ULN2003BDR [TI]

支持 3V 输入电压且具有较低成本的 50V、7 通道达林顿阵列 | D | 16 | -40 to 105;
ULN2003BDR
型号: ULN2003BDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 3V 输入电压且具有较低成本的 50V、7 通道达林顿阵列 | D | 16 | -40 to 105

开关 光电二极管 晶体管
文件: 总25页 (文件大小:906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
ULN2003B 高电压、高电流达灵顿晶体管阵列  
1 特性  
3 说明  
1
输出泄漏电流 (ICEX) 超过 ULN2003A 的四倍  
ULN2003B 是一款高电压、高电流达灵顿晶体管阵  
列。 这个器件包含 7 个高压输出型 NPN 达灵顿晶体  
管对,这些晶体管具有针对电感负载开关的共阴极钳位  
二极管。 单个达灵顿对的集电极电流额定值为  
500mA。 将达灵顿对并联可以提供更高的电流。  
500mA 额定集电极电流(单路输出)  
高压输出 50V  
钳位二极管输出  
可兼容各类逻辑的输入  
继电器驱动器应用  
ULN2003B 的每个达灵顿对具有一个 2.7k基极串联  
电阻器,可直接用于晶体管逻辑 (TTL) 或互补金属氧  
化物半导体 (CMOS) 器件。  
2 应用  
继电器驱动器  
器件信息(1)  
封装  
锤式驱动器  
部件号  
封装尺寸(标称值)  
19.30mm x 6.35mm  
9.90mm x 3.91mm  
5.00mm x 4.40mm  
灯驱动器  
PDIP (16)  
显示屏驱动器(LED 和气体放电元件)  
线路驱动器  
ULN2003B  
SOIC (16)  
TSSOP (16)  
逻辑缓冲器  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
9
COM  
16  
1C  
1
2
3
4
5
6
7
1B  
2B  
3B  
4B  
5B  
6B  
7B  
15  
2C  
14  
3C  
13  
4C  
12  
5C  
11  
6C  
10  
7C  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLRS064  
 
 
 
 
 
