V62P22612-01XE [TI]

耐辐射且符合 JESD204C 标准的 30krad 超低噪声 3.2GHz、15 路输出时钟抖动清除器 | PAP | 64;
V62P22612-01XE
型号: V62P22612-01XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射且符合 JESD204C 标准的 30krad 超低噪声 3.2GHz、15 路输出时钟抖动清除器 | PAP | 64

时钟
文件: 总103页 (文件大小:2944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
LMK04832-SEP JESD204B/C 标准的航天级、超低噪声、双环路时钟抖动  
清除器  
1 特性  
3 说明  
VID#V62/22612  
LMK04832-SEP 是一款适用于航天应用、支JEDEC  
JESD204B/C 的高性能时钟调节器。  
– 电离辐射总剂30kradELDRS)  
SEL 抗扰> 43MeV × cm2/mg  
SEFI 抗扰> 43MeV × cm2/mg  
• 环境温度范围-55°C 125°C  
• 最高时钟输出频率3255MHz  
• 多模式PLLPLL 和时钟分配  
6GHz VCO 或分配输入  
PLL2 以配置 14 时钟输出以驱动 7 个  
JESD204B/C 换器或其他逻辑器件使用器件和  
SYSREF 时钟SYSREF 可以通过直流和交流耦合  
提供。14 个输出中的每一个输出都可以单独配置为用  
于传统时钟系统的高性能输出不限于 JESD204B/C  
应用。  
• 超低噪声2500MHz ):  
无论有无 SYSREF 生成或重新计时该器件都可以配  
置为在双 PLL、单 PLL 或时钟分配模式下运行。PLL2  
可以使用内部或外VCO 工作。  
54fs RMS 抖动12kHz 20MHz)  
64fs RMS 抖动100Hz 20MHz)  
– –157.6dBc/Hz 本底噪声  
• 超低噪声3200MHz ):  
61fs RMS 抖动12kHz 20MHz)  
67fs RMS 抖动100Hz 100MHz)  
– –156.5dBc/Hz 本底噪声  
高性能与多种特性功耗和性能权衡调节、双  
VCO、动态数字延迟和保持相结合可提供灵活的  
高性能时钟树。  
封装信息  
等级  
PLL2  
封装(1)  
器件型号  
– –230dBc/Hz PLL FOM  
– –128dBc/Hz PLL 1/f  
– 相位检测器频率高320MHz  
– 两个集VCO2440MHz 2600MHz  
2945MHz 3255MHz  
V62P22612-01XE  
30krad  
64 引脚  
PAP0064E  
10mm x 10mm  
LMK04832MPAPSEP  
LMK0483PAP/EM  
工程样片(2)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 这些器件不适用于飞行系统用途仅用于工程评估。  
• 多14 个差分器件时钟  
CMLLVPECLLCPECLHSDSLVDS 和  
2xLVCMOS 可编程输出  
CPOUT1  
FIN1  
Input Switching/Holdover  
CLKIN0  
• 最1 个缓VCXO/XO 输出  
FIN0  
CLKIN1/  
FIN1/  
FPCLKIN  
Phase  
Switchable R Divider  
÷2  
Detector/  
Charge  
Pump  
LVPECLLVDS2xLVCMOS 可编程输出  
1-1023 CLKOUT 分频器  
1-8191 SYSREF 分频器  
PLL1  
CLKIN2/  
OSCOUT  
N Divider  
CPOUT2  
N Divider  
SYSREF 25ps 阶跃模拟延迟  
• 器件时钟SYSREF 数字延迟和动态数字延迟  
PLL1 保持模式  
PLL1 PLL2 0 延迟  
• 高可靠性  
– 受控基线  
Phase  
Detector/  
Charge  
Pump  
OSCIN  
CLKIN1  
CLKOUT6  
CLKOUT8  
SYSREFDIV  
PLL2  
SCK  
Control  
Registers  
SDIO  
SPI  
X2  
R Divider  
CS#  
Clock Distribution Path  
STATUS_LD1  
CLKOUT0  
CLKOUT1  
÷1,÷2,..,÷1023  
SYSREF/SYNC  
STATUS_LD2  
RESET/GPO  
CLKIN_SEL0  
CLKIN_SEL1  
Device  
Control  
SYSREFDIV  
Divider  
14 Di eren al  
– 一个组装/测试场所  
– 一个制造场所  
– 延长的产品生命周期  
– 延长的产品变更通知  
– 产品可追溯性  
...  
...  
...  
SYNC/SYSREF  
Distribution Path  
Outputs  
SYNC  
CLKOUT12  
CLKIN0  
Pulser  
÷1,÷2,..,÷1023  
CLKOUT13  
方框图  
2 应用  
通信有效负载  
雷达成像有效载荷  
命令和数据处理  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS838  
 
 
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................25  
8.4 Device Functional Modes..........................................36  
8.5 Programming............................................................ 38  
8.6 Register Maps...........................................................39  
9 Application and Implementation..................................85  
9.1 Application Information............................................. 85  
9.2 Typical Application.................................................... 89  
9.3 Power Supply Recommendations.............................92  
9.4 Layout....................................................................... 93  
10 Device and Documentation Support..........................96  
10.1 Device Support....................................................... 96  
10.2 Documentation Support.......................................... 96  
10.3 接收文档更新通知................................................... 96  
10.4 支持资源..................................................................96  
10.5 Trademarks.............................................................96  
10.6 Electrostatic Discharge Caution..............................96  
10.7 术语表..................................................................... 96  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements................................................13  
6.7 Timing Diagram.........................................................13  
6.8 Typical Characteristics .............................................14  
7 Parameter Measurement Information..........................15  
7.1 Charge Pump Current Specification Definitions........15  
7.2 Differential Voltage Measurement Terminology........ 16  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................22  
Information.................................................................... 97  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2022) to Revision A (November 2022)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC5_DIG  
CLKIN1_P/FIN1_P/FBCLKIN_P  
CLKIN1_N/FIN1_N/FBCLK_N  
VCC6_PLL1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CLKOUT2_N  
CLKOUT2_P  
CLKOUT3_N  
CLKOUT3_P  
LDOBYP2  
2
3
4
CLKIN0_P  
5
CLKIN0_N  
6
LDOBYP1  
VCC7_OSCOUT  
OSCOUT_P/CLKIN2_P  
OSCOUT_N/CLKIN2_N  
VCC8_OSCIN  
7
VCC1_VCO  
FIN0_N  
8
DAP  
9
FIN0_P  
10  
11  
12  
13  
14  
15  
16  
GND  
OSCIN_P  
SYNC/SYSREF_REQ  
RESET/GPO  
CLKOUT1_N  
CLKOUT1_P  
CLKOUT0_N  
CLKOUT0_P  
OSCIN_N  
VCC9_CP2  
CPOUT2  
VCC10_PLL2  
STATUS_LD2  
Not to scale  
5-1. PAP Package 64-Pin HTQFP Top View  
5-1. Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
VCC5_DIG  
1
PWR  
Power supply for the digital circuitry.  
CLKIN1_P: Reference Clock input port 1 for PLL1. FIN1_P: External  
VCO input or clock distribution input. FBCLKIN_P: Feedback input for  
external clock feedback input (0delay mode).  
CLKIN1_P/  
FIN1_P/  
FBCLKIN_P  
2
I
ANLG  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
NAME  
CLKIN1_N  
FIN1_N  
Reference Clock input port 1 for PLL1.  
External VCO input or clock distribution input.  
3
I
ANLG  
FBCLK_N  
Feedback input for external clock feedback input (0delay mode).  
4
5
6
7
VCC6_PLL1  
CLKIN0_P  
PWR  
ANLG  
Power supply for PLL1, charge pump 1, holdover DAC  
I
Reference Clock input port 0 for PLL1.  
CLKIN0_N  
VCC7_OSCOUT  
OSCOUT_P  
CLKIN2_P  
PWR  
Power supply for OSCOUT pins.  
Buffered output of OSCIN pins  
Reference Clock input port 2 for PLL1.  
Buffered output of OSCIN pins  
Reference Clock input port 2 for PLL1.  
Power supply for OSCIN  
8
9
I/O  
Programmable  
OSCOUT_N  
CLKIN2_N  
I/O  
Programmable  
PWR  
10  
11  
12  
13  
14  
15  
16  
17  
VCC8_OSCIN  
OSCIN_P  
I
ANLG  
Feedback to PLL1 and reference input to PLL2. AC-coupled.  
OSCIN_N  
VCC9_CP2  
CPOUT2  
PWR  
ANLG  
Power supply for PLL2 charge pump.  
Charge pump 2 output.  
O
VCC10_PLL2  
STATUS_LD2  
CLKOUT9_P  
PWR  
Power supply for PLL2.  
I/O  
Programmable  
Programmable status pin.  
Clock output 9. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
O
Programmable  
18  
19  
20  
CLKOUT9_N  
CLKOUT8_P  
CLKOUT8_N  
Clock output 8. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
Programmable  
PWR  
21  
22  
VCC11_CG3  
Power supply for clock outputs 8, 9, 10, and 11.  
CLKOUT10_P  
Clock output 10. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
Programmable  
23  
24  
25  
CLKOUT10_N  
CLKOUT11_P  
CLKOUT11_N  
Clock output 11. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
Programmable  
26  
27  
28  
CLKin_SEL0  
CLKIN_SEL1  
CLKOUT13_P  
I/O  
I/O  
Programmable  
Programmable  
Programmable status pin.  
Programmable status pin.  
Clock output 13. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
O
Programmable  
29  
CLKOUT13_N  
Clock output 12. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
30  
31  
32  
33  
34  
35  
CLKOUT12_P  
CLKOUT12_N  
VCC12_CG0  
CLKOUT0_P  
CLKOUT0_N  
CLKOUT1_P  
Programmable  
PWR  
Power supply for clock outputs 0, 1, 12, and 13.  
Clock output 0. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
O
Programmable  
Clock output 1. For JESD204B/C systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
Programmable  
36  
37  
CLKOUT1_N  
RESET/GPO  
I
I
CMOS  
CMOS  
GND  
Device reset input or GPO  
SYNC/  
SYSREF_REQ  
Synchronization input or SYSREF_REQ for requesting continuous  
SYSREF.  
38  
39  
GND  
This pin should be grounded.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
40  
41  
42  
43  
44  
45  
NAME  
FIN0_P  
FIN0_N  
High-speed input for external VCO or clock distribution. Supports /2 for  
frequency greater than 3250 MHz.  
I
ANLG  
VCC1_VCO  
LDOBYP1  
PWR  
ANLG  
ANLG  
Power supply for VCO and clock distribution.  
LDO Bypass, bypassed to ground with 10-µF capacitor.  
LDO Bypass, bypassed to ground with a 0.1-µF capacitor.  
LDOBYP2  
CLKOUT3_P  
Clock output 3. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
O
Programmable  
Programmable  
46  
CLKOUT3_N  
47  
48  
49  
50  
51  
52  
53  
54  
CLKOUT2_P  
CLKOUT2_N  
VCC2_CG1  
CS#  
Clock output 2. For JESD204B/C systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
PWR  
CMOS  
CMOS  
CMOS  
PWR  
Power supply for clock outputs 2 and 3.  
I
Chip Select  
SCK  
I
SPI Clock  
SDIO  
I/O  
SPI Data  
VCC3_SYSREF  
CLKOUT5_P  
Power supply for SYSREF divider and SYNC.  
Clock output 5. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
Programmable  
55  
CLKOUT5_N  
Clock output 4. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
56  
57  
58  
59  
60  
61  
CLKOUT4_P  
CLKOUT4_N  
VCC4_CG2  
CLKOUT6_P  
CLKOUT6_N  
CLKOUT7_P  
O
Programmable  
PWR  
Power supply for clock outputs 4, 5, 6 and 7.  
Clock output 6. For JESD204B/C systems suggest Device Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
O
Programmable  
Clock output 7. For JESD204B/C systems suggest SYSREF Clock.(1)  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or  
2xLVCMOS.  
O
Programmable  
62  
CLKOUT7_N  
63  
STATUS_LD1  
CPOUT1  
DAP  
I/O  
O
Programmable  
ANLG  
Programmable status pin.  
64  
Charge pump 1 output.  
DAP  
GND  
DIE ATTACH PAD, connect to GND.  
