. Additionally, the output of  
the driver is forced to the state programmed in CFG3[FS_STATE_SPI_FAULT] (CFG3).  
7.3.5.17.2 SDO CRC Check  
The SDO CRC checksum is continuously calculated as data is clocked out of SDO. The resulting CRC is stored  
in the CRCDATA[CRC_RX] bits. The bits are updated whenever nCS transitions from low to high. The CRC  
calculation logic is reset (reset value = 0xFF) when the CRC_RX bits are read or when the  
CONTROL1[CLR_SPI_CRC] bit is written. Note that the CRC_RX bits are reset immediately with the read, and  
the next CRC_RX value begins its calculation while clocking out of the CRC_RX bits. This means the received  
CRC_RX must be included in the next CRC calculation (i.e. the received CRC_RX is the first byte to be xor'd  
with the 0xFF reset value).  
7.3.5.18 TRIM CRC Check  
After each power up, the device performs a TRIM CRC check on the internal non-volatile memory on both the  
primary and secondary sides. If the calculated CRC8 checksum does not match the CRC8 checksum stored in  
the internal TRIM memory, the STATUS2[TRIM_CRC_PRI_FAULT] (for a primary side CRC fail, STATUS2) or  
the STATUS4[TRIM_CRC_SEC_FAULT] (for a secondary side CRC fail, STATUS4) bit is set and, if unmasked,  
the nFLT1 output goes low. Additionally for the secondary side CRC failure, the driver output is forced to the  
state defined by CFG11[FS_STATE_TRIM_CRC_SEC_FAULT] (CFG11).  
7.4 Device Functional Modes  
The overall operation mode transition diagram is presented in 7-37. The current state of the device is read in  
the STATUS1[OPM] bits (STATUS1). Note that these bits are only readable in the Configuration 2 and Active  
states.  
State 1: RESET  
State 2: Configuration 1  
State 3: Configuration 2  
State 4: Active  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
52  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-37. Operation mode diagram during normal operation  
7.4.1 State 1: RESET  
When a valid power supply is first applied to VCC1, the device enters the RESET state. In the RESET state, the  
device does not respond to commands from MCU, the driver outputs (OUTL and OUTH) are both high  
impedance, the registers are reset to the default values, and all of the built In Self Tests (BIST) run. The nFLTx  
outputs are held low until a power source is connected to VCC2, all of the automatic BISTs complete, and the  
device transitions to the Configuration 1 state. After transitioning from Reset, the device only returns to the Reset  
state if the power is cycled, or if the primary side over temperature is detected. The secondary over temperature  
event does not cause the state transition to RESET unless the primary side also detects the over temperature  
event.  
7.4.2 State 2: Configuration 1  
Once all of the BIST complete, and communication is established from the primary to the secondary side, the  
device transitions to the Configuration 1 state. This is indicated when the nFLT* outputs are pulled high. In this  
state, the address for the device is programmable by the MCU. See the Device Addressing section for details on  
how to program the SPI address for the device. The driver output (OUTL) is pulled low in this state. Once the  
address is programmed, the CONFIG_IN command (see 7-3) must be sent to transition to the Configuration 2  
state. Note that in Daisy Chain configurations, the CFG_IN must be sent to the devices one-by-one because the  
SDO output is not enabled until a valid addressed command is sent. This can be done by sending a full frame of  
6 CFG_IN commands six times or, alternatively, send a CFG_IN to the first device as a single command followed  
by CFG_IN, NOP as the second frame, followed by CFG_IN, NOP, NOP as the third frame, and so on to enable  
the SDO output on all devices and send them to Configuration 2. This process only needs to be done once per  
power cycle unless an invalid address (non-0x0) is sent.  
7.4.3 State 3: Configuration 2  
When a valid CONFIG_IN command (see 7-3) is received, the device transitions to the Configuration 2 state.  
In this state, the device configuration is programmable by the MCU via the SPI interface. All of the configuration  
registers are available for write. The STATUS registers are updated with the status of the device and the nFLT*  
outputs will indicate any unmasked faults. The ADC does not operate in the Configuration 2 state. The driver  
output (OUTL) is pulled low in this state. Send a DRV_EN command (see 7-3) to transition to the Active state  
and enable the driver output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.4.4 State 4: Active  
Upon receiving a valid DRV_EN command, the device transitions to the Active state. In this state, the  
STATUS2[DRV_EN_RCVD] bit (STATUS2) is set to '1', the CRC for the configuration registers is calculated and  
stored, SPI writes to most registers are disabled, and the driver outputs are enabled to follow the IN+/IN- inputs,  
assuming there is no fault condition. All of the registers are Read Only, with the exception of  
CONTROL2[CLR_STAT_REG], CFG8[IOUT_SEL], and CFG8[CRC_DIS]. Any writes to any other registers/ bits  
are ignored. The device remains in Active mode until the SW_RESET command is sent, a DRV_DIS command  
followed by a CONFIG_IN is sent, or a primary side thermal shutdown fault occurs. The SW_RESET command  
disables the driver and resets all registers except for the driver address, while the DRV_DIS command disables  
the driver while leaving the register contents intact.  
7.5 Programming  
7.5.1 SPI Communication  
Programming of the device is done through the SPI serial communication slave interface by an external MCU.  
The SPI communication follows a 16-bit protocol, utilizing specific command data frames, and uses an active-low  
chip select input (nCS) and communicates at rates up to 4MHz. The communication frame starts with the nCS  
falling edge and ends with nCS rising edge. While nCS is high, the SPI interface is held in reset, and the SDO  
output is high impedance. The SPI clock idles at 0 (CPOL=0) and clocks the SDI/SDO data (CPHA=1) on the  
falling edge. The device supports three SPI bus configurations: independent slave configuration, daisy chain  
configuration, and a new address oriented configuration.  
7.5.1.1 System Configuration of SPI Communication  
The system is configured in one of the three SPI modes: Regular SPI configuration (7-38), Daisy Chain  
configuration (7-40), and Address-based onfiguration (7-42).  
7.5.1.1.1 Independent Slave Configuration  
The Independent Slave configuration is shown in 7-38. In this mode, the CLK input, SDI input, and SDO  
outputs for all devices on the SPI bus are shared. The MCU drives the nCS input for the device that is to be  
addressed. The drawback to this approach is that a separate GPIO for each driver in the system (up to 12 for  
dual inverter systems) is required of the MCU, but it does allow random access to any device in the system. The  
message frame is shown in 7-39  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
54  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
MCU  
HS  
PWM  
PWM_UH  
PWM_VH  
PWM_WH  
SPI  
GD  
GD  
GD  
HS-U  
HS-V  
HS-W  
nCS_UH  
nCS_VH  
nCS_WH  
SDO  
SDI  
CLK  
nCS_UL  
nCS_VL  
nCS_WL  
GD  
GD  
GD  
LS  
LS-U  
PWM_UL  
PWM  
LS-V  
LS-W  
PWM_VL  
PWM_WL  
7-38. System configuration of regular SPI configuration  
CM[N]: Nth Command Message  
RM[N]: Nth Response Message  
nCS  
RM[N-1]  
CM[N]  
RM[1]  
CM[2]  
SDO  
SDI  
CM[1]  
7-39. SPI message frame for Independent Slave and Address-based configurations  
7.5.1.1.2 Daisy Chain Configuration  
The Daisy Chain configuration is shown in 7-40. In this configuration, the MCU MOSI connects to the SDI of  
the first device and the MISO connects to the SDO of the last device. The SDO of each of the device connects to  
the SDI of the next device in the system (excluding the last device). The system effectively becomes a  
communication shift register. During communication, the host continuously clocks in data for all the devices in  
the system while holding the nCS pin low. While the nCS input is low, the SDO shifts data out as the data is  
clocked into the SDI shift register as shown in 7-41. Once nCS is pulled high, the 16-bits in the SDI register  
are latched and acted upon by the device. This configuration drastically reduces the number of GPIOs required,  
but it does not allow random access to the devices.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
MCU  
HS  
PWM  
PWM_WH  
PWM_UH  
PWM_VH  
SPI  
GD  
GD  
GD  
SDI_UH  
SDO_UH  
SDI_VH  
SDO_VH  
SDI_WH  
SDO_WH  
HS-U  
HS-V  
HS-W  
nCS  
CLK  
GD  
GD  
GD  
SDI_UL  
SDO_UL  
SDI_VL  
SDO_VL  
SDI_WL  
SDO_WL  
LS  
LS-U  
PWM_UL  
PWM  
LS-V  
LS-W  
PWM_VL  
PWM_WL  
7-40. System configuration of daisy chain SPI configuration  
CM[N, M]: Nth Command Message for device M  
RM[N, M]: Nth Response Message for device M  
nCS  
RM[N-1,1] RM[N-1,2]  
CM[N,1] CM[N,2]  
CM[N-1,M]  
CM[N,M]  
SDO  
SDI  
RM[1,1]  
CM[2,1]  
RM[1,2]  
RM[1,M]  
CM[2,M]  
CM[1,1]  
CM[1,2]  
CM[1,M]  
CM[2,2]  
7-41. SPI message frame daisy chain SPI configuration  
7.5.1.1.3 Address-based Configuration  
The Address-based configuration provides significant flexibility to the system design. This configuration is similar  
to the Independent Slave configuration in that all of the CLK, SDO, and SDI connections are shared between all  
devices (shown in 7-42). Additionally, the nCS input is also shared. This reduces the GPIO requirement on  
the MCU to one, similar to Daisy Chain, but also allows random access like the Independent Slave configuration.  
The Address-based configuration is done by defining each device in the system with a unique address. See the  
Device Addressing section for details on how to address the devices in the system. The message frame is  
shown in 7-39  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
56  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-42. System configuration for Address-based SPI Communication Scheme  
7.5.1.2 SPI Data Frame  
The SPI data frame is composed of 16bits. The timing scheme and format of a data frame is shown in 7-43  
and 7-44.  
7-43. Timing scheme of SPI communication  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-44. 16-bit of SPI data frame.  
The 16-bit data frame includes three data fields: chip address (CHIP_ADDR), command type (CMD), and an 8-  
bit data (DATA). The chip address (CHIP_ADDR) bits are used, regardless of the system configuration.  
However, when using the Daisy Chain or Independent Slave configurations, 0x0 or 0xF is used for all of the  
devices in the system. In Address-based configuration, the devices are individually addressed, and all devices  
respond to 0x0 and 0xF. Note that SDO is high impedance until it receives a command with the programmed  
device address. Once receiving the valid addressed command, the SDO is driven to send out data. When an  
invalid addressed command or 0xF (broadcast address) is received, the SDO returns to high impedance,  
thereby allowing other devices to take control of the shared MISO (SDO) bus. There are 10 command types  
used by the device, defined in 7-3.  
7-3. SPI message commands  
16-BIT DATA FRAME  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10  
CHIP_ADDR  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
Command  
Name  
Command Description  
CMD + DATA  
DRV_EN  
DRV_DIS  
Driver output enable  
Driver output disable  
CA[3] CA[2] CA[1] CA[0]  
CA[3] CA[2] CA[1] CA[0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
Read data from register  
address RA[4:0]  
RD_DATA  
CA[3] CA[2] CA[1] CA[0]  
0
0
0
1
0
0
0
RA[4] RA[3] RA[2] RA[1] RA[0]  
CFG_IN  
NOP  
Enter configuration state CA[3] CA[2] CA[1] CA[0]  
0
0
0
1
1
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
No operation  
CA[3] CA[2] CA[1] CA[0]  
Software RESET  
(Reinitialize the  
SW_RESET  
CA[3] CA[2] CA[1] CA[0]  
0
1
1
1
0
0
0
0
1
0
0
0
configurable registers)  
Write D[15:8] to register  
RA[4:0]  
WRH  
WRL  
CA[3] CA[2] CA[1] CA[0]  
CA[3] CA[2] CA[1] CA[0]  
CA[3] CA[2] CA[1] CA[0]  
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
D[15]  
D[7]  
0
D[14]  
D[6]  
0
D[13]  
D[5]  
0
D[12]  
D[4]  
D[11]  
D[3]  
D[10]  
D[2]  
D[9]  
D[1]  
D[8]  
D[0]  
Write D[7:0] to register  
RA[4:0]  
Write register address  
RA[4:0]  
WR_RA  
WR_CA(1)  
RA[4] RA[3] RA[2] RA[1] RA[0]  
Write chip address  
CA[3:0]  
1
1
1
1
1
0
1
0
CA[3] CA[2] CA[1] CA[0]  
(1) IN+ must be high to program CHIP address  
7.5.1.2.1 Writing a Register  
The register configuration for the device uses 16-bit registers. The SPI engine utilizes three separate commands  
in order to program these registers. The process involves first setting the register to be written to by using the  
WR_RA command. All subsequent writes will go to this register address until the WR_RA command is sent  
again, or the device is reset. Use the WRH command to write the "high" byte of the register (bits 15:8) and use  
the WRL command to write the "low" byte of the register (bits 7:0). The WRH and WRL commands can be sent  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
in any order. Additionally, it is not necessary to write both bytes of the register. If only the "low" byte needs  
modification, a WRL write is all that is required. It is not necessary to send a WRH command as well.  
7.5.1.2.2 Reading a Register  
The process for reading a register is less steps than that of a write command. To read a register, simply use the  
RD_DATA command to program the device with the register to be read. The full 16-bit data is clocked out during  
the next SPI transaction. The next SPI transaction could be another command (RD_DATA or WR_RA, for  
example), or simply a NOP (no operation command). Never send a RD_DATA command to the broadcast  
address (0xF) while in the Address-based configuration. This will cause all devices on the bus to responds  
simultaneously and the data will be corrupted. It is ok to use 0xF in the other modes as the traffic is handled by  
another mechanism.  
7.6 Register Maps  
7.6.1 UCC5870 Registers  
7-4 lists the memory-mapped registers for the device registers. All register offset addresses not listed in 表  
7-4 should be considered as reserved locations and the register contents should not be modified.  
7-4. UCC5870 Registers  
Offset Acronym  
Register Name: description  
SPI write access  
enabled state  
Section  
Covered by  
Configuration Data  
CRC?  
0x0  
CFG1  
Configuration register 1: Primary side device  
configuration. VCC1 UVLO and OVLO, IO  
deglitch timer, Over temperature, nFLT2 pin  
function, and dead time setting.  
Configuration 2  
Go  
Yes  
0x1  
0x2  
0x3  
CFG2  
CFG3  
CFG4  
Configuration register 2: nFLT1,2 pin  
function setting.  
Configuration 2  
Configuration 2  
Configuration 2  
Go  
Go  
Go  
