V62/08631-01YE [TI]

MIXED SIGNAL MICROCONTROLLER;
V62/08631-01YE
型号: V62/08631-01YE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER

文件: 总79页 (文件大小:1362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
MIXED SIGNAL MICROCONTROLLER  
Check for Samples: MSP430F2274-EP  
1
FEATURES  
Low Supply Voltage Range 1.8 V to 3.6 V  
10-Bit, 200-ksps A/D Converter With Internal  
Reference, Sample-and-Hold, and Autoscan  
and Data Transfer Controller  
Ultralow-Power Consumption  
Active Mode: 270 mA at 1 MHz, 2.2 V  
Standby Mode: 0.7 mA  
Two Configurable Operational Amplifiers  
Brownout Detector  
Off Mode (RAM Retention): 0.1 mA  
Serial Onboard Programming, No External  
Programming Voltage Needed Programmable  
Code Protection by Security Fuse  
Ultrafast Wake-Up From Standby Mode in Less  
than 1 ms  
16-Bit RISC Architecture, 62.5 ns Instruction  
Cycle Time  
Bootstrap Loader  
On-Chip Emulation Logic  
Basic Clock Module Configurations  
Family Members Include the MSP430F2274  
With 32KB + 256B Flash Memory, 1KB RAM  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequencies to ±1%  
Available in 40-Pin QFN Package and 38-Pin  
Thin Shrink Small-Outline DA Package  
Internal Very Low Power LF Oscillator  
32-kHz Crystal  
For Complete Module Descriptions, Refer to  
the MSP430x2xx Family User'sGuide  
(Available Only from –40°C to 105°C)  
High-Frequency Crystal up to 16 MHz  
(Available Only from –40°C to 105°C)  
SUPPORTS DEFENSE, AEROSPACE,  
AND MEDICAL APPLICATIONS  
Resonator  
External Digital Clock Source  
External Resistor  
Controlled Baseline  
One Assembly/Test Site  
One Fabrication Site  
Available in Military (–55°C/125°C)  
Temperature Range(1)  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
16-Bit Timer_A With Three Capture/Compare  
Registers  
16-Bit Timer_B With Three Capture/Compare  
Registers  
Universal Serial Communication Interface  
Enhanced UART Supporting  
Auto-Baud-Rate Detection (LIN)  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C™  
(1) Custom temperature ranges available  
DESCRIPTION  
The Texas Instruments MSP430 family of ultralow power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 ms.  
The MSP430F2274M series is an ultralow-power mixed signal microcontroller with two built-in 16-bit timers, a  
universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer  
controller (DTC), two general-purpose operational amplifiers in the MSP430F2274M devices, and 32 I/O pins.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand-alone RF sensor front end is another  
area of application.  
Table 1. ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
QFN (RHA)  
DA (TSSOP)  
ORDERABLE PART NUMBER  
MSP430F2274MRHATEP  
MSP430F2274MDATEP  
–55°C to 125°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
DEVICE PINOUTS  
RHA PACKAGE  
(TOP VIEW)  
39 38 37 36 35 34 33 32  
DVSS  
XOUT /P2.7  
1
2
3
4
5
6
7
8
9
30 P1.1/TA0  
29 P1.0/TACLK /ADC10CLK  
28 P2.4/TA2/A4/VREF +/VeREF +/OA1I0  
27 P2.3/TA1/A3/VREF -/VeREF -/OA1I1/OA1O  
26 P3.7/A7/OA1I2  
XIN /P2.6  
DVSS  
RST /NMI /SBWTDIO  
P2.0/ACLK/A0/OA0I0  
P2.1/TAINCLK /SMCLK /A1/OA0O  
P2.2/TA0/A2/OA0I1  
P3.0/UCB0STE /UCA0CLK/A5  
25 P3.6/A6/OA0I2  
24 P3.5/UCA0RXD /UCA0SOMI  
23 P3.4/UCA0TXD /UCA0SIMO  
22 P4.7/TBCLK  
P3.1/UCB0SIMO /UCB0SDA 10  
21 P4.6/TBOUTH /A15/OA1I3  
12 13 14 15 16 17 18 19  
TI = TI  
YM = YEAR/MONTH  
M4F2274  
LLLL = LOT TRACE CODE  
S = ASSEMBLY SITE CODE  
G4 = RoHS with underscore  
O = PIN 1 indicator  
MRHATEP  
TI YMS  
LLLLG4  
2
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
DA PACKAGE  
(TOP VIEW)  
1
2
3
4
5
38  
37  
36  
35  
34  
33  
32  
TEST/SBWTCK  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI  
DVCC  
P2.5/Rosc  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
DVSS  
XOUT/P2.7  
XIN/P2.6  
P1.2/TA1  
6
7
RST/NMI/SBWTDIO  
P1.1/TA0  
P2.0/ACLK/A0/OA0I0  
8
31  
30  
29  
28  
27  
26  
P1.0/TACLK/ADC 10CLK  
P2.4/TA2/A4/VREF+/VeREF+/OA1I0  
P2.3/TA1/A3/VREF-/VeREF-/OA1I1/OA10  
P3.7/A7/OA1I2  
9
P2.1/TAINCLK/SMCLK/A1/OA00  
P2.2/TA0/A2/OA0I1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.0/UCB 0STE/UCA 0CLK/A5  
P3.1/UCB 0SIMO/UCB 0SDA  
P3.2/UCB 0SOMI/UCB 0SCL  
P3.3/UCB 0CLK/UCA 0STE  
P3.6/A6/OA0I2  
P3.5/UCA0RXD/UCA0SOMI  
25  
24  
P3.4/UCA0TXD/UCA0SIMO  
P4.7/TBCLK  
AVSS  
AVCC  
23  
22  
21  
20  
P4.6/TBOUTH/A15/OA1I3  
P4.5/TB2/A14/OA1I3  
P4.4/TB1/A13/OA1O  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
P4.3/TB0/A12/OA0O  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10Bit  
Ports P1/P2  
ACLK  
Flash  
RAM  
1kB  
512B  
512B  
Ports P3/P4  
Basic Clock  
System+  
OA0, OA1  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
SMCLK  
32kB  
16kB  
8kB  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
2 Op Amps  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
TERMINAL FUNCTIONS(1)  
TERMINAL  
I/O  
DESCRIPTION  
DA  
RHA  
NO.  
NAME  
NO.  
General-purpose digital I/O pin  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
31  
32  
29  
30  
I/O Timer_A, clock signal TACLK input  
ADC10, conversion clock  
General-purpose digital I/O pin  
I/O Timer_A, capture: CCI0A input, compare: OUT0 output/BSL  
transmit  
General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: OUT1 output  
P1.2/TA1  
33  
34  
35  
36  
37  
38  
8
31  
32  
33  
34  
35  
36  
6
I/O  
General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
P1.3/TA2  
I/O  
General-purpose digital I/O pin/SMCLK signal output  
Test Clock input for device programming and test  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
I/O  
General-purpose digital I/O pin/Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
I/O  
General-purpose digital I/O pin/Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI(2)  
P2.0/ACLK/A0/OA0I0  
I/O  
General-purpose digital I/O pin/Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
I/O  
General-purpose digital I/O pin/ACLK output  
I/O  
ADC10, analog input A0 / OA0, analog input I0  
General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
I/O SMCLK signal output  
P2.1/TAINCLK/SMCLK/A1/  
OA0O  
9
7
8
ADC10, analog input A1/OA0, analog output  
General-purpose digital I/O pin  
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0  
output  
P2.2/TA0/A2/OA0I1  
10  
I/O  
ADC10, analog input A2/OA0, analog input I1  
General-purpose digital I/O pin  
P2.3/TA1/A3/VREF–/VeREF–  
OA1I1/OA1O  
/
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3 / negative reference voltage output/input  
OA1, analog input I1/OA1, analog output  
29  
30  
27  
28  
I/O  
General-purpose digital I/O pin/Timer_A, compare: OUT2 output  
I/O ADC10, analog input A4/positive reference voltage output/input  
OA1, analog input I0  
P2.4/TA2/A4/VREF+/VeREF+/OA1I0  
General-purpose digital I/O pin  
Input for external DCO resistor to define DCO frequency  
P2.5/ROSC  
XIN/P2.6  
3
6
5
40  
3
I/O  
Input terminal of crystal oscillator  
I/O  
General-purpose digital I/O pin  
Output terminal of crystal oscillator  
I/O  
XOUT/P2.7  
2
General-purpose digital I/O pin  
General-purpose digital I/O pin  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
11  
12  
9
I/O USCI_B0 slave transmit enable/USCI_A0 clock input/output  
ADC10, analog input A5  
General-purpose digital I/O pin  
10  
I/O USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C  
mode  
General-purpose digital I/O pin  
P3.2/UCB01SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
13  
14  
25  
11  
12  
23  
I/O USCI_B0 slave out/master in SPI mode, SCL I2C clock in I2C  
mode  
General-purpose digital I/O pin  
USCI_B0 clock input/output/USCI_A0 slave transmit enable  
I/O  
General-purpose digital I/O pin  
I/O USCI_A0 transmit data output in UART mode, slave in/master out  
in SPI mode  
(1) If XOUT/P2.7ca7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
(2) TDO or TDI is selected via JTAG instruction.  
4
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
TERMINAL FUNCTIONS (1) (continued)  
TERMINAL  
I/O  
DESCRIPTION  
DA  
NO.  
RHA  
NO.  
NAME  
General-purpose digital I/O pin  
P3.5/UCA0RXD/UCA0SOMI  
26  
24  
I/O USCI_A0 receive data input in UART mode, slave out/master in in  
SPI mode  
General-purpose digital I/O pin  
I/O  
P3.6/A6/OA0I2  
P3.7/A7/OA1I2  
P4.0/TB0  
27  
28  
17  
18  
19  
25  
26  
15  
16  
17  
ADC10 analog input A6/OA0 analog input I2  
General-purpose digital I/O pin  
I/O  
ADC10 analog input A7/OA1 analog input I2  
General-purpose digital I/O pin  
Timer_B, capture: CCI0A input, compare: OUT0 output  
I/O  
General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
P4.1/TB1  
I/O  
General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
P4.2/TB2  
I/O  
General-purpose digital I/O pin  
P4.3/TB0/A12/OA0O  
P4.4/TB1A13/OA1O  
P4.5/TB2A14/OA0I3  
P4.6/TBOUTHA15/OA1I3  
20  
21  
22  
23  
18  
19  
20  
21  
I/O Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12/OA0 analog output  
General-purpose digital I/O pin  
I/O Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13/OA1 analog output  
General-purpose digital I/O pin  
I/O Timer_B, compare: OUT2 output  
ADC10 analog input A14/OA0 analog input I3  
General-purpose digital I/O pin  
I/O Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15/OA1 analog input I3  
General-purpose digital I/O pin  
I/O  
P4.7/TBCLK  
24  
7
22  
5
Timer_B, clock signal TBCLK input  
Reset or nonmaskable interrupt input  
RST/NMI/SBWTDIO  
I
Spy-Bi-Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port1. The device protection  
TEST/SBWTCK  
1
37  
I
fuse is connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
DVCC  
AVCC  
DVSS  
AVSS  
2
16  
4
38, 39  
14  
Digital supply voltage  
Analog supply voltage  
Digital ground reference  
Analog ground reference  
1, 4  
13  
15  
Package  
Pad  
QFN Pad  
NA  
NA QFN package pad connection to DVSS recommended.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
SHORT-FORM DESCRIPTION  
Program Counter  
Stack Pointer  
PC/R0  
CPU  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced  
register-to-register operation execution time is one  
cycle of the CPU clock.  
instruction  
execution  
time.  
The  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R10  
R11  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 2 shows examples of the three types of  
instruction formats; the address modes are listed in  
Table 3.  
R12  
R13  
R14  
R15  
Table 2. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
e.g., CALL R8  
e.g., JNE  
R4 + R5 R5  
PC (TOS), R8 PC  
Jump-on-equal bit = 0  
Table 3. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
D(2)  
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
OPERATION  
R10 R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source  
(2) D = destination  
6
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
 