(1) Actual best allocation of device clocks and SYSREF depends upon frequency planning to group common frequencies.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
SYMBOL  
VDD, VDD_A  
VIN  
PARAMETER  
MIN  
0.3  
0.3  
MAX  
3.6  
UNIT  
V
Power supply voltage  
Input voltage  
VDD + 0.3  
V
Differential input current (CLKIN_P/N,  
OSCIN_P/N,FIN0_P/N,FIN1_P/N  
IIN  
5
mA  
TJ  
Junction Temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
SYMBOL  
PARAMETER  
CONDITION  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over case temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
MIN  
3.135  
3.135  
55  
NOM  
3.3  
MAX  
3.465  
3.465  
125  
UNIT  
VDD  
IO supply voltage  
V
V
VDD_A  
TA  
Core supply voltage  
Ambient Temperature  
3.3  
°C  
6.4 Thermal Information  
PAP (HTQFP)  
SYMBOL  
THERMAL METRIC(1)  
UNIT  
64 PINS  
21.3  
8.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
6.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJT  
6.8  
ΨJB  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
 
 
 
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current Consumption  
Power Down Supply Current  
Device Powered Down  
3.3  
5
4 CML 32 mA clocks in  
bypass  
3 LVDS clock /12  
4 SYSREF as LCPECL  
3 SYSREF as LVDS  
980  
850  
700  
4 CML 32 mA clocks in  
bypass  
3 LVDS clock /12  
4 SYSREF as LCPECL  
(low state)  
PLL1 locked to  
external VCXO and  
PLL2 locked to  
internal VCO  
ICC  
mA  
Supply Current(1)  
3 SYSREF as LVDS  
(low state)  
4 CML 32 mA clocks in  
bypass  
3 LVDS clock /12  
7 SYSREF outputs  
powered down  
CLKIN Specifications  
LOS Circuitry  
LOS_EN = 1  
0.001  
0.001  
125  
250  
CLKinX-  
TYPE=1(MOS)  
AC Coupled Input  
AC Coupled Input  
AC Coupled Input  
AC Coupled Input  
PLL1  
PLL2  
CLKinX-TYPE=0  
(Bipolar)  
0.001  
0.001  
0.001  
750  
MHz  
500  
fCLKINx  
CLKinX_TYPE=0  
(Bipolar)  
0-delay with external  
feedback (CLKIN1)  
0-delay  
750  
Distribution Mode  
CLKIN1/FIN1 Pin only AC Coupled Input  
0.001  
0.15  
3250  
V/ns  
SLEWCLKIN Input Slew Rate(2)  
VCLKINx/FIN1 Single-ended clock input voltage  
VIDCLKINX/  
0.5  
Input pin AC coupled; complementary pin AC  
coupled to GND  
0.5  
0.125  
0.25  
2.4 Vpp  
1.55  
|V|  
FIN1  
Differential clock input voltage(3)  
VSSCLKINx/  
AC coupled  
3.1 Vpp  
|mV|  
FIN1  
CLKIN0/1/2 (Bipolar)  
CLKIN0/1 (MOS)  
CLKIN2 (MOS)  
0
55  
20  
|VCLKINX  
offset|  
-
DC offset voltage between CLKIN /  
CLKINX* Each Pin AC Coupled  
VCLKINVIH  
VCLKINVIL  
High Input Voltage  
Low Input Voltage  
VCLKIN-VIH  
VCLKIN-VIL  
DC Coupled Input  
DC Coupled Input  
2
0
Vcc  
0.4  
V
V
FIN0 Input Pin  
fFIN0  
FIN0_DIV2_EN=1  
FIN0_DIV2_EN=2  
1
1
3250 MHz  
6400 MHz  
1.55 Vpp  
3.1 Vpp  
AC Coupled Slew  
Rate > 150 V/us  
External Input Frequency  
fFIN0  
VIDFIN0  
VSSFIN0  
0.125  
0.25  
Differential Input Voltage  
AC Coupled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PLL 1 Specifications  
fPD1  
Phase Detector Frequency  
40 MHz  
PLL1_CP_GAIN = 350 µA  
117  
118  
221.5  
223  
50  
PN10kHz  
PLL Normalized 1/f Noise(4)  
PLL1_CP_GAIN = 1550 µA  
PLL1_CP_GAIN = 350 µA  
PLL1_CP_GAIN = 1550 µA  
dBc/Hz  
PN FOM  
PLL Figure of Merit(5)  
PLL1_CP_GAIN=0  
PLL1_CP_GAIN=1  
PLL1_CP_GAIN=2  
PLL1_CP_GAIN=4  
PLL1_CP_GAIN=8  
150  
ICPOUT1  
Charge Pump Current(6)  
VCPout=Vcc/2  
250  
µA  
450  
850  
ICPOUT1%MI Charge Pump Sink / Source  
VCPout1 = Vcc/2, T =  
25 °C  
VCPout1 = Vcc/2, T = 25  
°C  
1
1
2
10  
10  
10  
10  
%
%
S
Mismatch  
ICPOUT1VTUN Magnitude of Charge Pump Current 0.5 V < VCPout1 < VCC 0.5 V < VCPout1 < VCC  
-
Variation vs. Charge Pump Voltage - 0.5 V TA = 25 °C  
0.5 V TA = 25 °C  
E
ICPOUT1%TE Charge Pump Current vs.  
%
MP  
Temperature Varation  
Charge Pump TRI_STATE Leakage  
Current  
ICPOUT1TRI  
OSCIN Input  
nA  
EN_PLL2_REF_2X=0  
EN_PLL2_REF_2X=1  
0.001  
0.001  
0.15  
500  
320  
fOSCIN  
MHz  
V/ns  
SLEWOSCIN Input Slew Rate  
0.5  
Input voltage for OSCIN_P or  
OSCIN_N  
AC coupled; single-ended; unused pin AC  
coupled to GND  
VOSCIN  
0.2  
2.4 Vpp  
VIDOSCIN  
VSSOSCIN  
0.2  
0.4  
1.55  
|V|  
Differential voltage swing(3)  
AC coupled  
3.1 Vpp  
DC offset voltage between  
CLKINx_P/CLKINx_N. Each Pin AC  
Coupled  
VCLKINxOffse  
t
20  
mV  
320 MHz  
dBc/Hz  
PLL 2 Specifications  
fPD  
Phase Detector Frequency  
PLL2_CP_GAIN = 1600 uA  
PLL2_CP_GAIN = 3200 uA  
PLL2_CP_GAIN = 1600 uA  
PLL2_CP_GAIN = 3200 uA  
PLL2_CP_GAIN=2  
123  
128  
226.5  
230  
1600  
PN10kHz  
PLL Normalized 1/f Noise(4)  
PLL Figure of Merit(5)  
PN FOM  
ICPOUT  
Charge Pump Current Magnitude(6) VCPOUT=Vcc/2  
µA  
PLL2_CP_GAIN=3  
3200  
ICPOUT1%MI Charge Pump Sink / Source  
VCPOUT = Vcc/2, T =  
25 °C  
VCPOUT1 = Vcc/2, T = 25  
°C  
1
2
3
10  
10  
10  
10  
%
%
S
Mismatch  
Magnitude of Charge Pump Current 0.5 V < VCPOUT1  
Variation vs. Charge Pump Voltage VCC - 0.5 V TA = 25 °C 0.5 V TA = 25 °C  
<
0.5 V < VCPOUT1 < VCC  
-
ICPout1VTUNE  
ICPOUT%TE Charge Pump Current vs.  
%
MP  
Temperature Variation  
Charge Pump TRI_STATE Leakage  
Current  
ICPOUT1TRI  
nA  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal VCO Specifications  
VCO0  
VCO1  
VCO0  
VCO1  
VCO0  
VCO1  
10 kHz  
100 kHz  
2440  
2945  
2600  
MHz  
3255  
fVCO  
VCO Frequency Range  
13  
26  
KVCO  
|ΔTCL  
VCO Tuning Sensitivity  
MHz/V  
Allowable temperature Drift for Continuous Lock(7)  
Allowable temperature Drift for Continuous Lock(7)  
150  
180  
oC  
oC  
|
88.4  
117  
VCO0 at 2440 MHz  
800 kHz  
1 MHz  
137.5  
139.7  
152.6  
85.7  
10 MHz  
10 kHz  
100 kHz  
800 kHz  
1 MHz  
L(f)VCO  
Open Loop VCO Phase Noise  
dBc/Hz  
115.8  
137  
VCO0 at 2580 MHz  
138.6  
151.8  
82.6  
10 MHz  
10 kHz  
100 kHz  
800 kHz  
1 MHz  
112.3  
134.9  
137.2  
151.1  
81  
VCO1 at 2945 MHz  
10 MHz  
10 kHz  
100 kHz  
800 kHz  
1 MHz  
L(f)VCO  
Open Loop VCO Phase Noise  
dBc/Hz  
110.4  
134.3  
135.6  
149.3  
VCO1 at 3250 MHz  
10 MHz  
Output Clock Skew and Timing  
Same Pair of Device clocks and same format  
Even to Even or Odd to Odd, Same Format  
35  
15  
SKEWCLKOU  
Output to Output Skew  
ps  
TX  
Even clock to Odd  
Clock  
35  
Additive Jitter in Distribution Mode from FIN Pin (note 6)  
LVCMOS  
LVDS  
50  
50  
40  
35  
40  
35  
245.76 MHz Output  
Additive jitter, Distribution mode with Frequency,  
LVPECL  
LCPECL  
HSDS  
L(f)CLKOUT  
fs  
no divide  
12k-20MHz  
integration bandwidth  
CML  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS Outputs  
fCLKOUT  
Frequency  
Noise Floor  
5 pF Load  
250 MHz  
dBc/Hz  
L(f)CLKOUT  
245.76 MHz  
1 mA load  
20 MHz Offset  
160  
Vcc–  
VOH  
Output High Voltage  
V
0.1  
VOL  
IOH  
Output Low Voltage  
Output High Current  
Output Low Current  
Output Duty Cycle  
1 mA load  
FD=1.65V  
Vd=1.65V  
0.1  
V
mA  
mA  
%
28  
28  
IOL  
ODC  
50  
LVDS Clock Outputs  
L(f)CLKOUT  
TR/TF  
Noise Floor  
245.76 MHz output  
20 MHz Offset  
dBc/Hz  
ps  
159.5  
175  
20% to 80% Rise/Fall Time, fOUT1 GHz  
VOD  
Differential Output Voltage  
350  
mV  
Change in VOD for complimentary  
output states  
60  
1.375  
35  
mV  
V
ΔVOD  
VOS  
60  
DC Measurement, AC coupled to receiver input  
RL = 100 Ωdifferential  
Output Offset Voltage  
1.125  
1.25  
Change on VOS for complimentary  
Output states  
mV  
mA  
ΔVOS  
ISHORT  
Short circuit Output Current  
24  
24  
LCPECL Clock Outputs  
L(f)CLKOUT  
TR/TF  
VOH  
Noise Floor  
245.76 MHz output  
OUT 1 GHz  
20 MHz Offset  
dBc/Hz  
162.5  
135  
20% to 80% Rise/Fall Time  
Output High Voltage  
Output Low Voltage  
ps  
V
f
1.4  
DC Measurement with  
50-Ωto 0.5V  
VOL  
0.6  
V
DC Measurement with  
50-Ωto 0.5V  
VOD  
Differential Output Voltage  
870  
mV  
LVPECL Clock Outputs  
245.76 MHz output,  
LVPECL 2.0 V  
L(f)CLKOUT  
TR/TF  
Noise Floor  
20 MHz Offset  
dBc/Hz  
ps  
163  
20% to 80% Rise/Fall Time  
135  
f
OUT 1 GHz  
LVPECL 1.6 V  
LVPECL 2.0 V  
Vcc1  
VOH  
Output High Voltage  
V
Vcc–  
DC Measurement  
termination 50 Ωto  
Vcc-2 V  
1.1  
Vcc–  
LVPECL 1.6 V  
1.8  
VOL  
Output Low Voltage  
V
V
LVPECL 2.0 V  
LVPECL 1.6 V  
Vcc2  
0.7  
2.5 GHz, Em = 120 Ω  
to GND, RL = AC  
coupled 100 Ω  
VOD  
Differential Output Voltage  
LVPECL 2.0 V  
0.9  
HSDS Clock Outputs  
L(f)CLKOUT  
TR/TF  
Noise Floor  
20% to 80% Rise/Fall Time  
245.76 MHz output  
20 MHz Offset  
dBc/Hz  
ps  
162  
170  
f
OUT 1 GHz  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Vcc–  
HSDS 6 mA  
0.9  
VOH  
Output High Voltage  
V
Vcc–  
HSDS 8 mA  
1.0  
DC Measurement with  
50 Ωto 0.5V  
Vcc–  
HSDS 6 mA  
HSDS 8 mA  
1.5  
VOL  
Output Low Voltage  
Output Voltage  
V
V
Vcc–  
1.7  
HSDS 6 mA  
HSDS 8 mA  
HSDS 6 mA  
HSDS 8 mA  
0.5  
VOD  
0.75  
DC Measurement with  
50 Ωto 0.5V  
80  
mV  
115  
80  
Change on VOS for complimentary  
Output states  
ΔVOD  
115  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
CML Outputs  
L(f)CLKOUT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Noise Floor  
20 MHz Offset  
dBc/Hz  
163  
140  
CML 16 mA  
TR/TF  
VOH  
20% to 80% Rise/Fall Time  
Output High Voltage  
CML 24 mA  
CML 32 mA  
140  
ps  
V
f
OUT 1.5 GHz  
140  
Vcc-0.1  
50 Ωpull up to Vcc, DC Measurement  
Vcc–  
CML 16 mA  
0.8  
50 Ωpull up to Vcc,  
CML 24 mA  
Vcc–  
VOL  
Output Low Voltage  
V
DC Measurement  
1.1  
Vcc–  
CML 32 mA  
CML 16 mA  
1.4  
680  
1000  
1300  
550  
50 Ωpull up to Vcc,  
DC Measurement  
CML 24 mA  
mV  
mV  
CML 32 mA  
VOD  
Output Voltage  
CML 16 mA  
CML 24 mA  
50 Ωpull up to Vcc,  
DC Measurement, RL  
= AC coupled 100 Ω,  
250 MHz  
815  
CML 32 mA  
1070  
Digital Outputs (CLKin_SELX,STATUS_LDX, and RESET/GPO,SDIO)  
Vcc–  
VOH  
Output High Voltage  
Output Low Voltage  
V
0.4  
VOL  
0.4  
V
Digital Inputs  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
V
V
0.5  
80  
25  
RESET/GPO,SYNC,SCK,SDIO, CS#  
IIH  
High-level input current  
uA  
SYNC  
VIH = VCC  
CLKINX_SEL,RESET/GPO,SYNC,SCK,SDIO,  
CS#  
IIL  
IIL  
Low-level input current  
Low-level input current  
5
5
5  
5  
uA  
SYNC  
VIL = 0 V  
(1) Use the TICS Pro tool to calculate Icc for a specific configuration  
(2) Device will function with slew rate as low as 0.15 V/ns, however a slew rate of 0.5 V/ns or higher is recommended to get the best  
phase noise performance.  
(3) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
(4) The normalized PLL 1/f noise is a specification in modeling PLL in-band phase noise is that is close to the carrier and has a  
characteristic 10 dB/decade slope. PN10 kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10 kHz =  
LPLL_flicker(10 kHz) - 20 log(fOUT/ 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's  
contribution to total noise, L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high  
compare frequency and a clean crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can  
be masked by the reference oscillator performance if a low-power or noisy source is used. The total PLL in-band phase noise  
performance is the sum of LPLL_flicker(f) and LPLL_flat(f)  
(5) The PLL figure of merit is a normalized metric used to quantify the flat portion of the in-band phase noise. It is calculated as PN_FOM  
= LPLL_flat(f) - 20 log(N) - 10 log(fPDX). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz  
bandwidth and fPDX is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f). This metric is  
measured using a CLKIN input. If the OSCin input is used, the metric is about 2 dB worse.  
(6) This parameter is programmable to more states than are shown in the electrical specifications  
(7) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of  
programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over  
the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be  
necessary to reload the appropriate register to ensure it stays in lock. This parameter is indirectly tested.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
 
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.6 Timing Requirements  
VDD, VDD_A = 3.3 V ± 5 %, 55 °C TA 125 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
SYMBOL  
PARAMETER  
MIN  
NOM  
MAX UNIT  
Timing Requirements  
tdS  
Setup time for SDI edge to SCK rising edge  
Hold time for SDI edge to SCK rising edge  
40  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tdH  
tSCK  
tHIGH  
tLOW  
tCS  
Period of SCK  
400  
120  
120  
40  
High width of SCK  
Low width of SCK  
Setup time for CS# falling edge to SCK rising edge  
Hold time for CS# rising edge from SCK rising edge  
SCK falling edge to valid read back data  
tCH  
40  
tDV  
120  
ns  
6.7 Timing Diagram  
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK  
signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed.  
