V62/21610-01XE-T [TI]

采用航天增强型塑料的抗辐射、四通道、3/1 数字隔离器 | DBQ | 16;
V62/21610-01XE-T
型号: V62/21610-01XE-T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用航天增强型塑料的抗辐射、四通道、3/1 数字隔离器 | DBQ | 16

文件: 总40页 (文件大小:2028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISOS141-SEP  
ZHCSNI5 MAY 2021  
ISOS141-SEP 抗辐射高速四通道数字隔离器  
1 特性  
3 说明  
• 抗辐射  
ISOS141-SEP 抗辐射器件是采用小型 16 引脚 QSOP  
封装的高性能四通道数字隔离器。每条隔离通道的逻辑  
输入和输出缓冲器均由双电容二氧化硅 (SiO2) 绝缘栅  
相隔离。该器件具有 100Mbps 的高数据速率、10.7ns  
的低传播延迟和 4ns 的通道间严格偏移支持近地轨  
(LEO) 航天应用。ISOS141-SEP 器件具有三个正向  
通道和一个反向通道如果失去输入功率或信号默认  
输出为低电平。使能引脚可用于将各输出置于高阻抗,  
适用于多主驱动应用还可降低功耗。  
– 电离辐射总剂(TID) 特征值ELDRS=  
30krad(Si)  
TID RLAT/RHA = 30krad(Si)  
– 单粒子锁(SEL) 125°C LET 的抗扰度  
= 43MeVcm2/mg  
– 单粒子绝缘击穿(SEDR) 500VDC 下的抗扰度  
(43MeVcm2/mg)  
• 增强型航天塑料EP)  
– 符NASA ASTM E595 释气规格要求  
– 供应商项目(VID) V62/21610  
– 军用级温度范围-55°C 125°C)  
– 同一晶圆制造场所  
ISOS141-SEP 在隔离 CMOS LVCMOS 数字 I/O  
具有高电磁抗扰度和低辐射、低功耗特性。该器件  
具有 100kV/µs 的高共模瞬态抗扰度可轻松缓解系统  
ESDEFT 和浪涌问题还通过创新的芯片设计简  
化了辐射方面的合规性。  
– 同一组装和测试场所  
– 金键合线NiPdAu 铅涂层  
– 晶圆批次可追溯性  
– 延长了产品生命周期  
器件信息  
封装  
封装尺寸标称值)  
器件型号  
ISOS141FDBQSEP  
– 延长了产品变更通知周期  
600VRMS 连续工作电压  
6.7:  
30krad(Si) RLAT/RHA  
16 引线  
4.90mm × 3.90mm  
ISOS141FDBQTSEP  
30krad(Si) RLAT/RHA  
QSOP (DBQ)  
DIN VDE V 0884-11:2017-01  
UL 1577 组件认证计划  
100 Mbps 数据速率  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
• 宽电源电压范围2.25V 5.5V  
2.25V 5.5V 电平转换  
• 默认输出低  
• 低功耗1Mbps 时每通道的电流典型值1.5mA  
• 低传播延迟典型值10.7ns5V 电源供电时)  
• 通道间偏斜小4ns5V 电源供电时)  
CMTI 典型值±100kV/μs  
GND1  
INA  
15 GND2  
14 OUTA  
13 OUTB  
12 OUTC  
11 IND  
10 EN2  
INB  
INC  
OUTD  
EN1  
• 系统ESDEFT、浪涌和磁抗扰度  
• 小QSOP (DBQ-16) 封装  
GND1  
9 GND2  
2 应用  
VCCI = 输入电源VCC2 = 输出电源  
GND1 = 输入接地GND2 = 输出接地  
• 近地轨(LEO) 航天应用  
• 信号隔离RS-422RS-485CANSPI)  
• 栅极驱动器隔离GaN 直流/直流转换器的隔离式  
反馈  
简化原理图  
• 航天级隔离式直流/直流模块  
• 航天器电池管理系(BMS)  
• 卫星推进电源处理单(PPU)  
• 发射器和着陆器系统  
• 通信有效载荷  
• 雷达成像有效载荷  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFN1  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
Table of Contents  
6.18 Insulation Characteristics Curves........................... 15  
6.19 Typical Characteristics............................................16  
7 Operating Life Deration.................................................17  
8 Parameter Measurement Information..........................18  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................20  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................22  
10 Application and Implementation................................23  
10.1 Application Information........................................... 23  
10.2 Typical Application.................................................. 24  
11 Power Supply Recommendations..............................28  
12 Layout...........................................................................29  
12.1 Layout Guidelines................................................... 29  
12.2 Layout Example...................................................... 29  
13 Device and Documentation Support..........................30  
13.1 Documentation Support.......................................... 30  
13.2 Receiving Notification of Documentation Updates..30  
13.3 Community Resources............................................30  
13.4 Trademarks.............................................................30  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Power Ratings ............................................................6  
6.6 Insulation Specifications ............................................ 7  
6.7 Safety-Related Certifications ..................................... 8  
6.8 Safety Limiting Values ................................................8  
6.9 Electrical Characteristics5-V Supply ...................... 9  
6.10 Supply Current Characteristics5-V Supply ...........9  
6.11 Electrical Characteristics3.3-V Supply ................10  
6.12 Supply Current Characteristics3.3-V Supply ......10  
6.13 Electrical Characteristics2.5-V Supply ...............11  
6.14 Supply Current Characteristics2.5-V Supply ...... 11  
6.15 Switching Characteristics5-V Supply ..................12  
6.16 Switching Characteristics3.3-V Supply ...............13  
6.17 Switching Characteristics2.5-V Supply ...............14  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
May 2021  
*
Initial release.  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC1  
GND1  
INA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
OUTA  
OUTB  
OUTC  
IND  
INB  
INC  
OUTD  
EN1  
EN2  
GND1  
GND2  
Not to scale  
5-1. ISOS141-SEP DBQ Package 16-pin QSOP Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
Number  
Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in  
high-impedance state when EN1 is low.  
EN1  
7
I