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings ...................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics, TA = 25°C ....................... 5  
7.6 Electrical Characteristics, TA = –40°C to 105°C ...... 5  
7.7 Switching Characteristics, TA = 25°C........................ 5  
7.8 Switching Characteristics, TA = –40°C to 105°C ...... 5  
7.9 Typical Characteristics.............................................. 6  
7.10 Thermal Information................................................ 7  
Parameter Measurement Information .................. 8  
9
Detailed Description .............................................. 9  
9.1 Overview ................................................................... 9  
9.2 Functional Block Diagram ......................................... 9  
9.3 Feature Description................................................... 9  
9.4 Device Functional Modes........................................ 10  
10 Application and Implementation........................ 10  
10.1 Application Information.......................................... 10  
10.2 Typical Application ............................................... 10  
11 Power Supply Recommendations ..................... 12  
12 Layout................................................................... 12  
12.1 Layout Guidelines ................................................. 12  
12.2 Layout Example .................................................... 12  
13 器件和文档支持 ..................................................... 13  
13.1 ....................................................................... 13  
13.2 静电放电警告......................................................... 13  
13.3 术语表 ................................................................... 13  
14 机械封装和可订购信息 .......................................... 13  
8
5 修订历史记录  
Changes from Original (June 2014) to Revision A  
Page  
完整版的最初发布版本。 ....................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
6 Pin Configuration and Functions  
D, N, OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1B  
2B  
3B  
4B  
5B  
6B  
7B  
E
1C  
2C  
3C  
4C  
5C  
6C  
7C  
COM  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
<1:7>B  
<1:7>C  
E
NO.  
1 - 7  
16 - 10  
7
Input  
Output  
Channel 1 through 7 darlington base input  
Channel 1 through 7 darlington collector output  
Common Emmitter shared by all channels (typically tied to ground)  
COM  
8
Input/Output Common cathode node for flyback diodes (required for inductive loads)  
Copyright © 2014, Texas Instruments Incorporated  
3
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
at 25°C free-air temperature (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VCC  
Collector-emitter voltage  
Clamp diode reverse voltage(2)  
Input voltage(2)  
50  
50  
V
VI  
30  
V
Peak collector current(3)(4)  
500  
500  
–2.5  
105  
81  
mA  
mA  
A
IOK  
Output clamp current  
Total emitter-terminal current  
Operating free-air temperature range  
TA  
–40  
°C  
D package  
N package  
PW package  
θJA  
Package thermal impedance(3)(4)  
49.7  
105  
150  
°C/W  
°C  
TJ  
Operating virtual junction temperature  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.  
(3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(4) The package thermal impedance is calculated in accordance with JESD 51-7.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VI  
0
0
5
50  
V
V
VCC  
TJ  
Junction Temperature  
-40  
125  
°C  
7.4 Thermal Information  
ULN2003B  
THERMAL METRIC(1)  
PW  
16 PINS  
105.4  
32.9  
D
16 PINS  
81.2  
UNIT  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40.3  
51.3  
38.9  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.1  
10.9  
ψJB  
50.6  
38.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
版权 © 2014, Texas Instruments Incorporated  
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
7.5 Electrical Characteristics, TA = 25°C  
TEST FIGURE  
ULN2003B  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
2.4  
2.7  
3
IC = 200 mA  
IC = 250 mA  
IC = 300 mA  
IC = 100 mA  
IC = 200 mA  
IC = 350 mA  
II = 0  
VI(on)  
On-state input voltage  
12  
11  
VCE = 2 V  
V
II = 250 μA,  
II = 350 μA,  
II = 500 μA,  
VCE = 50 V,  
IF = 350 mA  
VCE = 50 V,  
VI = 3.85 V  
VR = 50 V  
VI = 0,  
0.9  
1
1.1  
1.3  
1.6  
10  
Collector-emitter saturation  
voltage  
VCE(sat)  
V
1.2  
ICEX  
VF  
II(off)  
II  
Collector cutoff current  
Clamp forward voltage  
Off-state input current  
Input current  
8  
14  
9  
μA  
V
1.7  
65  
2
IC = 500 μA  
50  
μA  
mA  
μA  
pF  
10  
13  
0.93  
1.35  
50  
IR  
Clamp reverse current  
Input capacitance  
Ci  
f = 1 MHz  
15  
25  
7.6 Electrical Characteristics, TA = –40°C to 105°C  
PARAMETER  
TEST FIGURE  
TEST CONDITIONS  
ULN2003B  
UNIT  
V
MIN  
TYP  
MAX  
IC = 200 mA  
2.7  
2.9  
3
VI(on)  
On-state input voltage  
12  
VCE = 2 V  
IC = 250 mA  
IC = 300 mA  
IC = 100 mA  
IC = 200 mA  
IC = 350 mA  
II = 0  
II = 250 μA,  
II = 350 μA,  
II = 500 μA,  
VCE = 50 V,  
IF = 350 mA  
VCE = 50 V,  
VI = 3.85 V  
VR = 50 V  
VI = 0,  
0.9  
1
1.2  
1.4  
1.7  
20  
VCE(sat)  
Collector-emitter saturation voltage  
11  
V
1.2  
ICEX  
VF  
II(off)  
II  
Collector cutoff current  
Clamp forward voltage  
Off-state input current  
Input current  
8  
14  
9  
μA  
V
1.7  
65  
2.2  
IC = 500 μA  
30  
μA  
mA  
μA  
pF  
10  
13  
0.93  
1.35  
100  
25  
IR  
Clamp reverse current  
Input capacitance  
Ci  
f = 1 MHz  
15  
7.7 Switching Characteristics, TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
0.25  
0.25  
1
1
μs  
μs  
VS  
20  
VOH  
High-level output voltage after switching  
VS = 50 V,  
IO 300 mA  
mV  
7.8 Switching Characteristics, TA = –40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX UNIT  
tPLH  
tPHL  
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
10  
10  
μs  
μs  
1
VS  
50  
VOH  
High-level output voltage after switching  
VS = 50 V,  
IO 300 mA  
mV  
版权 © 2014, Texas Instruments Incorporated  
5
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.9 Typical Characteristics  
2.2  
1.8  
1.65  
1.5  
Iin = 250uA  
Iin = 350uA  
Iin = 500uA  
Iin = 250uA  
Iin = 350uA  
Iin = 500uA  
2
1.8  
1.6  
1.4  
1.2  
1
1.35  
1.2  
1.05  
0.9  
0.8  
0.6  
0.4  
0.75  
0.6  
0.45  
0
50 100 150 200 250 300 350 400 450 500  
IC- Collector Current - mA  
0
80 160 240 320 400 480 560 640 720 800  
IC- Collector Current - mA  
D001  
D001  
1. Collector-Emitter Saturation Voltage vs Collector  
2. Collector-Emitter Saturation Voltage vs Total Collector  
Current (One Darlington)  
Current (Two Darlingtons in Parallel)  
1400  
1200  
1000  
800  
600  
400  
200  
0
700  
TJ = 25°C  
TJ = 40°C  
TJ = 125°C  
TJ = 25°C  
TJ = -40°C  
TJ = 125°C  
650  
600  
550  
500  
450  
400  
350  
1.8 2.1 2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1  
Input Voltage - V  
250  
300  
350  
400  
450  
500  
Input Current - µA  
550  
600  
650  
D001  
D001  
3. Input Current vs Input Voltage  
4. Output Current vs Input Current  
1.6  
TJ = 25°C  
TJ = -40°C  
TJ = 125°C  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IC - Collector Current - mA  
D001  
5. Collector-Emitter Saturation Voltage vs Collector Current  
6
版权 © 2014, Texas Instruments Incorporated  
 