A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CS* signal  
should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is  
sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this  
programming.  
4-wire mode read back has same timing as SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
SDIO  
(WRITE)  
A12 to A0,  
D7 to D2  
R/W  
A14  
A13  
D1  
D0  
tdS  
tdH  
SCK  
tcH  
tcS  
tHIGH  
tLOW  
tSCK  
SDIO  
(Read)  
D7 to  
D2  
D1  
D0  
tdV  
CS*  
6-1. SPI Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMK04832-SEP  
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
Jitter from 100 Hz to 100 MHz = 63.6 fs rms.  
Output is CLKOUT4 as CML 32 mA with 68-nH to 20-ΩDC  
bias.  
Jitter from 100 Hz to 100 MHz = 67 fs rms.  
Output is CLKOUT4 as CML 32 mA with 68-nH to 20-ΩDC  
bias.  
Other settings are CLKout4_5_IDL = 1  
and CLKout4_5_BYP = 1.  
Other settings are CLKout4_5_IDL = 1  
and CLKout4_5_BYP = 1.  
PLL2 Loop Filter R2 = 470 Ω, C2 = 150 nF,  
Charge Pump = 3200 µA.  
PLL2 Loop Filter R2 = 470 Ω, C2 = 150 nF,  
Charge Pump = 3200 µA.  
Reference is R&S SMA100B Signal Generator with option  
SMAB - B711 through Prodyn BIB-100G Balun to OSCin.  
Reference is R&S SMA100B Signal Generator with option  
SMAB - B711 through Prodyn BIB-100G Balun to OSCin.  
6-2. PLL2 With VCO1 Performance at 2500 MHz  
With 312.5-MHz OSCin/Phase Detector Frequency  
6-3. PLL2 With VCO1 Performance at 3200 MHz  
With 320-MHz OSCin/Phase Detector Frequency  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC - ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC - ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
7.1.1 Charge Pump Output Current Magnitude Variation vs Charge Pump Output Voltage  
7.1.2 Charge Pump Sink Current vs Charge Pump Output Source Current Mismatch  
7.1.3 Charge Pump Output Current Magnitude Variation vs Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.2 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions causing confusion  
when reading data sheets or communicating with other engineers. This section will address the measurement  
and description of a differential signal so that the reader will be able to understand and distinguish between the  
two different definitions when used.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and noninverting signal. The symbol for this first measurement is typically VID or VOD depending on if  
an input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the noninverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated  
parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its  
differential pair. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can  
be calculated as twice the value of VOD as described in the first description.  
7-1 shows the two different definitions side-by-side for inputs and 7-2 shows the two different definitions  
side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the noninverting and  
inverting signals toggle between with respect to ground. VSS input and output definitions show that if the  
inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now  
increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the  
differential signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
VID Definition  
VSS Definition for Input  
Noninverting Clock  
VA  
VB  
2 × VID  
VID  
Inverting Clock  
VID = | VA VB  
|
VSS = 2 × VID  
GND  
7-1. Two Different Definitions for Differential Input Signals  
VOD Definition  
VSS Definition for Output  
Non-Inverting Clock  
VA  
VB  
2·VOD  
VOD  
Inverting Clock  
VOD = | VA - VB  
|
VSS = 2·VOD  
GND  
7-2. Two Different Definitions for Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for  
more information.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
This device is very flexible to meet many application requirements. Use cases include dual loop, dual loop 0-  
delay nested, dual loop 0-delay cascaded, single loop, single loop 0-delay, and clock distribution.  
The device may be used in JESD204B/C systems by providing a device clock and SYSREF to target devices,  
however traditional (non-JESD204B/C) systems are possible by programming pairs of outputs to share the clock  
divider or any mix of JESD204B/C and traditional outputs.  
8.1.1 Differences from the LMK04832  
The LMK04832 is a widely known device that is similar to this device. However, these devices are not the same  
and there are some differences.  
8-1. Differences Between the LMK04832-SEP and LMK04832  
Attribute  
Radiation Hardened  
Temperature  
LMK04832  
LMK04832-SEP  
No  
50 MeV  
40ºC to +85ºC  
10 × 10 mm  
n/a  
55ºC to +125ºC  
10 × 10 mm  
Package  
Pin Rotation  
Rotated 180° from LMK04832  
Yes, Pins 40/41 are FIN0_P/FIN0_N  
GND (Pin 39)  
6.4 GHz CLK/VCO Input Pin  
Pin After SYNC/SYSREFREQ Pin  
Programming Speed  
No, Pins 8/9 are NC  
NC (Pin 7)  
5 MHz  
2.5 MHz  
8.1.1.1 Jitter Cleaning  
The dual loop PLL architecture provides the lowest jitter performance over a wide range of output frequencies  
and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external reference clock and  
uses an external VCXO to provide a frequency accurate, low phase noise reference clock for the second stage  
frequency multiplication PLL (PLL2).  
PLL1 typically uses a narrow loop bandwidth (typically 10 Hz to 200 Hz) to retain the frequency accuracy of the  
reference clock input signal while at the same time suppressing the higher offset frequency phase noise that the  
reference clock may have accumulated along its path or from other circuits. This cleaned reference clock  
provides the reference input to PLL2.  
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 50  
kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency  
phase noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO.  
Ultra-low jitter is achieved by allowing the phase noise of the external VCXO to dominate the final output phase  
noise at low offset frequencies and the phase noise of the internal VCO to dominate the final output phase noise  
at high offset frequencies. This results in best overall phase noise and jitter performance.  
8.1.1.2 JEDEC JESD204B/C Support  
This device clocks up to seven JESD204B/C targets using seven device clocks and seven SYSREF clocks and  
allows every clock output to be configured as a device clock or SYSREF clock.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.1.2 Clock Inputs  
备注  
CLKIN1 can be used as a reference for dual loop, single loop, or clock distribution mode, providing  
flexibility configuring the device for different operation modes from one clock input.  
8.1.2.1 Inputs for PLL1  
CLKIN0, CLKIN1, and CLKIN2 are the three redundant inputs with their own PLL1 R dividers that can be used  
as a reference input to PLL1. The switching between these inputs can either be automatic or manual. For  
manual switching, CLKIN_SEL0 and CLKIN_SEL1 pins can be used for faster speed. These input pins are also  
shared for other functions.  
CLKIN1 is shared for use as an external 0-delay feedback (FBCLKIN), or for use with an external VCO (FIN).  
CLKIN2 is shared for use as OSCout. To use CLKIN2 as an input power down OSCout, see the VCO_MUX,  
OSCout_MUX, OSCout_FMT section.  
8.1.2.2 Inputs for PLL2  
In dual loop configurations, the PLL2 reference is from OSCin. However, in single PLL2 loop operation, it is also  
possible to use any of the three CLKIN inputs of PLL1 as a reference to PLL2.  
8.1.2.3 Inputs When Using Clock Distribution Mode  
For clock distribution mode, a reference signal may be applied to the FIN0 or FIN1 pins. CLKIN0 can be used to  
distribute a SYSREF signal through the device. In this use case, CLKIN0 is re-clocked by CLKIN1. The FIN0  
pins are generally recommended over the FIN1 pins because they allow higher frequency, use a lower noise  
path, and cannot be used for other functions (like redundant input).  
8.1.3 PLL1  
PLL1 allows low offset jitter cleaning as well as the use of redundant inputs and frequency holdover.  
8.1.3.1 Frequency Holdover  
Frequency holdover keeps the clock outputs on frequency with minimum drift when the reference is lost until a  
valid reference clock signal is re-established. This can only be used if PLL1 is used.  
8.1.3.2 External VCXO for PLL1  
When PLL1 is used, an external VCXO is required. The close-in noise performance of this VCXO is critical for  
good jitter cleaning performance. The OSCout pin is powered on by default and gives a buffered copy of the  
PLL1 feedback and PLL2 reference input at OSCin. This reference input is typically a low noise VCXO or XO.  
This output can be used to clock external devices such as microcontrollers, FPGAs, CPLDs, and so forth, before  
the device is programmed.  
The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.  
The VCXO buffered output can be synchronized to the VCO clock distribution outputs by using Cascaded 0-  
Delay Mode.  
8.1.4 PLL2  
8.1.4.1 Internal VCOs for PLL2  
PLL2 has two internal VCOs. The output of the selected VCO is routed to the Clock Distribution Path. This same  
selection is also fed back to the PLL2 phase detector through a prescaler and N-divider.  
8.1.4.2 External VCO Mode  
An external VCO can be used with PLL2 with the input for the external VCO coming through FIN0 or FIN1,  
although FIN0 is generally preferred.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
备注  
The FIN0_P/FIN0_N input is generally recommended because it is lower noise, supports higher input  
frequency (up to 6 GHz if the div2 is used), and it leaves CLKIN1 available for redundant inputs.  
FIN1_P/FIN1_N inputs are generally NOT recommended, for the reasons stated above, although they  
can be used.  
8.1.5 Clock Distribution  
There are a total of 14 PLL2 clock outputs driven from the internal or external VCO.  
All clock outputs have programmable output types. They can be programmed to CML, LVPECL, LVDS, HSDS, or  
LCPECL. All odd clock outputs plus CLKOUT8 and CLKOUT10 may be programmed to LVCMOS.  
In addition to these 14 clocks, there is also an additional OSCout output for a total of 15 differential output  
clocks. OSCout may be a buffered version of OSCIN, DCLKOUT6, DCLKOUT8, or SYSREF. Its output format is  
programmable to LVDS, LVPECL, or LVCMOS.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
8.1.5.1 Clock Divider  
There are seven clock dividers. In a traditional clocking system, each divider can drive two outputs. The divider  
range is 1 to 1023. Duty cycle correction may be enabled for the output. When the divider is used even clocks  
may not output CML.  
In a JESD204B/C system, one clock output is a device clock driven from the clock divider and the other paired  
clock is from the SYSREF divider. For connectivity flexibility, either the even or odd clock output may be driven  
by the clock divider or be the SYSREF output.  
8.1.5.2 High Performance Divider Bypass Mode  
The even clock outputs (CLKOUT0/2/4/6/8/10/12) may bypass the clock divider to achieve the best possible  
noise floor and output swing. In this mode, the only usable output format is CML.  
8.1.5.3 SYSREF Clock Divider  
The SYSREF divider supports a divide range of 8 to 8191 (even and odd). There is no duty cycle correction for  
the SYSREF divider. The SYSREF output may be routed to all clock outputs.  
8.1.5.4 Device Clock Delay  
The device clocks support digital delay for phase adjustment of the clock outputs.  
The digital delay allows outputs to be delayed from 8 to 1023 VCO cycles. The delay step can be as small as  
half the period of the clock distribution path. For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.  
The digital delay value takes effect on the clock output phase after a SYNC event.  
8.1.5.5 Dynamic Digital Delay  
The device clock dividers support a dynamic digital delay feature which allows the clock to be delayed by one full  
device clock cycle. With a single programming, an adjustment of up to 255 one cycle delays may occur. When  
making a multi-step adjustment, the adjustments are periodically applied to reduce impact to the clock.  
Dynamic phase adjustments of half a clock distribution cycle are possible by half step.  
The SYSREF digital delay value is reused for dynamic digital delay. To achieve a one cycle delay program the  
SYSREF digital delay value to one greater than half the SYSREF divide value.  
8.1.5.6 SYSREF Delay: Global and Local  
The SYSREF divider includes a digital delay block which allows a global phase shift with respect to the device  
clocks.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Each clock output pair includes a local SYSREF analog and digital delay for unique phase adjustment of each  
SYSREF clock.  
The local analog delay allows for approximately 21-ps steps. Turning-on analog delay adds an additional 124 ps  
of delay in the clock path. The digital delay step can be as small as half the period of the clock distribution path.  
For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.  
The local digital delay and half step allows a SYSREF output to be delayed from 1.5 to 11 clock distribution path  
cycles.  
8.1.5.7 Programmable Output Formats  
All clock outputs can be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. Odd clock outputs  
in addition to CLKOUT8 and CLKOUT10 may also be programmed to LVCMOS. All odd clock outputs can also  
be programmed to CML. When in bypass mode the even clock output may only be CML.  
The OSCout can be programmed to an LVDS, LVPECL, or LVCMOS output type.  
Any HSDS output type can be programmed to 6-mA or 8-mA amplitude levels.  
Any LVPECL output type can be programmed to 1600-mVpp or 2000-mVpp amplitude levels. The 2000-mVpp  
LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential  
swing for compatibility with many data converters and is also known as 2VPECL.  
LCPECL allows for DC-coupling SYSREF to low voltage JESD204B/C targets.  
8.1.5.8 Clock Output Synchronization  
Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
8.1.6 0-Delay  
Two types of 0-delay mode are supported.  
1. Cascaded 0-delay  
2. Nested 0-delay  
Cascaded 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input clock  
(OSCIN) to the phase of a clock output selected by the feedback mux. The 0-delay feedback uses internal  
feedback from the CLKOUT6, CLKOUT8, or SYSREF. The 0-delay feedback can also be from an external  
feedback through the FBCLKIN pins. The FB_MUX selects the feedback source. The OSCIN has a fixed  
deterministic phase relationship to the feedback clock, therefore OSCout will also have a fixed deterministic  
phase relationship to the feedback clock. In this mode, PLL1 input clock (CLKINx) also has a fixed deterministic  
phase relationship to PLL2 input clock (OSCIN); this results in a fixed deterministic phase relationship between  
all clocks from CLKINx to the clock outputs.  
Nested 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock  
(CLKINx) to the phase of a clock output selected by the feedback mux. The 0-delay feedback uses internal  
feedback from the CLKOUT6, CLKOUT8, or SYSREF. The 0-delay feedback can also be from an external  
feedback through the FBCLKIN port. The FB_MUX selects the feedback source.  
Without using 0-delay mode, there will be n possible fixed phase relationships from clock input to clock output  
depending on the clock output divide value.  
Using an external 0-delay feedback reduces the number of available clock inputs by one.  