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in  
high-impedance state when EN2 is low.  
EN2  
10  
2
8
GND1  
Ground connection for VCC1  
Ground connection for VCC2  
9
GND2  
15  
3
INA  
INB  
I
I
Input, channel A  
Input, channel B  
Input, channel C  
Input, channel D  
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, side 1  
Power supply, side 2  
4
INC  
5
I
IND  
11  
14  
13  
12  
6
I
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
O
O
O
O
1
16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See(1)  
MIN  
MAX  
UNIT  
Supply voltage (2) VCC1, VCC2  
-0.5  
6
V
Voltage at INx,  
V
-0.5  
-15  
VCCX + 0.5 (3)  
V
OUTx, ENx  
Output current  
Temperature  
Io  
15  
150  
150  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
-65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VCC1 , VCC2  
Supply Voltage  
2.25  
5.5  
V
(1)  
Vcc  
UVLO threshold when supply voltage is rising  
(UVLO+)  
2
1.8  
2.25  
V
V
Vcc  
UVLO threshold when supply voltage is falling  
(UVLO-)  
1.7  
Vhys  
Supply voltage UVLO hysteresis  
(UVLO)  
100  
200  
mV  
V
0.7 x VCC(2I)  
VIH  
VIL  
High level Input voltage  
Low level Input voltage  
VCCI  
0
-4  
-2  
-1  
0.3 x VCCI  
V
mA  
mA  
mA  
mA  
mA  
mA  
Mbps  
°C  
VCCO = 5 V (2)  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
IOH  
High level output current  
Low level output current  
4
2
IOL  
VCCO = 3.3 V  
VCCO = 2.5 V  
1
DR  
TA  
Data Rate  
0
100  
125  
Ambient temperature  
-55  
25  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISOS141-SEP  
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
ISOS141  
DBQ (SOIC)  
16 PINS  
109  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.4  
51.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.2  
ψJT  
51.4  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISOS141  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
200  
75  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 50-MHz 50% duty cycle  
square wave  
PD1  
PD2  
125  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.6 Insulation Specifications  
VALUE  
UNIT  
DBQ-16  
PARAMETER  
TEST CONDITIONS  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
>3.7  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
>3.7  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
>21  
>600  
I
um  
V
Overvoltage category per IEC 60664-1  
I-III  
Rated mains voltage 300 VRMS  
DIN VDE V 0884-11:2017-01 (2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
848  
600  
848  
VPK  
VRMS  
VDC  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test  
See 10-7  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM  
t = 60 s (qualification);  
VTEST = 1.2 x VIOTM  
,
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
4242  
VPK  
,
t= 1 s (100% production)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.3 x VIOSM (qualification)  
VIOSM  
4000  
VPK  
Method a, After Input-output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 x VIORM, tm = 10 s  
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 x VIORM, tm = 10 s  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b; At routine test (100% production) and  
preconditioning (type test)  
Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.5 x VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance(5)  
~1  
pF  
VIO = 0.4 x sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
>109  
2
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
55/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification),  
VTEST = 1.2 x VISO , t = 1 s (100% production)  
VISO  
Maximum withstanding isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for basic electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
Certifying according to UL 1577 Component Recognition Program  
Certifying according to DIN VDE V 0884-11:2017-01  
Maximum transient isolation voltage, 4242 VPK (DBQ-16); Maximum  
repetitive peak isolation voltage, 848 VPK (DBQ-16); Maximum surge Single protection, 3000 VRMS  
isolation voltage, 4000 VPK (DBQ-16)  
Basic certificate: planned  
File number: planned  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DBQ-16 PACKAGE  
RθJA =109°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C  
See 6-1  
209  
319  
417  
mA  
RθJA = 109°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
See 6-1  
IS  
Safety input, output, or supply current  
mA  
RθJA = 109°C/W, VI = 2.75 V, TJ = 150°C,  
TA = 25°C  
See 6-1  
R
θJA = 109°C/W, TJ = 150°C, TA = 25°C  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1147  
150  
mW  
°C  
See 6-2  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.9 Electrical Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -4 mA; See 8-1  
IOL = 4 mA; See 8-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