 
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Operating Modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to the  
low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode ( AM)  
All clocks are active.  
Low-power mode 0 (LPM0)  
CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
Low-power mode 1 (LPM1)  
CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.  
DCO's dc-generator is disabled if DCO not used in active mode.  
Low-power mode 2 (LPM2)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO's dc-generator remains enabled.  
ACLK remains active.  
Low-power mode 3 (LPM3)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO's dc-generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
CPU is disabled.  
ACLK is disabled.  
MCLK and SMCLK are disabled.  
DCO's dc-generator is disabled.  
Crystal oscillator is stopped.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh–0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed), the CPU goes  
into LPM4 immediately after power up.  
SYSTEM  
INTERRUPT  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WORD ADDRESS  
PRIORITY  
Power up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
Reset  
0FFFEh  
31, highest  
Flash key violation  
KEYV  
(2)  
PC out-of-range(1)  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
ACCVIFG  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
(2) (3)  
Timer_B3  
TBCCR0 CCIFG(4)  
maskable  
0FFFAh  
0FFF8h  
29  
28  
TBCCR1 and TBCCR2  
CCIFGs, TBIFG(2) (4)  
Timer_B3  
maskable  
0FFF6h  
0FFF4h  
0FFF2h  
27  
26  
25  
Watchdog Timer  
Timer_A3  
WDTIFG  
TACCR0 CCIFG(4)  
maskable  
maskable  
TACCR1 CCIFG,  
TACCR2 CCIFG,  
TAIFG  
Timer_A3  
maskable  
0FFF0h  
24  
(2) (4)  
USCI_A0/USCI_B0 Receive  
USCI_A0/USCI_B0 Transmit  
ADC10  
UCA0RXIFG, UCB0RXIFG(2)  
UCA0TXIFG, UCB0TXIFG(2)  
ADC10IFG(4)  
maskable  
maskable  
maskable  
0FFEEh  
0FFECh  
23  
22  
0FFEAh  
21  
0FFE8h  
20  
I/O Port P2 (eight flags)  
I/O Port P1 (eight flags)  
P2IFG.6 to P2IFG.7(2) (4)  
P1IFG.0 to P1IFG.7(2) (4)  
maskable  
maskable  
0FFE6h  
19  
0FFE4h  
18  
0FFE2h  
17  
0FFE0h  
16  
15  
(5)  
(6)  
0FFDEh  
0FFDCh ... 0FFC0h  
14 ... 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h–01FFh) or from  
within unused address range.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit disables an interrupt event.  
(4) Interrupt flags are located in the module.  
(5) This location is used as bootstrap loader security key (BSLSKEY). A 0AA55h at this location disables the BSL completely. A zero (0h)  
disables the erasure of the flash if an invalid password is supplied.  
(6) The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
8
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Special Function Registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Interrupt Enable 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
Address  
01h  
7
6
5
4
3
2
1
0
UCB0TXIE  
rw-0  
UCB0RXIE  
rw-0  
UCA0TXIE  
rw-0  
UCA0RXIE  
rw-0  
UCA0RXIE USCI_A0 receive-interrupt enable  
UCA0TXIE USCI_A0 transmit-interrupt enable  
UCB0RXIE USCI_B0 receive-interrupt enable  
UCB0TXIE USCI_B0 transmit-interrupt enable  
Interrupt Flag Register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG:  
Flag set on oscillator fault  
RSTIFG: External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC  
power up.  
PORIFG: Power-On Reset interrupt flag. Set on VCC power up.  
NMIIFG: Set via RST/NMI-pin  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0  
TXIFG  
UCB0  
RXIFG  
UCA0  
TXIFG  
UCA0  
RXIFG  
rw-1  
rw-0  
rw-1  
rw-0  
UCA0RXIFG USCI_A0 receive-interrupt flag  
UCA0TXIFG USCI_A0 transmit-interrupt flag  
UCB0RXIFG USCI_B0 receive-interrupt flag  
UCB0TXIFG USCI_B0 transmit-interrupt flag  
xxx  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Legend:  
rw:  
Bit can be read and written.  
rw-0, 1:  
rw-(0), (1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device.  
Memory Organization  
MSP430F223x  
MSP430F225x  
MSP430F227x  
Size  
Flash  
Flash  
Memory  
Main: interrupt vector  
Main: code memory  
8KB Flash  
0FFFFh–0FFC0h  
0FFFFh–0E000h  
16KB Flash  
0FFFFh–0FFC0h  
0FFFFh–0C000h  
32KB Flash  
0FFFFh–0FFC0h  
0FFFFh–08000h  
Size  
Flash  
256 Byte  
010FFh–01000h  
256 Byte  
010FFh–01000h  
256 Byte  
010FFh–01000h  
Information memory  
Boot memory  
RAM  
Size  
ROM  
1KB  
0FFFh–0C00h  
1KB  
0FFFh–0C00h  
1KB  
0FFFh–0C00h  
512 Byte  
03FFh–0200h  
512 Byte  
03FFh–0200h  
1KB  
05FFh–0200h  
Size  
16-bit  
8-bit  
8-bit SFR  
01FFh–0100h  
0FFh–010h  
0Fh–00h  
01FFh–0100h  
0FFh–010h  
0Fh–00h  
01FFh–0100h  
0FFh–010h  
0Fh–00h  
Peripherals  
Bootstrap Loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the application report, Features of the MSP430  
Bootstrap Loader, TI literature number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DA Package Pins  
32 - P1.1  
RHA Package Pins  
30 – P1.1  
10 - P2.2  
8 – P2.2  
Flash Memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port, or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64  
bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0–n.  
Segments A to D are also called information memory.  
Segment A contains calibration data. After reset segment A is protected against programming and erasing. It  
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
10  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using all  
instructions. For complete module descriptions, refer to the MSP430x2xx Family User's Guide.  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator (DCO).  
The basic clock module is designed to meet the requirements of both low system cost and low-power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 ms. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator for –40°C to  
105°C operation. For > 105°C, use external clock source.  
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules  
DCO Calibration Data (provided from factory in flash info memory segment A)  
DCO Frequency  
Calibration Register  
CALBC1_1MHZ  
CALDCO_1MHZ  
CALBC1_8MHZ  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
Size  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
Address  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There are four 8-bit I/O ports implemented – ports P1, P2, P3, and P4:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
WDT+ Watchdog Timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number  
DA RHA  
31 - P1.0 29 - P1.0  
Device  
Input  
Signal  
Module  
Input  
Name  
Module  
Output  
Signal  
Output Pin Number  
DA RHA  
Module  
Block  
TACLK  
ACLK  
SMCLK  
TAINCLK  
TA0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
9 - P2.1  
7 - P2.1  
32 - P1.1 30 - P1.1  
10 - P2.2 8 - P2.2  
32 - P1.1 30 - P1.1  
10 - P2.2 8 - P2.2  
TA0  
VSS  
36 - P1.5 34 - P1.5  
VCC  
VCC  
33 - P1.2 31 - P1.2  
29 - P2.3 27 - P2.3  
TA1  
CCI1A  
CCI1B  
GND  
33 - P1.2 31 - P1.2  
29 - P2.3 27 - P2.3  
37 - P1.6 35 - P1.6  
TA1  
VSS  
VCC  
VCC  
34 - P1.3 32 - P1.3  
TA2  
CCI2A  
34 - P1.3 32 - P1.3  
30 - P2.4 28 - P2.4  
38 - P1.7 36 - P1.7  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
VSS  
VCC  
GND  
VCC  
12  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_B3 Signal Connections  
Input Pin Number  
DA RHA  
Device  
Input  
Signal  
Module  
Input  
Name  
Module  
Output  
Signal  
Output Pin Number  
DA RHA  
Module  
Block  
24 - P4.7 22 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
NA  
TB0  
TB1  
24 - P4.7 22 - P4.7  
17 - P4.0 15 - P4.0  
20 - P4.3 18 - P4.3  
17 - P4.0 15 - P4.0  
20 - P4.3 18 - P4.3  
TB0  
VSS  
VCC  
VCC  
18 - P4.1 16 - P4.1  
21 - P4.4 19 - P4.4  
TB1  
CCI1A  
CCI1B  
GND  
18 - P4.1 16 - P4.1  
21 - P4.4 19 - P4.4  
TB1  
VSS  
VCC  
VCC  
19 - P4.2 17 - P4.2  
TB2  
CCI2A  
19 - P4.2 17 - P4.2  
22 - P4.5 20 - P4.5  
ACLK  
(internal)  
CCI2B  
CCR2  
TB2  
VSS  
VCC  
GND  
VCC  
USCI  
The universal serial communication interface (USCI) module is used for serial data communication. The USCI  
module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous  
communication protocols like UART, enhanced UART with automatic baud-rate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
ADC10  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling allowing ADC samples to be converted and stored without any CPU intervention.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Operational Amplifier (OA)  
The MSP430F2274M has two configurable low-current general-purpose operational amplifiers. Each OA input  
and output terminal is software-selectable and offer a flexible choice of connections for various applications. The  
OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.  
OA0 Signal Connections  
Analog Input  
Pin Number  
Device Input Signal  
Module Input Name  
DA  
RHA  
8 - A0  
10 - A2  
10 - A2  
27 - A6  
6 - A0  
8 - A2  
8 - A2  
25 - A6  
OA0I0  
OA0I1  
OA0I1  
OA0I2  
OA0I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
22 - A14 20 - A14  
xxxx  
OA1 Signal Connections  
Device Input Signal  
Analog Input  
Pin Number  
Module Input Name  
DA  
RHA  
30 - A4  
10 - A2  
29 - A3  
28 - A7  
28 - A4  
8 - A2  
OA0I0  
OA0I1  
OA0I1  
OA0I2  
OA0I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
27 - A3  
26 - A7  
23 - A15 21 - A15  
14  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Peripheral File Map  
PERIPHERALS WITH WORD ACCESS  
ADC10  
ADC data transfer start address  
ADC memory  
ADC control register 1  
ADC control register 0  
ADC analog enable 0  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
ADC10SA  
1BCh  
1B4h  
1B2h  
1B0h  
04Ah  
04Bh  
049h  
048h  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
Timer_B  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_B register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_B control  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
Timer_B interrupt vector  
TBIV  
Timer_A  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
0120h  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
PERIPHERALS WITH BYTE ACCESS  
OA1  