8.1.7 Status Pins  
The status pins can be monitored for feedback or in some cases used for input depending upon device  
programming. For example:  
The CLKin_SEL0 pin may indicate the LOS (loss-of-signal) for CLKIN0.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
The CLKin_SEL1 pin may be an input for selecting the active clock input.  
The Status_LD1 pin may indicate if the device is locked.  
The Status_LD2 pin may indicate if PLL2 is locked.  
The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL  
lock detect signals, PLL1 Vtune railing, readback, and so forth. Refer to Register Maps for more information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
8-1 shows the high level block diagram.  
Switching Control  
Input clock switching  
and Holdover  
CLKin0  
CLKIN0_P  
_OUT  
CLKIN0_N  
_MUX  
CLKin0  
Switchable CLKIN0/1/2  
R Divider (1 to 16,383)  
CLKin  
MUX  
PLL 1  
Phase  
Detector/  
Charge  
Pump  
CPOUT1  
N1 Divider  
(1 to 16,383)  
CLKin1  
_OUT  
_MUX  
CLKIN1_P/FIN_P/FBCLKIN_P  
CLKIN1_N/FIN_N/FBCLKIN_N  
Fin1  
FB Mux  
CLKOUT6  
CLKOUT8  
SYSREF Div  
FB_  
MUX  
PLL1  
_NCLK  
_MUX  
OSCOUT_P/CLKIN2_P  
OSCOUT_N/CLKIN2_N  
MUX  
2X  
Partially  
Integrated  
Loop Filter  
PLL2  
_REF  
_2X_EN  
R2 Divider  
(1 to 4,095)  
Internal Dual  
Core VCO  
PLL2  
Phase  
OSCIN_P  
OSCIN_N  
Detector/  
Charge  
Pump  
PLL2  
_NCLK  
_MUX  
N2 Divider  
(1 to 262,143)  
STATUS_LD1  
STATUS_LD2  
RESET/GPO  
CLKIN_SEL0  
CLKIN_SEL1  
Device  
Control  
VCO0  
VCO1  
Clock Distribution Path  
N2 Prescaler  
(2 to 8)  
VCO_  
MUX  
÷ 2  
SCK  
SDIO  
CS#  
MUX  
FIN0_P  
FIN0_N  
Control  
Registers  
SPI  
Fin1  
SYSREF/SYNC Control  
Divider  
(8 to 8191)  
CLKOUT12_P  
CLKOUT12_N  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
SYSREF/SYNC  
Distribution Path  
D
SYNC  
D
CLKOUT13_P  
CLKOUT13_N  
CLKin0  
Pulser  
CLKOUT10_P  
CLKOUT10_N  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKOUT0_P  
CLKOUT0_N  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
CLKOUT11_P  
CLKOUT11_N  
CLKOUT1_P  
CLKOUT1_N  
CLKOUT8_P  
CLKOUT8_N  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKOUT2_P  
CLKOUT2_N  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
CLKOUT9_P  
CLKOUT9_N  
CLKOUT3_P  
CLKOUT3_N  
CLKOUT6_P  
CLKOUT6_N  
CLKOUT4_P  
CLKOUT4_N  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKOUT5_P  
CLKOUT5_N  
CLKOUT7_P  
CLKOUT7_N  
8-1. High Level Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
CLKout0, 2, 4, 6, 8, 10, 12  
CLKoutX_  
CLKoutX_Y_PD  
Device Clock (DCLK)  
FMT  
DCLKX  
_BYP  
CML  
DCLKX_Y  
_POL  
VCO  
DCLKX_Y_ DCLKX_Y_  
CLKoutX_  
SRC_MUX  
DCLKX_Y_  
HS  
DDLY  
DIV  
DCC  
DCLKX_Y_  
DCC  
(8 to 1023)  
(1 to 1023)  
DDLYdX_Y_EN  
DCLKout6/8 to FB_MUX  
CLKoutX_Y_ODL  
SYNC_  
DISx  
CLKoutX_Y_IDL  
SYSREF_GBL_PD  
SCLKX_Y_DIS_MODE  
SYSREF Clock (SCLK)  
SCLKX_Y  
_ADLY_EN  
SYSREF/SYNC  
SCLKX_Y_  
DDLY  
SCLKX_Y  
_HS  
Analog  
DLY  
CLKoutY_  
SRC_MUX  
CLKoutY_  
FMT  
SYSREF_CLR  
CLKout1, 3, 5, 7, 9, 11, 13  
X = Even Numbers  
Y = Odd Numbers  
Legend  
SPI Register  
SYSREF/SYNC Clock  
VCO/Distribution Clock  
Copyright © 2022, Texas Instruments Incorporated  
8-2. Device and SYSREF Clock Output Block  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
SPI Register: SYNC_EN  
Must Be Set To Enable Any  
SYNC/SYSREF Functionality  
CLKIN0  
CLKin0_  
DEMUX  
PLL1  
D
SYNC_PLL1_DLD  
PLL1_DLD  
SYNC_PLL2_DLD  
PLL2_DLD  
SYSREF_REQ_EN  
SYNC  
SYNC  
_MODE  
SYSREF_  
MUX  
SYNC  
_POL  
D
PULSER MODE  
SYSREF_PULSE_CNT  
One  
Shot  
Pulser  
VCO0  
VCO1  
SYSREF_PLSR_PD  
SYNC/SYSREF  
VCO  
_MUX  
SYSREF  
DDLY  
SYSREF  
Divider  
SYSREF_  
1SHOT_MUX  
FIN0  
External  
VCO  
SYSREF_PD  
SYSREF_DDLY_PD  
DCLKout6  
DCLKout8  
OSCin  
OSCout  
_MUX  
SYNC_  
DISSYSREF  
FB_MUX  
OSCout  
CLKin1  
CLKIN1  
FB_MUX  
PLL1  
CLKin1_  
DEMUX  
DCLKout0, 2, 4, 6, 8, 10, 12  
Clock  
VCO Frequency  
DDLY  
(4 to 32)  
Divider  
(1 to 32)  
Output  
Buffer  
Distribution Path  
DCC  
SYNC_  
DISX  
SYSREF/SYNC  
Digital  
DLY  
Analog  
DLY  
Output  
Buffer  
Legend  
SYSREF_CLR  
SYSREF/SYNC Clock  
VCO/Distribution Clock  
SPI Register  
SDCLKout1, 3, 5, 7, 9, 11, 13  
Copyright © 2022, Texas Instruments Incorporated  
8-3. SYNC/SYSREF Clocking Paths  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Synchronizing PLL R Dividers  
In some cases, it is necessary to synchronize PLL R dividers to enable determinism of clocks outputs to inputs.  
This typically is required when the fraction Total PLL N divide / Total PLL R divide does not reduce to N / 1.  
8.3.1.1 PLL1 R Divider Synchronization  
It is possible to use the CLKIN0 or SYNC pin to synchronize the PLL1 R divider. To do this, the device is set up  
for synchronization, the PLL1 R divider is armed for synchronization, and then the rising sync edge arrives from  
either the SYNC pin or CLKIN0. After the PLL1 R divider is armed, PLL1 is unlocked until the synchronization  
edge arrives and allows the divider to operate and the PLL to lock. The procedure to synchronize PLL1 R is as  
follows:  
1. Setup device for synchronizing PLL1 R:  
PLL1R_SYNC_EN = 0x1  
PLL1R_SYNC_SRC = 0x1 (SYNC pin) or 0x2 (CLKIN0)  
CLKin0_DEMUX = 0x2 (PLL1)  
CLKin1_DEMUX = 0x2 (PLL1)  
CLKin0_TYPE = 0x1 (MOS) for DC-coupled or CLKin0_TYPE = 0x0 (Bipolar) for AC-coupled  
2. Arm PLL1 R divider for synchronization  
PLL1R_RST = 1, then 0.  
PLL1 is unlocked.  
3. Send rising edge on SYNC pin or CLKIN0.  
PLL1 R divider is released from reset and PLL1 relocks.  
It is necessary to meet a setup and hold time when CLKIN0 or SYNC pin goes high to ensure deterministic reset  
of the PLL1 R divider.  
The SYNC_POL bit has no effect on SYNC polarity for PLL1 R synchronization.  
8.3.1.2 PLL2 R Divider Synchronization  
The SYNC pin must be used to synchronized the PLL2 R divider. When PLL2R_SYNC_EN = 1, as long as the  
SYNC pin is held high, the PLL2 R divider is held in reset. When the SYNC pin is returned low, the divider is  
allowed to continue dividing. While PLL2R_SYNC_EN = 1 and SYNC pin is high PLL2 is unlocked.  
It is necessary to meet a setup and hold time when SYNC pin goes low to ensure deterministic reset of the PLL2  
R divider.  
The SYNC_POL bit has no effect on SYNC polarity for PLL2 R synchronization.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.2 SYNC/SYSREF  
The SYNC and SYSREF signals share the same SYNC/SYSREF Clock Distribution path. To properly use SYNC  
and/or SYSREF for JESD204B/C, it is important to understand the SYNC/SYSREF system. 8-2 shows the  
detailed diagram of a clock output block with SYNC circuitry included. 8-3 shows the interconnects and  
highlights some important registers used in controlling the device for SYNC/SYSREF purposes.  
To reset or synchronize a divider, the following conditions must be met:  
1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.  
2. SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF  
signal.  
If SYSREF block is being used, the SYSREF_PD bit must be clear.  
If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.  
For each CLKOUTx or CLKOUTy being used for SYSREF, the respective SCLKX_Y_PD bit must be  
cleared.  
3. DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits must be clear to power up the digital delay circuitry used  
during SYNC to cause deterministic phase between the device clock dividers and the global SYSREF  
divider.  
4. The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX  
register selects the SYNC source which resets the SYSREF/CLKOUTx dividers, provided the corresponding  
SYNC_DISX bit is clear.  
5. Other bits which impact the operation of SYNC such as SYNC_1SHOT_EN may be set as desired.  
6. After these dividers are synchronized, the DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits may be set to  
save current. Clearing them to power up may disrupt the output clock phase.  
8-2 shows the some possible combinations of SYSREF_MUX and SYNC_MODE.  
8-2. Some Possible SYNC Configurations  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
No SYNC will occur.  
SYNC Disabled  
0
0
CLKin0_DEMUX 0  
Basic SYNC functionality, SYNC pin polarity is  
selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the SYNC_POL  
bit.  
Pin or SPI SYNC  
1
0
CLKin0_DEMUX 0  
Differential input  
SYNC  
X
2
0 or 1  
2
CLKin0_DEMUX = 0  
Differential CLKin0 now operates as SYNC input.  
JESD204B/C  
Pulser on pin  
transition.  
Produce SYSREF_PULSE_CNT programmed  
number of pulses on pin transition. SYNC_POL can  
be used to cause SYNC through SPI.  
SYSREF_PULSE_CNT  
sets pulse count  
JESD204B/C  
Pulser on SPI  
programming.  
SYSREF_PULSE_CNT  
sets pulse count  
Programming SYSREF_PULSE_CNT register starts  
sending the number of pulses.  
3
1
2
1
SYSREF operational,  
SYSREF Divider as  
required for training frame for non-JESD converters such as LM97600.  
size.  
Allows precise SYNC for n-bit frame training patterns  
Re-clocked SYNC  
When SYNC pin is asserted, continuous SYSREF  
External SYSREF  
request  
SYSREF_REQ_EN = 1  
Pulser powered up  
pulses occur. Turning on and off of the pulses is  
synchronized to prevent runt pulses from occurring on  
SYSREF.  
0
2
3
SYSREF_PD = 0  
SYSREF_DDLY_PD = 0  
Continuous  
SYSREF  
X
Continuous SYSREF signal.  
SYSREF_PLSR_PD = 1  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
NAME  
8-2. Some Possible SYNC Configurations (continued)  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
Re-clocked  
SYSREF  
distribution  
SYSREF_DDLY_PD = 1  
SYSREF_PLSR_PD = 1  
SYSREF_PD = 1.  
Fan-out of CLKin0 reclocked to the clock distribution  
path.  
0
0
(1) SCLKX_Y_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SCLKX_Y when SCLKX_Y_MUX  
= 1 (SYSREF output)  
备注  
The SYNC/SYSREF signal is reclocked by the Clock Distribution Path, therefore an active clock must  
be present on the Clock Distribution Path (either from VCO or FIN0/FIN1 pins in distribution mode) for  
SYNC to take effect.  
备注  
Any device clock divider or the SYSREF divider which does not have the SYNC_DISX bit or  
SYNC_DISSYSREF bit set will reset while SYNC/SYSREF Distribution Path is high. This is especially  
important for the SYSREF divider which has the ability to reset itself if the SYNC_DISSYSREF = 0! Be  
sure to set SYNC_DISX/SYNC_DISSYSREF bits as required.  
备注  
While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC procedure requires to first program  
Divide-by-4 and then back to Divide-by-2 or Divide-by-3 before doing SYNC.  
8.3.3 JEDEC JESD204B/C  
8.3.3.1 How to Enable SYSREF  
8-3 summarizes the bits required to make the SYSREF functionality operational.  
8-3. SYSREF Bits  
REGISTER  
0x140  
FIELD  
VALUE  
DESCRIPTION  
SYSREF_PD  
0
Must be clear, power-up SYSREF circuitry including the SYSREF divider.  
SYSREF_DDLY  
_PD  
Must be clear to power-up digital delay circuitry. Must be powered up during initial SYNC  
to ensure deterministic timing to other clock dividers.  
0x140  
0x143  
0
1
SYNC_EN  
Must be set, enable SYNC.  
Do not hold local SYSREF DDLY block in reset except at start.  
Anytime SYSREF_PD = 1, because of user programming or device RESET, it is  
necessary to set SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital  
delay. After the delay is cleared, SYSREF_CLR must be cleared to allow SYSREF to  
operate.  
0x143  
SYSREF_CLR  
1 0  
Enabling JESD204B/C operation involves synchronizing all the clock dividers with the SYSREF divider, then  
configuring the actual SYSREF functionality.  