Input threshold voltage hysteresis  
High-level input current  
VCCO - 0.4 (1)  
V
VOL  
0.4  
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
V
V
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
µA  
µA  
IIL  
Low-level input current  
-10  
85  
VI = VCC or 0 V, VCM = 1200  
V; See 8-4  
CMTI  
Ci  
Common mode transient immunity  
Input Capacitance (2)  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
2 MHz, VCC = 5 V  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISOS141  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1
0.8  
4.3  
1.8  
1.5  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
EN1 = EN2 = 0 V; VI = 0 V (ISOS141)  
EN1 = EN2 = 0 V; VI = VCCI (1)(ISOS141)  
EN1 = EN2 = VCCI; VI = 0 V (ISOS141)  
EN1 = EN2 = VCCI; VI = VCCI (ISOS141)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - Disable  
Supply current - DC signal  
(2)  
4.8  
3.2  
3.2  
2.8  
3.7  
4.2  
8.6  
18  
6.8  
mA  
4.9  
4.6  
4.1  
5.2  
5.7  
11.3  
22  
1 Mbps  
Supply current - AC signal All channels switching with square  
10 Mbps  
(3)  
wave clock input; CL = 15 pF  
100 Mbps  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = open  
(3) Supply current valid for ENx = VCCx  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.11 Electrical Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -2mA; See 8-1  
IOL = 2mA; See 8-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.3 (1)  
V
VOL  
0.3  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
µA  
µA  
-10  
85  
VI = VCC or 0 V, VCM = 1200  
V; See 8-4  
Common mode transient  
immunity  
CMTI  
Ci  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
1 MHz, VCC = 5 V  
Input Capacitance (2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.12 Supply Current Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISOS141  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1
0.8  
4.3  
1.9  
1.5  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
EN1 = EN2 = 0 V; VI = 0 V (ISOS141)  
EN1 = EN2 = 0 V; VI = VCC1 (1)(ISOS141)  
EN1 = EN2 = VCCI; VI = 0 V (ISOS141)  
EN1 = EN2 = VCCI; VI = VCCI (ISOS141)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - Disable  
Supply current - DC signal  
(2)  
4.8  
3.2  
3.2  
2.7  
3.5  
3.7  
6.8  
13.7  
6.8  
mA  
4.9  
4.6  
4.1  
5
1 Mbps  
Supply current - AC signal All channels switching with square  
10 Mbps  
(3)  
wave clock input; CL = 15 pF  
5.2  
9.3  
16.4  
100 Mbps  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = open  
(3) Supply current valid for ENx = VCCx  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.13 Electrical Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA; See 8-1  
IOL = 1mA; See 8-1  
MIN  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input switching threshold  
Falling input switching threshold  
VCCO - 0.2 (1)  
V
VOL  
0.2  
V
V
V
(1)  
VIT+(IN)  
VIT-(IN)  
0.7 x VCCI  
0.3 x VCCI  
0.1 x VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
µA  
µA  
-10  
85  
VI = VCC or 0 V, VCM = 1200  
V; See 8-4  
Common mode transient  
immunity  
CMTI  
Ci  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
1 MHz, VCC = 5 V  
Input Capacitance (2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.14 Supply Current Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISOS141  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
1
0.8  
4.3  
1.8  
1.4  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
EN1 = EN2 = 0 V; VI = 0 V (ISOS141)  
EN1 = EN2 = 0 V; VI = VCC1 (1)(ISOS141)  
EN1 = EN2 = VCCI; VI = 0 V (ISOS141)  
EN1 = EN2 = VCCI; VI = VCCI (ISOS141)  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - Disable  
Supply current - DC signal  
(2)  
4.7  
3.2  
3.1  
2.7  
3.4  
3.5  
5.6  
10.8  
6.8  
mA  
4.9  
4.6  
4
1 Mbps  
4.9  
4.9  
8.3  
13.8  
Supply current - AC signal All channels switching with square  
10 Mbps  
(3)  
wave clock input; CL = 15 pF  
100 Mbps  
(1) VCCI = Input-side VCC  
(2) Supply current valid for ENx = VCCx and ENx = open  
(3) Supply current valid for ENx = VCCx  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
MAX UNIT  
6.15 Switching Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
10.7  
16  
4.9  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.4  
3.9  
3.9  
20  
20  
Output signal rise time  
2.4  
2.4  
9
See 8-1  
tf  
Output signal fall time  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
9
Enable propagation delay, high impedance-to-high output for  
ISOS141 with F suffix  
See 8-2  
tPZH  
tPZL  
tDO  
tie  
3
7
8.5  
20  
µs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISOS141 with F suffix  
Measured from the time VCC goes  
below 1.7V. See 8-3  
Default output delay time from input power loss  
Time interval error  
0.1  
0.8  