Operational Amplifier 1 control register 1  
Operational Amplifier 1 control register 1  
OA1CTL1  
OA1CTL0  
0C3h  
0C2h  
OA0  
Operational Amplifier 0 control register 1  
Operational Amplifier 0 control register 1  
OA0CTL1  
OA0CTL0  
0C1h  
0C0h  
USI_B0  
USCI_B0 transmit buffer  
USCI_B0 receive buffer  
USCI_B0 status  
USCI_B0 bit rate control 1  
USCI_B0 bit rate control 0  
USCI_B0 control 1  
USCI_B0 control 0  
USCI_B0 I2C slave address  
USCI_B0 I2C own address  
UCB0TXBUF  
UCB0RXBUF 06Eh  
06Fh  
UCB0STAT  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
06Dh  
06Bh  
06Ah  
069h  
068h  
011Ah  
0118h  
UCB0OA  
USI_A0  
USCI_A0 transmit buffer  
USCI_A0 receive buffer  
USCI_A0 status  
USCI_A0 modulation control  
USCI_A0 baud rate control 1  
USCI_A0 baud rate control 0  
USCI_A0 control 1  
UCA0TXBUF  
UCA0RXBUF 066h  
067h  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
065h  
064h  
063h  
062h  
061h  
060h  
USCI_A0 control 0  
USCI_A0 IrDA receive control  
USCI_A0 IrDA transmit control  
USCI_A0 auto baud rate control  
UCA0IRRCTL 05Fh  
UCA0IRTCTL 05Eh  
UCA0ABCTL  
05Dh  
Basic Clock System+  
Port P4  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P4 resistor enable  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4REN  
P4SEL  
P4DIR  
P4OUT  
P4IN  
011h  
01Fh  
01Eh  
01Dh  
01Ch  
Port P4 input  
Port P3  
Port P2  
Port P3 resistor enable  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3REN  
P3SEL  
P3DIR  
P3OUT  
P3IN  
010h  
01Bh  
01Ah  
019h  
018h  
Port P3 input  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
16  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Absolute Maximum Ratings(1)  
VALUE  
–0.3 to 4.1  
–0.3 to VCC + 0.3  
±2  
UNIT  
V
Voltage applied at VCC to VSS  
Voltage applied to any pin(2)  
V
Diode current at any device terminal  
Storage temperature, Tstg (unprogrammed device(3)  
mA  
°C  
)
–55 to 150  
–55 to 125  
(3)  
Storage temperature, Tstg (programmed device  
)
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak  
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Recommended Operating Conditions(1) (2)  
MIN  
1.8  
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage during program execution  
VCC  
Supply voltage during program/erase flash memory  
2.2  
3.6  
V
VSS Supply voltage  
0
V
TA  
Operating free-air temperature range  
–55  
dc  
125  
4.15  
12  
°C  
VCC = 1.8 V, Duty Cycle = 50% ±10%  
VCC = 2.7 V, Duty Cycle = 50% ±10%  
Processor frequency fSYSTEM  
(Maximum MCLK frequency)(1) (2)  
(see Figure 1)  
dc  
MHz  
VCC 3.3 V, Duty Cycle = 50% ±10%  
dc  
16  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 1. Operating Area  
18  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Active-Mode Supply Current (Into DVCC + AVCC) Excluding External Current – Electrical  
Characteristics(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32,768 Hz,  
2.2 V  
270 390  
Program executes in flash,  
BCSCTL1 = CALBC1_1 MHZ,  
DCOCTL = CALDCO_1 MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active-mode (AM)  
current (1 MHz)  
IAM, 1MHz  
–55°C to 125°C  
mA  
3 V  
2.2 V  
3 V  
390 550  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32,768 Hz,  
240  
Program executes in RAM,  
BCSCTL1 = CALBC1_1 MHZ,  
DCOCTL = CALDCO_1 MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active-mode (AM)  
current (1 MHz)  
IAM, 1MHz  
mA  
340  
fMCLK = fSMCLK = fACLK = 32,768 Hz/8 = 4,096  
Hz,  
fDCO = 0 Hz,  
–55°C to 85°C  
125°C  
5
6
9
18  
10  
2.2 V  
3 V  
–55°C to 85°C  
Active-mode (AM) Program executes in flash,  
IAM, 4kHz  
mA  
mA  
current (4 kHz)  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
125°C  
20  
fMCLK = fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
Active-mode (AM) Program executes in flash,  
current (100 kHz) RSELx = 0, DCOx = 0,  
–55°C to 85°C  
125°C  
60  
72  
85  
95  
95  
2.2 V  
3 V  
IAM,100kHz  
–55°C to 85°C  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
125°C  
125  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
(2) For TA < 105°C, the currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9 pF. For TA > 105°C, the currents are characterized  
using a 32-kHz external clock source for ACLK..  
Typical Characteristics – Active-Mode Supply Current (Into DVCC + AVCC)  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
DCO  
V
CC  
= 3 V  
f
f
= 8 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
CC  
= 2.2 V  
= 1 MHz  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active-Mode Current vs VCC, TA = 25°C  
Figure 3. Active-Mode Current vs DCO Frequency  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Low-Power-Mode Supply Currents (Into DVCC + AVCC) Excluding External Current – Electrical  
Characteristics(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
75 90  
fMCLK = 0 MHz,  
2.2 V  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32,768 Hz,  
BCSCTL1 = CALBC1_1 MHZ,  
DCOCTL = CALDCO_1 MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
ILPM0, 1MHz  
–55°C to 125°C  
mA  
(LPM0) current(3)  
3 V  
90 120  
fMCLK = 0 MHz,  
fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 1  
2.2 V  
3 V  
37  
41  
48  
65  
Low-power mode 0  
(LPM0) current(3)  
ILPM0, 100kHz  
–55°C to 125°C  
mA  
mA  
fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz,  
fACLK = 32,768 Hz,  
BCSCTL1 = CALBC1_1 MHZ,  
DCOCTL = CALDCO_1 MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
–55°C to 85°C  
125°C  
22  
25  
29  
40  
32  
2.2 V  
3 V  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
–55°C to 85°C  
125°C  
45  
–55°C  
25°C  
0.7  
0.7  
2.8  
6
1.4  
1.4  
4.5  
18  
2.2 V  
3 V  
85°C  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32,768 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
125°C  
–55°C  
25°C  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
mA  
0.9  
0.9  
3.0  
6.5  
0.4  
0.5  
2.2  
1.5  
1.5  
5.0  
19  
85°C  
125°C  
–55°C  
25°C  
1.0  
1.0  
4.2  
2.2 V  
3 V  
85°C  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator (VLO),  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
125°C  
–55°C  
25°C  
5.7 16.5  
Low-power mode 3  
current, (LPM3)  
ILPM3,VLO  
mA  
(4)  
0.5  
0.6  
2.5  
6.0  
0.1  
0.1  
1.9  
5.5  
1.2  
1.2  
4.5  
17  
85°C  
125°C  
–55°C  
25°C  
0.5  
0.5  
4.0  
16  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
Low-power mode 4  
(LPM4) current(5)  
2.2 V/  
3 V  
ILPM4  
mA  
85°C  
125°C  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
(2) For TA < 105°C, the currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9 pF. For TA > 105°C, ACLK was sourced from an  
external clock source.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
20  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, and RST/NMI(1)) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
2.2 V  
3 V  
MIN TYP MAX UNIT  
1.00  
1.35  
.55  
1.65  
2.25  
1.20  
1.65  
1.0  
VIT+ Positive-going input threshold voltage  
–55°C to 125°C  
V
V
V
2.2 V  
3 V  
VIT– Negative-going input threshold voltage  
–55°C to 125°C  
–55°C to 125°C  
.75  
2.2 V  
3 V  
0.2  
Vhys Input voltage hysteresis (VIT+ – VIT–  
RPull Pullup/pulldown resistor  
)
0.3  
1.0  
For pullup: VIN = VSS  
For pulldown:  
VIN = VCC  
;
–55°C to 125°C  
20  
35  
5
50  
kΩ  
CI  
Input capacitance  
VIN = VSS or VCC  
pF  
(1) RST/NMI limit values specified for -55°C to 125°C.  
Inputs (Ports P1 and P2) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN MAX UNIT  
20 ns  
Port P1, P2: P1.x to P2.x, External  
t(int)  
External interrupt timing  
–55°C to 125°C  
2.2 V/3 V  
trigger pulse width to set interrupt flag(1)  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals  
shorter than t(int)  
.
Leakage Current (Ports P1, P2, P3 and P4) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN MAX UNIT  
±50 nA  
High-impedance leakage  
current  
(1)(2)  
Ilkg(Px.x)  
–55°C to 125°C  
2.2 V/3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Outputs (Ports P1, P2, P3, and P4) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
VCC – 0.25  
VCC – 0.6  
VCC – 0.25  
VCC – 0.6  
MAX UNIT  
(1)  
IOH(max) = –1.5 mA  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
VCC  
2.2 V  
(2)  
IOH(max) = –6 mA  
VCC  
High-level output  
voltage  
VOH  
V
IOH(max) = –1.5 mA(1)  
IOH(max) = –6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
VCC  
3 V  
2.2 V  
3 V  
VCC  
VSS VSS+0.25  
VSS  
VSS+0.6  
Low-level output  
voltage  
VOL  
V
VSS VSS+0.25  
VSS  
VSS+0.6  
(1) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency (Ports P1, P2, P3, and P4) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
2.2 V  
3 V  
MIN  
MAX UNIT  
10  
Port output frequency P1.4/SMCLK, CL = 20 pF, RL = 1 kagainst  
(with load)  
fPx.y  
–55°C to 125°C  
MHz  
12  
VCC/2(1) (2)  
2.2 V  
3 V  
12  
Clock output  
frequency  
fPort_CLK  
P2.0/ACLK, P1.4/SMCLK, CL = 20 pF(2)  
–55°C to 125°C  
MHz  
16  
(1) A resistive divider with 2 times 0.5 kbetween VCC and VSS is used as load. The output is connected to the center tap of the divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
22  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Typical Characteristics – Outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
P4.5  
= 2.2 V  
T
= 25°C  
V
P4.5  
= 3 V  
CC  
A
CC  
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 4.  
Figure 5.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
P4.5  
= 2.2 V  
V
P4.5  
= 3 V  
CC  
CC  
−10.0  
−15.0  
−20.0  
−25.0  
T
A
= 85°C  
T
A
= 85°C  
T = 25°C  
A
T
A
= 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 6.  
Figure 7.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
POR/Brownout Reset (BOR) – Electrical Characteristics(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
See Figure 8  
TA  
VCC  
MIN  
TYP MAX UNIT  
0.7 ×  
V
VCC(start)  
dVCC/dt 3 V/s  
V(B_IT–)  
V(B_IT–)  
See Figure 8 through Figure 10  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
1.71  
V
Vhys(B_IT–) See Figure 8  
70  
2
130 210  
2000  
mV  
ms  
td(BOR)  
t(reset)  
See Figure 8  