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
7.10 Thermal Information  
0.5  
0.45  
0.4  
0.5  
0.45  
0.4  
N = 1  
N = 2  
N = 3  
N = 4  
N = 5  
N = 6  
N = 7  
N = 1  
N = 2  
N = 3  
N = 4  
N = 5  
N = 6  
N = 7  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0.05  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Duty Cycle  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Duty Cycle  
1
D001  
D001  
6. D Package Maximum collector Current vs Duty Cycle  
7. PW Package Maximum collector Current vs Duty Cycle  
版权 © 2014, Texas Instruments Incorporated  
7
 
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8 Parameter Measurement Information  
Open  
Open  
V
V
CE  
CE  
I
I
I(off)  
I
C
CEX  
Open  
8. ICEX Test Circuit  
9. II(off) Test Circuit  
Open  
Open  
I
C
h
=
I
FE  
I(on)  
I
I
V
Open  
I
V
CE  
I
I
I
C
10. II Test Circuit  
11. hfe , VCE(sat) Test Circuit  
Open  
V
R
I
R
Open  
V
V
CE  
I(on)  
I
C
12. VI(on) Test Circuit  
13. IR Test Circuit  
V
F
I
F
Open  
14. VF Test Circuit  
8
版权 © 2014, Texas Instruments Incorporated  
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
9 Detailed Description  
9.1 Overview  
This standard device has proven ubiquity and versatility across a wide range of applications. This is due to it's  
integration of 7 Darlington transistors that are capable of sinking up to 500 mA and wide GPIO range capability.  
The ULN2003B comprises seven high voltage, high current NPN Darlington transistor pairs. All units feature a  
common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression  
diodes for inductive loads. The ULN2003B has a series base resistor to each Darlington pair, thus allowing  
operation directly with TTL or CMOS operating at supply voltages of 5.0 V or 3.3 V. The ULN2003B offers  
solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs.  
Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling  
the outputs.  
This device can operate over a wide temperature range (–40°C to 105°C).  
9.2 Functional Block Diagram  
COM  
Output  
C
2.7 k  
Input  
B
7.2 kΩ  
3 kΩ  
E
All resistor values shown are nominal.  
15. Schematic (Each Comparator)  
9.3 Feature Description  
Each channel of ULN2003B consists of Darlington connected NPN transistors. This connection creates the effect  
of a single transistor with a very high current gain (β2). This can be as high as 10,000 A/A at certain currents.  
The very high β allows for high output current drive with a very low input current, essentially equating to  
operation with low GPIO voltages.  
The GPIO voltage is converted to base current via the 2.7 kΩ resistor connected between the input and base of  
the pre-driver Darlington NPN. The 7.2 kΩ & 3.0 kΩ resistors connected between the base and emitter of each  
respective NPN act as pull-downs and suppress the amount of leakage that may occur from the input.  
The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an  
inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the  
coils causes a reverse current to flow into the coil supply via the kick-back diode.  
In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diode are  
forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device  
pins.  
版权 © 2014, Texas Instruments Incorporated  
9
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Inductive Load Drive  
When the COM pin is tied to the coil supply voltage, ULN2003B is able to drive inductive loads and supress the  
kick-back voltage via the internal free wheeling diodes.  
9.4.2 Resistive Load Drive  
When driving a resistive load, a pull-up resistor is needed in order for ULN2003B to sink current and for there to  
be a logic high level. The COM pin can be left floating for these applications.  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
ULN2003B will typically be used to drive a high voltage and/or current peripheral from an MCU or logic device  
that cannot tolerate these conditions. The following design is a common application of ULN2003B, driving  
inductive loads. This includes motors, solenoids & relays. Each load type can be modeled by what's seen in  
16.  
10.2 Typical Application  
VSUP  
ULN2003B  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
GND  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
COM  
3.3V Logic  
3.3V Logic  
3.3V Logic  
VSUP  
16. ULN2003B as Inductive Load Driver  
10  
版权 © 2014, Texas Instruments Incorporated  
 