8.3.3.1.1 Setup of SYSREF Example  
The following procedure is a programming example for a system which is to operate with a 3000-MHz VCO  
frequency. Use CLKOUT0 and CLKOUT2 to drive converters at 1500 MHz. Use CLKOUT4 to drive an FPGA at  
150 MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.  
1. Program registers 0x000 to 0x555 (refer to Recommended Programming Sequence). Key to prepare for  
SYSREF operations:  
a. Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0  
b. Setup output dividers as per example: DCLK0_1_DIV and DCLK2_3_DIV = 2 for frequency of 1500  
MHz. DCLK4_5_DIV = 20 for frequency of 150 MHz.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
c. Setup output dividers as per example: SYSREF_DIV = 300 for 10-MHz SYSREF.  
d. Setup SYSREF: SYSREF_PD = 0, SYSREF_DDLY_PD = 0, DCLK0_1_DDLY_PD = 0,  
DCLK2_3_DDLY_PD = 0, DCLK4_5_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0,  
SYSREF_PULSE_CNT = 1 (2 pulses). SCLK0_1_PD = 0, SCLK2_3_PD = 0, SCLK4_5_PD = 0.  
e. Clear Local SYSREF DDLY: SYSREF_CLR = 1.  
2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B/C:  
a. Set device clock and SYSREF divider digital delays: DCLK0_1_DDLY, DCLK2_3_DDLY,  
DCLK4_5_DDLY, and SYSREF_DDLY.  
b. Set device clock digital delay half steps: DCLK0_1_HS, DCLK2_3_HS, DCLK4_5_HS.  
c. Set SYSREF clock digital delay as required to achieve known phase relationships: SCLK0_1_DDLY,  
SCLK2_3_DDLY, and SCLK4_5_DDLY. If half step adjustments are required SCLK0_1_HS,  
SCLK2_3_HS, and SCLK4_5_HS.  
d. To allow SYNC to affect dividers: SYNC_DIS0 = 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0,  
SYNC_DISSYSREF = 0.  
e. Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.  
3. Now that dividers are synchronized, disable SYNC from resetting these dividers. It is not desired for  
SYSREF to reset it's own divider or the dividers of the output clocks.  
a. Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1,  
SYNC_DISSYSREF = 1.  
4. Release reset of local SYSREF digital delay.  
a. SYSREF_CLR = 0. Note this bit needs to be set for only 15 clock distribution path clocks after  
SYSREF_PD = 0.  
5. Set SYSREF operation.  
a. Allow pin SYNC event to start pulser: SYNC_MODE = 2.  
b. Select pulser as SYSREF signal: SYSREF_MUX = 2.  
6. Complete! Assert the SYNC pin or toggle the SYNC_POL to send a series of 2 SYSREF pulses.  
8.3.3.1.2 SYSREF_CLR  
The local digital delay of the SCLKX_Y_DDLY is implemented as a shift buffer. To ensure no unwanted pulses  
occur at this SYSREF output at start-up, when using SYSREF, requires clearing the buffers by setting  
SYSREF_CLR = 1 for 15 VCO clock cycles. After a reset, this bit is set, so it must be cleared before SYSREF  
output is used.  
If the SYSREF pulser is used. It is also required to set SYSREF_CLR = 1 for 15 VCO clock cycles after the  
SYSREF pulser is powered up.  
8.3.3.2 SYSREF Modes  
8.3.3.2.1 SYSREF Pulser  
This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming.  
This implements the gapped periodic functionality of the JEDEC JESD204B/C specification.  
When in SYSREF Pulser mode, the user can adjust the SYSREF_PULSE_CNT field in register 0x13E to  
program the pulser to send out a set number of pulses.  
8.3.3.2.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
备注  
TI does not recommend continuous operation of the SYSREF clock due to crosstalk from the SYSREF  
clock to device clock. JESD204B/C is designed to operate with a single burst of pulses to initialize the  
system at start-up, after which it is theoretically not required to send another SYSREF because the  
system will continue to operate with deterministic phases.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.3.2.3 SYSREF Request  
This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses  
using the SYNC/SYSREF_REQ pin.  
Setup the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not  
need to be powered for this mode of operation.  
When the SYSREF_REQ pin is asserted, the SYSREF_MUX is synchronously set to continuous mode,  
providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is unasserted. When the  
SYSREF_REQ pin is unasserted, the final SYSREF pulse completes sending synchronously.  
8.3.4 Digital Delay  
Digital (coarse) delay allows a group of outputs to be delayed by 8 to 1023 clock distribution path cycles. The  
delay step can be as small as half the period of the clock distribution path cycle by using the DCLKX_Y_HS bit.  
There are two different ways to use the digital delay:  
1. Fixed digital delay  
2. Dynamic digital delay  
In both delay modes, the regular clock divider is substituted with an alternative divide value.  
8.3.4.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs will be LOW  
for a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay  
during application run time should use dynamic digital delay to adjust phase.  
8.3.4.1.1 Fixed Digital Delay Example  
Assuming the device already has the following initial configurations and the application delays CLKOUT2 by one  
VCO cycle compared to CLKOUT0:  
VCO frequency = 2949.12 MHz  
CLKOUT0 = 368.64 MHz (DCLK0_1_DIV = 8, CLKOUT0_SRC_MUX = 0 (Device Clock))  
CLKOUT2 = 368.64 MHz (DCLK2_3_DIV = 8, CLKOUT2_SRC_MUX = 0 (Device Clock))  
The following steps should be followed:  
1. Set DCLK0_1_DDLY = 8 and DCLK2_3_DDLY = 9. Static delay for each clock.  
2. Set DCLK0_1_DDLY_PD = 0 and DCLK2_3_DDLY_PD = 0. Power up the digital delay circuit.  
3. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the outputs to be synchronized.  
4. Perform SYNC by asserting, then unasserting SYNC. The can be done by either using the SYNC_POL bit or  
the SYNC pin.  
5. Now that the SYNC is complete, you can power down DCLK0_1_DDLY_PD = 1 and/or DCLK2_3_DDLY_PD  
= 1 to save power.  
6. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1. Prevent the output from being synchronized, as this is very  
important for steady-state operation when using JESD204B/C.  
No CLKout during SYNC  
CLKout0  
368.64 MHz  
CLKout2  
368.64 MHz  
SYNC event  
1 VCO cycle delay  
8-4. Fixed Digital Delay Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.4.2 Dynamic Digital Delay  
Dynamic digital delay allows the phase of clocks to be changed with respect to each other with little impact to the  
clock signal.  
For the device clock dividers this is accomplished by substituting the regular clock divider with an alternate divide  
value of one larger than the regular divider for one cycle. This substitution will occur a number of times equal to  
the value programmed into the DDLYd_STEP_CNT field for all outputs with DDLYdX_EN = 1.  
For the SYSREF divider, an alternate divide value is substituted for the regular divide value. This substitution will  
occur a number of times equal to the value programmed into the DDLYd_STEP_CNT if DDLYd_SYSREF_EN =  
1. To achieve one cycle delay as is done for the device clock dividers, set the SYSREF_DDLY value to one  
greater than SYSREF_DIV+SYSREF_DIV/2. For example, for a SYSREF divider of 100, to achieve 1 cycle  
delay, SYSREF_DDLY = 100 + 50 + 1 = 151.  
While using the Dynamic Digital Delay feature, CLKin_OVERRIDE must be set to 0.  
By programming a larger alternate divider (delay) value, the phase of the adjusted outputs are delayed with  
respect to the other clocks.  
By programming a smaller alternate divider (delay) value, the phase of the adjusted outputs are advanced  
with respect to the other clocks.  
8.3.4.3 Single and Multiple Dynamic Digital Delay Example  
In this example, two separate adjustments are made to the device clocks. In the first adjustment, a single delay  
of one VCO cycle occurs between CLKOUT2 and CLKOUT0. In the second adjustment, two delays of one VCO  
cycle occur between CLKOUT2 and CLKOUT0. At this point in the example, CLKOUT2 is delayed three VCO  
cycles behind CLKOUT0.  
Assuming the device already has the following initial configurations:  
VCO frequency: 2949.12 MHz  
CLKOUT0 = 368.64 MHz, DCLK0_1_DIV = 8  
CLKOUT2 = 368.64 MHz, DCLK2_3_DIV = 8  
The following steps illustrate the example above:  
1. Set DCLK2_3_DDLY = 4. First part of delay for CLKOUT2.  
2. Set DCLK2_3_DDLY_PD = 0. Enable the digital delay for CLKOUT2.  
3. Set DDLYd0_EN = 0 and DDLYd2_EN = 1. Enable dynamic digital delay for CLKOUT2 but not CLKOUT0.  
4. Set DDLYd_STEP_CNT = 1. This begins the first adjustment.  
Before step 4, CLKOUT2 clock edge is aligned with CLKOUT0.  
After step 4, CLKOUT2 counts nine clock distribution path cycles to the next rising edge, one greater than the  
divider value, effectively delaying CLKOUT2 by one VCO cycle with respect to CLKOUT0. This is the first  
adjustment.  
5. Set DDLYd_STEP_CNT = 2. This begins the second adjustment.  
Before step 5, CLKOUT2 clock edge was delayed one clock distribution path cycle from DCLKOUT0.  
After step 5, CLKOUT2 counts nine clock distribution path cycles twice, each time one greater than the divide  
value, effectively delaying CLKOUT2 by two clock distribution path cycles with respect to CLKOUT0. This is the  
second adjustment.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VCO  
2949.12 MHz  
CLKout0  
368.64 MHz  
CLKout2  
368.64 MHz  
First  
Adjustment  
DCLK2_3_DIV + 1  
CLKout2  
368.64 MHz  
Second  
Adjustment  
DCLK2_3_DIV + 1  
DCLK2_3_DIV + 1  
8-5. Single and Multiple Adjustment Dynamic Digital Delay Example  
8.3.5 SYSREF to Device Clock Alignment  
To ensure proper JESD204B/C operation, the timing relationship between the SYSREF and the Device clock  
must be adjusted for optimum setup and hold time as shown in 8-6. The global SYSREF digital delay  
(SYSREF_DDLY), local SYSREF digital delay (SCLKX_Y_DDLY), local SYSREF half step (SCLKX_Y_HS), and  
local SYSREF analog delay (SCLKX_Y_ADLY, SCLK2_3_ADLY_EN) can be adjusted to provide the required  
setup and hold time between SYSREF and Device Clock. It is also possible to adjust the device clock digital  
delay (DCLKX_Y_DDLY) and half step (DCLK0_1_HS, DCLK0_1_DCC) to adjust phase with respect to  
SYSREF.  
8-6. SYSREF to Device Clock Timing alignment  
Depending on the DCLKout_X path settings, local SCLK_X_Y_DDLY might need adjustment factor. Following  
equation can be used to calculate the required Digital Delay Values to align SYSREF to the corresponding  
DCLKOUT  
SYSREF_DDLY = DCLKX_Y_DDLY 1 + DCLK_DIV_ADJUST + DCLK_HS_ADJUST SCLK_X_Y_DDLY  
(1)  
SYSREF_DDLY > 7; SCLK_X_Y_DDLY > 1.  
8-4. DCLK_DIV_ADJUST  
DCLKX_Y_DIV  
DCLK_DIV_ADJUST  
>6  
6
0
1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-4. DCLK_DIV_ADJUST (continued)  
DCLKX_Y_DIV  
DCLK_DIV_ADJUST  
5
3
4
0
3 (1)  
2 (1)  
2  
2  
(1) Refer to the SYNC requirement SYNC/SYSREF  
8-5. DCLK_HS_ADJUST  
DCLK & HS  
DCLK_HS_ADJUST  
0
1
0
1
For example: DCLKX_Y_DIV = 32, DCLKX_Y_DDLY = 10, DCC&HS = 1;  
SYSREF_DDLY=10 1 + 0 + 1 2 = 8  
8.3.6 Input Clock Switching  
Manual, pin select, and automatic are three different kinds clock input switching modes can be selected  
according to the combination of bits as illustrated in 8-7.  
Input Clock Select  
It is required for CLKin1  
to be selected for  
distribution mode.  
Recommend using  
CLKin_SEL_MANUAL  
CLKin_SEL_  
AUTO_EN  
Yes  
No  
Active CLKin is set Auto  
Mode State Machine  
CLKin_SEL_  
PIN_EN  
Yes  
No  
Active CLKin is set by  
CLKin_SEL_MANUAL  
CLKin_SEL_  
PIN_POL  
Yes  
No  
Active CLKin is set by  
CLKin_SEL# and Status_LD1  
pins, inverted.  
Active CLKin is set by  
CLKin_SEL# and Status_LD1  
pins.  
8-7. CLKINx Input Reference  
The following sections provide information about how the active input clock is selected and what causes a  
switching event in the various clock input selection modes.  
8.3.6.1 Input Clock Switching - Manual Mode  
When CLKin_SEL_AUTO_EN = 0 and CLKin_SEL_PIN_EN = 0, the active CLKin is selected by  
CLKin_SEL_MANUAL. Programming a value of 0, 1, or 2 to CLKin_SEL_MANUAL causes CLKin0, CLKin1, or  
CLKin2, respectively, to be the selected active input clock. In this mode, the EN_CLKinX bits are overridden  
such that the CLKinX buffer operates even if CLKinX is disabled with EN_CLKinX = 0.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
If holdover is entered in this mode by setting CLKin_SEL_MANUAL = 3, then the device will re-lock to the  
selected CLKin upon holdover exit.  
8.3.6.2 Input Clock Switching - Pin Select Mode  
When CLKin_SEL_AUTO_EN = 0 and CLKin_SEL_PIN_EN = 1, the active CLKin is selected by the  
CLKin_SEL# and Status_LD1 pins.  
Configuring Pin Select Mode  
The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input  
for pin select mode.  
The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input  
for pin select mode.  
The polarity of the clock input select pins can be inverted with the CLKin_SEL_PIN_POL bit.  
The pin select mode overrides the EN_CLKinX bits such that the CLKinX buffer operates even if CLKinX is  
disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX =  
1) that could be switched to.  
8.3.6.3 Input Clock Switching - Automatic Mode  
When CLKin_SEL_AUTO_EN = 1, LOS_EN = 1, and HOLDOVER_EXIT_MODE = 0 (Exit based on LOS), the  
active clock is selected in priority order with CLKin0 being the highest priority, CLKin1 second, and CLKin2 third.  
For a clock input to be eligible to be switched to, it must be enabled using EN_CLKinX. The LOS_TIMEOUT  
should also be set to a frequency below the input frequency.  
To ensure LOS is valid for AC-coupled inputs, the MOS mode must be set for the CLKin and no termination is  
allowed to be between the pins unless the pins are DC-blocked. For example, no 100-Ω termination across  
CLKin0 and CLKin0* pins on IC side of AC-coupling capacitors.  