Pulse length needed at RST/NMI  
pin to accepted reset internally  
–55°C to 125°C  
2.2 V/3 V  
ms  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–)  
+
Vhys(B_IT– ) is 1.8 V.  
(2) During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT–) + Vhys(B_IT–). The default DCO settings  
must not be changed until VCC VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
24  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Typical Characteristics - POR/Brownout Reset (BOR)  
V
CC  
3 V  
t
pw  
2
V
CC  
= 3 V  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
pw  
− Pulse Width − µs  
t
pw  
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
f
t
r
t
pw  
− Pulse Width − µs  
t
pw  
− Pulse Width − µs  
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32   fDCO(RSEL,DCO)   fDCO(RSEL,DCO ) 1)  
faverage  
+
MOD   fDCO(RSEL,DCO) ) (32 * MOD)   fDCO(RSEL,DCO ) 1)  
DCO Frequency – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
TA  
VCC  
MIN TYP MAX UNIT  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
1.8  
2.2  
3.0  
3.6  
3.6  
3.6  
VCC  
Supply voltage range  
RSELx = 14  
RSELx = 15  
V
RSELx = 0, DCOx = 0,  
MODx = 0  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14  
0.17  
0.20  
0.28  
0.40  
0.54  
0.77  
1.06  
1.50  
2.10  
3.00  
4.30  
5.50  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
RSELx = 0, DCOx = 3,  
MODx = 0  
RSELx = 1, DCOx = 3,  
MODx = 0  
RSELx = 2, DCOx = 3,  
MODx = 0  
RSELx = 3, DCOx = 3,  
MODx = 0  
RSELx = 4, DCOx = 3,  
MODx = 0  
RSELx = 5, DCOx = 3,  
MODx = 0  
RSELx = 6, DCOx = 3,  
MODx = 0  
RSELx = 7, DCOx = 3,  
MODx = 0  
RSELx = 8, DCOx = 3,  
MODx = 0  
RSELx = 9, DCOx = 3,  
MODx = 0  
RSELx = 10, DCOx = 3,  
MODx = 0  
RSELx = 11, DCOx = 3,  
MODx = 0  
RSELx = 12, DCOx = 3,  
MODx = 0  
7.30 M Hz  
RSELx = 13, DCOx = 3,  
MODx = 0  
9.60  
13.9  
18.5  
26.0  
MHz  
MHz  
MHz  
MHz  
RSELx = 14, DCOx = 3,  
MODx = 0  
RSELx = 15, DCOx = 3,  
MODx = 0  
RSELx = 15, DCOx = 7,  
MODx = 0  
3 V  
Frequency step  
between range RSEL  
and RSEL+1  
SRSEL  
=
SRSEL  
–55°C to 125°C  
2.2 V/3 V  
1.55  
ratio  
fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
26  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
DCO Frequency – Electrical Characteristics (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
Frequency step  
between tap DCO and  
DCO+1  
SDCO  
=
SDCO  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
1.05 1.08 1.12  
40 50 60  
ratio  
%
fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Duty cycle  
Measured at P1.4/SMCLK  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Calibrated DCO Frequencies (Tolerance at Calibration) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
Frequency tolerance at calibration  
25°C  
3 V  
–1  
±0.2  
1
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1 MHz)  
fCAL(8 MHz)  
fCAL(12 MHz)  
fCAL(16 MHz)  
1-MHz calibration value  
8-MHz calibration value  
12-MHz calibration value  
16-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010  
MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8.080  
12.12  
16.16  
MHz  
MHz  
MHz  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12  
16  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
Calibrated DCO Frequencies (Tolerance Over Temperature) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
3 V  
MIN  
–2.5  
TYP  
±0.5  
±1.0  
±1.0  
±2.0  
1
MAX  
2.5  
UNIT  
%
1-MHz tolerance over temperature  
8-MHz tolerance over temperature  
12-MHz tolerance over temperature  
16-MHz tolerance over temperature  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
3 V  
–2.5  
2.5  
%
3 V  
–2.5  
2.5  
%
3 V  
–3.0  
3.0  
%
2.2 V  
3 V  
0.970  
0.975  
0.970  
7.760  
7.800  
7.600  
11.70  
11.70  
11.70  
15.52  
1.030  
1.025  
1.030  
8.400  
8.200  
8.240  
12.30  
12.30  
12.30  
16.48  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz) 1-MHz calibration value  
fCAL(8MHz) 8-MHz calibration value  
–55°C to 125°C  
–55°C to 125°C  
1
MHz  
MHz  
3.6 V  
2.2 V  
3 V  
1
8
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8
3.6 V  
2.2 V  
3 V  
8
12  
12  
12  
16  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
fCAL(12MHz) 12-MHz calibration value  
fCAL(16MHz) 16-MHz calibration value  
–55°C to 125°C  
–55°C to 125°C  
MHz  
MHz  
3.6 V  
3 V  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
3.6 V  
15.00  
16  
16.48  
28  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Calibrated DCO Frequencies (Tolerance Over Supply Voltage VCC) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
1-MHz tolerance over VCC  
8-MHz tolerance overVCC  
12-MHz tolerance over VCC  
16-MHz tolerance over VCC  
TEST CONDITIONS  
TA  
VCC  
MIN  
–3  
TYP  
±2  
MAX  
UNIT  
%
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
3
3
3
3
–3  
±2  
%
–3  
±2  
%
–6  
±2  
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
1-MHz  
fCAL(1MHz)  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.970  
7.760  
11.64  
15.00  
1
8
1.030  
8.240  
12.36  
16.48  
MHz  
MHz  
MHz  
MHz  
calibration value  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8-MHz  
fCAL(8MHz)  
calibration value  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12-MHz  
fCAL(12MHz)  
12  
16  
calibration value  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16-MHz  
fCAL(16MHz)  
calibration value  
Calibrated DCO Frequencies (Overall Tolerance) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
1-MHz tolerance  
over temperature  
–55°C to 125°C  
1.8 V to 3.6 V  
-5  
±2  
+5  
+5  
+5  
+6  
%
%
%
%
8-MHz tolerance  
over temperature  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
-5  
-5  
-6  
±2  
±2  
±3  
12-MHz tolerance  
over temperature  
16-MHz tolerance  
over temperature  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
1-MHz  
calibration value  
fCAL(1MHz)  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
.950  
7.6  
1
8
1.050  
8.4  
MHz  
MHz  
MHz  
MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8-MHz  
calibration value  
fCAL(8MHz)  
fCAL(12MHz)  
fCAL(16MHz)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12-MHz  
calibration value  
11.4  
15.00  
12  
12.6  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16-MHz  
calibration value  
16 17.00  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Typical Characteristics – Calibrated 1-MHz DCO Frequency  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
V
V
= 1.8 V  
= 2.2 V  
CC  
T
= 125 °C  
A
T
= 85 °C  
= 25 °C  
A
CC  
V
= 3.0 V  
CC  
T
A
T
A
= -40 °C  
V
CC  
= 3.6 V  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
V
CC  
- Suppl y Voltage - V  
T
A
− Temperature − °C  
Figure 11. Calibrated 1-MHz Frequency vs  
Temperature  
Figure 12. Calibrated 1-MHz Frequency vs VCC  
Wake-Up From Lower-Power Modes (LPM3/4) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1 =  
CALBC1_1MHZ,  
DCOCTL =  
–55°C to 125°C  
2.2 V/3 V  
2
CALDCO_1MHZ,  
BCSCTL1 =  
CALBC1_8MHZ,  
DCOCTL =  
CALDCO_8MHZ,  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
3 V  
1.5  
ms  
1
DCO clock wake-up time  
from LPM3/4(1)  
tDCO,LPM3/4  
BCSCTL1 =  
CALBC1_12MHZ,  
DCOCTL =  
CALDCO_12MHZ,  
BCSCTL1 =  
CALBC1_16MHZ,  
DCOCTL =  
3 V  
1
CALDCO_16MHZ,  
1/fMCL  
CPU wake-up time from  
LPM3/4(2)  
+
K
tCPU,LPM3/4  
tClock,L  
PM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
30  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
10.00  
Figure 13. Clock Wake-Up Time From LPM3 vs DCO Frequency  
DCO With External Resistor ROSC – Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
TYP UNIT  
1.8  
MHz  
1.95  
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0,  
TA = 25°C  
fDCO,ROSC  
DCO output frequency with ROSC  
3 V  
Dt  
Temperature drift  
Drift with VCC  
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0  
DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
±0.1 %/°C  
DV  
10  
%/V  
(1) ROSC = 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Typical Characteristics - DCO With External Resistor ROSC  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
RSELx = 4  
RSELx = 4  
10.00  
100.00  
1000.00  
10000.00  
10.00  
100.00  
R − External Resistor − kW  
OSC  
1000.00  
10000.00  
R
− External Resistor − kW  
OSC  
Figure 14. DCO Frequency vs ROSC  
,
Figure 15. DCO Frequency vs ROSC  
,
VCC = 2.2 V, TA = 25°C  
VCC = 3.0 V, TA = 25°C  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
= 100k  
OSC  
R
= 100k  
OSC  
R
R
= 270k  
= 1M  
R
R
= 270k  
= 1M  
OSC  
OSC  
OSC  
OSC  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
− Temperature − 5C  
V
CC  
− Supply Voltage − V  
Figure 16. DCO Frequency vs Temperature, VCC  
3.0 V  
=
Figure 17. DCO Frequency vs VCC, TA = 25°C  
32  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Crystal Oscillator (LFXT1) Low-Frequency Modes – Electrical Characteristics(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
–40°C to  
105°C  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32,768  
Hz  
LFXT1 oscillator  
fLFXT1,LF logic-level square-wave  
–55°C to  
125°C  
XTS = 0, LFXT1Sx = 3  
1.8 V to 3.6 V  
10,000 32,768 50,000  
Hz  
input frequency, LF  
,logic  
mode  
XTS = 0, LFXT1Sx = 0;  
fLFXT1,LF = 32,768 kHz,  
CL,eff = 6 pF  
–40°C to  
105°C  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0;  
fLFXT1,LF = 32,768 kHz,  
CL,eff = 12 pF  
–40°C to  
105°C  
XCAPx = 0  
1
5.5  
8.5  
11  
Integrated effective load  
XCAPx = 1  
XTS = 0  
–40°C to  
105°C  
CL,eff  
capacitance,  
pF  
LF mode(3)  
XCAPx = 2  
XCAPx = 3  
XTS = 0, Measured at  
P1.4/ACLK,  
fLFXT1,LF = 32,768 Hz  
Duty  
Cycle  
–55°C to  
125°C  
LF mode  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
Oscillator fault frequency  
threshold, LF mode  
–55°C to  
125°C  
fFault,LF  
XTS = 0, LFXT1Sx = 3(5)  
10,000  
Hz  
(4)  
(1) To improve EMI on the LFXT1 oscillator the following guidelines should be observed:  
(a) Keep as short of a trace as possible between the device and the crystal.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Use of the LFXT1 Crystal Oscillator with TA > 105°C is not guaranteed. It is recommended that an external digital clock source or the  