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
Typical Application (接下页)  
10.2.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
1. Design Parameters  
DESIGN PARAMETER  
GPIO Voltage  
EXAMPLE VALUE  
3.3 V or 5.0 V  
Coil Supply Voltage  
Number of Channels  
12 V to 48 V  
7
20 mA to 300 mA per channel  
100%  
Output Current (RCOIL  
)
Duty Cycle  
10.2.2 Detailed Design Procedure  
When using ULN2003B in a coil driving application, determine the following:  
Input Voltage Range  
Temperature Range  
Output & Drive Current  
Power Dissipation  
10.2.2.1 Drive Current  
The coil current is determined by the coil voltage (VSUP), coil resistance & output low voltage (VOL or VCE(SAT)).  
ICOIL = (VSUP – VCE(SAT)) / RCOIL  
(1)  
10.2.2.2 Output Low Voltage  
The output low voltage (VOL) is the same thing as VCE(SAT) and can be determined by, 1, 2, or 5.  
10.2.2.3 Power Dissipation & Temperature  
The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils  
driven can be determined by 6 or 7.  
For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003B  
on-chip power dissipation PD:  
N
V
´ILi  
P = å  
D
OLi  
i=1  
Where:  
N is the number of channels active together.  
VOLi is the OUTi pin voltage for the load current ILi. This is the same as VCE(SAT)  
(2)  
In order to guarantee reliability of ULN2003B and the system the on-chip power dissipation must be lower that or  
equal to the maximum allowable power dissipation (PD(MAX)) dictated by below equation 公式 3.  
T
J(MAX) - TA  
(
)
PD(MAX)  
=
qJA  
Where:  
TJ(MAX) is the target maximum junction temperature.  
TA is the operating ambient temperature.  
θJA is the package junction to ambient thermal resistance.  
(3)  
It is recommended to limit ULN2003B IC’s die junction temperature to less than 125°C. The IC junction  
temperature is directly proportional to the on-chip power dissipation.  
版权 © 2014, Texas Instruments Incorporated  
11  
 