Yes  
Yes  
Yes  
Configuration register 3: Gate driver output  
fault reaction setting  
Configuration register 4: Protection and  
monitoring function setting. Enabling or  
disabling of the functions.  
0x4  
0x5  
CFG5  
CFG6  
Configuration register 5: Protection and  
monitoring function setting. Enabling or  
disabling of the functions. Threshold setting.  
Configuration 2  
Configuration 2  
Go  
Go  
Yes  
Yes  
Configuration Registers 6: Protection and  
monitoring function setting. Enabling or  
disabling of the functions. Threshold and  
timer setting.  
0x6  
0x7  
CFG7  
CFG8  
Configuration Registers 7: Protection and  
monitoring function setting. Enabling or  
disabling of the functions. Threshold and  
timer setting.  
Configuration 2  
Go  
Go  
Yes  
Yes  
Configuration register 8: Protection and  
monitoring function setting. Enabling or  
disabling of the functions. Threshold and  
timer setting.  
Bit15-7,5-3: Configuration  
2;Bit6,2-0,: Configuration  
2; Active  
0x8  
0x9  
CFG9  
Configuration register 9: nFLT1,2 pin  
function setting.  
Configuration 2  
Configuration 2  
Configuration 2  
Go  
Go  
Go  
Go  
Go  
Yes  
Yes  
Yes  
No  
CFG10  
Configuration register 10: Gate driver output  
fault reaction setting.  
0xA CFG11  
Configuration register 11: Gate driver output  
fault reaction setting  
0xB ADCDATA1 ADC data register 1: Digital representation  
of sampled AI1 voltage  
0xC ADCDATA2 ADC data register 2: Digital representation  
of sampled AI3 voltage  
No  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-4. UCC5870 Registers (continued)  
Offset Acronym  
Register Name: description  
SPI write access  
enabled state  
Section  
Covered by  
Configuration Data  
CRC?  
0xD ADCDATA3 ADC data register 3: Digital representation  
of sampled AI5 voltage  
Go  
Go  
Go  
Go  
Go  
Go  
No  
No  
No  
No  
No  
No  
0xE ADCDATA4 ADC data register 4: Digital representation  
of sampled AI2 voltage  
0xF ADCDATA5 ADC data register 5: Digital representation  
of sampled AI4 voltage  
0x10 ADCDATA6 ADC data register 6: Digital representation  
of sampled AI6 voltage  
0x11 ADCDATA7 ADC data register 7: Digital representation  
of sampled internal die temperature  
0x12 ADCDATA8 ADC data register 8: Digital representation  
of sampled divided OUTH voltage for VGTH  
monitor  
0x13 CRCDATA  
0x14 SPITEST  
SPI CRC Data Register  
Configuration 2  
Configuration 2, Active  
Configuration 1  
Go  
Go  
Go  
Yes  
Yes  
Yes  
SPI read/write test Register  
0x15 GDADDRES Driver address register  
S
0x16 STATUS1  
0x17 STATUS2  
0x18 STATUS3  
0x19 STATUS4  
0x1A STATUS5  
Status register 1: Fault status.  
Status register 2: Fault and pin status.  
Status register 3: Fault status.  
Status register 4: Fault status.  
Status register 5: Fault status.  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
No  
No  
No  
No  
No  
0x1B CONTROL1 Control register 1: Diagnostic commands.  
0x1C CONTROL2 Control register 2: Diagnostic commands.  
Configuration 2, Active  
Configuration 2, Active  
Configuration 2  
Yes  
Yes  
Yes  
Yes  
0x1D ADCCFG  
0x1E DOUTCFG  
ADC setting  
DOUT function setting  
Configuration 2  
Complex bit access types are encoded to fit into small table cells. 7-5 shows the codes that are used for  
access types in this section.  
7-5. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 CFG1 Register  
CFG1 is shown in 7-45 and described in 7-6.  
Return to Summary Table.  
7-45. CFG1 Register  
15  
14  
13  
12  
11  
10  
9
8
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
60  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-45. CFG1 Register (continued)  
UV1_DIS  
R/W-0x0  
UVLO1_L  
EVEL  
OVLO1_LEVEL  
IO_DEGLITCH  
GD_TWN_PRI_  
EN  
Reserved  
OV1_DIS  
R/W-0x0  
6
R/W-0x0  
5
R/W-0x1  
3
R/W-0x1  
2
R/W-0x0  
1
RW-0x0  
0
7
4
RESERVED  
NFLT2_D  
OUT_MU  
X
TDEAD  
RW-0x0  
R/W-0x0  
R/W-0x0  
7-6. CFG1 Register Field Descriptions  
Bit  
Field  
UV1_DIS  
Type  
Reset  
Description  
15  
R/W  
0x0  
VCC1 UVLO disable:  
0x0 = Enabled  
0x1 = Disabled  
14  
13  
UVLO1_LEVEL  
OVLO1_LEVEL  
IO_DEGLITCH  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
VCC1 UVLO setting:  
0x0 = 2.45V (3.3V logic rail)  
0x1 = 4.35V (5V logic rail)  
VCC1 OVLO setting:  
0x0 = 5.65V (5V logic rail)  
0x1 = 4.15V (3.3V logic rail)  
12-11  
IO deglitch (INP and INN) filter time:  
0x0 = Deglitch filter bypassed  
0x1 = 70ns setting  
0x2 = 140ns setting  
0x3 = 210ns setting  
10  
GD_TWN_PRI_DIS  
R/W  
0x1  
Over temperature warning of gate driver VCC1 side enable:  
0x0 = Enabled  
0x1 = Disabled  
9
8
RESERVED  
OV1_DIS  
R/W  
R/W  
0x0  
0x0  
This bit field is reserved.  
VCC1 OVLO disable:  
0x0 = Enabled  
0x1 = Disabled  
7
6
RESERVED  
R/W  
R/W  
0x0  
0x0  
This bit field is reserved.  
nFLT2/DOUT pin function selection:  
0x0 = nFLT2  
NFLT2_DOUT_MUX  
0x1 = DOUT. When this setting is selected, all warnings  
selected to output to nFLT2 are output on nFLT1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-6. CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
TDEAD  
R/W  
0x0  
Shoot-through protection dead time:  
0x0 = No added deadtime (Interlock function enabled)  
0x1 - 0x3F = 105ns to 4445ns with 70ns resolution  
Deadtime = code(decimal) x 70ns + 105ns  
7.6.1.2 CFG2 Register  
CFG2 is shown in 7-46 and described in 7-7.  
Return to Summary Table.  
7-46. CFG2 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
INT_COMM_P OVLO1_FAULT UVLO1_FAULT STP_FAULT_P CLK_MON_PRI  
SPI_FAULT_P  
R/W-0x1  
CFG_CRC_PRI  
_FAULT_P  
RI_FAULT_P  
R/W-0x0  
_P  
_P  
_FAULT_P  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
0
7
6
5
4
3
INT_REG_PRI_ TRIM_CRC_PR BIST_PRI_FAU  
RESERVED  
RESERVED GD_TWN_PRI_ VREG1_ILIMIT PWM_CHK_FA  
FAULT_P  
I_FAULT _P  
LT_P  
FAULT_P  
_FAULT_P  
ULT_P  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
RW-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-7. CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
INT_COMM_PRI_FAULT_P  
R/W  
0x0  
Report inter-die communication failure to nFLT1 output:  
0x0 = No  
0x1 = Yes  
14  
13  
12  
11  
OVLO1_FAULT_P  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
Report VCC1 OVLO fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
UVLO1_FAULT_P  
Report VCC1 UVLO fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
STP_FAULT_P  
Report STP fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
CLK_MON_PRI_FAULT_P  
Report clock monitor fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
62  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-7. CFG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-9  
SPI_FAULT_P  
R/W  
0x1  
Report SPI fault to nFLT* outputs:  
0x0 = nFLT1  
0x1 = nFLT2  
0x2 = No report  
0x3 = RESERVED  
8
7
6
5
CFG_CRC_PRI_FAULT_P  
INT_REG_PRI_FAULT_P  
TRIM_CRC_PRI_FAULT_P  
BIST_PRI_FAULT_P  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
Report configuration register CRC fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
Report internal regulator fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
Report TRIM CRC fault to nFLT* outputs:  
0x0 = Yes  
0x1 = No  
Report analog BIST fault to nFLT* outputs:  
0x0 = Yes  
0x1 = No  
4-3  
2
RESERVED  
R/W  
R/W  
0x0  
0x0  
These bits are reserved. Writing to these bits sets the  
CFG_CRC_PRI_FAULT.  
GD_TWN_PRI_FAULT_P  
Report gate driver temp warning to nFLT* outputs:  
0x0 = No  
0x1 = Yes  
1
0
VREG1_ILIMIT_FAULT_P  
PWM_CHK_FAULT_P  
R/W  
R/W  
0x0  
0x0  
Report VREG1 ILIMIT fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
Report PWM check fault to nFLT1 output:  
0x0 = Yes  
0x1 = No  
7.6.1.3 CFG3 Register  
CFG3 is shown in 7-47 and described in 7-8.  
Return to Summary Table.  
7-47. CFG3 Register  
15  
14  
13  
12  
11  
10  
9
8
FS_STATE_UV FS_STATE_OV FS_STATE_PW  
FS_STATE_STP_FAULT  
R/W-0x0  
Reserved  
FS_STATE_SPI_FAULT  
LO1_FAULT  
R/W-0x0  
LO1_FAULT  
R/W-0x0  
M_CHK  
R/W-0x0  
R/W-0x0  
2
R/W-0x2  
7
6
5
4
3
1
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-47. CFG3 Register (continued)  
FS_STATE_INT FS_STATE_INT  
_REG_PRI_FA _COMM_PRI_F  
ITO1_EN  
ITO2_EN  
FS_STATE_CF  
G_CRC_PRI_F  
AULT  
AI_IZTC_SEL  
R/W-0x0  
ULT  
AULT  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-8. CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
FS_STATE_UVLO1_FAUL R/W  
T
0x0  
OUTH/OUTL output state during an unmasked VCC1 UVLO fault:  
0x0 = Pulled low  
0x1 = No action  
14  
13  
FS_STATE_OVLO1_FAUL R/W  
T
0x0  
0x0  
0x0  
OUTH/OUTL output state during an unmasked VCC1 OVLO fault:  
0x0 = Pulled low  
0x1 = No action  
FS_STATE_PWM_CHK  
R/W  
OUTH/OUTL output state during an unmasked PWM check fault:  
0x0 = Pulled low  
0x1 = No action  
12-11  
FS_STATE_STP_FAULT R/W  
OUTH/OUTL output state during an unmasked shoot-through fault:  
0x0 = Low  
0x1 = High  
0x2 = Reserved  
0x3 = No action  
10  
RESERVED  
R/W  
R/W  
0x0  
0x2  
Reserved. Writing to these bits sets the CFG_CRC_PRI_FAULT.  
9-8  
FS_STATE_SPI_FAULT  
OUTH/OUTL output state during an unmasked SPI communication  
fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = No action  
0x3 = No action  
7
6
5
FS_STATE_INT_REG_PR R/W  
I_FAULT  
0x0  
0x0  
0x0  
OUTH/OUTL output state during an unmasked internal regulator  
fault:  
0x0 = Pulled low  
0x1 = No action  
FS_STATE_INT_COMM_ R/W  
PRI_FAULT  
OUTH/OUTL output state during an unmasked internal  
communication result:  
0x0 = Pulled low  
0x1 = No action  
ITO1_EN  
R/W  
Current source output at AI1, AI3, and AI5:  
0x0 = Disabled  
0x1 = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-8. CFG3 Register Field Descriptions (continued)  
Bit  
Field  
ITO2_EN  
Type  
Reset  
Description  
4
R/W  
0x0  
Current source output at AI2, AI4, and AI6:  
0x0 = Disabled  
0x1 = Enabled  
3
FS_STATE_CFG_CRC_P R/W  
RI_FAULT  
0x0  
0x0  
Default OUTH/OUTL output state in case of configuration register  
CRC fault:  
0x0 = Pulled low  
0x1 = No action  
2-0  
AI_IZTC_SEL  
R/W  
AI1, AI3, AI5 bias current enable. Additionally, ITO1_EN must be set  
to '1'.:  
0x0 = All bias current is OFF  
0x1 = AI1 bias current is ON  
0x2 = AI3 bias current is ON  
0x3 = AI1 and AI3 bias current is ON  
0x4 = AI5 bias current is ON  
0x5 = AI1 and AI5 bias current is ON  
0x6 = AI3 and AI5 bias current is ON  
0x7 = All bias current is ON  
7.6.1.4 CFG4 Register  
CFG4 is shown in 7-48 and described in 7-9.  
Return to Summary Table.  
7-48. CFG4 Register  
15  
14  
13  
12  
11  
10  
9
1
8
UV2_DIS  
PS_TSD_DEGLITCH  
DESAT_DEGLIT  
OV2_DIS  
MCLP_CFG  
GM_BLK  
R/W-0x1  
CH  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x1  
R/W-0x0  
7
6
5
4
3
2
0
GM_DIS  
MCLP_DIS  
VCECLP_E  
N
DESAT_EN  
SCP_DIS  
OCP_DIS  
PS_TSD_EN  
UVOV3_EN  
R/W-0x0  
R/W-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
R/W-0x1  
R/W-0x0  
R/W-0x0  
7-9. CFG4 Register Field Descriptions  
Bit  
Field  
UV2_DIS  
Type Reset  
Description  
15  
R/W 0x0  
VCC2 UVLO function disable:  
0x0 = Enabled  
0x1 = Disabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-9. CFG4 Register Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
14-13  
PS_TSD_DEGLITCH  
R/W  
0x0  
Power switch thermal shutdown (TSD) deglitch filter time:  
0x0 = 250ns  
0x1 = 500ns  
0x2 = 750ns  
0x3 = 1000ns  
12  
11  
DESAT_DEGLITCH  
OV2_DIS  
R/W  
R/W  
R/W  
R/W  
0x0  
0x1  
0x0  
0x1  
DESAT deglitch timer option:  
0x0 = 158ns  
0x1 = 316ns  
VCC2 OVLO function disable:  
0x0 = Enabled  
0x1 = Disabled  
10  
9-8  
MCLP_CFG  
GM_BLK  
Active Miller clamp option:  
0x0 = Internal  
0x1 = External  
Gate voltage monitor blanking time:  
0x0 = 500ns  
0x1 = 1000ns  
0x2 = 2500ns  
0x3 = 4000ns  
7
6
5
4
3
GM_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
0x1  
0x0  
Gate voltage monitor function enable:  
0x0 = Enabled  
0x1 = Disabled  
MCLP_DIS  
VCECLP_EN  
DESAT_EN  
SCP_DIS  
Active Miller clamp enable:  
0x0 = Enabled  
0x1 = Disabled  
VCE clamp enable:  
0x0 = Disabled  
0x1 = Enabled  
DESAT detection enable:  
0x0 = Disabled  
0x1 = Enabled  
Short circuit protection (SCP) enable:  
0x0 = Enabled  
0x1 = Disabled  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-9. CFG4 Register Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
2
OCP_DIS  
R/W  
R/W  
R/W  
0x1  
0x0  
0x0  
Overcurrent protection (OCP) enable:  
0x0 = Enabled  
0x1 = Disabled  
1
0
PS_TSD_EN  
UVOV3_EN  
Thermal shutdown protection for IGBT enable:  
0x0 = Disabled  
0x1 = Enabled  
VEE2 UVLO and OVLO function enable:  
0x0 = Disabled  
0x1 = Enabled  
7.6.1.5 CFG5 Register  
CFG5 is shown in 7-49 and described in 7-10.  
Return to Summary Table.  
7-49. CFG5 Register  
15  
14  
6
13  
5
12  
11  
10  
9
8
GM_STO2LTO_  
DIS  
DESATTH  
DESAT_CHG_CURR  
DESAT_DCHG  
_EN  
RW-0x0  
7
R/W-0xE  
R/W-0x3  
R/W-0x1  
0
4
3
2
1
MCLPTH  
STO_CURR  
R/W-0x0  
2LTOFF_STO_EN  
PWM_MUTE_E  
N
R/W-0x1  
RW-0x0  
R/W-0x1  
7-10. CFG5 Register Field Descriptions  
Bit  
Field  
Type  
Reset Description  
15  
GM_STO2LTO_DIS  
R/W  
0x0  
Disable gate monitor fault detection during STO or 2LTOFF:  
0x0 = Gate monitor is enabled during STO or 2LTOFF  
0x1 = Gate monitor is disabled during STO or 2LTOFF  
14-11  
10-9  
DESATTH  
R/W  
R/W  
0xE  
DESAT detection threshold value. DESATTH is programmable  
from 2.5V to 10V with a 500mV resolution. Calculate DESAT  
with the following equation:  
VDESAT = 2.5V + CodeDESATTH (in decimal)* 500mV  
DESAT_CHG_CURR  
0x3  
Blanking cap charging current:  
0x0 = 0.6mA  
0x1 = 0.7mA  
0x2 = 0.8mA  
0x3 = 1mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-10. CFG5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset Description  
8
DESAT_DCHG_EN  
R/W  
0x1  
DESAT input pull down current enable:  
0x0 = disabled  
0x1 = enabled  
7-6  
5-4  
3-1  
MCLPTH  
R/W  
R/W  
R/W  
0x1  
Active Miller clamp threshold voltage:  
0x0 = 1.5V  
0x1 = 2V  
0x2 = 3V  
0x3 = 4V  
STO_CURR  
0x0  
Soft turn-off current:  
0x0 = 0.3A  
0x1 = 0.6A  
0x2 = 0.9A  
0x3 = 1.2A  
2LTOFF_STO_EN  
0x0  
STO/2LTOFF is enabled for:  
0x0 = Disabled  
0x1 = STO for SC and DESAT  
0x2 = STO for SC, DESAT, and OC faults  
0x3 = STO for SC, DESAT, OC, and PS_TSD faults  
0x4 = Disabled  
0x5 = 2LTOFF for SC and DESAT  
0x6 = 2LTOFF for SC, DESAT, and OC faults  
0x7 = 2LTOFF for SC, DESAT, OC, and PS_TSD faults  
0
PWM_MUTE_EN  
R/W  
0x1  
Mute PWM signal in case of SC/OC/OT faults:  
0x0 = Muting is Disabled  
0x1 = PWM is muted for tMUTE  
7.6.1.6 CFG6 Register  
CFG6 is shown in 7-50 and described in 7-11.  
Return to Summary Table.  
7-50. CFG6 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
OCTH  
SCTH  
TEMP_CURR  
R/W-0x1  
R/W-0x0  
R/W-0x2  
6
4
3
SC_BLK  
OC_BLK  
PS_TSDTH  
R/W-0x2  
R/W-0x0  
R/W-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
68  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-11. CFG6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