internal DCO is used to provide clocking.  
(3) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should  
always match the specification of the used crystal.  
(4) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(5) Measured with logic-level input frequency, but also applies to operation with crystals with TA < 105°C.  
Internal Very-Low-Power, Low-Frequency Oscillator (VLO) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TA  
VCC  
MIN TYP MAX UNIT  
–55°C to 85°C  
125°C  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
4
12  
20  
22  
fVLO  
kHz  
(1)  
(2)  
dfVLO/dT  
–55°C to 125°C  
0.5  
4
%/°C  
%/V  
1.8 V –  
3.6V  
dfVLO/dVCC VLO frequency supply voltage drift  
25°C  
(1) Calculated using the box method:  
I Version: [MAX(–55...85°C) – MIN(–55...85°C)]/MIN(55–...85°C)/[85°C – (–55°C)]  
T Version: [MAX(–55...125°C) – MIN(–55...125°C)]/MIN(–55...125°C)/[125°C – (–55°C)]  
(2) Calculated using the box method: [MAX(1.8...3.6 V) – MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V – 1.8 V)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Crystal Oscillator (LFXT1) High Frequency Modes – Electrical Characteristics(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
fLFXT1,H LFXT1 oscillator crystal frequency,  
XTS = 1, LFXT1Sx = 0  
–40°C to 105°C  
1.8 V to 3.6 V  
0.4  
1
1
MHz  
MHz  
HF mode 0  
F0  
fLFXT1,H LFXT1 oscillator lcrystal frequency,  
XTS = 1, LFXT1Sx = 1  
XTS = 1, LFXT1Sx = 2  
–40°C to 105°C  
–40°C to 105°C  
1.8 V to 3.6 V  
4
HF mode 1  
F1  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
2
2
10  
fLFXT1,H LFXT1 oscillator crystal frequency,  
12 MHz  
16  
HF mode 2  
F2  
2
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.4  
0.4  
0.4  
10  
LFXT1 oscillator logic-level  
fLFXT1,H  
square-wave input frequency,  
XTS = 1, LFXT1Sx = 3  
–40°C to 105°C  
–40°C to 105°C  
12 MHz  
16  
F,logic  
HF mode  
XTS = 0, LFXT1Sx = 0;  
fLFXT1,HF = 1 MHz,  
CL,eff = 15 pF  
2700  
800  
300  
1
Oscillation allowance for HF  
XTS = 0, LFXT1Sx = 1  
fLFXT1,HF = 4 MHz,  
CL,eff = 15 pF  
OAHF  
crystals  
(see Figure 18 and Figure 19)  
XTS = 0, LFXT1Sx = 2  
fLFXT1,HF = 16 MHz,  
CL,eff = 15 pF  
Integrated effective load  
capacitance,  
CL,eff  
XTS = 1(4)  
–40°C to 105°C  
–55°C to 125°C  
pF  
HF mode(3)  
XTS = 1, Measured at  
P1.4/ACLK,  
fLFXT1,HF = 10 MHz  
40  
50  
60  
%
Duty  
Cycle  
HF mode  
2.2 V/3 V  
2.2 V/3 V  
XTS = 1, Measured at  
P1.4/ACLK,  
fLFXT1,HF = 16 MHz  
–55°C to 125°C  
–55°C to 125°C  
40  
30  
50  
60  
Oscillator fault frequency, HF mode  
fFault,HF  
XTS = 1, LFXT1Sx = 3(6)  
300 kHz  
(5)  
(1) To improve EMI on the LFXT1 oscillator the following guidelines should be observed:  
(a) Keep as short of a trace as possible between the device and the crystal.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Use of the LFXT1 Crystal Oscillator with TA > 105°C is not guaranteed. It is recommended that an external digital clock source or the  
internal DCO is used to provide clocking.  
(3) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should  
always match the specification of the used crystal.  
(4) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(5) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(6) Measured with logic-level input frequency, but also applies to operation with crystals  
34  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Typical Characteristics – LFXT1 Oscillator in HF Mode (XTS = 1)  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
100000.00  
10000.00  
1000.00  
100.00  
LFXT1Sx = 3  
LFXT1Sx = 3  
LFXT1Sx = 2  
LFXT1Sx = 2  
LFXT1Sx = 1  
1.00  
LFXT1Sx = 1  
10.00  
0.10  
10.00  
100.00  
0.0  
4.0  
8.0  
12.0  
16.0  
20.0  
Crystal Frequency − MHz  
Crystal Frequency − MHz  
Figure 18. Oscillation Allowance vs Crystal  
Frequency, CL,eff = 15 pF, TA = 25°C  
Figure 19. XT Oscillator Supply Current vs Crystal  
Frequency, CL,eff = 15 pF, TA = 25°C  
Timer_A – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: TACLK, INCLK,  
Duty cycle = 50% ± 10%  
2.2 V  
10  
fTA  
Timer_A clock frequency  
–55°C to 125°C  
–55°C to 125°C  
MHz  
3 V  
16  
tTA,cap Timer_A, capture timing  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
Timer_B – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: TBCLK,  
Duty Cycle = 50% ± 10%  
2.2 V  
10  
fTB  
Timer_B clock frequency  
–55°C to 125°C  
–55°C to 125°C  
MHz  
3 V  
16  
tTB,cap Timer_B, capture timing  
TB0, TB1, TB2  
2.2 V/3 V  
20  
ns  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
MAX UNIT  
USCI (UART Mode) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP  
Internal: SMCLK, ACLK,  
External: UCLK;  
Duty cycle = 50% ± 10%  
fSYSTE  
MHz  
fUSCI  
USCI input clock frequency  
–55°C to 125°C  
M
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
150  
150  
600  
600  
tt  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20 and  
Figure 21)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
MAX UNIT  
SMCLK, ACLK,  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
–55°C to 125°C  
fSYSTEM MHz  
2.2 V  
3 V  
110  
75  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ns  
ns  
2.2 V  
3 V  
tHD,MI  
0
2.2 V  
3 V  
30  
ns  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO SIMO output data valid time  
USCI (SPI Slave Mode) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 22 and  
Figure 23)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
STE lead time,  
STE low to clock  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
2.2 V/3 V  
50  
ns  
ns  
ns  
STE lag time,  
Last clock to STE high  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
10  
STE access time,  
STE low to SOMI data out  
50  
50  
STE disable time,  
STE high to SOMI high  
impedance  
tSTE,DIS  
2.2 V/3 V  
ns  
2.2 V  
3 V  
20  
15  
10  
10  
tSU,SI  
SIMO input data setup time  
SIMO input data hold time  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ns  
ns  
ns  
2.2 V  
3 V  
tHD,SI  
2.2 V  
3 V  
75  
50  
110  
75  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO SOMI output data valid time  
36  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
1/f  
UCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
t
t
t
SU,MI  
LOW/HIGH LOW/HIGH  
t
HD,MI  
SCMI  
SIMO  
t
VALID, MO  
Figure 20. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
t
t
LOW/HIGH LOW/HIGH  
t
HD,MI  
t
SU,MI  
SCMI  
SIMO  
t
VALID, MO  
Figure 21. SPI Master Mode, CKPH = 1  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
t
t
t
SU,SIMO  
LOW,HIGH LOW,HIGH  
t
HD,SIMO  
SIMO  
SOMI  
t
t
t
ACC  
VALID,SOMI  
DIS  
Figure 22. SPI Slave Mode, CKPH = 0  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
t
t
LOW,HIGH LOW,HIGH  
t
,
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
DIS  
VALID,SO  
ACC  
Figure 23. SPI Slave Mode, CKPH = 1  
38  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
USCI (I2C Mode) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: UCLK,  
Duty cycle = 50% ± 10%  
fSYST  
EM  
fUSCI  
fSCL  
USCI input clock frequency  
SCL clock frequency  
MHz  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
0
400 kHz  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
4.0  
tHD,STA Hold time (repeated) START  
ms  
0.6  
f
4.7  
Set-up time for a repeated  
tSU,STA  
START  
2.2 V/3 V  
ms  
fSCL > 100 kHz  
0.6  
tHD,DAT Data hold time  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
0
ns  
ns  
ms  
tSU,DAT Data set-up time  
tSU,STO Set-up time for STOP  
250  
4.0  
50 150  
50 100  
600  
ns  
Pulse width of spikes  
tSP  
–55°C to 125°C  
suppressed by input filter  
3 V  
600  
tHD  
tSU  
tHD  
tBUF  
,STA  
,STA  
,STA  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU  
tSU  
,DAT  
, STO  
tHD  
,DAT  
Figure 24. I2C Mode Timing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
10-Bit ADC, Power-Supply and Input Range Conditions – Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VSS = 0 V  
TA  
VCC  
MIN TYP MAX UNIT  
VCC  
VAx  
Analog supply voltage range  
–55°C to125 °C  
2.2  
3.6  
V
All Ax terminals,  
Analog inputs selected in  
ADC10AE register  
(2)  
Analog input voltage range  
ADC10 supply current(3)  
–55°C to 125°C  
–55°C to 125°C  
0
VCC  
V
fADC10CLK = 5.0 MHz,  
ADC10ON = 1, REFON = 0,  
ADC10SHT0 = 1,  
2.2 V  
3 V  
0.52 1.05  
IADC10  
mA  
0.6  
1.2  
ADC10SHT1 = 0,  
ADC10DIV = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
–55°C to 125°C 2.2 V/3 V  
Reference supply current,  
reference buffer disabled(4)  
IREF+  
0.25  
1.1  
.4  
mA  
mA  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
–55°C to 125°C  
–55°C to 85°C 2.2 V/3 V  
125°C 2.2 V/3 V  
–55°C to 85°C 2.2 V/3 V  
3 V  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0,  
1.4  
1.8  
.7  
Reference buffer supply current  
with ADC10SR = 0(4)  
IREFB,0  
REFOUT = 1, ADC10SR = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0, REFOUT = 1,  
ADC10SR=1  
0.5  
mA  
mA  
Reference buffer supply current  
with ADC10SR = 1(4)  
IREFB,1  
125°C  
2.2 V/3 V  
.8  
Only one terminal Ax selected at  
a time  
CI  
RI  
Input capacitance  
27  
pF  
Input MUX ON resistance  
0 V VAx VCC  
2.2 V/3 V  
2000  
(1) The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
40  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
10-Bit ADC, Built-In Voltage Reference – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF+ 1 mA, REF2_5V = 0  
VREF+ 0.5 mA, REF2_5V = 1  
VREF+ 1 mA, REF2_5V = 1  
VREF+ IVREF+max, REF2_5V = 0  
VREF+ IVREF+max, REF2_5V = 1  
TA  
VCC  
MIN TYP MAX UNIT  
I
I
I
I
I
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2  
Positive built-in  
reference analog  
supply voltage range  
VCC,REF+  
2.8  
2.9  
V
2.2 V/3 V  
3 V  
1.41  
2.35  
1.5 1.59  
2.5 2.65  
±0.5  
Positive built-in  
reference voltage  
VREF+  
V
2.2 V  
3 V  
Maximum VREF+ load  
current  
ILD,VREF+  
–55°C to 125°C  
–55°C to 125°C  
mA  
±1  
IVREF+ = 500 mA ± 100 mA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
2.2 V/3 V  