 
ULN2003B  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
10.2.3 Application Curves  
The following curves were generated with ULN2003B driving an OMRON G5NB relay – Vin = 5.0V; Vsup= 12 V &  
RCOIL= 2.8 kΩ  
13  
12  
11  
10  
9
14  
12  
10  
8
8
7
6
6
5
4
4
3
2
2
1
0
0
-0.004  
0
0.004  
0.008  
Time (s)  
0.012  
0.016  
-0.004  
0
0.004  
0.008  
Time (s)  
0.012  
0.016  
D001  
D001  
17. Output Response With Activation of Coil (Turn On)  
18. Output Response With De-activation of Coil (Turn  
Off)  
11 Power Supply Recommendations  
This part does not need a power supply; however, the COM pin is typically tied to the system power supply.  
When this is the case, it is very important to make sure that the output voltage does not heavily exceed the COM  
pin voltage. This will heavily forward bias the fly-back diodes and cause a large current to flow into COM,  
potentially damaging the on-chip metal or over-heating the part.  
12 Layout  
12.1 Layout Guidelines  
Thin traces can be used on the input due to the low current logic that is typically used to drive UNL2003B. Care  
must be taken to separate the input channels as much as possible, as to eliminate cross-talk. Thick traces are  
recommended for the output, in order to drive whatever high currents that may be needed. Wire thickness can be  
determined by the trace material's current density and desired drive current.  
Since all of the channels currents return to a common emitter, it is best to size that trace width to be very wide.  
Some applications require up to 2.5 A.  
12.2 Layout Example  
1C  
2C  
1B  
2B  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
3C  
4C  
5C  
6C  
3B  
4B  
5B  
6B  
7B  
E
10 7C  
VCOM  
9
GND  
19. Package Layout  
12  
版权 © 2014, Texas Instruments Incorporated  
ULN2003B  
www.ti.com.cn  
ZHCSCU6A JUNE 2014REVISED SEPTEMBER 2014  
13 器件和文档支持  
13.1 商标  
All trademarks are the property of their respective owners.  
13.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ULN2003BDR  
ULN2003BN  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
N
16  
16  
2500 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 105  
-40 to 105  
ULN2003B  
25  
RoHS &  
SN  
ULN2003BN  
UN2003B  
Non-Green  
ULN2003BPWR  
ACTIVE  
TSSOP  
PW  
16  
2000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ULN2003BDR  
ULN2003BDR  
ULN2003BPWR  
ULN2003BPWR  
SOIC  
SOIC  
D
D
16  
16  
16  
16  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.8  
12.4  
12.4  
6.5  
6.5  
6.9  
6.9  
10.3  
10.3  
5.6  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
TSSOP  
TSSOP  
PW  
PW  
5.6  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ULN2003BDR  
ULN2003BDR  
ULN2003BPWR  
ULN2003BPWR  
SOIC  
SOIC  
D
D
16  
16  
16  
16  
2500  
2500  
2000  
2000  
356.0  
364.0  
356.0  
364.0  
356.0  
364.0  
356.0  
364.0  
35.0  
27.0  
35.0  
27.0  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PDIP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ULN2003BN  
N
16  
25  
506.1  
9
600  
5.4  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ULN2003BN

支持 3V 输入电压且具有较低成本的 50V、7 通道达林顿阵列 | N | 16 | -40 to 105
TI

ULN2003BPWR

支持 3V 输入电压且具有较低成本的 50V、7 通道达林顿阵列 | PW | 16 | -40 to 105
TI

ULN2003D

SEVEN DARLINGTON ARRAYS
STMICROELECTR

ULN2003D

Peripheral Driver, 7 Driver, BIPolar, PDSO16
PHILIPS

ULN2003D-T

Peripheral Driver, 7 Driver, BIPolar, PDSO16
PHILIPS

ULN2003D1

Seven darlington array
STMICROELECTR

ULN2003D1013TR

Seven darlington array
STMICROELECTR

ULN2003F12

Multi-Channel Relay and Inductive Load Sink Driver
DIODES

ULN2003F12FN-7

Multi-Channel Relay and Inductive Load Sink Driver
DIODES

ULN2003FSIIA

Peripheral Driver, 7 Driver, BIPolar, CDIP16
PHILIPS

ULN2003FSIIB

Peripheral Driver, 7 Driver, BIPolar, CDIP16
PHILIPS

ULN2003G-D16-T

7CH DARLINGTON SINK DRIVER
UTC