8.3.7 Digital Lock Detect (DLD)  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two  
signals is less than a specified window size (ε) a lock detect count increments. When the lock detect count  
reaches a user specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted true. Once digital  
lock detect is true, a single phase comparison outside the specified window will cause digital lock detect to be  
asserted false. This is illustrated in 8-8.  
NO  
NO  
PLLX  
Lock Detected = False  
Lock Count = 0  
YES  
YES  
Increment  
PLLX Lock Count  
PLLX  
Lock Detected = True  
PLLX Lock Count =  
PLLX_DLD_CNT  
START  
Phase Error < g  
Phase Error < g  
YES  
NO  
8-8. Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter to ensure that lock detect is not asserted for  
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial  
phase lock.  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.7.1 Calculating Digital Lock Detect Frequency Accuracy  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more information.  
8.3.8 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed  
tuning voltage is set on CPout1 to operate PLL1 in open loop.  
8.3.8.1 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode.  
Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage  
(EN_MAN_DAC = 1) or a tracked voltage (EN_MAN_DAC = 0).  
8.3.8.1.1 Fixed (Manual) CPout1 Holdover Mode  
By programming MAN_DAC_EN = 1, then the MAN_DAC value will be set on the CPout1 pin during holdover.  
The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value,  
then re-program MAN_DAC value to a user desired value based on information from previous DAC read backs.  
This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.  
8.3.8.1.2 Tracked CPout1 Holdover Mode  
By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 is set on the CPout1  
pin during holdover. When the DAC has acquired the current CPout1 voltage, the DAC_Locked signal is set,  
which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX,  
respectively.  
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector  
frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).  
The DAC update rate should be programmed for 100 kHz to ensure DAC holdover accuracy.  
The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024-  
kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the  
device to look-back and set CPout1 at a previous good CPout1 tuning voltage values before the event which  
caused holdover to occur.  
The current voltage of DAC value can be read back using RB_DAC_VALUE, see the RB_DAC_VALUE section.  
8.3.8.2 During Holdover  
PLL1 is run in open-loop mode.  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD is unasserted.  
The HOLDOVER status is asserted  
During holdover, if PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.  
CPout1 voltage is set to:  
a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).  
a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).  
PLL1 attempts to lock with the active clock input.  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.8.3 Exiting Holdover  
Holdover mode can be exited in one of two ways.  
Manually, by programming the device from the host.  
Automatically, when the LOS signal unasserts for a clock that provides a valid input to PLL1.  
8.3.8.4 Holdover Frequency Accuracy and DAC Performance  
When in holdover mode, PLL1 runs in open loop and the DAC sets the CPout1 voltage. If fixed CPout1 mode is  
used, then the output of the DAC is dependent upon the MAN_DAC register. If tracked CPout1 mode is used,  
then the output of the DAC is approximately the same voltage at the CPout1 pin before holdover mode was  
entered. When using Tracked mode and MAN_DAC_EN = 1, the DAC value during holdover is loaded with the  
programmed value in MAN_DAC and not the tracked value.  
When in Tracked CPout1 mode, the DAC has a worst-case tracking error of ±2 LSBs once PLL1 tuning voltage  
is acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode  
caused by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use.  
Therefore, the accuracy of the system when in holdover mode in ppm is:  
6.4 mV × Kv × 1e6  
Holdover accuracy (ppm) =  
VCXO Frequency  
(2)  
As an example, consider a system with a 19.2-MHz clock input, a 153.6-MHz VCXO with a Kv of 17 kHz/V. The  
accuracy of the system in holdover in ppm is:  
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz  
(3)  
It is important to account for this frequency error when determining the allowable frequency error window to  
cause holdover mode to exit.  
8.3.9 PLL2 Loop Filter  
PLL2 has an integrated loop filter of C1i = 60 pF, R3 = 2400 Ω, C3 = 50 pF, R4 = 200 Ω and C4 = 10 pF as  
shown in 8-9. Loop filter components C1, C2, and R2 can be solved using TI software. See Device Support  
for more information.  
8-9. PLL2 On-Chip Loop Filter  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
This device can be configured for many different use cases. The following simplified block diagrams help show  
the user the different use cases of the device.  
8.4.1 DUAL PLL  
8.4.1.1 Dual Loop  
8-10 shows the typical use case of dual loop mode. In dual loop mode, the reference to PLL1 is from CLKin0,  
CLKin1, or CLKin2. An external VCXO is used to provide feedback for the first PLL and a reference to the  
second PLL. This first PLL cleans the jitter with the VCXO by using a narrow loop bandwidth. The VCXO may be  
buffered through the OSCout port. The VCXO is used as the reference to PLL2 and may be doubled using the  
frequency doubler. The internal VCO drives up to seven divide/delay blocks which drive up to 14 clock outputs.  
Hitless switching and holdover functionality are optionally available when the input reference clock is lost.  
Holdover works by forcing a DAC voltage to the tuning voltage of the VCXO.  
It is also possible to use an external VCO in place of PLL2's internal VCO. In this case one less CLKin is  
available as a reference as CLKin1 is used for external input.  
External  
Loop Filter  
OSCOUT_P  
OSCOUT_N  
External  
VCXO  
CLKINx_P  
CLKINx_N  
PLL1  
Phase  
Detector/  
Charge  
Pump  
R
CPOUT2  
7 Blocks  
External  
Loop Filter  
Up to 3  
inputs  
Device Clock  
Divider  
Digital Delay  
R
N
PLL2  
PLL2  
CLKOUTx_P  
CLKOUTx_N  
Phase  
Detector/  
Charge  
Pump  
N
Up to 14 Clock or  
SYSREF Outputs  
PLL1  
7 Blocks  
SYSREF  
CLKOUTy_P  
CLKOUTy_N  
Global SYSREF  
Divider and Delay  
Digital Delay  
Analog Delay  
8-10. Simplified Functional Block Diagram for Dual Loop Mode  
8.4.1.2 Dual Loop With Cascaded 0-Delay  
8-11 shows the use case of cascaded 0-delay dual loop mode. This configuration differs from dual loop mode  
8-10 in that the feedback for PLL2 is driven by a clock output instead of the VCO output directly.  
It is also possible to use an external VCO in place of the internal VCO of the PLL2, but one less CLKin is  
available as a reference and the external 0-delay feedback is not available.  
External  
Loop Filter  
OSCOUT_P  
OSCOUT_N  
External  
VCXO  
CLKINx_P  
CLKINx_N  
PLL1  
Phase  
Detector/  
Charge  
Pump  
R
CPOUT2  
7 Blocks  
External  
Loop Filter  
Up to 3  
inputs  
Device Clock  
Divider  
Digital Delay  
R
N
PLL2  
PLL2  
CLKOUTx_P  
CLKOUTx_N  
Phase  
Detector/  
Charge  
Pump  
N
Up to 14 Clock or  
SYSREF Outputs  
PLL1  
7 Blocks  
SYSREF  
CLKOUTy_P  
CLKOUTy_N  
Global SYSREF  
Divider and Delay  
Digital Delay  
Analog Delay  
Internal or external loopback, user programmable  
8-11. Simplified Functional Block Diagram for Cascaded 0-Delay Dual Loop Mode  
8.4.1.3 Dual Loop With Nested 0-Delay  
8-12 shows the use case of nested 0-delay dual loop mode. This configuration is similar to the dual PLL in 图  
8-10 except that the feedback to the first PLL is driven by a clock output. The PLL2 reference OSCIN is not  
deterministic to the CLKIN or feedback clock.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
External  
Loop Filter  
OSCOUT_P  
OSCOUT_N  
External  
VCXO  
CLKINx_P  
CLKINx_N  
PLL1  
Phase  
Detector/  
Charge  
Pump  
R
CPOUT2  
7 Blocks  
External  
Loop Filter  
Up to 3  
inputs  
Device Clock  
Divider  
Digital Delay  
R
N
PLL2  
PLL2  
CLKOUTx_P  
CLKOUTx_N  
Phase  
Detector/  
Charge  
Pump  
N
Up to 14 Clock or  
SYSREF Outputs  
PLL1  
7 Blocks  
SYSREF  
CLKOUTy_P  
CLKOUTy_N  
Global SYSREF  
Divider and Delay  
Digital Delay  
Analog Delay  
Internal or external loopback, user programmable  
8-12. Simplified Functional Block Diagram for Nested 0-Delay Dual Loop Mode  
8.4.2 Single PLL  
8.4.2.1 PLL2 Single Loop  
8-13 shows the use case of PLL2 single loop mode. When used with a high-frequency clean reference  
performance as good as dual loop mode may be achieved. Traditionally the OSCIN is used as a reference to  
PLL2, but it is also possible to use CLKINx as a reference to PLL2.  
External  
Loop Filter  
OSCOUT_P  
OSCOUT_N  
CPOUT2  
7 Blocks  
OSCIN_P  
OSCIN_N  
Device Clock  
Divider  
R
N
PLL2  
PLL2  
CLKOUTx_P  
CLKOUTx_N  
Phase  
Detector/  
Charge  
Pump  
Up to 4  
Inputs  
Digital Delay  
CLKINx_P  
CLKINx_N  
Up to 14 Clock or  
SYSREF Outputs  
7 Blocks  
SYSREF  
CLKOUTy_P  
CLKOUTy_N  
Global SYSREF  
Divider and Delay  
Digital Delay  
Analog Delay  
8-13. Simplified Functional Block Diagram for Single Loop Mode  
8.4.2.2 PLL2 With External VCO  
You can use the FIN0/FIN1 input pins to add an external VCO. The input may be single-ended or differential. At  
high frequency, the input impedance to FIN0/FIN1 is low. A resistive pad is recommended for matching.  
External Loop Filter  
OSCOUT_P  
FIN0_P  
FIN0_N  
7 Blocks  
OSCOUT_N  
CPOUT2  
OSCIN_P  
OSCIN_N  
Device Clock  
Divider  
Digital Delay  
R
N
PLL2  
Phase  
Detector/  
Charge  
Pump  
CLKOUTx_P  
CLKOUTx_N  
Up to3  
Inputs  
PLL2  
Up to 14 Clock or  
SYSREF Outputs  
CLKINx_P  
CLKINx_N  
7 Blocks  
SYSREF  
CLKOUTy_P  
CLKOUTy_N  
Global SYSREF  
Divider and Delay  
Digital Delay  
Analog Delay  
8-14. Simplified Functional Block Diagram for Single Loop Mode With External VCO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4.3 Distribution Mode  
8-15 shows the use case of distribution mode. As in all the other use cases, OSCIN to OSCOUT can be used  
as a buffer to OSCIN or from clock distribution path through CLKOUT6, CLKOUT8, or the SYSREF divider.  
At high frequency, the input impedance to FIN0/FIN1 is low and a resistive pad is recommended for matching.  
OSCIN_P  
OSCIN_N  
OSCOUT_P  
OSCOUT_N  
CLKOUT6/8  
FIN0_P  
7 Blocks  
FIN0_N  
Device Clock  
Divider  
Digital Delay  
Analog Delay  
÷2  
CLKOUTx_P  
CLKOUTx_N  
CLKIN1_P/FIN1_P  
CLKIN1_N/FIN1_N  
Up to 14 Clock or  
SYSREF Outputs  
7 Blocks  
CLKOUTx_P  
CLKOUTx_N  
SYSREF  
Global SYSREF  
Divider and Delay  
CLKIN1_P/FIN1_P  
CLKIN1_N/FIN1_N  
Digital Delay  
Analog Delay  
A
8-15. Simplified Functional Block Diagram for Distribution Mode  
8.5 Programming  
The device is programmed using 24-bit registers. Each register consists of a 1-bit command field (R/W), a 15-bit  
address field (A14 to A0) and a 8-bit data field (D7 to D0). The contents of each register is clocked in MSB first  
(R/W), and the LSB (D0) last. During programming, the CS* signal is held low. The serial data is clocked in on  
the rising edge of the SCK signal. After the LSB is clocked in, the CS* signal goes high to latch the contents into  
the shift register. TI recommends to program registers in numeric order (for example, 0x000 to 0x555 with  
exceptions noted in the Recommended Programming Sequence). Each register consists of one or more fields  
which control the device functionality. See the Electrical Characteristics table and 6-1 for timing details.  
8.5.1 Recommended Programming Sequence  
Registers are generally programmed in numeric order with 0x000 being the first and 0x555 being the last register  
programmed. The recommended programming sequence from POR involves:  
1. Program register 0x000 with RESET = 1.  
2. Program defined registers from 0x000 to 0x165.  
3. If PLL2 is used, program 0x173 with PLL2_PD and PLL2_PRE_PD clear to allow PLL2 to lock after PLL2_N  
is programmed.  
4. Continue programming defined registers from 0x166 to 0x555.  
备注  
When using the internal VCO, PLL2_N registers 0x166, 0x167, and 0x168 must be programmed after  
other PLL2 dividers are programed to ensure proper VCO frequency calibration. This is also true for  
PLL2_N_CAL registers 0x163, 0x164, 0x165 when PLL2_NCLK_MUX = 1. So if any divider such as  
PLL2_R is altered to change the VCO frequency, the VCO calibration must be run again by  
programming PLL2_N.  
Power up PLL2 by setting PLL2_PRE_PD = 0 and PLL2_PD = 0 in register 0x173 before  
programming PLL2_N.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 Register Map for Device Programming  
8-6 provides the register map for device programming. Any register can be read from the same data address  
it is written to.  