3 V  
±2  
VREF+ load regulation  
LSB  
IVREF+ = 500 mA ± 100 mA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
–55°C to 125°C  
–55°C to 125°C  
±2  
IVREF+ = 100 mA900 ADC10SR = 0  
mA,  
400  
VREF+ load regulation  
response time  
VAx 0.5 × VREF+  
Error of conversion  
,
3 V  
ns  
ADC10SR = 1  
–55°C to 125°C  
2000  
result 1 LSB  
Maximum capacitance  
at pin VREF+  
IVREF+ = 1 mA,  
REFON = 1, REFOUT = 1  
CVREF+  
TCREF+  
tREFON  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
3.6 V  
100  
pF  
(1)  
Temperature  
coefficient  
IVREF+ = const. with  
0 mA IVREF+ 1 mA  
ppm/°  
C
±100  
Settling time of internal IVREF+ = 0.5 mA, REF2_5V = 0  
–55°C to 125°C  
–55°C to 125°C  
30  
1
ms  
ms  
(2)  
reference voltage  
REFON = 0 1  
IVREF+ = 0.5 mA,  
REF2_5V = 0,  
REFON = 1,  
ADC10SR = 0  
ADC10SR = 1  
ADC10SR = 0  
ADC10SR = 1  
2.2 V  
3 V  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.5  
2
REFBURST = 1  
Settling time of  
tREFBURST  
reference buffer(2)  
IVREF+ = 0.5 mA,  
REF2_5V = 1,  
REFON = 1,  
4.5  
REFBURST = 1  
(1) The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT = 1),  
must be limited; the reference buffer may become unstable otherwise.  
(2) The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
10-Bit ADC, External Reference – Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN MAX UNIT  
VeREF+ > VeREF–  
SREF1 = 1, SREF0 = 0  
,
–55°C to 125°C  
1.4 VCC  
Positive external reference input  
voltage range  
VeREF+  
V
(2)  
V
eREF– VeREF+ VCC – 0.15  
–55°C to 125°C  
–55°C to 125°C  
1.4  
0
3.0  
1.2  
(3)  
V,SREF1 = 1, SREF0 = 1  
Negative external reference input  
VeREF–  
VeREF+ > VeREF–  
V
V
(4)  
voltage range  
Differential external reference  
input voltage range,  
ΔVeREF = VeREF+ – VeREF–  
(5)  
ΔVeREF  
VeREF+ > VeREF–  
–55°C to 125°C  
–55°C to 125°C  
1.4 VCC  
0 V VeREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
2.2 V/3 V  
±1  
IVeREF+  
Static input current into VeREF+  
mA  
mA  
0 V VeREF+ VCC – 0.15 V 3  
V,  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
0
SREF1 = 1, SREF0 = 1(3)  
IVeREF–  
Static input current into VeREF–  
0 V VeREF– VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP  
MAX UNIT  
For specified  
performance of ADC10  
linearity parameters  
ADC10SR=0  
ADC10SR=1  
–55°C to 125°C 2.2 V/3 V 0.45  
–55°C to 125°C 2.2 V/3 V 0.45  
6.5  
ADC10 input clock  
frequency  
fADC10CLK  
MHz  
1.5  
ADC10 built-in  
oscillator frequency fADC10CLK = fADC10OSC  
ADC10DIVx = 0, ADC10SSELx = 0,  
fADC10OSC  
–55°C to 125°C 2.2 V/3 V 3.25  
–55°C to 125°C 2.2 V/3 V 2.06  
6.45  
3.51  
MHz  
ms  
ADC10 built-in oscillator,  
ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
tCONVERT  
Conversion time  
13 =  
fADC10CLK from ACLK, MCLK, or  
SMCLK: ADC10SSELx 0  
–55°C to 125°C  
ADC10DIVx  
1/fADC10CLK  
Turn-on settling time  
of the ADC  
tADC10ON  
(1)–55°C to 125°C  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
42  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
10-Bit ADC, Linearity Parameters – Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
±1 LSB  
EI  
Integral linearity error  
Differential linearity error  
Offset error  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
ED  
EO  
±1 LSB  
Source impedance RS < 100 Ω  
±1 LSB  
SREFx = 010, un-buffered external  
reference,  
VeREF+ = 1.5 V  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V  
3 V  
±1.1  
±1.1  
±1.1  
±1.1  
±2  
±2  
±2  
±4  
±3  
±5  
±5  
±7  
±6  
SREFx = 010; un-buffered external  
reference,  
VeREF+ = 2.5 V  
EG  
Gain error  
LSB  
SREFx = 011, buffered external  
reference(2)  
,
2.2 V  
3 V  
VeREF+ = 1.5 V  
SREFx = 011, buffered external  
(2)  
reference  
,
VeREF+ = 2.5 V  
SREFx = 010, unbuffered external  
reference,  
VeREF+ = 1.5 V  
2.2 V  
3 V  
SREFx = 010, unbuffered external  
reference,  
VeREF+ = 2.5 V  
±2  
ET  
Total unadjusted error  
LSB  
SREFx = 011, buffered external  
reference(2)  
,
2.2 V  
3 V  
±2  
VeREF+ = 1.5 V  
SREFx = 011, buffered external  
reference(2)  
,
±2  
VeREF+ = 2.5 V  
(1) 2.2V Not Production Tested.  
(2) The reference buffer's offset adds to the gain and total unadjusted error.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
10-Bit ADC, Temperature Sensor and Built-In VMID – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
2.2 V  
3 V  
MIN TYP MAX UNIT  
40 120  
mA  
Temperature sensor  
supply current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
–55°C to 125°C  
60 160  
ADC10ON = 1, INCHx = 0Ah  
TCSENSOR  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V 3.44 3.55 3.66 mV/°C  
(2)  
ADC10ON = 1, INCHx =  
0Ah(2)  
VOffset,Sensor Sensor offset voltage  
-100  
100  
mV  
mV  
Temperature sensor voltage at  
TA = 125°C(T version only)  
1265 1365 1465  
1195 1295 1395  
985 1085 1185  
895 995 1095  
Temperature sensor voltage at  
TA = 85°C  
VSensor  
Sensor output voltage(3)  
2.2 V/3 V  
2.2 V/3 V  
Temperature sensor voltage at  
TA = 25°C  
Temperature sensor voltage at  
TA = 0°C  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1  
LSB  
tSensor(sample Sample time required  
)
–55°C to 125°C  
30  
ms  
(4)  
if channel 10 is selected  
2.2 V  
3 V  
NA  
NA  
Current into divider  
IVMID  
ADC10ON = 1, INCHx = 0Bh  
–55°C to 125°C  
–55°C to 125°C  
mA  
at channel 11(5)  
2.2 V  
3 V  
1.06  
1.46  
1400  
1.1 1.14  
1.5 1.54  
ADC10ON = 1, INCHx = 0Bh,  
VMID is 0.5 × VCC  
VMID  
VCC divider at channel 11  
V
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1  
LSB  
2.2 V  
Sample time required  
if channel 11 is selected  
tVMID(sample)  
–55°C to 125°C  
ns  
(6)  
3 V  
1220  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) Results based on characterization and/or production test, not TCSensor or VOffset,sensor  
.
(4) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(5) No additional current is needed. The VMID is used during sampling.  
.
(6) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
Operational Amplifier (OA) Supply Specifications – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage range  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2  
3.6  
290  
190  
80  
V
Fast Mode  
180  
110  
50  
ICC  
Supply current(1)  
Medium Mode  
Slow Mode  
2.2 V/3 V  
2.2 V/3 V  
mA  
dB  
PSSR Power-supply rejection ratio  
Noninverting  
70  
(1) Corresponding pins configured as OA inputs and outputs, respectively.  
44  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Operational Amplifier (OA) Input/Output Specifications – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX  
VCC  
1.2  
15  
20  
50  
UNIT  
-
VI/P  
Input voltage range  
–55°C to 125°C  
–0.1  
V
–55°C to 55°C  
55°C to 85°C  
85°C to 125°C  
–15  
–20  
–50  
±0.5  
±5  
Input leakage  
current(1) (2)  
Ilkg  
2.2 V/3 V  
nA  
Fast Mode  
50  
80  
Medium Mode fV(I/P) = 1 kHz  
Slow Mode  
140  
30  
Voltage noise density,  
I/P  
Vn  
nV/Hz  
Fast Mode  
Medium Mode fV(I/P) = 10 kHz  
Slow Mode  
50  
65  
VIO  
Offset voltage, I/P  
–55°C to 125°C 2.2 V/3 V  
2.2 V/3 V  
±10  
mV  
Offset temperature  
drift, I/P  
(3)  
±10  
mV/°C  
Offset voltage drift  
with supply, I/P  
0.3 V VIN VCC – 1.0 V  
ΔVCC ±10%, TA = 25°C  
–55°C to 125°C 2.2 V/3 V  
±1.5  
VCC  
VCC  
mV/V  
V
VCC  
0.2  
Fast Mode, ISOURCE –500 mA  
Slow Mode, ISOURCE –150 mA  
–55°C to 125°C  
2.2 V/3 V  
High-level output  
voltage,  
O/P  
VOH  
VCC  
0.1  
–55°C to 125°C  
Low-level output  
voltage,  
O/P  
Fast Mode, ISOURCE 500 mA  
Slow Mode, ISOURCE 150 mA  
–55°C to 125°C  
VSS  
VSS  
0.2  
0.1  
VOL  
2.2 V/3 V  
V
–55°C to 125°C  
RLoad = 3 k, CLoad = 50 pF,  
VO/P(OAx) < 0.2 V  
150  
150  
0.1  
70  
Output resistance(4)  
(see Figure 25)  
RLoad = 3 k, CLoad = 50 pF,  
VO/P(OAx) > VCC – 1.2 V  
RO/P(OAx)  
2.2 V/3 V  
2.2 V/3 V  
RLoad = 3 k, CLoad = 50 pF,  
0.2 V VO/P(OAx) VCC – 0.2 V  
Common-mode  
rejection ratio  
CMRR  
Noninverting  
dB  
(1) ESD damage can degrade input current leakage.  
(2) The input bias current is overridden by the input leakage current.  
(3) Calculated using the box method  
(4) Specification valid for voltage-follower OAx configuration  
R
O/P(OAx)  
Max  
R
Load  
Load  
I
Load  
AV  
CC  
OAx  
2
C
O/P(OAx)  
Min  
0.2V  
AV  
−0.2V  
CC  
V
AV  
OUT  
CC  
Figure 25. OAx Output Resistance Tests  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Operational Amplifier (OA) Dynamic Specifications – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Fast Mode  
TA  
VCC  
MIN TYP  
MAX UNIT  
1.2  
0.8  
0.3  
100  
60  
SR  
Slew rate  
Medium Mode  
Slow Mode  
V/ms  
Open-loop voltage gain  
Phase margin  
dB  
deg  
dB  
fm  
CL = 50 pF  
CL = 50 pF  
Gain margin  
20  
Noninverting, Fast Mode,  
RL = 47 k, CL = 50 pF  
2.2  
1.4  
Gain-bandwidth product  
Noninverting, Medium Mode,  
(see Figure 26 and Figure 27) RL = 300 k, CL = 50 pF  
GBW  
2.2 V/3 V  
MHz  
Noninverting, Slow Mode,  
RL = 300 k, CL = 50 pF  
0.5  
10  
ten(on)  
ten(off)  
Enable time on  
Enable time off  
ton, noninverting, Gain = 1  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
20  
1
ms  
ms  
TYPICAL OPEN-LOOP GAIN vs FREQUENCY  
TYPICAL PHASE vs FREQUENCY  
140  
120  
100  
80  
0
−50  
Fast Mode  
Fast Mode  
60  
−100  
−150  
−200  
−250  
40  
Medium Mode  
20  
Medium Mode  
Slow Mode  
0
Slow Mode  
−20  
−40  
−60  
−80  
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Input Frequency − kHz  
Input Frequency − kHz  
Figure 26.  
Figure 27.  
Operational Amplifier OA Feedback Network, Resistor Network – Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
96  
6
MAX UNIT  
Total resistance of resistor  
string  
Unit resistor of resistor string(2)  
Rtotal  
Runit  
kΩ  
kΩ  
(1) A single resistor string is composed of 4 Runit + 4 Runit + 2 Runit + 2 Runit + 1 Runit + 1 Runit + 1 Runit + 1 Runit = 16 Runit = Rtotal  
.
(2) For the matching (i.e., the relative accuracy) of the unit resistors on a device, refer to the gain and level specifications of the respective  
configurations.  
46  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
 