OCTH  
R/W  
0x0  
Overcurrent detection threshold value:  
0x0 = 200mV  
0x1 = 250mV  
0x2 = 300mV  
0x3 = 350mV  
0x4 = 400mV  
0x5 = 450mV  
0xF = 950mV  
11-10  
SCTH  
R/W  
0x2  
Short-circuit fault detection threshold value:  
0x0 = 500mV  
0x1 = 750mV  
0x2 = 1000mV  
0x3 = 1250mV  
9-8  
TEMP_CURR  
R/W  
0x1  
Constant current source for temp sensing diodes:  
0x0 = 0.1mA  
0x1 = 0.3mA  
0x2 = 0.6mA  
0x3 = 1.0mA  
7-6  
5-3  
SC_BLK  
OC_BLK  
R/W  
R/W  
0x0  
0x0  
Short-circuit detection blanking time:  
0x0 = 100ns  
0x1 = 200ns  
0x2 = 400ns  
0x3 = 800ns  
Over-current detection blanking time:  
0x0 = 500ns  
0x1 = 1000ns  
0x2 = 1500ns  
0x3 = 2000ns  
0x4 = 2500ns  
0x5 = 3000ns  
0x6 = 5000ns  
0x7 = 10000ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-11. CFG6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
PS_TSDTH  
R/W  
0x2  
Power switch thermal shutdown threshold:  
0x0 = 1.00V  
0x1 = 1.25V  
0x2 = 1.50V  
0x3 = 1.75V  
0x4 = 2.00V  
0x5 = 2.25V  
0x6 = 2.50V  
0x7 = 2.75V  
7.6.1.7 CFG7 Register  
CFG7 is shown in 7-51 and described in 7-12.  
Return to Summary Table.  
7-51. CFG7 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
UVLO2TH  
R/W-0x2  
OVLO2TH  
R/W-0x2  
UVLO3TH  
R/W-0x2  
OVLO3TH  
R/W-0x2  
7
6
5
4
3
0
ADC_EN  
R/W-0x1  
ADC_SAMP_MODE  
R/W-0x0  
ADC_SAMP_DLY  
R/W-0x2  
ADC_FAULT_P  
R/W-0x0  
FS_STATE_ADC_FAULT  
R/W-0x0  
7-12. CFG7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
UVLO2TH  
R/W  
0x2  
VCC2 UVLO threshold:  
0x0 = 16V (turnon), 15V(turnoff)  
0x1 = 14V (turnon), 13V(turnoff)  
0x2 = 12V (turnon), 11V(turnoff)  
0x3 = 10V (turnon), 9V(turnoff)  
13-12  
OVLO2TH  
R/W  
0x2  
VCC2 OVLO threshold:  
0x0 = 23V (turnon), 24V(turnoff)  
0x1 = 21V (turnon), 22V(turnoff)  
0x2 = 19V (turnon), 20V(turnoff)  
0x3 = 17V (turnon), 18V(turnoff)  
11-10  
UVLO3TH  
R/W  
0x2  
VEE2 UVLO threshold:  
0x0 = -3V (turnon), -2V (turnoff)  
0x1 = -5V (turnon), -4V (turnoff)  
0x2 = -8V (turnon), -7V (turnoff)  
0x3 = -10V (turnon), -9V (turnoff)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
70  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-12. CFG7 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
9-8  
OVLO3TH  
R/W  
0x2  
VEE2 OVLO threshold:  
0x0 = -5V (turnon), -6V(turnoff)  
0x1 = -7V (turnon), -8V(turnoff)  
0x2 = -10V (turnon), -11V(turnoff)  
0x3 = -12V (turnon), -13V(turnoff)  
7
ADC_EN  
R/W  
R/W  
0x1  
0x0  
ADC sampling enable:  
0x0 = Disabled  
0x1 = Enabled  
6-5  
ADC_SAMP_MODE  
ADC sampling mode:  
0x0 = center aligned  
0x1 = edge aligned  
0x2 = center hybrid mode  
0x3 = RESERVED  
4-3  
ADC_SAMP_DLY  
R/W  
0x2  
ADC sampling point minimum delay setting with reference to PWM  
rising edge:  
0x0 = 280ns  
0x1 = 560ns  
0x2 = 840ns  
0x3 = 1120ns  
2
ADC_FAULT_P  
R/W  
0x0  
0x0  
Report ADC fault to nFLT1 output:  
0x0 = Disabled  
0x1 = Enabled  
1-0  
FS_STATE_ADC_FAULT R/W  
OUTH/OUTL output state during an unmasked ADC fault (VREF  
OV/UV, VREF ILIM, or ADC buffer overrun):  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Hi-Z  
0x3 = No action  
7.6.1.8 CFG8 Register  
CFG8 is shown in 7-52 and described in 7-13.  
Return to Summary Table.  
7-52. CFG8 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
8
GD_2LOFF_VOLT  
R/W-0x0  
GD_2LOFF_TIME  
R/W-0x0  
GD_2LOFF_CURR  
R/W-0x0  
6
4
3
1
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-52. CFG8 Register (continued)  
RESERVED  
RW-0x0  
CRC_DIS  
R-0x0  
GD_2LOFF_ST  
O_EN  
VREF_SEL  
AI_ASC_MUX  
IOUT_SEL  
R-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
7-13. CFG8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
GD_2LOFF_VOLT  
GD_2LOFF_TIME  
GD_2LOFF_CURR  
R/W  
0x0  
Plateau voltage during two-level turnoff:  
0x0 = 6V  
0x1 = 7V  
0x2 = 8V  
0x3 = 9V  
0x4 = 10V  
0x5 = 11V  
0x6 = 12V  
0x7 = 13V  
12-10  
R/W  
0x0  
Duration of plateau voltage during two-level turnoff:  
0x0 = 150ns  
0x1 = 300ns  
0x2 = 450ns  
0x3 = 600ns  
0x4 = 1000ns  
0x5 = 1500ns  
0x6 = 2000ns  
0x7 = 2500ns  
9-8  
R/W  
0x0  
Gate discharge current for transition to plateau voltage level:  
0x0 = 0.3A  
0x1 = 0.6A  
0x2 = 0.9A  
0x3 = 1.2A  
7
6
RESERVED  
CRC_DIS  
R/W  
R/W  
0x0  
0x0  
This bit field is reserved. Writing to these bits sets the  
CFG_CRC_SEC_FAULT.  
Disable configuration CRC check:  
0x0 = Enable  
0x1 = Disable  
5
GD_2LOFF_STO_EN  
R/W  
0x1  
STO is enabled for the transition from mid voltage level:  
0x0 = Disable  
0x1 = Enable  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-13. CFG8 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
VREF_SEL  
R/W  
0x1  
Selection of VREF voltage:  
0x0 = Internal  
0x1 = External  
3
AI_ASC_MUX  
R/W  
R/W  
0x0  
0x0  
AI5/ AI6 function selection:  
0x0 = AI5 and AI6 is configured as ASC_EN and ASC input  
respectively. Current source pull up on AI5 is always off.  
0x1 = AI5 and AI6 are configured as ADC inputs. The secondary side  
ASC function is disabled.  
2-0  
IOUT_SEL  
Gate drive strength selection. IOUT_SEL may be changed while in  
ACTIVE mode, however the configuration CRC check must be  
disabled first by setting CRC_DIS=1 to avoid a configuration CRC  
fault  
0x0 = Gate drive output stage all segments enabled  
0x1 =Gate drive output stage 1/3 of segments enabled  
0x2 = Gate drive output stage 1/6 of segments enabled  
0x3 = Gate drive output stage 1/6 of segments enabled  
0x4 = Gate drive output stage 1/6 of segments enabled  
0x5 = Gate drive output stage 1/6 of segments enabled  
0x6 = Gate drive output stage 1/6 of segments enabled  
0x7 = Gate drive output stage 1/6 of segments enabled  
7.6.1.9 CFG9 Register  
CFG9 is shown in 7-53 and described in 7-14.  
Return to Summary Table.  
7-53. CFG9 Register  
15  
14  
13  
12  
11  
10  
9
8
SPARE  
SC_FAULT_P  
OC_FAULT_P  
GM_FAULT_P  
R/W-0x1  
UVLO23_FAUL OVLO23_FAUL PS_TSD_FAUL  
T_P  
T_P  
T_P  
R/W-0x1  
7
R/W-0x0  
6
R/W-0x0  
5
R/W-0x0  
R/W-0x0  
R/W-0x1  
4
3
2
1
0
GD_TSD_FAUL INT_COMM_SE CFG_CRC_SE TRIM_CRC_SE INT_REG_SE BIST_SEC_FA VREG2_ILIMIT CLK_MON_SE  
T_P  
C_FAULT_P  
C_FAULT_P  
C_FAULT_P  
C_FAULT_P  
ULT_P  
_FAULT_P  
C_FAULT_P  
R/W-0x0  
R/W-0x1  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-14. CFG9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SPARE  
R/W  
0x1  
This bit field has no effect on the driver functionality. It is covered by  
the CFG_CRC_SEC and does not cause a CRC automatically when  
written..  
14  
SC_FAULT_P  
R/W  
0x0  
Report SC fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-14. CFG9 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
13  
OC_FAULT_P  
R/W  
0x0  
Report OC fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
12-11  
GM_FAULT_P  
R/W  
0x1  
Report gate voltage monitor fault:  
0x0 = No (fault masked)  
0x1 = nFLT1  
0x2 = nFLT2  
0x3 = Indicate gate voltage state on nFLT2  
10  
9
UVLO23_FAULT_P  
OVLO23_FAULT_P  
PS_TSD_FAULT_P  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
0x0  
Report VCC2 and VEE2 UVLO faults to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
Report VCC2 and VEE2 OVLO faults to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
8
Report power switch TSD fault to nFLT1 output:  
0x0 = No (fault masked)  
0x1 = Yes  
7
GD_TSD_SEC_FAULT_P R/W  
Report gate driver TSD fault to nFLT1 output. The thermal shutdown  
shuts down the secondary side, regardless of the state of this bit:  
0x0 = Yes  
0x1 = No  
6
5
4
3
2
INT_COMM_SEC_FAULT R/W  
_P  
0x1  
0x0  
0x0  
0x0  
0x0  
Report internal communication fault to nFLT1 output:  
0x0 = No (fault masked)  
0x1 = Yes  
CFG_CRC_SEC_FAULT_ R/W  
P
Report configuration register CRC fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
TRIM_CRC_SEC_FAULT R/W  
_P  
Report TRIM CRC fault to nFLT* output:  
0x0 = Yes  
0x1 = No (fault masked)  
INT_REG_SEC_FAULT_ R/W  
P
Report internal regulator fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
BIST_SEC_FAULT_P  
R/W  
Report ABIST fault to nFLT1 and 2 output:  
0x0 = Yes  
0x1 = No (fault masked)  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-14. CFG9 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
VREG2_ILIMIT_FAULT_P R/W  
0x0  
Report VREG2 ILIMIT fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
0
CLK_MON_SEC_FAULT_ R/W  
P
0x0  
Report clock monitor fault to nFLT1 output:  
0x0 = Yes  
0x1 = No (fault masked)  
7.6.1.10 CFG10 Register  
CFG10 is shown in 7-54 and described in 7-15.  
Return to Summary Table.  
7-54. CFG10 Register  
15  
14  
13  
12  
11  
10  
9
8
GD_TWN_SEC  
_EN  
SPARE  
FS_STATE_DESAT_SCP  
FS_STATE_INT  
_REG_FAULT  
RESERVED  
FS_STATE_OCP  
R/W-0x1  
7
R/W-0x1  
6
R/W-0x0  
R/W-0x0  
3
RW-0x0  
2
R/W-0x0  
5
4
1
0
FS_STATE_PS_TSD  
SPARE  
FS_STATE_GM  
R/W-0x2  
FS_STATE_INT_COMM_SEC  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-15. CFG10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
GD_TWN_SEC_EN  
R/W  
0x1  
Over temperature warning of gate driver VCC2 side enable:  
0x0 = Disabled  
0x1 = Enabled  
14  
SPARE  
R/W  
0x1  
0x0  
This bit field has no effect on the driver functionality. It is covered by  
the CFG_CRC_SEC and does not cause a CRC automatically when  
written.  
13-12  
FS_STATE_DESAT_SCP R/W  
Default OUTH/OUTL output state in case of DESAT/SCP fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Reserved  
0x3 = No action  
11  
10  
FS_STATE_INT_REG_FA R/W  
ULT  
0x0  
0x0  
Default OUTH/OUTL output state in case of internal regulator fault:  
0x0 = Pulled low  
0x1 = No action  
RESERVED  
R/W  
This bit field is reserved. Writing to these bits sets the  
CFG_CRC_SEC_FAULT.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-15. CFG10 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
9-8  
FS_STATE_OCP  
R/W  
0x0  
Default OUTH/OUTL output state in case of OC fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Reserved  
0x3 = No action  
7-6  
FS_STATE_PS_TSD  
R/W  
0x0  
Default state in case of IGBT OT fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Reserved  
0x3 = No action  
5-4  
3-2  
SPARE  
R/W  
R/W  
0x0  
0x2  
This bit field has no effect on the driver functionality. It is covered by  
the CFG_CRC_SEC and does not cause a CRC automatically when  
written.  
FS_STATE_GM  
Default state in case of gate monitor fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Hi-Z  
0x3 = No action  
1-0  
FS_STATE_INT_COMM_ R/W  
SEC  
0x0  
Default state in case of internal communication fault:  
0x0 = Pulled low  
0x1 = Pulled high  
0x2 = Reserved  
0x3 = No action  
7.6.1.11 CFG11 Register  
CFG11 is shown in 7-55 and described in 7-16.  
Return to Summary Table.  
7-55. CFG11 Register  
15  
14  
13  
12  
11  
10  
9
8
FS_STATE_UVLO2  
R/W-0x0  
FS_STATE_OVLO2  
R/W-0x0  
FS_STATE_UVLO3  
R/W-0x0  
FS_STATE_OVLO3  
R/W-0x0  
7
6
5
4
3
2
1
0
FS_STATE_TRIM_CRC_SEC_FA FS_STATE_CFG_CRC_SEC_FA  
VCE_CLMP_HLD_TIME  
FS_STATE_CLK_MON_SEC_FA  
ULT  
ULT  
ULT  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
76  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-16. CFG11 Register Field Descriptions  
Bit  
Field  
Type  
Res Description  
et  
15-14  
FS_STATE_UVLO2  
FS_STATE_OVLO2  
FS_STATE_UVLO3  
FS_STATE_OVLO3  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
OUTH/OUTL state during an unmasked VCC2 UVLO fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
13-12  
11-10  
9-8  
R/W  
R/W  
R/W  
OUTH/OUTL state during an unmasked VCC2 OVLO fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
OUTH/OUTL state during an unmasked VEE2 UVLO fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
OUTH/OUTL state during an unmasked VEE2 OVLO fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
7-6  
FS_STATE_TRIM_CRC_SEC_FAULT R/W  
OUTH/OUTL state during an unmasked TRIM CRC fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
5-4  
FS_STATE_CFG_CRC_SEC_FAULT R/W  
OUTH/OUTL state during an unmasked configuration register CRC  
fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
3-2  
VCE_CLMP_HLD_TIME  
R/W  
0x0  
Hold time for the VCE_CLMP function  
0x0 = 100ns  
0x1 = 200ns  
0x2 = 300ns  
0x3 = 400ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-16. CFG11 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Res Description  
et  
1-0  
FS_STATE_CLK_MON_SEC_FAULT R/W  
0x0  
OUTH/OUTL state during an unmasked clock monitor fault:  
0x0 = Pulled Low  
0x1 = Pulled High  
0x2 = Reserved  
0x3 = No action  
7.6.1.12 ADCDATA1 Register  
ADCDATA1 is shown in 7-56 and described in 7-17. ADCDATA1 holds digital representation of AI1 input  
voltage.  
Return to Summary Table.  
7-56. ADCDATA1 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
6
4
3
DATA  
R-0x0  
7-17. ADCDATA1 Register Field Descriptions  
Bit  
15-10  
Field  
Type  
Reset  
Description  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI1 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI1. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI1  
R
0x0  
DATA_AI1 holds the data from the last AI1 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI1 = DATA_AI1(decimal) × 3.519mV  
7.6.1.13 ADCDATA2 Register  
ADCDATA2 is shown in 7-57 and described in 7-18.DCDATA2 holds digital representation of AI3 input  
voltage.  
Return to Summary Table.  
7-57. ADCDATA2 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
6
4
3
DATA  
R-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
78  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-57. ADCDATA2 Register (continued)  
7-18. ADCDATA2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI3 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI3. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI3  
R
0x0  
DATA_AI3 holds the data from the last AI3 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI3 = DATA_AI3(decimal) × 3.519mV  
7.6.1.14 ADCDATA3 Register  
ADCDATA3 is shown in 7-58 and described in 7-19.DCDATA2 holds digital representation of AI5 input  
voltage.  
Return to Summary Table.  
7-58. ADCDATA3 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
6
4
3
DATA  
R-0x0  
7-19. ADCDATA3 Register Field Descriptions  
Bit  
15-10  
Field  
Type  
Reset  
Description  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI5 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI5. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI5  
R
0x0  
DATA_AI5 holds the data from the last AI5 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI5 = DATA_AI5(decimal) × 3.519mV  
7.6.1.15 ADCDATA4 Register  
ADCDATA4 is shown in 7-59 and described in 7-20.DCDATA2 holds digital representation of AI2 input  
voltage.  
Return to Summary Table.  
7-59. ADCDATA4 Register  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
7
6
4
3
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-59. ADCDATA4 Register (continued)  
DATA  
R-0x0  
7-20. ADCDATA4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI2 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI2. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI2  