8-6. Register Map  
ADDRESS  
DATA[7:0]  
[14:0]  
23:8  
7
6
5
4
3
2
1
0
SPI_3WIRE  
_DIS  
0x000  
RESET  
0
0
0
0
0
0
POWER  
DOWN  
0x002  
0
0
0
0
0
0
0
0x003  
0x004  
0x005  
0x006  
0x00C  
0x00D  
0x100  
0x101  
ID_DEVICE_TYPE  
ID_PROD[7:0]  
ID_PROD[15:8]  
ID_MASKREV  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
DCLK0_1_DIV[7:0]  
DCLK0_1_DDLY[7:0]  
CLKout0_1_OD  
L
DCLK0_1_DDLY  
_PD  
0x102  
0x103  
0x104  
0x105  
CLKout0_1_PD  
CLKout0_1_IDL  
DCLK0_1_DDLY[9:8]  
DCLK0_1_BYP DCLK0_1_DCC DCLK0_1_POL  
SCLK0_1_DIS_MODE SCLK0_1_POL  
SCLK0_1_ADLY  
SCLK0_1_DDLY  
DCLK0_1_DIV[9:8]  
CLKout0_SRC_  
MUX  
0
0
1
0
DCLK0_1_PD  
SCLK0_1_PD  
DCLK0_1_HS  
SCLK0_1_HS  
CLKout1_SRC_  
MUX  
SCLK0_1_ADLY  
_EN  
0
0
0
0
0x106  
0x107  
0x108  
0x109  
0
0
CLKout1_FMT  
CLKout0_FMT  
DCLK2_3_DIV[7:0]  
DCLK2_3_DDLY[7:0]  
DCLK2_3_DDLY  
CLKout2_3_OD  
L
0x10A  
0x10B  
0x10C  
0x10D  
CLKout2_3_PD  
CLKout2_3_IDL  
DCLK2_3_DDLY[9:8]  
DCLK2_3_DIV[9:8]  
_PD  
CLKout2_SRC_  
MUX  
0
0
1
0
DCLK2_3_PD  
DCLK2_3_BYP DCLK2_3_DCC DCLK2_3_POL  
DCLK2_3_HS  
SCLK2_3_HS  
CLKout3_SRC_  
MUX  
SCLK2_3_PD  
SCLK2_3_DIS_MODE  
SCLK2_3_ADLY  
SCLK2_3_DDLY  
SCLK2_3_POL  
SCLK2_3_ADLY  
_EN  
0
0
0
0
0x10E  
0x10F  
0x110  
0x111  
0
0
CLKout3_FMT  
CLKout2_FMT  
DCLK4_5_DIV[7:0]  
DCLK4_5_DDLY[7:0]  
DCLK4_5_DDLY  
CLKout4_5_OD  
L
0x112  
0x113  
0x114  
0x115  
CLKout4_5_PD  
CLKout4_5_IDL  
DCLK4_5_DDLY[9:8]  
DCLK4_5_DIV[9:8]  
_PD  
CLKout4_SRC_  
MUX  
0
0
1
0
DCLK4_5_PD  
DCLK4_5_BYP DCLK4_5_DCC DCLK4_5_POL  
DCLK4_5_HS  
SCLK4_5_HS  
CLKout5_SRC_  
MUX  
SCLK4_5_PD  
SCLK4_5_DIS_MODE  
SCLK4_5_ADLY  
SCLK4_5_POL  
SCLK4_5_ADLY  
_EN  
0
0
0
0
0x116  
0x117  
0x118  
0
0
SCLK4_5_DDLY  
CLKout4_FMT  
CLKout5_FMT  
DCLK6_7_DIV[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-6. Register Map (continued)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
0x119  
DCLK6_7_DDLY[7:0]  
CLKout6_7_OD  
L
DCLK6_7_DDLY  
_PD  
0x11A  
0x11B  
0x11C  
0x11D  
CLKout6_7_PD  
CLKout6_7_IDL  
DCLK6_7_DDLY[9:8]  
DCLK6_7_BYP DCLK6_7_DCC DCLK6_7_POL  
SCLK6_7_DIS_MODE SCLK6_7_POL  
SCLK6_7_ADLY  
SCLK6_7_DDLY  
DCLK6_7_DIV[9:8]  
CLKout6_SRC_  
MUX  
0
0
1
0
DCLK6_7_PD  
SCLK6_7_PD  
DCLK6_7_HS  
SCLK6_7_HS  
CLKout7_SRC_  
MUX  
SCLK6_7_ADLY  
_EN  
0
0
0
0
0x11E  
0x11F  
0x120  
0x121  
0
0
CLKout7_FMT  
CLKout6_FMT  
DCLK8_9_DIV[7:0]  
DCLK8_9_DDLY[7:0]  
DCLK8_9_DDLY  
CLKout8_9_OD  
L
0x122  
0x123  
0x124  
0x125  
CLKout8_9_PD  
CLKout8_9_IDL  
DCLK8_9_DDLY[9:8]  
DCLK8_9_DIV[9:8]  
_PD  
CLKout8_SRC_  
MUX  
0
0
1
0
DCLK8_9_PD  
DCLK8_9_BYP DCLK8_9_DCC DCLK8_9_POL  
DCLK8_9_HS  
SCLK8_9_HS  
CLKout9_SRC_  
MUX  
SCLK8_9_PD  
SCLK8_9_DIS_MODE  
SCLK8_9_ADLY  
SCLK8_9_POL  
SCLK8_9_ADLY  
_EN  
0
0
0
0
0x126  
0x127  
0x128  
0x129  
0
0
SCLK8_9_DDLY  
CLKout8_FMT  
CLKout9_FMT  
DCLK10_11_DIV[7:0]  
DCLK10_11_DDLY[7:0]  
CLKout10_11_P CLKout10_11_O CLKout10_11_I DCLK10_11_DD  
0x12A  
0x12B  
0x12C  
0x12D  
DCLK10_11_DDLY[9:8]  
DCLK10_11_DIV[9:8]  
D
DL  
DL  
LY_PD  
CLKout10_SRC  
_MUX  
DCLK10_11_BY DCLK10_11_DC DCLK10_11_PO  
0
1
DCLK10_11_PD  
DCLK10_11_HS  
SCLK10_11_HS  
P
C
L
CLKout11_SRC  
_MUX  
SCLK10_11_PO  
L
0
0
SCLK10_11_PD  
SCLK10_11_DIS_MODE  
SCLK10_11_ADLY  
SCLK10_11_AD  
LY_EN  
0
0
0
0
0x12E  
0x12F  
0x130  
0x131  
0
0
SCLK10_11_DDLY  
CLKout10_FMT  
CLKout11_FMT  
DCLK12_13_DIV[7:0]  
DCLK12_13_DDLY[7:0]  
CLKout12_13_P CLKout12_13_O CLKout12_13_I DCLK12_13_DD  
0x132  
0x133  
0x134  
0x135  
DCLK12_13_DDLY[9:8]  
DCLK12_13_DIV[9:8]  
D
DL  
DL  
LY_PD  
CLKout12_SRC  
_MUX  
DCLK12_13_BY DCLK12_13_DC DCLK12_13_PO  
0
1
DCLK12_13_PD  
DCLK12_13_HS  
SCLK12_13_HS  
P
C
L
CLKout13_SRC  
_MUX  
SCLK12_13_PO  
L
0
0
SCLK12_13_PD  
SCLK12_13_DIS_MODE  
SCLK12_13_ADLY  
SCLK12_13_DDLY  
SCLK12_13_AD  
LY_EN  
0
0
0
0
0x136  
0x137  
0x138  
0
0
CLKout13_FMT  
VCO_MUX  
CLKout12_FMT  
OSCout_FMT  
0
0
0
OSCout_MUX  
SYSREF_REQ_  
EN  
0x139  
0
0
0
0
SYNC_BYPASS  
0
SYSREF_MUX  
0x13A  
0x13B  
0x13C  
0x13D  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
0
0
0
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-6. Register Map (continued)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
0x13E  
0
0
0
0
0
SYSREF_PULSE_CNT  
PLL2_RCLK_  
MUX  
PLL2_NCLK_  
MUX  
0x13F  
0x140  
0
PLL1_NCLK_MUX  
FB_MUX  
FB_MUX_EN  
SYSREF_GBL_  
SYSREF_DDLY SYSREF_PLSR  
PLL1_PD  
VCO_LDO_PD  
DDLYd12_EN  
VCO_PD  
OSCin_PD  
SYSREF_PD  
DDLYd4_EN  
PD  
_PD  
_PD  
DDLYd_  
SYSREF_EN  
0x141  
0x142  
0x143  
DDLYd10_EN  
DDLYd8_EN  
DDLYd6_EN  
DDLYd2_EN  
DDLYd0_EN  
DDLYd_STEP_CNT  
SYNC_1SHOT_  
EN  
SYNC_PLL2_  
DLD  
SYNC_PLL1_  
DLD  
SYSREF_CLR  
SYNC_POL  
SYNC_EN  
SYNC_MODE  
SYNC_DISSYS  
REF  
0x144  
0x145  
0x146  
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
FIN0_DIV2_EN  
CLKin2_TYPE  
SYNC_DIS2  
SYNC_DIS0  
PLL1R_SYNC_  
EN  
PLL2R_SYNC_  
EN  
2
PLL1R_SYNC_SRC  
FIN0_INPUT_TYPE  
CLKin_SEL_PIN CLKin_SEL_PIN  
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
CLKin1_TYPE  
CLKin0_TYPE  
_EN  
_POL  
CLKin_SEL_  
AUTO_  
REVERT_EN  
CLKin_SEL_  
AUTO_EN  
0x147  
CLKin_SEL_MANUAL  
CLKin1_DEMUX  
CLKin0_DEMUX  
0x148  
0x149  
0x14A  
0x14B  
0
0
0
0
CLKin_SEL0_MUX  
CLKin_SEL1_MUX  
RESET_MUX  
CLKin_SEL0_TYPE  
CLKin_SEL1_TYPE  
RESET_TYPE  
SDIO_RDBK_  
TYPE  
0
HOLDOVER_  
FORCE  
LOS_TIMEOUT  
LOS_EN  
TRACK_EN  
MAN_DAC_EN  
MAN_DAC[9:8]  
0x14C  
0x14D  
0x14E  
0x14F  
MAN_DAC[7:0]  
0
0
DAC_TRIP_LOW  
DAC_TRIP_HIGH  
DAC_CLK_MULT  
DAC_CLK_CNTR  
CLKin_OVERRI  
DE  
HOLDOVER_  
EXIT_MODE  
HOLDOVER_ LOS_EXTERNA HOLDOVER_ CLKin_SWITCH HOLDOVER_  
0x150  
0
0
PLL1_DET  
L_INPUT  
HOLDOVER_DLD_CNT[13:8]  
HOLDOVER_DLD_CNT[7:0]  
CLKin0_R[13:8]  
VTUNE_DET  
_CP_TRI  
EN  
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0x15B  
0x15C  
0x15D  
0x15E  
0x15F  
0x160  
0x161  
0
0
0
0
0
0
0
0
0
CLKin0_R[7:0]  
CLKin1_R[7:0]  
CLKin2_R[7:0]  
PLL1_N[7:0]  
CLKin1_R[13:8]  
CLKin2_R[13:8]  
PLL1_N[13:8]  
PLL1_WND_SIZE  
PLL1_CP_TRI  
PLL1_CP_POL  
PLL1_CP_GAIN  
PLL1_DLD_CNT[13:8]  
0
0
0
0
0
0
PLL1_DLD_CNT[7:0]  
0
HOLDOVER_EXIT_NADJ  
PLL1_LD_TYPE  
PLL2_R  
PLL1_LD_MUX  
0
0
PLL2_R  
PLL2_REF_2X_  
EN  
0x162  
PLL2_P  
0
0
OSCin_FREQ  
PLL2_XTAL_EN  
0x163  
0x164  
0
0
0
0
0
PLL2_N_CAL[17:16]  
PLL2_N_CAL[15:8]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-6. Register Map (continued)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
0x165  
0x166  
0x167  
0x168  
0x169  
0x16A  
0x16B  
0x173  
0x177  
PLL2_N_CAL[7:0]  
0
0
0
0
0
0
PLL2_N[17:16]  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
0
PLL2_WND_SIZE  
PLL2_CP_GAIN  
PLL2_CP_POL  
PLL2_CP_TRI  
PLL2_DLD_EN  
0
PLL2_DLD_CNT[13:8]  
PLL2_DLD_CNT[7:0]  
0
PLL2_PRE_PD  
PLL2_PD  
FIN0_PD  
0
0
0
0
PLL1R_RST  
CLR_PLL1_LD_ CLR_PLL2_LD_  
0x182  
0x183  
0
0
0
0
0
0
0
0
0
0
LOST  
LOST  
RB_PLL1_DLD_  
LOST  
RB_PLL2_DLD_  
LOST  
RB_PLL1_DLD  
RB_PLL2_DLD  
RB_CLKin2_  
SEL  
RB_CLKin1_  
SEL  
RB_CLKin0_  
SEL  
RB_CLKin2_  
LOS  
RB_CLKin1_  
LOS  
RB_CLKin0_  
LOS  
0x184  
0x185  
0x188  
0x555  
RB_DAC_VALUE[9:8]  
RB_DAC_VALUE[7:0]  
RB_  
HOLDOVER  
RB_DAC_  
LOCKED  
0
X
X
RB_DAC_RAIL RB_DAC_HIGH RB_DAC_LOW  
SPI_LOCK  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2 Device Register Descriptions  
The following section details the fields of each register, the Power-On-Reset Defaults, and specific descriptions  
of each bit.  
In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as  
X or Y. In these cases, the X represents even numbers from 0 to 12 and the Y represents odd numbers from 1 to  
13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
8.6.2.1 System Functions  
8.6.2.1.1 RESET, SPI_3WIRE_DIS  
This register contains the RESET function and the ability to turn off 3-wire SPI mode. To use a 4-wire SPI mode,  
selecting SPI Read back in one of the output MUX settings. For example CLKin0_SEL_MUX or RESET_MUX. It  
is possible to have 3-wire and 4-wire readback at the same time.  
8-7. Register 0x000  
BIT  
7
NAME  
RESET  
NA  
POR DEFAULT  
DESCRIPTION  
0: Normal operation  
1: Reset (automatically cleared)  
0
0
6:5  
Reserved  
Disable 3-wire SPI mode.  
0: 3 Wire Mode enabled  
1: 3 Wire Mode disabled  
4
SPI_3WIRE_DIS  
NA  
0
3:0  
NA  
Reserved  
8.6.2.1.2 POWERDOWN  
This register contains the POWERDOWN function.  
8-8. Register 0x002  
BIT  
7:1  
NAME  
POR DEFAULT  
DESCRIPTION  
NA  
POWERDOWN  
0
Reserved  
0: Normal operation  
1: Power down device.  
0
0
8.6.2.1.3 ID_DEVICE_TYPE  
This register contains the product device type. This is read only register.  
8-9. Register 0x003  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:0  
ID_DEVICE_TYPE  
6
PLL product device type.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.1.4 ID_PROD  
These registers contain the product identifier. This is a read only register.  
8-10. ID_PROD Field Registers  
MSB  
LSB  
0x004[7:0] / ID_PROD[15:8]  
0x005[7:0] / ID_PROD[7:0]  
8-11. Registers 0x004 and 0x005  
REGISTER  
0x004  
BIT  
7:0  
7:0  
FIELD NAME  
ID_PROD[7:0]  
ID_PROD[15:8]  
POR DEFAULT  
DESCRIPTION  
LSB of the product identifier.  