0.3  
µs  
ns  
216 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.16 Switching Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
11  
16  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
4.5  
3
Output signal rise time  
1.3  
1.3  
17  
See 8-1  
tf  
Output signal fall time  
3
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
30  
30  
17  
Enable propagation delay, high impedance-to-high output for  
ISOS141 with F suffix  
See 8-2  
tPZH  
tPZL  
tDO  
tie  
3.2  
17  
8.5  
30  
µs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISOS141 with F suffix  
Measured from the time VCC goes  
below 1.7V. See 8-3  
Default output delay time from input power loss  
Time interval error  
0.1  
0.9  
0.3  
µs  
ns  
216 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
MAX UNIT  
6.17 Switching Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
TEST CONDITIONS  
MIN  
TYP  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
12  
18.5  
5.1  
4.1  
4.6  
3.5  
3.5  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See 8-1  
|
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
Output signal rise time  
1
1
See 8-1  
tf  
Output signal fall time  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
22  
22  
40  
Enable propagation delay, high impedance-to-high output for  
ISOS141 with F suffix  
See 8-2  
tPZH  
tPZL  
tDO  
tie  
3.3  
18  
8.5  
40  
µs  
ns  
Enable propagation delay, high impedance-to-low output for  
ISOS141 with F suffix  
Measured from the time VCC goes  
below 1.7V. See 8-3  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
µs  
ns  
216 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.18 Insulation Characteristics Curves  
450  
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D004  
D002  
6-2. Thermal Derating Curve for Safety Limiting  
6-1. Thermal Derating Curve for Safety Limiting  
Power for DBQ-16 Package  
Current for DBQ-16 Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISOS141-SEP  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
6.19 Typical Characteristics  
20  
9
8
7
6
5
4
3
2
1
0
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
18  
16  
14  
12  
10  
8
ICC2 at 5 V  
6
4
2
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D008  
D007  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
6-3. Supply Current vs Data Rate (With 15-pF 6-4. Supply Current vs Data Rate (With No Load)  
Load)  
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
-15  
-10  
High-Level Output Current (mA)  
-5  
0
0
5 10  
Low-Level Output Current (mA)  
15  
D011  
D012  
TA = 25°C  
TA = 25°C  
6-5. High-Level Output Voltage vs High-level  
6-6. Low-Level Output Voltage vs Low-Level  
Output Current  
Output Current  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
14  
13  
12  
11  
10  
VCC1 Rising  
VCC2 Rising  
VCC1 Falling  
VCC2 Falling  
1.75  
1.70  
tPHL at 2.5 V  
tPLH at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPHL at 5 V  
tPLH at 5 V  
9
8
1.65  
-55  
-5  
45  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D013  
D014  
6-7. Power Supply Undervoltage Threshold vs  
6-8. Propagation Delay Time vs Free-Air  
Free-Air Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
7 Operating Life Deration  
The information in this section is provided solely for your convenience and does not extend or modify the  
warranty provided under TI's standard terms and conditions for TI semiconductor products.  
1. Silicon operating life design goal is 100000 power-on hours (POH) at 105 °C junction temperature (does not include package  
interconnect life).  
2. The predicted operating lifetime versus junction temperature is based on reliability modeling using wirebond lifetime as the  
dominant failure mechanism affecting device wear out for the specific device process and design characteristics.  
Wirebond Life Derating Curve  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCO  
V
CC  
R
L
= 1 k1%  
V
/ 2  
CC  
V
/ 2  
CC  
V
I
IN  
OUT  
0 V  
V
0 V  
O
t
t
PLZ  
PZL  
V
OH  
EN  
0.5 V  
V
V
O
50%  
C
L
OL  
See Note B  
Input  
Generator  
(See Note A)  
V
I
50 ꢀ  
V
CC  
V
O
IN  
OUT  
3 V  
V / 2  
CC  
V
/ 2  
CC  
V
I
0 V  
t
PZH  
EN  
See Note B  
R
L
= 1 k1%  
V
OH  
C
L
50%  
Input  
Generator  
(See Note A)  
0.5 V  
V
O
V
I
0 V  
t
50 ꢀ  
PHZ  
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO  
= 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
8-3. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
C
L
V
or V  
OL  
OH  
See Note A  
œ
GNDO  
GNDI  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISOS141-SEP  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ISOS141-SEP has an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a  
silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low  