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Operational Amplifier (OA) Feedback Network, Comparator Mode (OAFCx = 3) – Electrical  
Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1, OARRIP = 0  
OAFBRx = 2, OARRIP = 0  
OAFBRx = 3, OARRIP = 0  
OAFBRx = 4, OARRIP = 0  
OAFBRx = 5, OARRIP = 0  
OAFBRx = 6, OARRIP = 0  
OAFBRx = 7, OARRIP = 0  
OAFBRx = 1, OARRIP = 1  
OAFBRx = 2, OARRIP = 1  
OAFBRx = 3, OARRIP = 1  
OAFBRx = 4, OARRIP = 1  
OAFBRx = 5, OARRIP = 1  
OAFBRx = 6, OARRIP = 1  
OAFBRx = 7, OARRIP = 1  
Fast Mode, Overdrive 10 mV  
Fast Mode, Overdrive 100 mV  
Fast Mode, Overdrive 500 mV  
Medium Mode, Overdrive 10 mV  
Medium Mode, Overdrive 100 mV  
Medium Mode, Overdrive 500 mV  
Slow Mode, Overdrive 10 mV  
Slow Mode, Overdrive 100 mV  
Slow Mode, Overdrive 500 mV  
TA  
VCC  
MIN TYP  
0.242  
MAX UNIT  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
1/4 0.262  
0.492  
0.619  
½
0.512  
5/8 0.639  
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
VLevel  
Comparator level  
2.2 V/3 V  
VCC  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
0.057 1/16 0.071  
0.122 1/8 0.128  
0.182 3/16 0.197  
0.242  
0.367  
0.492  
1/4 0.262  
3/8 0.383  
½
N/A(1)  
40  
0.512  
4
3
60  
Propagation delay  
(low-high and high-low)  
tPLH, tPHL  
2.2 V/3 V  
6
ms  
5
160  
20  
15  
(1) The level is not available due to the analog input voltage range of the operational amplifier.  
Operational Amplifier (OA) Feedback Network, Noninverting Amplifier Mode (OAFCx = 4) –  
Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 0  
OAFBRx = 1  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
TA  
VCC  
MIN  
0.970  
1.325  
1.985  
2.638  
3.94  
TYP  
1.00  
1.334  
2.001  
2.667  
4.00  
5.33  
7.97  
15.8  
–60  
MAX UNIT  
1.035  
1.345  
2.017  
2.696  
4.06  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
G
Gain  
2.2 V/3 V  
5.22  
5.44  
7.76  
8.18  
15.0  
16.7  
2.2 V  
3 V  
Total harmonic  
distortion/nonlinearity  
THD  
tSettle  
All gains  
dB  
–70  
Settling time(1)  
All power modes  
–55°C to 125°C 2.2 V/3 V  
7
12 ms  
(1) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Operational Amplifier (OA) Feedback Network, Inverting Amplifier Mode (OAFCx = 6) –  
Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1  
TA  
VCC  
MIN  
-0.385  
-1.023  
-1.712  
-3.10  
TYP  
–0.335  
–1.002  
–1.668  
–3.00  
–4.33  
–6.97  
–14.8  
–60  
MAX UNIT  
-0.305  
-0.979  
-1.624  
-2.90  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
G
Gain  
–55°C to 125°C 2.2 V/3 V  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V  
-4.51  
-4.15  
-7.37  
-6.57  
-16.6  
-13.1  
Total harmonic  
distortion/nonlinearity  
THD  
tSettle  
All gains  
dB  
3 V  
–70  
Settling time(2)  
All power modes  
–55°C to 125°C 2.2 V/3 V  
7
12 ms  
(1) This includes the 2 OA configuration "inverting amplifier with input buffer". Both OA needs to be set to the same power mode OAPMx.  
(2) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
Flash Memory – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST  
CONDITIO  
NS  
TA  
VCC  
MIN TYP MAX UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2  
3.6  
476  
5
V
kHz  
mA  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
IPGM  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
IERASE  
tCPT  
10.5  
10  
mA  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program/Erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration(2)  
TJ = 25°C  
(3)  
Word or byte program time  
30  
25  
Block program time for 1st byte or word  
(3)  
(3)  
(3)  
(3)  
(3)  
tBlock, 0  
Block program time for each additional  
byte or word  
tBlock, 1-63  
tBlock, End  
tMass Erase  
tSeg Erase  
18  
6
tFTG  
tFTG  
tFTG  
tFTG  
Block program end-sequence wait time  
1059  
3
Mass erase time  
Segment erase time  
4819  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) To test the flash data retention at various temperatures we make use of accelerated tests on the flash with 500-Hours Baking Time at  
250°C. These tests are wholly based on Arrhenius law and equation. For more information refer to Figure 28.  
(3) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
48  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
30  
25  
20  
15  
10  
5
0
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
Junction Temperature - TJ (C)  
Figure 28. Flash Data Retention vs Junction Temperature  
RAM – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
TA  
MIN MAX UNIT  
1.6  
(1)  
V(RAMh)  
RAM retention supply voltage  
–55°C to 125°C  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
JTAG and Spy-Bi-Wire Interface – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
–55°C to 125°C  
2.2 V/3 V  
0
20 MHz  
0.02  
5
tSBW,Low Spy-Bi-Wire low clock pulse length  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
15  
ms  
Spy-Bi-Wire enable time  
tSBW,En (TEST high to acceptance of first clock  
1
ms  
edge(1)  
)
Spy-Bi-Wire return to normal operation  
time  
tSBW,Ret  
fTCK  
15  
100  
5
ms  
2.2 V  
3 V  
0
0
MHz  
TCK input frequency(2)  
–55°C to 125°C  
–55°C to 125°C  
10 MHz  
90 kΩ  
RInternal Internal pulldown resistance on TEST  
2.2 V/3 V  
25  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
JTAG Fuse(1) – Electrical Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
2.5  
6
MAX UNIT  
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
TA = 25°C  
V
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
50  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
APPLICATION INFORMATION  
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
P1SEL.x  
P1IN.x  
P1.2/TA1  
P1.3/TA2  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Port P1 (P1.0 to P1.3) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P1.X)  
X
FUNCTION(1)  
P1DIR.x  
P1SEL.x  
P1.0(3)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TACLK/ADC10CLK  
0
Timer_A3.TACLK  
ADC10CLK  
P1.1 (4) (I/O)  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2(4) (I/O)  
0
1
I: 0; O: 1  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
1
2
3
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.3(4) I/O  
0
1
I: 0; O: 1  
Timer_A3.CCI0A  
Timer_A3.TA0  
0
1
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Default after reset (PUC/POR)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P1 Pin Schematic: P1.4 to P1.6, Input/Output With Schmitt Trigger and In-System Access  
Features  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
Port P1 (P1.4 to P1.6) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P1.X)  
X
FUNCTION(1)  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.4(3) (I/O)  
SMCLK  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
P1.4/SMCLK/TCK  
4
1
TCK  
X
P1.5(3) (I/O)  
Timer_A3.TA0  
TMS  
P1.6(3) (I/O)  
Timer_A3.TA1  
TDI/TCLK(4)  
I: 0; O: 1  
P1.5/TA0/TMS  
5
6
1
X
I: 0; O: 1  
P1.6/TA1/TDI/TCLK  
1
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Function controlled by JTAG  
52  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P1 Pin Schematic: P1.7, Input/Output With Schmitt Trigger and In-System Access Features  
Pad Logic  
P1REN.7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.7  
Module X OUT  
P1.7/TA2/TDO/TDI  
Bus  
Keeper  
P1SEL.7  
P1IN.7  
EN  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Q
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Port P1 (P1.7) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P1.X)  
X
FUNCTION(1)  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.7(3) (I/O)  
I: 0; O: 1  
0
1
X
0
0
1
P1.7/TA2/TDO/TDI  
7
Timer_A3.TA2  
TDO/TDI(4)  
1
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Function controlled by JTAG  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P2 Pin Schematic: P2.0, P2.2, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/A0/OA0I0  
P2.2/TA0/A2/OA0I1  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
+
OA0  
Port P2 (P2.0, P2.2) Pin Functions  
CONTROL BITS/SIGNALS(2)  
Pin Name (P2.X)  
X
Y
FUNCTION(1)  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.0(3) (I/O)  
ACLK  
A0/OA0I0(4)  
P2.2(3) (I/O)  
I: 0; O: 1  
0
1
X
0
1
1
X
0
0
1
0
0
0
1
P2.0/ACLK/A0/OA0I0  
0
0
1
X
I: 0; O: 1  
Timer_A3.CCI0B  
Timer_A3.TA0  
A2/OA0I1(4)  
0
1
P2.2/TA0/A2/OA0I1  
2
2
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
54  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P2 Pin Schematic: P2.1, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 1  
ADC10AE0.1  
P2REN.1  
DVSS  
DVCC  
0
1
1
P2DIR.1  
0
1
Direction  
0: Input  
1: Output  
P2OUT.1  
0
1
Module X OUT  
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
Bus  
Keeper  
P2SEL.1  
P2IN.1  
EN  
EN  
D
Module X IN  
P2IRQ.1  
P2IE.1  
EN  
Q
Set  
P2IFG.1  
+
1
OA0  
Interrupt  
Edge  
Select  
P2SEL.1  
P2IES.1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00  
To OA0 Feedback Network  
1
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P2 Pin Schematic: P2.3, Input/Output With Schmitt Trigger  
SREF2  
VSS  
Pad Logic  
0
1
To ADC10 V  
R−  
To ADC10  
INCHx = 3  
ADC10AE0.3  
P2REN.3  
P2DIR.3  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.3  
Module X OUT  
P2.3/TA1/  
A3/VREF/VeREF/  
OA1I1/OA1O  
Bus  
Keeper  
P2SEL.3  
P2IN.3  
EN  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
EN  
Q
Set  
P2IFG.3  
Interrupt  
Edge  
Select  
P2SEL.3  
P2IES.3  
+
1
OA1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx > 00  
To OA1 Feedback Network  
1
56  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P2 (P2.1) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P2.X)  
X
Y
FUNCTION(1)  
P2.1(3) (I/O)  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
I: 0; O: 1  
0
1
1
X
0
0
0
1
Timer_A3.INCLK  
SMCLK  
A1/OA0O(4)  
0
1
X
P2.1/TAINCLK/SMCLK/A1/OA0O  
1
1
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Port P2 (P2.3) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P2.X)  
X
Y
FUNCTION(1)  
P2.3(3) (I/O)  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
I: 0; O: 1  
0
1
1
X
0
0
0
1
Timer_A3.CCI1B  
0
1
P2.3/TA1/A3/VREF–/VeREF–/OA1I1/OA1O  
3
3
Timer_A3.TA1  
A3/VREF–/VeREF–/OA1I1/OA1O(4)  
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P2 Pin Schematic: P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
To/from ADC10  
positive reference  
To ADC10  
INCHx = 4  
ADC10AE0.4  
P2REN.4  
DVSS  
DVCC  
0
1
1
P2DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.4  
Module X OUT  
P2.4/TA2/  
A4/VREF+/VeREF+/  
OA1I0  
Bus  
Keeper  
P2SEL.4  
P2IN.4  
EN  
EN  
D
Module X IN  
P2IRQ.4  
P2IE.4  
EN  
Q
Set  
P2IFG.4  
Interrupt  
Edge  
Select  
P2SEL.4  
P2IES.4  
+
OA1  
Port P2 (P2.4) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P2.X)  
X
Y
FUNCTION(1)  