R
0x0  
DATA_AI2 holds the data from the last AI2 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI2 = DATA_AI2(decimal) × 3.519mV  
7.6.1.16 ADCDATA5 Register  
ADCDATA5 is shown in 7-60 and described in 7-21.Data field of AI4 ADC conversion result  
Return to Summary Table.  
7-60. ADCDATA5 Register  
15  
14  
13  
12  
11  
10  
9
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
7
6
5
4
3
2
1
DATA  
R-0x0  
7-21. ADCDATA5 Register Field Descriptions  
Bit  
15-10  
Field  
Type  
Reset  
Description  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI4 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI4. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI4  
R
0x0  
DATA_AI4 holds the data from the last AI4 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI4 = DATA_AI4(decimal) × 3.519mV  
7.6.1.17 ADCDATA6 Register  
ADCDATA6 is shown in 7-61 and described in 7-22.Data field of AI6 ADC conversion result  
Return to Summary Table.  
7-61. ADCDATA6 Register  
15  
14  
13  
12  
11  
10  
9
8
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
80  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-61. ADCDATA6 Register (continued)  
7
6
5
4
3
2
1
0
DATA  
R-0x0  
7-22. ADCDATA6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_AI6 ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on AI6. Once the counter reaches 63, it rolls  
over to 0 on the next edge.  
9-0  
DATA_AI6  
R
0x0  
DATA_AI6 holds the data from the last AI6 ADC measurement.  
Convert the measurement to a voltage using the following equation:  
VAI6 = DATA_AI6(decimal) × 3.519mV  
7.6.1.18 ADCDATA7 Register  
ADCDATA7 is shown in 7-62 and described in 7-23.Data field of internal die temperature ADC conversion  
result  
Return to Summary Table.  
7-62. ADCDATA7 Register  
15  
14  
13  
5
12  
11  
10  
2
9
1
8
0
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
7
6
4
3
DATA  
R-0x0  
7-23. ADCDATA7 Register Field Descriptions  
Bit  
15-10  
Field  
Type  
Reset  
Description  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_DTEMP ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on internal die temperature. Once the counter  
reaches 63, it rolls over to 0 on the next edge.  
9-0  
DATA_DTEMP  
R
0x0  
DATA_DTEMP holds the data from the last secondary side junction  
temperature ADC measurement. Convert the measurement to a  
temperature using the following equation:  
TJ = DATA_DTEMP(decimal) × 0.7015°C - 198.36°C  
Updated equation for PG2.1  
7.6.1.19 ADCDATA8 Register  
ADCDATA8 is shown in 7-63 and described in 7-24.Data field of divided OUTH ADC conversion result  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-63. ADCDATA8 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
TIME_STAMP  
R-0x0  
DATA  
R-0x0  
4
3
0
DATA  
R-0x0  
7-24. ADCDATA8 Register Field Descriptions  
Bit  
15-10  
Field  
Type  
Reset  
Description  
TIME_STAMP  
R
0x0  
TIME_STAMP holds the time stamp for the DATA_OUTH ADC  
measurement. The time stamp counter is incremented with every  
transition on INP, but the TIME_STAMP bits are only updated with a  
valid ADC conversion on VGTH. Once the counter reaches 63, it  
rolls over to 0 on the next edge.  
9-0  
DATA_OUTH  
R
0x0  
DATA_OUTH holds the data from the last power transistor gate  
threshold ADC measurement. Convert the measurement to a voltage  
using the following equation:  
VGTH = DATA_OUTH(decimal) × 3.519mV  
7.6.1.20 CRCDATA Register  
CRCDATA is shown in 7-64 and described in 7-25.  
Return to Summary Table.  
7-64. CRCDATA Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CRC_TX  
R/W-0xFF  
4
3
CRC_RX  
R-0xFF  
7-25. CRCDATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
CRC_TX  
R/W  
0xFF  
CRC_TX holds the CRC for the received SPI data. The CRC is  
continuously updated as SPI messages are received. CRC_TX is  
reset when the bits are written, triggering a comparison. If the  
comparison fails, the STATUS2[SPI_FAULT] is set.  
7-0  
CRC_RX  
R
0xFF  
CRC_RX holds the CRC for the sent SPI data. The CRC is  
continuously updated as the SPI messages are sent from SDO.  
CRC_RX is reset when CONTROL1[CLR_SPI_CRC] is written to '1'.  
7.6.1.21 SPITEST  
SPITEST is shown in 7-65 and described in 7-26.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-65. SPITEST Register  
15  
14  
6
13  
12  
11  
10  
2
9
8
0
SPI_TEST  
R/W-0x0  
7
5
4
3
1
SPI_TEST  
R/W-0x0  
SPI_TEST  
R/W-0x0  
7-26. SPITEST Register Field Descriptions  
Bit  
Field  
SPI_TEST  
Type  
Reset  
Description  
15-0  
R/W  
0x0  
Writing non-zero value to SPI_TEST triggers the  
STATUS2[CFG_CRC_PRI_FAULT].  
7.6.1.22 GDADDRESS Register  
GDADDRESS is shown in 7-66 and described in 7-27.  
Return to Summary Table.  
7-66. GDADDRESS Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
4
3
RESERVED  
R-0x0  
GD_ADDR  
R-0x0  
7-27. GDADDRESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-4  
3-0  
RESERVED  
GD_ADDR  
R
0x0  
This bit field is reserved.  
R
0x0  
GD_ADDR stores the chip address. This field is updated during  
Configuration 1 when using the SPI Addressing mode. See the 节  
8.1.2 section for more details.  
7.6.1.23 STATUS1 Register  
STATUS1 is shown in 7-67 and described in 7-28.  
Return to Summary Table.  
7-67. STATUS1 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
INP_STATE  
R-0x0  
INN_STATE  
R-0x0  
RESERVED  
R-0x0  
EN_STATE  
R-0x0  
RESERVED  
R-0x0  
OPM  
R-0x1  
7
6
5
4
3
0
OPM  
PWM_COMP_  
CHK_FAULT  
RESERVED  
GD_TWN_PRI_ RESERVED  
FAULT  
R-0x1  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-28. STATUS1 Register Field Descriptions  
Bit  
Field  
Ty Reset  
Description  
p
e
15  
INP_STATE  
R
0x0  
0x0  
Indicates the input signal logic level at IN+:  
0x0 = LOW  
0x1 = HIGH  
14  
INN_STATE  
R
Indicates the input signal logic level at IN-:  
0x0 = LOW  
0x1 = HIGH  
13-12  
11  
RESERVED  
R
R
0x0  
0x0  
This bit field is reserved.  
ASC_EN_STATE  
Indicates the input signal logic level at pin ASC_EN:  
0x0 = LOW  
0x1 = HIGH  
10-9  
8-6  
RESERVED  
OPM  
R
R
0x0  
0x1  
This bit field is reserved.  
Indicates the current operational state of the device:  
0x0 = Error  
0x1 = Configuration 1  
0x2 = Configuration 2  
0x3 = Active  
0x4 = Error  
0x5 = Error  
0x6 = Error  
0x7 = Error  
5
PWM_COMP_CHK_FAULT  
R
0x0  
PWM comparison function check triggers a fault when the input to  
the secondary side is not the same as the IN+ input:  
0x0 = No fault  
0x1 = Fault  
4-2  
1
RESERVED  
R
R
0x0  
0x0  
This bit field is reserved.  
GD_TWN_PRI_FAULT  
Gate driver over temperature warning triggers a fault when the  
temperature of the primary (VCC1)side is greater than the TWN_SET  
threshold. This bit is cleared when the temperature drops below the  
threshold, followed by a read of the STATUS1 register:  
0x0 = No fault  
0x1 = Fault  
0
RESERVED  
R
0x0  
This bit field is reserved.  
7.6.1.24 STATUS2 Register  
STATUS2 is shown in 7-68 and described in 7-29.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-68. STATUS2 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
PRI_RDY  
UVLO1_FAULT OVLO1_FAULT  
STP_FAULT  
VREG1_ILI  
M_FAULT  
SPI_FAULT  
INT_REG_PRI_  
FAULT  
R-0x0  
7
R-0x0  
6
R-0x0  
5
R-0x0  
4
R-0x0  
3
R-0x0  
2
R-0x0  
1
R-0x0  
0
INT_COMM_P BIST_PRI_FAU CLK_MON_PRI CFG_CRC_PRI TRIM_CRC_PRI_F DRV_EN_R OR_NFLT1_PR OR_NFLT2_PRI  
RI_FAULT  
LT  
_FAULT  
_FAULT  
AULT  
CVD  
I
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
7-29. STATUS2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
PRI_RDY  
R
0x0  
This bit field is reserved.  
Primary side is ready for operations:  
14  
13  
12  
11  
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0 = Not ready  
0x1 = Ready  
UVLO1_FAULT  
OVLO1_FAULT  
STP_FAULT  
A UVLO1_FAULT fault is triggered when VVCC1 < VUVLO1_LEVEL  
:
0x0 = No fault  
0x1 = Fault  
A OVLO1_FAULT fault is triggered when VVCC1 > VOVLO1_LEVEL  
:
0x0 = No fault  
0x1 = Fault  
A Shoot-through protection fault is triggered when the IN- and IN+  
logic levels are high at the same time:  
0x0 = No fault  
0x1 = Fault  
10  
VREG1_ILIMIT_FAULT  
R
R
0x0  
0x0  
A VREG1_ILIMIT_FAULT fault is triggered when the VREG1 current  
limit is active:  
0x0 = No fault  
0x1 = Fault  
9
SPI_FAULT  
A SPI communication fault is triggered when nCS transitions low and  
high without receiving a proper amount of SCLK pulses (multiple of  
16) or mismatch in the CRC_TX data written by the user. This bit is  
cleared when a valid SPI command is received, followed by a read of  
the STATUS2 register:  
0x0 = No fault  
0x1 = Fault  
8
INT_REG_PRI_FAULT  
R
0x0  
A primary side internal regulator fault is triggered when an internal rail  
on the primary side (including VREG1) experiences an OV or UV  
event:  
0x0 = No fault  
0x1 = Fault  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-29. STATUS2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7
INT_COMM_PRI_FAULT  
R
0x0  
A primary side internal communication fault is triggered when the  
communication from the secondary to the primary side is disrupted:  
0x0 = No fault  
0x1 = Fault  
6
5
4
BIST_PRI_FAULT  
R
R
R
0x0  
0x0  
0x0  
A primary side BIST diagnosis fault is triggered when the latent check  
BIST fails during primary side power-up:  
0x0 = No fault  
0x1 = Fault  
CLK_MON_PRI_FAULT  
CFG_CRC_PRI_FAULT  
A primary side Clock monitor fault is triggered when the received  
clock from the secondary side is mismatched from the primary clock:  
0x0 = No fault  
0x1 = Fault  
A primary side configuration register CRC fault is triggered if a  
configuration bit for the primary side registers (CFG1, CFG2, CF3)  
changes while in ACTIVE mode. Additionally,  
CFG_CRC_PRI_FAULT is set if the SPITEST register or one of the  
RESERVED bits in the primary side registers is written while in the  
Configuration 2 state:  
0x0 = No fault  
0x1 = Fault  
3
2
TRIM_CRC_PRI_FAULT  
R
R
0x0  
0x0  
A primary side internal data CRC fault is triggered if one of the  
internal bits held in memory changes. The trim register CRC is  
monitored in Configuration 2 and ACTIVE states:  
0x0 = No fault  
0x1 = Fault  
DRV_EN_RCVD  
Indicates if a DRV_EN command has been received.  
0x0=Driver not enabled  
0x1=Driver is enabled  
1
0
OR_NFLT1_PRI  
OR_NFLT2_PRI  
R
R
0x0  
0x0  
Indicates the logic OR of all primary side faults reporting to pin  
nFLT1.  
Indicates the logic OR of all primary side faults reporting to pin  
nFLT2.  
7.6.1.25 STATUS3 Register  
STATUS3 is shown in 7-69 and described in 7-30.  
Return to Summary Table.  
7-69. STATUS3 Register  
15  
14  
13  
12  
11  
10  
9
8
GM_STATE  
GM_FAULT  
INT_REG_SEC INT_COMM_SE MCLP_STATE OVLO3_FAULT UVLO3_FAULT OVLO2_FAULT  
_FAULT  
R-0x0  
C_FAULT  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
86  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-69. STATUS3 Register (continued)  
7
6
5
4
3
2
1
0
UVLO2_FAULT VCEOV_FAULT PS_TSD_FAUL  
T
RESERVED  
VREG2_ILIMIT  
_FAULT  
SC_FAULT  
OC_FAULT  
DESAT_FAULT  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
7-30. STATUS3 Register Field Descriptions  
Bit  
Field  
Type  
Res Description  
et  
15  
GM_STATE  
GM_FAULT  
R
0x0  
Indicates the logic state of power transistor gate voltage. The gate is  
monitored using OUTH or OUTL depending on the expected output state of  
the driver (OUTL monitored when OUTH is pulled high and vice versa):  
0x0 = LOW  
0x1 = HIGH  
14  
R
0x0  
Gate voltage monitor fault is triggered when the GM_STATE does not match  
expected output:  
0x0 = No fault  
0x1 = Fault  
13  
12  
INT_REG_SEC_FAULT  
INT_COMM_SEC_FAULT  
R
R
0x0  
0x0  
Internal regulator fault:  
0x0 = No fault  
0x1 = Fault  
A secondary side internal regulator fault is triggered when an internal rail on  
the secondary side (including VREG2) experiences an OV or UV event:  
0x0 = No fault  
0x1 = Fault  
11  
10  
MCLP_STATE  
OVLO3_FAULT  
R
R
0x0  
0x0  
Indicates the Active Miller clamp output state:  
0x0 = Active Miller clamp is not active. VOUTH> VCLPTH  
0x1 = Active Miller clamp is active. VOUTH< VCLPTH  
A OVLO3_FAULT fault is triggered when VVEE2 < VOVLO3TH  
.
CFG4[UVOV3_EN] must be '1' to enable VEE2 OV and UV faults:  
0x0 = No fault  
0x1 = Fault  
9
8
UVLO3_FAULT  
OVLO2_FAULT  
R
R
0x0  
0x0  
A UVLO3_FAULT fault is triggered when VVEE2 > VUVLO3TH  
.
CFG4[UVOV3_EN] must be '1' to enable VEE2 OV and UV faults:  
0x0 = No fault  
0x1 = Fault  
A OVLO2_FAULT fault is triggered when VVCC2 > VOVLO2TH. CFG4[OV2_DIS]  
must be '0' to enable VCC2 OV faults:  
0x0 = No fault  
0x1 = Fault  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-30. STATUS3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Res Description  
et  
7
UVLO2_FAULT  
R
0x0  
0x0  
0x0  
A UVLO2_FAULT fault is triggered when VVCC2 < VUVLO2TH. CFG4[UV2_DIS]  
must be '0' to enable VCC2 UV faults:  
0x0 = No fault  
0x1 = Fault  
6
5
VCEOV_FAULT  
PS_TSD_FAULT  
R
R
Indicates that the active VCE clamp function triggered a soft-turn off event.  
CFG4[VCECLP_EN] must be '1' to enable VCEOV_FAULT:  
0x0 = No fault  
0x1 = Fault  
One of the enabled power switch temperature inputs (AI1, AI3, AI5) is above  
the PS_TSDTH threshold:  
0x0 = No fault  
0x1 = Fault  
4
3
RESERVED  
R
R
0x0  
0x0  
This bit field is reserved.  
VREG2_ILIMIT_FAULT  
A VREG2_ILIMIT_FAULT fault is triggered when the VREG2 current limit is  
active:  
0x0 = No fault  
0x1 = Fault  
2
1
0
SC_FAULT  
R
R
R
0x0  
0x0  
0x0  
One or more of the enabled power switch current inputs (AI2, AI4, AI6) is  
above the SCTH threshold indicating a short circuit fault:  
0x0 = No fault  
0x1 = Fault  
OC_FAULT  
One or more of the enabled power switch current inputs (AI2, AI4, AI6) is  
above the OCTH threshold indicating a, over current fault:  
0x0 = No fault  
0x1 = Fault  
DESAT_FAULT  
DESAT fault is triggered when VDESAT > VDESATTH indicating an over current  
fault:  
0x0 = No fault  
0x1 = Fault  
7.6.1.26 STATUS4 Register  
STATUS4 is shown in 7-70 and described in 7-31.  
Return to Summary Table.  
7-70. STATUS4 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
VCE_STATE GD_TWN_SEC GD_TSD_SEC_ RESERVED  
OR_NFLT1_SE OR_NFLT2_SE BIST_SEC_FA  
_FAULT  
R-0x0  
FAULT  
R-0x0  
C
C
ULT  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
88  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-70. STATUS4 Register (continued)  
7
6
5
4
3
2
1
0
CLK_MON_SE CFG_CRC_SE TRIM_CRC_SE  
RESERVED  
R-0x0  
SEC_RDY  
C_FAULT  
C_FAULT  
C_FAULT  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
7-31. STATUS4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
VCE_STATE  
R
0x0  
This bit field is reserved.  
State of VCE voltage:  
14  
R
0x0  
0x0 = Low  
0x1 = High  
13  
GD_TWN_SEC_FAULT  
R
0x0  
Gate driver over temperature warning triggers a fault when the  
temperature of the secondary (VCC2) side is greater than the  