then the output goes to high impedance. The ISOS141-SEP device also incorporates advanced circuit  
techniques to maximize the CMTI performance and minimize the radiated emissions due to the high frequency  
carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, 9-1, shows a  
functional block diagram of a typical channel.  
9.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
9-2 shows a conceptual detail of how the ON-OFF keying scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
9-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
9.3 Feature Description  
9-1 provides an overview of the device features.  
9-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
RATED ISOLATION(1)  
ISOS141-SEP  
With F suffix  
3 Forward,  
1 Reverse  
100 Mbps  
Low  
DBQ-16  
3000 VRMS / 4242 VPK  
(1) See 6.7 for detailed isolation ratings.  
9.3.1 Radiation Tolerance  
Total Ionizing Dose (TID)ISOS141-SEP is a radiation tolerant, TI Space Enhanced Plastic (Space EP)  
device, and as such it has a Total Ionizing Dose (TID) level specified in the Device Informationtable on the  
front page. Testing and qualification of these products is done on a wafer level according to MIL-STD-883, Test  
Method 1019. Radiation Lot Acceptance Testing (RLAT) is performed at the 30-krad TID levels. A TID  
characterization report is available. Group E TID RLAT data are available with lot shipments as part of the QCI  
summary reports.  
Single-Event Effects (SEE)one-time SEE characterization was performed according to EIA/JEDEC  
standard, EIA/JEDEC57 to linear energy transfer (LET) = 43 MeVcm2/mg. During testing, no Single-Event  
Latch-Up (SEL) or Single-Event Dielectric Rupture (SEDR) were observed.  
Neutron Displacement Damage (NDD)ISOS141-SEP was irradiated up to 1 × 1012 n/cm2 . A sample size of  
15 units was exposed to radiation testing per MILSTD-883, Method 1017 for Neutron Irradiation.  
Radiation Testing and Characterization Reportsare available for all radiation effects described in this  
section, to find the latest reports go to the ISOS141-SEP Technical Documentation section on TI.com.  
9.3.2 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. Although system-level performance  
and reliability depends, to a large extent, on the application board design and layout, the ISOS141-SEP device  
incorporates many chip-level design improvements for overall system robustness. Some of these improvements  
include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISOS141-SEP  
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
9.4 Device Functional Modes  
9-2 lists the functional modes for the ISOS141-SEP.  
9-2. Function Table  
OUTPUT  
ENABLE  
(ENx)  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
H or open  
H or open  
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
X
PU  
PU  
Default mode: When INx is open, the corresponding channel output  
goes to its default logic state. Default is Low for ISOS141-SEP with F  
suffix.  
Open  
X
H or open  
L
Default  
Z
A low value of output enable causes the outputs to be high-  
impedance.  
Default mode: When VCCI is unpowered, a channel output assumes  
the logic state based on the selected default option. Default is Low for  
ISOS141-SEP with F suffix.  
PD  
X
PU  
PD  
X
X
H or open  
Default  
When VCCI transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel  
output assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined(1)  
.
X
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
(1) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
(2) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.  
9.4.1 Device I/O Schematics  
Input (ISOS141-SEP with F suffix)  
V
V
V
CCI  
CCI  
CCI  
985  
INx  
1.5 Mꢀ  
Enable  
Output  
V
CCO  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
2 Mꢀ  
~20 ꢀ  
1970 ꢀ  
OUTx  
ENx  
9-3. Device I/O Schematics  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The ISOS141-SEP four channel digital isolator provides flexibility for multiple use cases in LEO applications.  
Used in conjunction with isolated power supplies, these devices help prevent noise currents on data buses, such  
as UART, SPI, RS-485, RS-232, and CAN from damaging sensitive circuitry. It can also be used to isolate  
multiple static signals in a system to provide additional redundancy and robustness. When designing with digital  
isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any  
specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The  
isolator is typically placed between the data controller (that is, MCU or FPGA), and a data converter or a line  
transceiver, regardless of the interface type or standard.  
Additionally, this digital isolator can be used as a logic-level translator in addition to providing isolation. Since an  