P2.4(3) (I/O)  
Timer_A3.TA2  
A4/VREF+/VeREF+/OA1I0(4)  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
I: 0; O: 1  
0
1
0
0
1
P2.4/TA2/A4/VREF+/VeREF+/OA1I0  
4
4
1
X
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
58  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO  
Pad Logic  
To DCO  
DCOR  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P2.5/ROSC  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Port P2 (P2.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
DCOR  
P2.5(2) (I/O)  
0/1  
0
0
1
1
X
0
0
0
1
N/A(3)  
DVSS  
ROSC  
P2.5/ROSC  
5
1
X
(1) X: Don't care  
(2) Default after reset (PUC/POR)  
(3) N/A: Not available or not applicable  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger and Crystal Oscillator Input  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
Pad Logic  
P2SEL.7  
P2REN.6  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Port P2 (P2.6) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P2.X)  
X
FUNCTION(1)  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.6 (I/O)  
XIN(3)  
0
1
P2.6/XIN  
6
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
60  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger and Crystal Oscillator Output  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
0
1
1
DVCC  
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Port P2 (P2.7) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P2.X)  
X
FUNCTION(1)  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.7 (I/O)  
XOUT(3) (4)  
0
1
XOUT/P2.7  
6
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this  
pin after reset.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 5  
ADC10AE0.5  
P3REN.0  
DVSS  
DVCC  
0
1
1
P3DIR.0  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.0  
Module X OUT  
P3.0/UC1STE/UC0CLK/A5  
Bus  
Keeper  
P3SEL.0  
P3IN.0  
EN  
EN  
D
Module X IN  
Port P3 (P3.0) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P1.X)  
X
Y
FUNCTION(1)  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.0(3) (I/O)  
UC1STE/UC0CLK(4) (5)  
A5(6)  
I: 0; O: 1  
0
1
0
0
1
P3.0/UC1STE/UC0CLK/A5  
0
5
X
X
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) The pin direction is controlled by the USCI module.  
(5) UC0CLK function takes precedence over UC1STE function. If the pin is required as UC0CLK input or output USCI1 is forced to 3-wire  
SPI mode if 4-wire SPI mode is selected.  
(6) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
62  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.x  
Module X OUT  
P3.1/UC1SIMO/UC1SCL  
P3.2/UC1SOMI/UC1SDA  
P3.3/UC1CLK/UC0STE  
P3.4/UC0TXD/UC0SIMO  
P3.5/UC0RXD/UC0SOMI  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Port P3 (P3.1 to P3.5) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P3.X)  
P3.1/UC1SIMO/UC1SDA  
P3.2/UC1SOMI/UC1SCL  
P3.3/UC1CLK/UC0STE  
P3.4/UC0TXD/UC0SIMO  
P3.5/UC0RXD/UC0SOMI  
X
1
1
1
1
1
FUNCTION(1)  
P3DIR.x  
P3SEL.x  
P3.1(3) (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
UC1SIMO/UC1SDA(4)  
P3.2(5) (I/O)  
UC1SOMI/UC1SCL(6)  
P3.3(5) (I/O)  
UC1CLK/UC0STE(6) (7)  
P3.4(5) (I/O)  
UC0TXD/UC0SIMO(6)  
P3.5(5) (I/O)  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
UC0RXD/UC0SOMI(6)  
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) The pin direction is controlled by the USCI module.  
(5) Default after reset (PUC/POR)  
(6) The pin direction is controlled by the USCI module.  
(7) UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output, USCI0 is orced to 3-wire  
SPI mode even if 4-wire SPI mode is selected.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P3 Pin Schematic: P3.6 to P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P3REN.x  
P3DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P3OUT.x  
Module X OUT  
P3.6/A6/OA0I2  
P3.7/A7/OA1I2  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
+
OA0/1  
Port P3 (P3.6, P3.7) Pin Functions  
CONTROL BITS/SIGNALS(3)  
PIN NAME (P3.X)  
X
6
7
Y
6
7
FUNCTION(1) (2)  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.6(4) (I/O)  
A6/OA0I2(5)  
P3.7(4) (I/O)  
A7/OA1I2(5)  
I: 0; O: 1  
0
X
0
0
1
0
1
P3.6/A6/OA0I2  
X
I: 0; O: 1  
X
P3.7/A7/OA1I2  
X
(1) N/A: Not available or not applicable  
(2) UC0CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output, USCI0 is forced to 3-wire  
SPI mode if 4-wire SPI mode is selected.  
(3) X: Don't care  
(4) Default after reset (PUC/POR)  
(5) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
64  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P4 Pin Schematic: P4.0 to P4.2, Input/Output With Schmitt Trigger  
Timer_B Output Tristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
Pad Logic  
ADC10AE1.7  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Port P4 (P4.0 to P4.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION(1)  
P4DIR.x  
P4SEL.x  
P4.0(2) (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
P4.0/TB0  
0
Timer_B3.CCI0A  
Timer_B3.TB0  
P4.1(2) (I/O)  
0
1
I: 0; O: 1  
P4.1/TB1  
P4.2/TB2  
1
2
Timer_B3.CCI1A  
Timer_B3.TB1  
P4.2(2) (I/O)  
0
1
I: 0; O: 1  
Timer_B3.CCI2A  
Timer_B3.TB2  
0
1
(1) N/A: Not available or not applicable.  
(2) Default after reset (PUC/POR)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P4 Pin Schematic: P4.3 to P4.4, Input/Output With Schmitt Trigger  
Timer_B Output Tristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 8+y  
ADC10AE1.y  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.3/TB0/A12/OA0O  
P4.4/TB1/A13/OA1O  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
+
1
OA0/1  
OAADCx  
OAPMx  
OAADCx = 01 and OAPMx > 00  
To OA0/1 Feedback Network  
1
If OAADCx = 11 and not OAFCx = 000, the ADC input A12 or A13 is internally connected to the OA0 or OA1 output,  
respectively, and the connections from the ADC and the operational amplifiers to the pad are disabled.  
66  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P4 (P4.3 to P4.4) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P4.X)  
X
Y
FUNCTION(1)  
P4.3(3) (I/O)  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
Timer_B3.CCI0B  
Timer_B3.TB0  
A12/OA0O(4)  
0
P4.3/TB0/A12/OA0O  
3
4
1
X
P4.4(3) (I/O)  
I: 0; O: 1  
Timer_B3.CCI1B  
Timer_B3.TB1  
A13/OA1O(4)  
0
1
X
P4.4/TB1/A13/OA1O  
4
5
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P4 Pin Schematic: P4.5, Input/Output With Schmitt Trigger  
Timer_B Output Tristate Logic  
www.ti.com  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 14  
ADC10AE1.6  
P4REN.5  
DVSS  
DVCC  
0
1
1
P4DIR.5  
0
1
Direction  
0: Input  
1: Output  
P4OUT.5  
0
1
Module X OUT  
P4.5/TB3/A14/OA0I3  
Bus  
Keeper  
P4SEL.5  
P4IN.5  
EN  
EN  
D
Module X IN  
+
OA0  
Port P4 (P4.5) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P4.X)  
X
Y
FUNCTION(1)  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.5(3) (I/O)  
I: 0; O: 1  
0
1
0
0
1
P4.5/TB3/A14/OA0I3  
5
6
Timer_B3.TB2  
A14/OA0I3(4)  
1
X
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
68  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
Port P4 Pin Schematic: P4.6, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 15  
ADC10AE1.7  
P4REN.6  
DVSS  
DVCC  
0
1
1
P4DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.6  
Module X OUT  
P4.6/TBOUTH/  
A15/OA1I3  
Bus  
Keeper  
P4SEL.6  
P4IN.6  
EN  
EN  
D
Module X IN  
+
OA1  
Port P4 (P4.6) Pin Functions  
CONTROL BITS/SIGNALS(2)  
PIN NAME (P4.X)  
X
Y
FUNCTION(1)  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.6(3) (I/O)  
TBOUTH  
DVSS  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
P4.6/TBOUTH/A15/OA1I3  
6
7
A15/OA1I3(4)  
X
(1) N/A: Not available or not applicable  
(2) X: Don't care  
(3) Default after reset (PUC/POR)  
(4) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
www.ti.com  
Port P4 Pin Schematic: P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.7/TBCLK  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Port P4 (Pr.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION(1)  
P4DIR.x  
P4SEL.x  
P4.7(2) (I/O)  
I: 0; O: 1  
0
1
1
P4.7/TBCLK  
7
Timer_B3.TBCLK  
DVSS  
0
1
(1) N/A: Not available or not applicable  
(2) Default after reset (PUC/POR)  
70  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): MSP430F2274-EP  
MSP430F2274-EP  
www.ti.com  
SLAS614B SEPTEMBER 2008REVISED JANUARY 2010  
JTAG Fuse Check Mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the  
fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is  
being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 29). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 29. Fuse Check Mode Current, MSP430F22xx  
NOTE  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the  
256-bit bootloader access key is used. Also, see the Bootstrap Loader section for  
more information.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Link(s): MSP430F2274-EP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2010  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TSSOP  
VQFN  
VQFN  
Drawing  
MSP430F2274MDATEP  
MSP430F2274MRHAEP  
MSP430F2274MRHATEP  
ACTIVE  
PREVIEW  
ACTIVE  
DA  
38  
40  
40  
2000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
RHA  
RHA  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
V62/08631-01XE  
ACTIVE  
VQFN  
RHA  
40  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF MSP430F2274-EP :  
Catalog: MSP430F2274  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jan-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F2274MRHATEP VQFN  
RHA  
40  
250  
180.0  
16.4  
6.3  
6.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jan-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHA 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
190.5 212.7 31.8  
MSP430F2274MRHATEP  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

V62/09601-01XE

具有 60KB 闪存、2KB RAM、12 位 ADC、2 个 USCI 的增强型产品 16 位超低功耗微处理器 | PM | 64 | -55 to 125
TI

V62/09602-01XE

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE RECEIVER WITH ±15-kV IEC ESD PROTECTION
TI

V62/09603-01XE

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVER WITH ±15-kV IEC ESD PROTECTION
TI

V62/09604-01XE

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER
TI

V62/09605-01XE

16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

V62/09605-01YE

16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

V62/09606-01XE

用于 TTL 到 CMOS 或 CMOS 到 CMOS 操作的 CMOS 六路电压电平转换器 | PW | 16 | -55 to 125
TI

V62/09607-01XE

1.5°C ACCURATE PROGRAMMABLE DIGITAL TEMPERATURE SENSORS WITH SPI™ INTERFACE
TI

V62/09608-01XE

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

V62/09609-01XE

LOW-DROPOUT 0.5-A NEGATIVE LINEAR REGULATOR
TI

V62/09610-01XE

TRIPLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS
TI

V62/09611-01XE

3.3-V CAN TRANSCEIVER
TI