TWN_SET threshold. This bit is cleared when the temperature drops  
below the threshold, followed by a read of the STATUS4 register:  
0x0 = No fault  
0x1 = Fault  
12  
GD_TSD_SEC_FAULT  
R
0x0  
Gate driver thermal shutdown triggers a fault when the temperature  
of the secondary (VCC2) side is greater than the TSD_SET threshold:  
0x0 = No fault  
0x1 = Fault  
11  
10  
RESERVED  
R
R
0x0  
0x0  
This bit field is reserved.  
OR_NFLT1_SEC  
Indicates the logic OR of all secondary side faults reporting to pin  
nFLT1.  
9
8
OR_NFLT2_SEC  
R
R
0x0  
0x0  
Indicates the logic OR of all secondary side faults reporting to pin  
nFLT2.  
BIST_SEC_FAULT  
A secondary side BIST diagnosis fault is triggered when the latent  
check BIST fails during secondary side power-up:  
0x0 = No fault  
0x1 = Fault  
7
6
CLK_MON_SEC_FAULT  
CFG_CRC_SEC_FAULT  
R
R
0x0  
0x0  
A secondary side clock monitor fault is triggered when the received  
clock from the primary side is mismatched from the secondary clock:  
0x0 = No fault  
0x1 = Fault  
A secondary side configuration register CRC fault is triggered if a  
configuration bit for the secondary side registers (CFG4 - CF11)  
changes while in ACTIVE mode. Additionally,  
CFG_CRC_SEC_FAULT is set if the SPITEST register or one of the  
RESERVED bits in the secondary side registers is written while in  
the Configuration 2 state:  
0x0 = No fault  
0x1 = Fault  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-31. STATUS4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
TRIM_CRC_SEC_FAULT  
R
0x0  
A secondary side internal data CRC fault is triggered if one of the  
internal bits held in memory changes. The trim register CRC is  
monitored in Configuration 2 and ACTIVE states:  
0x0 = No fault  
0x1 = Fault  
4-1  
0
RESERVED  
SEC_RDY  
R
R
0x0  
0x0  
This bit field is reserved  
Secondary side is ready for operations:  
0x0 = Not ready  
0x1 = Ready  
7.6.1.27 STATUS5 Register  
STATUS5 is shown in 7-71 and described in 7-32.  
Return to Summary Table.  
7-71. STATUS5 Register  
15  
14  
13  
12  
11  
10  
9
8
ADC_FAULT  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
Reserved  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
R-0x0  
R-0x0  
7
6
5
4
3
2
1
0
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
Reserved  
R-0x0  
RESERVED  
R-0x0  
7-32. STATUS5 Register Field Descriptions  
Bit  
Field  
ADC_FAULT  
Type  
Reset  
Description  
15  
R
0x0  
ADC_FAULT indicates that a fault has occurred in the VREF or  
during the ADC data transfer to the primary side. This fault only  
indicates faults when the ADC is enabled.  
0x0 = No fault  
0x1 = Fault condition. The VREF supply is out of range (OV, UV, or in  
current limit), or the IN+ signal is faster than guaranteed operation  
while ADC is enabled (30kHz).  
14-0  
RESERVED  
R
0x0  
This bit field is reserved  
7.6.1.28 CONTROL1 Register  
CONTROL1 is shown in 7-72 and described in 7-33. To write data in ACTIVE state, disable the  
configuration CRC check by setting CRC_DIS=1 before writing the data. The only exception to this is the  
CLR_SPI_CRC bit. This bit can be written in ACTIVE mode without disabling the CRC.  
Return to Summary Table.  
7-72. CONTROL1 Register  
15  
14  
13  
12  
11  
10  
9
8
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
90  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-72. CONTROL1 Register (continued)  
CLR_SPI_CRC  
RESERVED  
CFG_CRC_CH  
K_PRI  
R/W-0x0  
7
R-0x0  
R/W-0x0  
0
6
5
4
3
2
1
PWM_COMP_  
CHK  
RESERVED  
STP_CHK  
RESERVED  
R/W-0x0  
CLK_MON_CH  
K_PRI  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-33. CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLR_SPI_CRC  
R/W  
0x0  
Clear SPI CRC code:  
0x0 = No  
0x1 = Yes  
14-9  
8
RESERVED  
R
0x0  
0x0  
This bit field is reserved  
CFG_CRC_CHK_PRI  
R/W  
Run CRC check of configuration register bits of primary (VCC1) side:  
0x0 = No  
0x1 = Yes  
7
PWM_COMP_CHK  
R/W  
0x0  
Run PWM signal comparison function check. PWM comparator  
generates PWM fault to set PWM_COMP_CHK_FAULT. This is only  
available in Configuration 2:  
0x0 = No  
0x1 = Yes  
6
5
RESERVED  
STP_CHK  
R/W  
R/W  
0x0  
0x0  
This bit field is reserved  
Run the check of STP function. shoot through protection generates  
STP fault to set STP_FAULT:  
0x0 = No  
0x1 = Yes  
4-1  
0
RESERVED  
R
0x0  
0x0  
This bit field is reserved  
CLK_MON_CHK_PRI  
R/W  
Run clock monitor check. Primary side clock monitor generates clock  
monitor fault to set CLK_MON_PRI_FAULT. SPI functions normally  
during this test:  
0x0 = No  
0x1 = Yes  
7.6.1.29 CONTROL2 Register  
CONTROL2 is shown in 7-73 and described in 7-34. To write data in ACTIVE state, disable the  
configuration CRC check by setting CRC_DIS=1 before writing the data.  
Return to Summary Table.  
7-73. CONTROL2 Register  
15  
14  
13  
12  
11  
10  
9
8
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-73. CONTROL2 Register (continued)  
CLR_STAT_RE  
G
RESERVED GATE_OFF_CH GATE_ON_CH VCECLP_CHK  
RESERVED  
DESAT_CHK  
SCP_CHK  
K
K
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
3
R/W-0x0  
2
R/W-0x0  
1
R/W-0x0  
0
7
6
5
4
OCP_CHK  
RESERVED  
VGTH_MEAS  
RESERVED  
CLK_MON_CH CFG_CRC_CH PS_TSD_CHK_ RESERVED  
K_SEC  
K_SEC  
SEC  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-34. CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLR_STAT_REG  
R/W  
0x0  
Clear status register. This bit is set back 0 once status register is  
cleared. Reading this bit always returns 0:  
0x0 = No  
0x1 = Yes  
14  
13  
RESERVED  
R/W  
R/W  
0x0  
0x0  
This bit field is reserved.  
GATE_OFF_CHK  
Check the continuity of gate turnoff path. The gate monitor  
comparator generates off-state fault to test the GM_FAULT while the  
gate is off. This function is used in ACTIVE mode with the CRC_DIS  
bit set. The MCU or the external controller controls IN+/IN- to turn off  
OUTH before sending this command. The gate driver output is pulled  
low and does not respond to IN+/IN- until GM_FAULT and this bit is  
cleared. Ensure that the CRC_DIS bit is cleared after performing the  
necessary latent function checks to enable the CRC function:  
0x0 = OFF  
0x1 = ON  
12  
GATE_ON_CHK  
R/W  
0x0  
Check the continuity of gate turnon path. The gate monitor  
comparator generates on-state fault to test the GM_FAULT while the  
gate is on. This function is used in ACTIVE mode with the CRC_DIS  
bit set. The gate driver output is pulled low. MCU or the external  
controller controls IN+/IN- to turn on OUTH before sending this  
command. Ensure that the CRC_DIS bit is cleared after performing  
the necessary latent function checks to enable the CRC function:  
0x0 = OFF  
0x1 = ON  
11  
VCECLP_CHK  
R/W  
0x0  
Manual VCECLP BIST. The VCECLAMP comparator generates VCE  
over voltage fault to set VCEOV_FAULT. This function is used in  
ACTIVE mode with the CRC_DIS bit set. MCU or the external  
controller controls IN+/IN- to turn off OUTH before sending this  
command. Ensure that the CRC_DIS bit is cleared after performing  
the necessary latent function checks to enable the CRC function:  
0x0 = No  
0x1 = Yes  
10  
RESERVED  
R/W  
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-34. CONTROL2 Register Field Descriptions (continued)  
Bit  
Field  
DESAT_CHK  
Type  
Reset  
Description  
9
R/W  
0x0  
Manual DESAT BIST. The DESAT comparator generates DESAT  
fault to set DESAT_FAULT. This function is used in ACTIVE mode  
with the CRC_DIS bit set. MCU or the external controller controls  
IN+/IN- to turn on OUTH before sending this command. Ensure that  
the CRC_DIS bit is cleared after performing the necessary latent  
function checks to enable the CRC function:  
0x0 = No  
0x1 = Yes  
8
SCP_CHK  
R/W  
0x0  
Manual SCP BIST. The SCP comparator generates short circuit fault  
to set SC_FAULT. This function is used in ACTIVE mode with the  
CRC_DIS bit set. MCU or the external controller controls IN+/IN- to  
turn on OUTH before sending this command. Ensure that the  
CRC_DIS bit is cleared after performing the necessary latent  
function checks to enable the CRC function:  
0x0 = No  
0x1 = Yes  
7
OCP_CHK  
R/W  
0x0  
Manual OCP BIST. The OCP comparator generates over current  
fault to set OC_FAULT. This function is used in ACTIVE mode with  
the CRC_DIS bit set. MCU or the external controller controls IN+/IN-  
to turn on OUTH before sending this command. Ensure that the  
CRC_DIS bit is cleared after performing the necessary latent  
function checks to enable the CRC function:  
0x0 = No  
0x1 = Yes  
6
5
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
VGTH_MEAS  
Run VGTH measurement function. Refer to the 7.3.5.14 section.  
This is only available in Configuration 2:  
0x0 = No  
0x1 = Yes  
4
3
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
CLK_MON_CHK_SEC  
Manual clock monitor BIST. Secondary side clock monitor generates  
clock monitor fault to set CLK_MON_SEC_FAULT. SPI function  
normally during this test:  
0x0 = No  
0x1 = Yes  
2
CFG_CRC_CHK_SEC  
R/W  
0x0  
Run CRC check of configuration bits of VCC2 side, Secondary side  
configuration CRC generates CRC fault to set  
CFG_CRC_SEC_FAULT:  
0x0 = No  
0x1 = Yes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-34. CONTROL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
PS_TSD_CHK_SEC  
R/W  
0x0  
Check power switch TSD protection function. The Power Switch over  
temperature protection generates over temperature fault to set  
PS_TSD_FAULT. This function is used in ACTIVE mode with the  
CRC_DIS bit set. MCU or the external controller controls IN+/IN- to  
turn on OUTH before sending this command. Ensure that the  
CRC_DIS bit is cleared after performing the necessary latent  
function checks to enable the CRC function:  
0x0 = No  
0x1 = Yes  
0
RESERVED  
R/W  
0x0  
This bit field is reserved.  
7.6.1.30 ADCCFG Register  
ADCCFG is shown in 7-74 and described in 7-35.  
Return to Summary Table.  
7-74. ADCCFG Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
ADC_ON_CH_ ADC_ON_CH_ ADC_ON_CH_ ADC_ON_CH_ ADC_ON_CH_ ADC_ON_CH_ ADC_ON_CH_  
SEL_7  
SEL_6  
SEL_5  
SEL_4  
SEL_3  
SEL_2  
SEL_1  
R/W-0x0  
7
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
6
5
4
3
2
1
0
RESERVED ADC_OFF_CH_ ADC_OFF_CH_ ADC_OFF_CH_ ADC_OFF_CH_ ADC_OFF_CH_ ADC_OFF_CH_ ADC_OFF_CH_  
SEL_7  
SEL_6  
SEL_5  
SEL_4  
SEL_3  
SEL_2  
SEL_1  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R-0x0  
7-35. ADCCFG Register Field Descriptions  
Bit  
15  
14  
Field  
Type Reset  
Description  
Reserved  
R/W  
R/W  
0x0  
0x0  
Reserved  
ADC_ON_CH_SEL_7  
The die temperature is enabled for sampling during the PWM ON ADC  
round robin. Die temperature data is returned to ADCDATA7. The  
round robin sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
13  
12  
ADC_ON_CH_SEL_6  
ADC_ON_CH_SEL_5  
R/W  
R/W  
0x0  
0x0  
The AI6 channel is enabled for sampling during the PWM ON ADC  
round robin. AI6 data is returned to ADCDATA6. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
The AI4 channel is enabled for sampling during the PWM ON ADC  
round robin. AI4 data is returned to ADCDATA5. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-35. ADCCFG Register Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
11  
ADC_ON_CH_SEL_4  
ADC_ON_CH_SEL_3  
ADC_ON_CH_SEL_2  
ADC_ON_CH_SEL_1  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
The AI2 channel is enabled for sampling during the PWM ON ADC  
round robin. AI2 data is returned to ADCDATA4. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
10  
The AI5 channel is enabled for sampling during the PWM ON ADC  
round robin. AI5 data is returned to ADCDATA3. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
9
The AI3 channel is enabled for sampling during the PWM ON ADC  
round robin. AI3 data is returned to ADCDATA2. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
8
The AI1 channel is enabled for sampling during the PWM ON ADC  
round robin. AI1 data is returned to ADCDATA1. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
Reserved  
7
6
Reserved  
R/W  
R/W  
0x0  
0x0  
ADC_OFF_CH_SEL7  
The die temperature is enabled for sampling during the PWM OFF  
ADC round robin. Die temperature data is returned to ADCDATA7.  
The round robin sampling order is: AI1, AI3, AI5,AI2, AI4, AI6, Die  
Temp:  
0x0 = No  
0x1 = Yes  
5
4
ADC_OFF_CH_SEL6  
ADC_OFF_CH_SEL5  
R/W  
R/W  
0x0  
0x0  
The AI6 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI6 data is returned to ADCDATA6. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
The AI4 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI4 data is returned to ADCDATA5. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-35. ADCCFG Register Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
3
ADC_OFF_CH_SEL4  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
The AI2 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI2 data is returned to ADCDATA4. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
2
1
0
ADC_OFF_CH_SEL3  
ADC_OFF_CH_SEL2  
ADC_OFF_CH_SEL1  
The AI5 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI5 data is returned to ADCDATA3. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
The AI3 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI3 data is returned to ADCDATA2. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
The AI1 channel is enabled for sampling during the PWM OFF ADC  
round robin. AI1 data is returned to ADCDATA1. The round robin  
sampling order is: AI1, AI3, AI5, AI2, AI4, AI6, Die Temp:  
0x0 = No  
0x1 = Yes  
7.6.1.31 DOUTCFG Register  
DOUTCFG is shown in 7-75 and described in 7-36.  
Return to Summary Table.  
7-75. DOUTCFG Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
AI1OT_EN  
RW-0x0  
AI3OT_EN  
RW-0x0  
AI5OT_EN  
RW-0x0  
AI2OCSC_EN AI4OCSC_EN AI6OCSC_EN  
FREQ_DOUT  
R/W-0x0  
RW-0x1  
4
RW-0x1  
3
RW-0x0  
2
7
6
5
RESERVED  
R/W-0x0  
DOUT_TO_TJ DOUT_TO_AI6 DOUT_TO_AI4 DOUT_TO_AI2 DOUT_TO_AI5 DOUT_TO_AI3 DOUT_TO_AI1  
R/W-0x0 R/W-0x0 R/W-0x0 R/W-0x0 R/W-0x0 R/W-0x0 R-0x0  
7-36. DOUTCFG Register Field Descriptions  
Bit  
Field  
AI1OT_E  
Type  
Reset  
Description  
15  
R/W  
0x0  
AI1 Over Temperature protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
14  
AI3OT_EN  
R/W  
0x0  
AI3 Over Temperature protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
96  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-36. DOUTCFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
13  
AI5OT_EN  
R/W  
0x0  
AI5 Over Temperature protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
12  
11  
AI2OCSC_EN  
AI4OCSC_EN  
AI6OCSC_EN  
FREQ_DOUT  
R/W  
R/W  
R/W  
R/W  
0x1  
0x1  
0x0  
0x0  
AI2 Over Current / Short circuit protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
AI4 Over Current / Short circuit protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
10  
9-8  
AI6 Over Current / Short circuit protection for power FET:  