isolation barrier separates the two sides, each side can be sourced independently with any voltage within  
recommended operating conditions. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1  
and VCC2. As an example, it is possible to supply ISOS141-SEP VCC1 with 3.3 V (which is within 2.25 V to 5.5 V)  
and VCC2 with 5V (which is also within 2.25 V to 5.5 V).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISOS141-SEP  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
10.2 Typical Application  
10-1 shows ISOS141-SEP in the GaN half bridge circuit being used to isolate PWM signals from the half-  
bridge controller on the primary side to the half-bridge gate driver on the secondary side to achieve higher  
efficiency through synchronous rectification.  
La  
LDO  
-
15 V  
+
VBUS  
INA240-SEP  
OUT  
Output  
Ls1  
Ls2  
Vin  
OUTB  
OUTA  
RT  
HSOUT  
LSOUT  
HS  
LS  
Half-Bridge  
Driver  
Feedback Network  
FAULT  
Lp  
Vo  
Ro  
CS  
Half-Bridge  
Controller  
Compensation Network  
RSC  
SS  
Comp  
VSENSE  
SP  
REFCAP  
CS/ILIM  
SRA  
TPS73801-SEP  
LDO  
PS  
SRB  
GND  
5 V  
Rsense  
Deadtime Control  
Current Sense Filter  
ISOS141F-SEP  
TPS73801-SEP  
LDO  
5 V  
Vcc1  
Vcc2  
INA  
INB  
OUTA  
LS1OUT  
LS2OUT  
LS1  
LS2  
Half-Bridge  
Driver  
OUTB  
INC  
OUTC  
IND  
OUTD  
Gnd1  
Gnd2  
Demodulator  
Modulator  
Isolation  
10-1. Isolated 75V to 5V 50W GaN-Based Half-Bridge Topology  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
10.2.1 Design Requirements  
To design with these devices, use the parameters listed in 10-1.  
10-1. Design Parameters  
PARAMETER  
VALUE  
Supply voltage, VCC1 and VCC2  
2.25 to 5.5 V  
0.1 µF  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
10.2.2 Detailed Design Procedure  
The ISOS141-SEP device only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC1  
2 mm maximum  
from VCC2  
0.1 µF  
0.1 µF  
VCC2  
VCC1  
1
16  
GND1  
GND2  
2
3
15  
14  
INA  
INB  
INC  
OUTA  
OUTB  
OUTC  
13  
4
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
EN2  
EN1  
GND2  
GND1  
10-2. Typical ISOS141-SEP Circuit Hook-up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
10.2.3 Application Curve  
The following typical eye diagrams of the ISOS141-SEP device indicates low jitter and wide open eye at the  
maximum data rate of 100 Mbps.  
Time = 2.5 ns / div  
Time = 2.5 ns / div  
10-3. Eye Diagram at 100 Mbps PRBS 216 1, 5 10-4. Eye Diagram at 100 Mbps PRBS 216 1,  
V and 25°C 3.3 V and 25°C  
Time = 2.5 ns / div  
10-5. Eye Diagram at 100 Mbps PRBS 216 1, 2.5 V and 25°C  
10.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 10-6 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
10-7 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the insulation withstand capability of DBQ-16 package is 600 VRMS with a lifetime of  
>1000 years as illustrated in 10-7. Factors, such as package size, pollution degree, and material group can  
limit the working voltage of a component.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
10-6. Test Setup for Insulation Lifetime Measurement  
1.E+12  
1.E+11  
1.E+10  
1.E+09  
1.E+08  
1.E+07  
1.E+06  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
87.5%  
>1000 Yrs  
>1000 Yrs  
TDDB Line (< 1 ppm Fail Rate)  
VDE Safety Margin Zone  
Operating Zone  
20%  
200  
1200  
2200  
3200  
4200  
5200  
6200  
7200  
Applied Voltage (VRMS  
)
Working Isolation Voltage = 600 VRMS  
TA upto 150 oC  
Projected Insulation Lifetime = >>100 Years  
Applied Voltage Frequency = 60 Hz  
10-7. Insulation Lifetime Projection Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISOS141-SEP  
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
11 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 12-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
12.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper  
alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and self-extinguishing flammability-characteristics.  
12.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
12-1. Layout Example Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISOS141-SEP  
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Radiation hardened 3.3V CAN transceiver in space enhanced plastic package with  
standby mode datasheet  
Texas Instruments, Radiation hardened RS-422 dual differential drivers and receivers in space Enhanced  
Plastic datasheet  
Texas Instruments, Radiation-hardened, 2.2-V to 20-V, 1-A low-noise adjustable output LDO in Space  
Enhanced Plastic datasheet  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems  
application report  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Community Resources  
13.4 Trademarks  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
 
 
 
 
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISOS141-SEP  
 
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISOS141-SEP  
ISOS141-SEP  
ZHCSNI5 MAY 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISOS141-SEP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISOS141FDBQSEP  
ISOS141FDBQTSEP  
V62/21610-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DBQ  
DBQ  
16  
16  
16  
16  
75  
250  
250  
75  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
141FSE  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
141FSE  
141FSE  
141FSE  
V62/21610-01XE-T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

V62/21612-01XE

具有皮安级 IB 和 EN 引脚的增强型产品 40V、双向、超精密电流检测放大器 | DDF | 8
TI

V62/21612-02XE

具有皮安级 IB 和 EN 引脚的增强型产品 40V、双向、超精密电流检测放大器 | DDF | 8
TI

V62/21612-03XE

具有皮安级 IB 和 EN 引脚的增强型产品 40V、双向、超精密电流检测放大器 | DDF | 8
TI

V62/21612-04XE

具有皮安级 IB 和 EN 引脚的增强型产品 40V、双向、超精密电流检测放大器 | DDF | 8
TI

V62/21612-05XE

具有皮安级 IB 和 EN 引脚的增强型产品 40V、双向、超精密电流检测放大器 | DDF | 8
TI

V62/21613-01XE

具有 FSK 调制功能的增强型 1.34GHz、低功耗、极端温度 RF 合成器 | RHH | 36
TI

V62/21615-01XE

航天增强型四路 40V 4.5MHz 轨到轨输入和输出运算放大器 | DYY | 14
TI

V62/21615-02XE

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器 | DYY | 14
TI

V62/21616-01XE

采用增强型航天塑料的耐辐射、-3V 至 -16.5V 输入、1A 负电压线性稳压器 | RGW | 20
TI

V62/21616-01XE-T

采用增强型航天塑料的耐辐射、-3V 至 -16.5V 输入、1A 负电压线性稳压器 | RGW | 20
TI

V62/22604-01XE

抗辐射、8 位、0.65V 至 3.3V 方向控制电平转换器 | PW | 24
TI

V62/22607-01XE

具有同步整流功能的抗辐射、2MHz 双输出 PWM 控制器 | PW | 24
TI