0x0 = Disabled  
0x1 = Enabled  
DOUT output frequency:  
0x0 = 13.9kHz  
0x1 = 27.8kHz  
0x2 = 55.7kHz  
0x3 = 111.4kHz  
7
6
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
DOUT_TO_TJ  
Channel of die temp is selected to output on DOUT. Only one  
channel can be selected at a time.:  
0x0 = No  
0x1 = Yes  
5
4
3
DOUT_TO_AI6  
DOUT_TO_AI4  
DOUT_TO_AI2  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
Channel AI6 is selected to output on DOUT. Only one channel can be  
selected at a time. :  
0x0 = No  
0x1 = Yes  
Channel AI4 is selected to output on DOUT. Only one channel can be  
selected at a time.:  
0x0 = No  
0x1 = Yes  
Channel AI2 is selected to output on DOUT. Only one channel can be  
selected at a time.:  
0x0 = No  
0x1 = Yes  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-36. DOUTCFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
DOUT_TO_AI5  
R/W  
0x0  
Channel AI5 is selected to output on DOUT. Only one channel can be  
selected at a time.:  
0x0 = No  
0x1 = Yes  
1
0
DOUT_TO_AI3  
DOUT_TO_AI1  
R/W  
R/W  
0x0  
0x0  
Channel AI3 is selected to output on DOUT. Only one channel can be  
selected at a time.:  
0x0 = No  
0x1 = Yes  
Channel AI1 is selected to output on DOUT. Only one channel can be  
selected at a time.:  
0x0 = No  
0x1 = Yes  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Power Dissipation Considerations  
Proper system design must assure that the device operates within safe thermal limits across the entire load  
range. The total power dissipation is the sum of the power dissipated by bias supply current, internal parasitic  
switching losses, and power dissipated by the series gate resistor and load. The equation 方程式 4 shows total  
device power dissipation.  
Rint  
»
ÿ
PGDL = Qg ì fPWM ì(VCC2 - VEE2 ) ì  
+ V  
- VEE2 ìI  
)
CC2 QVCC2  
(
Rint + Rg  
(4)  
where  
Qg is the gate charge of the power transistor  
fPWM is the PWM frequency  
VCC2 is the positive supply voltage  
VEE2 is the negative supply voltage  
Rint is the gate driver internal gate resistance  
Rg is the external gate resistor  
IQVCC2 is the quiescent supply current of VCC2  
8.1.2 Device Addressing  
When using the Address-based configuration for SPI communication in the system, all devices must be  
individually addressed. Upon entering the Configuration 1 state (indicated by nFLT* high, assuming no fault  
during startup), all devices are addressable 0x1 through 0xE (14 unique addresses), with 0xF being a broadcast  
address to which all devices respond. Addressing is done in the Configuration 1 state. In this state, the IN+ input  
is pulled high while the WR_CA command is sent with the defined address. The written address is stored in the  
GDADDRESS[GD_ADDR] bits (GDADDRESS). Once all devices are addressed, send the CFG_IN command  
with the broadcast device address (0xF) to lock in the device address and move to configuring the devices  
(Configuration 2 state). The timing diagram for the addressing is shown in Timing diagram for addressing when  
using the Address-based SPI Communication Scheme..  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8-1. Timing diagram for addressing when using the Address-based SPI Communication Scheme.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
100 Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.2 Typical Application Using Internal ADC Reference and Power FET Sense Current Monitoring  
VCC2  
+12V  
VIN  
FB  
GND2  
VEE2  
LM25180  
RSET  
GND  
SW  
VCC2  
GND1  
DESAT  
VCC2  
GND1  
NC  
10 F  
GNDP  
VCECLP  
VBST  
NC  
D3  
0.1 F  
VI/O VI/O  
NC  
D4  
100  
2200pF  
1.5  
1.5  
OUTH  
NC  
Safety  
Controller  
10k  
10k  
VEE2  
OUTL  
ASC_EN  
nFLT1  
nFLT2/DOUT  
VCC1  
ASC  
VEE2  
IRQ  
GPIO  
CLAMP  
GND2  
1 F  
VEE2  
1 F  
MCU  
VREF  
10  
GND2  
(PS_TSD) AI1  
(OC/SC) AI2  
AI3  
IN-  
GD_LS  
GD_HS  
100  
IN+  
10  
10  
SCLK  
nCS  
Any analog  
CLK  
voltages less  
than 3.6V can  
be measured  
AI4  
nCS  
10nF 10nF 100pF 10nF  
GND2 GND2 GND2 GND2  
(ASC_EN) AI5  
(ASC) AI6  
VREG2  
VEE2  
MOSI  
MISO  
SDI  
SDO  
VREG1  
GND1  
4.7 F  
4.7 F  
Safety  
Controller  
UCC5870-Q1  
10 F  
VEE2  
GND1  
GND2  
Digital Iso  
8-2. Typical Application Circuit using Sense FET Overcurrent Sensing  
8.2.1 Design Requirements  
8-1 lists reference design parameters for the example application: UCC51870 driving 400V IGBT transistors  
in a low-side configuration.  
8-1. Design Requirements  
PARAMETER  
DC Bus Voltage  
VCC1  
VALUE  
400  
3.3  
UNITS  
V
V
VCC2  
15  
V
VEE2  
-8  
V
Switching Frequency  
10  
kHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 VCC1, VCC2, and VEE2 Bypass Capacitors  
Use ceramic capacitors between VCC1 and GND1, VCC2 and VGND2, and VEE2 and VGND2.  
For VCC1, it is recommended to use a 0.1µF capacitor in parallel with a 1µF capacitor. Use at least a 6.3V  
voltage rating. For VCC2, it is recommended to use a 0.1µF capacitor in parallel with a 1µF capacitor at the pin.  
Bulk capacitor (>22µF) on the supply rail is required to ensure minimal droop during transitions. Use at least a  
50V voltage rating. For VEE2, it is recommended to use a 0.1µF capacitor in parallel with a 1µF capacitor at the  
pin. Bulk capacitor (>22µF) on the supply rail is required to ensure minimal droop during transitions. Use at least  
a 25V voltage rating.  
8.2.2.2 VREF, VREG1, and VREG2 Bypass Capacitors  
Connect a ceramic capacitor between VREG1 and GND1, VREG2 and VEE2, and VREF and GND2. For the  
VREG1 and VREG2 outputs, it is recommended to use a 0.1µF capacitor in parallel with a 4.7µF capacitor at the  
pin with at least a 6.3V voltage rating. It is recommended to bypass VREF with a 1µF capacitor at the pin with at  
least a 6.3V voltage rating.  
8.2.2.3 Bootstrap Capacitor (VBST)  
Connect a ceramic capacitor between VBST and OUTH. It is recommended to use a 0.1µF capacitor with at  
least a 6.3V voltage rating.  
8.2.2.4 VCECLP Input  
The active VCE clamp circuit is used to reduce VCE overshoot voltage during IGBT turn off. The external circuit  
(8-3) uses four components: A high-voltage TVS diode (D1) that turns on (avalanche breakdown) if the VCE  
overshoot during the IGBT turn-off is greater than the TVS diode avalanche limit, a filter capacitor (CP) that is  
charged when D1 conducts, a diode (D2) that conducts some of the avalanche current to the IGBT gate to  
increase the gate voltage (VGE) in order slow down the turn off transient and reduce the VCE overshoot, and a  
resistor (RC) to set the time constant to discharge the VCECLP node when D1 stops conducting. Select the D1  
avalanche voltage rating to be the IGBT VCE overshoot voltage control target. During normal operation, the VCE  
dV/dt couples to VCECLP through junction capacitance of D1. The CP value is selected to filter this coupled  
ripple voltage to prevent triggering the VCE clamp function during normal operation. When a VCE over voltage  
occurs and D1 avalanches, CP charges to the VCECLPth by avalanche current, then VCE clamp function triggers  
and OUTL driver is disabled while the STO current is enabled. The RP value sets the the RC time constant when  
the CP voltage drops below VCECLPth. The value of RP depends on the selection of the IGBT, D1, RGON, RGOFF  
.
Typically, the Rp value is between 10 to 100 ohm and CP value is between 10nF to 100nF. There is not a hard  
and fast calculation for these components. The best method is experimenting to fine tune the components for  
best performance in the application. See 8-4 for an example of performance with the  
UCC5870QDWJEVM-026 () EVM.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
102 Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8-3. VCECLP External Components  
8.2.2.5 External CLAMP Output  
When using an external Miller clamp, select a MOSFET with the required RDSON for the desired pulldown  
strength. Connect CLAMP to the gate of the pulldown transistor, the drain to the gate of the external power FET,  
and the source to GND2 at the external power FET.  
8.2.2.6 AI* Inputs  
AI* require a series resistor and bypass capacitor (RC filter) to ensure best results. The values must be selected  
based on the required corner frequency for the input. A tradeoff must be made between response time, in the  
case of SCP and OCP monitoring, and the noise during ADC measurements. The DC input impedance of the AI*  
inputs is very high. However, as the signal frequency goes up, the input impedance decreases. The input  
impedance can be estimated as:  
ZAI* = sqrt(8kΩ2 + (1 /( 2π× fS × 1.5pF))2)  
(5)  
Where fS is the frequency of the signal. The filter The recommended RC for OCP/SCP monitoring is 100ohm and  
100pF. This provides a quicker response with the drawback of more noise in the measurement. The RC chosen  
for the other inputs used in the application circuits is 10ohm and 10nF. All of the ADC data taken on these inputs  
in this datasheet are based on those RC values. For best results for ADC accuracy, it is recommended to use  
these components. If a different corner frequency is required, select a frequency that provides sufficient  
accuracy with the decreased AI* input impedance. The corner frequency is calculated using the following  
equation:  
fC = 1/ (2πRC)  
(6)  
8.2.2.7 OUTH/ OUTL Outputs  
The OUTH and OUTL outputs provide split gate drive to customize the turn-on and turn-off rates to customize  
applications for limiting noise and ringing. A resistor from OUTH and from OUTL to the gate of the power  
transistor set the rise/fall time of the gate drive to the power transistor. To set the rise time, select the resistor  
(RG) for OUTH and OUTL to the gate according to the following equation:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
RG=ωLS/ Q  
(7)  
Where LS is the inductance of the gate and Q is the quality factor between 0.5 (critically damped) and 1 (under  
damped). See SLLA385 () for additional information on gate resistor design. It is required that the value or RG  
must be greater than 1.5Ωfor both OUTH and OUTL.  
8.2.2.8 nFLT* Outputs  
The nFLT1 and nFLT2 indicators are open-drain outputs, connect a 1k to 100k resistor from nFLT* to VCC1 to  
set the correct logic level.  
8.2.3 Application Curves  
V
GE (10V/div)  
VGS (6V/div)  
V
CE (100V/div)  
I
DS (100A/div)  
V
DS (200V/div)  
I
CE (100A/div)  
8-4. IGBT Double Pulse Waveform  
8-5. SiC Double Pulse Waveform  
V
GE (10V/div)  
V
CECLP (10V/div)  
V
CE (200V/div)  
ICE (200A/div)  
VCECLP HOLD = 100ns  
8-6. VCE Clamp Response with 100ns Hold Time  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.3 Typical Application Using DESAT Power FET Monitoring  
VCC2  
+12V  
VIN  
FB  
GND2  
VEE2  
LM25180  
RSET  
GND  
SW  
VCC2  
GND1  
D1  
1k  
DESAT  
VCC2  
GND1  
NC  
10  
F
D2  
100pF  
GND1  
VCECLP  
VBST  
NC  
D3  
GND2  
0.1  
F
VI/O VI/O  
NC  
D4  
100  
2200pF  
1.5  
1.5  
OUTH  
NC  
Safety  
10k  
10k  
Controller  
VEE2  
OUTL  
ASC_EN  
nFLT1  
nFLT2/DOUT  
VCC1  
ASC  
VEE2  
IRQ  
GPIO  
CLAMP  
GND2  
1
F
1
F
MCU  
VREF  
DC_LINK  
10  
10  
GND2  
(PS_TSD) AI1  
AI2  
IN-  
GD_LS  
GD_HS  
IN+  
10  
10  
AI3  
SCLK  
nCS  
Any analog  
voltages less  
than 3.6V can  
be measured  
CLK  
AI4  
nCS  
GND2  
10nF 10nF 10nF 10nF  
GND2 GND2 GND2 GND2  
(ASC_EN) AI5  
(ASC) AI6  
VREG2  
VEE2  
MOSI  
MISO  
SDI  
SDO  
VREG1  
GND1  
4.7  
F
4.7  
F
Safety  
Controller  
UCC5870-Q1  
10  
F
VEE2  
GND1  
GND2  
Digital Iso  
8-7. Typical Application Circuit using DESAT Overcurrent Protection  
8.3.1 Detailed Design Procedure  
See the previous section on details for selection of external components.  
8.3.1.1 DESAT Input  
The DESAT circuit monitors the power module (IGBT for example) for short circuit or over current protection. The  
external circuit includes four components (8-8): blanking capacitor (CBLK), clamping diode (DCLP), series  
resistor RS and high-voltage blocking diode (DHV). CBLK is used to determine the blanking time, tBLK. The time  
period for tBLK must be long enough to prevent a false trigger when the during the normal operation turn-on  
cycle. tBLK is calculated as:  
tBLK = CBLK × VDESATth/ ICHG  
(8)  
The high voltage diode DHV blocks the high voltage (VCE) while IGBT is OFF. The voltage rating for DHV must be  
higher than the DC bus voltage plus any switching transient voltage. It is good practice to choose a voltage  
rating for DHV to be the same or higher than the IGBT voltage rating. Once the proper voltage rating is  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
determined, choose a diode with the least amount of junction capacitance to prevent coupling of DESAT with the  
dV/dt of the VCE switching. Clamping diode, DCLP, provides a current path to for any coupling current due to the  
aforementioned junction capacitance of DHV. Select a diode large enough to handle any expected coupling  
current. The series resistor, RS, dampens any oscillations in the DESAT loop and determines the actual DESAT  
detection VCE voltage. The actual threshold is calculated as:  
VDESAT,ACTUAL = VDESATth - ICHG × RS - VDHV  
(9)  
VDHV is the forward voltage drop of the DHV diode and ICHG is the blanking capacitor charging current selected  
using the CFG5[DESAT_CHG_CURR] bits.  
8-8. External Components for DESAT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
106 Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.3.2 Application Curves  
DESATTH = 9V  
STO = 300mA  
DESATTH = 9V  
STO1 = 600mA  
2LTOFF = 10V  
STO2 = 600mA  
V
GE (10V/div)  
V
DESAT (5V/div)  
V
DESAT (5V/div)  
V
GE (5V/div)  
CE (200V/div)  
CE (1000A/div)  
V
V
CE (200V/div)  
I
ICE (1000A/div)  
8-9. Soft Turn-Off (STO) Shutdown Response to  
8-10. Two-Level Turn Off (2LTOFF) Shutdown  
DESAT Event  
Response to DESAT Event  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 VCC1 Power Supply  
The VCC1 power supply sets the logic level requirements for the primary side. Connect a 3.3V supply to VCC1  
when using 3.3V logic levels, or a 5V supply when using 5V logic levels for the digital IOs.  
9.2 VCC2 Power Supply  
The VCC2 supply is the positive driver supply for the power transistor. Connect a 15V to 30V supply from VCC2  
to GND2, depending on the drive voltage requirement for the selected transistor.  
9.3 VEE2 Power Supply  
The VEE2 supply is the negative driver supply for the power transistor. Connect a -12V to 0V supply from VEE2  
to GND2, depending on the hold off voltage requirement for the selected power transistor.  
9.4 VREF Supply (Optional)  
When tighter ADC accuracy that achievable with the internal reference is required, and external precision  
reference may be used. Connect a 4V reference to the VREF output. The accuracy of the reference is directly  
proportional to the achieved accuracy of the ADC.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
108 Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
 
 
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
One must pay close attention to PCB layout in order to achieve optimum performance for the device.  
10.1.1 Component Placement  
Low-ESR and low-ESL capacitors must be connected close to the device between the VCC1 and GND1 pins  
and between the VCC2, VEE2 and GND2 pins to support high peak currents when turning on the external  
power transistor.  
Place the VBST and VREF caps as close to the device as possible.  
10.1.2 Grounding Considerations  
It is essential to confine the high peak currents that charge and discharge the transistor gates to a minimal  
physical area. This decreases the loop inductance and minimize noise on the gate terminals of the  
transistors. The gate driver must be placed as close as possible to the transistors.  
Pay attention to high current path that includes the bootstrap capacitor. The bootstrap capacitor is recharged  
on a cycle-by-cycle basis through the diode by the VCC2 bypass capacitor. This recharging occurs in a short  
time interval and involves a high peak current. Minimizing this loop length and area on the circuit board is  
important for ensuring reliable operation.  
10.1.3 High-Voltage Considerations  
To ensure isolation performance between the primary and secondary side, one should avoid placing any PCB  
traces or copper below the driver device. A PCB cutout is recommended in order to prevent contamination  
that may compromise the UCC51870s isolation performance.  
For half-bridge, or high-side/low-side configurations, where the high-side and low-side drivers could operate  
with a DC-link voltage up to 1000 VDC, one should try to increase the creepage distance of the PCB layout  
between the high and low-side PCB traces.  
10.1.4 Thermal Considerations  
The power dissipated by the device is directly proportional to the drive voltage, heavy capacitive loading,  
and/or high switching frequency (refer to Power Dissipation Considerations section for more details). Proper  
PCB layout helps dissipate heat from the device to the PCB and minimize junction to board thermal  
impedance (θJB).  
Increasing the PCB copper connecting to VCC2 and VEE2 is recommended, with priority on maximizing the  
connection to VEE2. However, high voltage PCB considerations mentioned above must be maintained.  
If there are multiple layers in the system, it is also recommended to connect the VCC2 and VEE2 to internal  
ground or power planes through multiple vias of adequate size. However, keep in mind that there shouldnt  
be any traces/coppers from different high voltage planes overlapping.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.2 Layout Example  
10-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSD86  
110  
Submit Document Feedback  
Product Folder Links: UCC5870-Q1  
 
UCC5870-Q1  
ZHCSMR1C OCTOBER 2019 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Digital Isolator Design Guide  
Isolation Glossary  
Documentation available to aid ISO 26262 system design up to ASIL D  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: UCC5870-Q1  
English Data Sheet: SLUSD86  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC5870QDWJQ1  
UCC5870QDWJRQ1  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DWJ  
DWJ  
36  
36  
37  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
UCC5870Q  
UCC5870Q  
750  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DWJ SSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
UCC5870QDWJQ1  
36  
37  
NA  
13.85  
6100  
5.5  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UCC5871-Q1

具有高级保护功能的汽车类 30A 隔离式 5.7kV VRMS IGBT/SiC MOSFET 栅极驱动器
TI

UCC5871QDWJRQ1

具有高级保护功能的汽车类 30A 隔离式 5.7kV VRMS IGBT/SiC MOSFET 栅极驱动器 | DWJ | 36 | -40 to 125
TI

UCC5880-Q1

具有高级保护功能的汽车类 20A 隔离式实时可变 IGBT/SiC MOSFET 栅极驱动器
TI

UCC5950

10-Bit Serial D/A Converter
TI

UCC5950D

10-Bit Serial D/A Converter
TI

UCC5950DTR

Microprocessor Compatible, 10-bit Digital-to-Analog Converter with Low Power Sleep Mode 8-SOIC 0 to 70
TI

UCC5950J

10-Bit Digital-to-Analog Converter
ETC

UCC5950N

10-Bit Digital-to-Analog Converter
ETC

UCC8-010-1-H-S-1-A

CONN SOCKET 10POS 0.8MM SMD
SAMTEC

UCC81510DP

Analog IC
ETC

UCC81510N

Analog IC
ETC

UCC81510PWP

Analog IC
ETC