MSB of the product identifier.  
99 (0x63)  
0x005  
209 (0xD1)  
8.6.2.1.5 ID_MASKREV  
This register contains the IC version identifier. This is a read only register.  
8-12. Register 0x006  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:0  
ID_MASKREV  
112 (0x70)  
IC version identifier  
8.6.2.1.6 ID_VNDR  
These registers contain the vendor identifier. This is a read only register.  
8-13. ID_VNDR Field Registers  
MSB  
LSB  
0x00C[7:0] / ID_VNDR[15:8]  
0x00D[7:0] / ID_VNDR[7:0]  
8-14. Registers 0x00C, 0x00D  
REGISTER BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x00C  
0x00D  
7:0  
7:0  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
81 (0x51)  
MSB of the vendor identifier.  
LSB of the vendor identifier.  
4 (0x04)  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls  
8.6.2.2.1 DCLKX_Y_DIV  
The device clock divider can drive up to two outputs, an even (X) and an odd (Y) clock output. Divide is a 10 bit  
number and split across two registers.  
8-15. DCLKX_Y_DIV Field Registers  
MSB  
LSB  
0x0102[1:0] = DCLK0_1_DIV[9:8]  
0x010A[1:0] = DCLK2_3_DIV[9:8]  
0x0112[1:0] = DCLK4_5_DIV[9:8]  
0x011A[1:0] = DCLK6_7_DIV[9:8]  
0x0122[1:0] = DCLK8_9_DIV[9:8]  
0x012A[1:0] = DCLK10_11_DIV[9:8]  
0x0132[1:0] = DCLK12_13_DIV[9:8]  
0x100[7:0] = DCLK0_1_DIV[7:0]  
0x108[7:0] = DCLK2_3_DIV[7:0]  
0x110[7:0] = DCLK4_5_DIV[7:0]  
0x118[7:0] = DCLK6_7_DIV[7:0]  
0x120[7:0] = DCLK8_9_DIV[7:0]  
0x128[7:0] = DCLK10_11_DIV[7:0]  
0x130[7:0] = DCLK12_13_DIV[7:0]  
8-16. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130  
0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
REGISTER  
BIT NAME  
POR DEFAULT  
DESCRIPTION  
0x102,  
0x10A,  
0x112,  
0x11A,  
0x122,  
DCLKX_Y_DIV sets the divide value for the clock output, the divide  
may be even or odd. Both even or odd divides output a 50% duty  
cycle clock if duty cycle correction (DCC) is enabled.  
1:0  
7:0  
DCLKX_Y_DIV[9:8]  
X_Y = 0_1 2  
X_Y = 2_3 4  
X_Y = 4_5 8  
X_Y = 6_7 8  
X_Y = 8_9 8  
X_Y = 10_11 8  
X_Y = 12_13 2  
Field Value  
0 (0x00)  
Divider Value  
Reserved  
1 (1)  
0x12A, 0x132  
1 (0x01)  
0x100,  
0x108,  
0x110, 0x118,  
0x120,  
2 (0x02)  
2
...  
...  
DCLKX_Y_DIV[7:0]  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
0x128, and  
0x130  
(1) Duty cycle correction must also be enabled, DCLKX_Y_DCC = 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.2 DCLKX_Y_DDLY  
This register controls the digital delay for the device clock outputs.  
8-17. DCLKX_Y_DDLY Field Registers  
MSB  
LSB  
0x0102[2:3] = DCLK0_1_DDLY[9:8]  
0x010A[2:3] = DCLK2_3_DDLY[9:8]  
0x0112[2:3] = DCLK4_5_DDLY[9:8]  
0x011A[2:3] = DCLK6_7_DDLY[9:8]  
0x0122[2:3] = DCLK8_9_DDLY[9:8]  
0x012A[2:3] = DCLK10_11_DDLY[9:8]  
0x0132[2:3] = DCLK12_13_DDLY[9:8]  
0x101[7:0] = DCLK0_1_DDLY[7:0]  
0x109[7:0] = DCLK2_3_DDLY[7:0]  
0x111[7:0] = DCLK4_5_DDLY[7:0]  
0x119[7:0] = DCLK6_7_DDLY[7:0]  
0x121[7:0] = DCLK8_9_DDLY[7:0]  
0x129[7:0] = DCLK10_11_DDLY[7:0]  
0x131[7:0] = DCLK12_13_DDLY[7:0]  
8-18. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131  
0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
REGISTER  
BIT NAME  
POR DEFAULT  
DESCRIPTION  
0x102,  
0x10A,  
0x112,  
0x11A,  
0x122,  
Static digital delay which takes effect after a SYNC.  
Field Value  
0 (0x00)  
1 (0x01)  
...  
Delay Values  
Reserved  
2:3 DCLKX_Y_DDLY[9:8]  
Reserved  
0x12A, 0x132  
...  
10 (0x0A)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
...  
Reserved  
0x101,  
0x109, 0x111,  
0x119,  
8
9
7:0 DCLKX_Y_DDLY[7:0]  
0x121,  
...  
0x129, 0x131  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
Depending on the DCLK divide value, there may be an adjustment in phase delay required. 8-19 illustrate the  
impact of different divide values on the final digital delay.  
8-19. Digital Delay Adjustment based on Divide Values  
DIVIDE VALUE  
DIGITAL DELAY ADJUSTMENT  
2(1)  
0
2, 3  
4, 7 to 1023  
5
6
+2  
+1  
(1) Before SYNC, program divider to Divide-by-4, then back to Divide-by-2 or Divide-by-3 to ensure '-2' delay relationship.  
For example, 8-20 shows a system with clock outputs having divide values /2,/4,/5 and /6 to share a common  
edge.  
8-20. Digital Delay Adjustment Illustration  
DIVIDE VALUE  
PROGRAMMED DDLY  
ACTUAL DDLY  
2
4
5
6
13  
11  
8
11  
11  
11  
11  
10  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.3 CLKoutX_Y_PD, CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKX_Y_DDLY_PD, DCLKX_Y_DDLY[9:8],  
DCLKX_Y_DIV[9:8]  
8-21. Registers 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Power down the clock group defined by X and Y.  
0: Enabled  
7
CLKoutX_Y_PD  
1
1: Power down entire clock group including both CLKoutX and CLKoutY.  
Sets output drive level for clocks. This has no impact for the even clock output  
in bypass mode.  
0: Normal operation  
6
CLKoutX_Y_ODL  
0
1: Higher current consumption and lower noise floor.  
Sets input drive level for clocks.  
0: Normal operation  
1: Higher current consumption and lower noise floor.  
5
4
CLKoutX_Y_IDL  
0
0
Powerdown the device clock digital delay circuitry.  
0: Enabled  
DCLKX_Y_DDLY_PD  
1: Power down static digital delay for device clock divider.  
3:2  
1:0  
DCLKX_Y_DDLY[9:8]  
DCLKX_Y_DIV[9:8]  
0
0
MSB of static digital delay, see DCLKX_Y_DDLY.  
MSB of device clock divide value, see 8-16.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.4 CLKoutX_SRC_MUX, DCLKX_Y_PD, DCLKX_Y_BYP, DCLKX_Y_DCC, DCLKX_Y_POL, DCLKX_Y_HS  
These registers control the analog delay properties for the device clocks.  
8-22. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133  
BIT  
7
NAME  
NA  
POR DEFAULT  
DESCRIPTION  
0
1
Reserved  
Reserved  
6
NA  
Select CLKoutX clock source. Source must also be powered up.  
5
4
CLKoutX_SRC_MUX  
DCLKX_Y_PD  
0
0
0: Device Clock  
1: SYSREF  
Power down the clock group defined by X and Y.  
0: Enabled  
1: Power down enter clock group X_Y.  
Enable high performance bypass path for even clock outputs.  
0: CLKoutX not in high performance bypass mode. CML is not valid for  
CLKoutX_FMT.  
3
2
DCLKX_BYP  
0
0
1: CLKoutX in high performance bypass mode. Only CML clock format is valid.  
Duty cycle correction for device clock divider. Required for half step.  
0: No duty cycle correction.  
DCLKX_Y_DCC  
1: Duty cycle correction enabled.  
Invert polarity of device clock output. This also applies to CLKoutX in high  
performance bypass mode. Polarity invert is a method to get a half-step phase  
adjustment in high performance bypass mode or /1 divide value.  
0: Normal polarity  
1
0
DCLKX_Y_POL  
DCLKX_Y_HS  
0
0
1: Invert polarity  
Sets the device clock half step value. Must be set to zero (0) for a divide of 1.  
No effect if DCLKX_Y_DCC = 0.  
0: No phase adjustment  
1: Adjust device clock phase 0.5 clock distribution path cycles.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.5 CLKoutY_SRC_MUX, SCLKX_Y_PD, SCLKX_Y_DIS_MODE, SCLKX_Y_POL, SCLKX_Y_HS  
These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,  
and half step.  
8-23. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Select CLKoutX clock source. Source must also be powered up.  
5
4
CLKoutY_SRC_MUX  
SCLKX_Y_PD  
0
1
0: Device Clock  
1: SYSREF  
Power down the SYSREF clock output circuitry.  
0: SYSREF enabled  
1: Power down SYSREF path for clock pair.  
Set disable mode for clock outputs controlled by SYSREF. Some cases will  
assert when SYSREF_GBL_PD = 1.  
Field Value  
0 (0x00)  
Disable Mode  
Active in normal operation  
1 (0x01)  
If SYSREF_GBL_PD = 1, the output is  
a logic low, otherwise it is active.  
3:2  
SCLKX_Y_DIS_MODE  
0
2 (0x02)  
If SYSREF_GBL_PD = 1, the output is  
a nominal Vcm voltage for odd clock  
channels(1) and low for even clocks.  
Otherwise outputs are active.  
3 (0x03)  
Output is a nominal Vcm voltage(1)  
Sets the polarity of clock on SCLKX_Y when SYSREF clock output is selected  
with CLKoutX_MUX or CLKoutY_MUX.  
0: Normal  
1: Inverted  
1
0
SCLKX_Y_POL  
SCLKX_Y_HS  
0
0
Sets the local SYSREF clock half step value.  
0: No phase adjustment  
1: Adjust device SYSREF phase -0.5 clock distribution path cycles.  
(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm will be approximately 0 V, each pin will be approximately 0 V.  
If CML mode is used with pullups to VCC, the output VCM will be approximately VCC V, each pin will be approximately VCC V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.6 SCLKX_Y_ADLY_EN, SCLKX_Y_ADLY  
These registers set the analog delay parameters for the SYSREF outputs.  
8-24. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Enables analog delay for the SYSREF output.  
0: Disabled  
1: Enabled  
SCLKX_Y  
_ADLY_EN  
5
0
SYSREF analog delay in approximately 21 ps steps. Selecting analog delay  
adds an additional 125 ps in propagation delay. Range is 125 ps to 608 ps.  
Field Value  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
...  
Delay Value  
125 ps  
146 ps (+21 ps from 0x00)  
167 ps (+42 ps from 0x00)  
188 ps (+63 ps from 0x00)  
...  
SCLKX_Y  
_ADLY  
4:0  
0
14 (0xE)  
15 (0xF)  
587 ps (+462 ps from 0x00)  
608 ps (+483 ps from 0x00)  
8.6.2.2.7 SCLKX_Y_DDLY  
8-25. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
NA  
0
Reserved  
Sets the number of VCO cycles to delay SDCLKout by  
Field Value  
0 (0x00)  
Delay Cycles  
Bypass  
1 (0x01)  
2
3:0  
SCLKX_Y_DDLY  
0
2 (0x02)  
3
...  
...  
10 (0x0A)  
11 to 15 (0x0B to 0x0F)  
11  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.2.8 CLKoutY_FMT, CLKoutX_FMT  
The difference in the tables is that some of the clock outputs have inverted CMOS polarity settings.  
8-26. Registers 0x107 (CLKout0_1), 0x11F (CLKout6_7), 0x12F (CLKout10_11)  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Set CLKoutY clock format  
Field Value  
0 (0x00)  
Output Format  
Powerdown  
1 (0x01)  
LVDS  
2 (0x02)  
HSDS 6 mA  
3 (0x03)  
HSDS 8 mA  
4 (0x04)  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
5 (0x05)  
6 (0x06)  
7:4  
CLKoutY_FMT  
0
7 (0x07)  
CML 16 mA  
8 (0x08)  
CML 24 mA  
9 (0x09)  
CML 32 mA  
10 (0x0A)  
CMOS (Off/Inv)  
CMOS (Norm/Off)  
CMOS (Inv/Inv)  
CMOS (Inv/Norm)  
CMOS (Norm/Inv)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
CMOS (Norm/Norm)  
Set CLKoutX clock format  
Output Format  
DCLKX_BYP = 0  
Output Format  
DCLKX_BYP = 1  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Powerdown  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CML 16 mA  
CML 24 mA  
CML 32 mA  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3:0  
CLKoutX_FMT  
0
Reserved  
Reserved  
Reserved  
CMOS (Off/Inv)(1)  
CMOS (Norm/Off)(1)  
CMOS (Inv/Inv)(1)  
CMOS (Inv/Norm)(1)  
CMOS (Norm/Inv)(1)  
CMOS (Norm/Norm)(1)  
(1) Only valid for CLKout10.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-27. Registers 0x10F (CLKout2_3), 0x117 (CLKout4_5), 0x127 (CLKout8_9), 0x137 (CLKout12_13)  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Set CLKoutY clock format  
Field Value  
0 (0x00)  
Output Format  
Powerdown  
1 (0x01)  
LVDS  
2 (0x02)  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7:4  
CLKoutY_FMT  
0
7 (0x07)  
CML 16 mA  
8 (0x08)  
CML 24 mA  
9 (0x09)  
CML 32 mA  
10 (0x0A)  
CMOS (Off/Norm)  
CMOS (Inv/Off)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
CMOS (Norm/Norm)  
CMOS (Norm/Inv)  
CMOS (Inv/Norm)  
CMOS (Inv/Inv)  
15 (0x0F)  
Set CLKoutX clock format  
Output Format  
DCLKX_BYP = 0  
Output Format  
DCLKX_BYP = 1  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Powerdown  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CML 16 mA  
CML 24 mA  
CML 32 mA  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3:0  
CLKoutX_FMT  
0
Reserved  
Reserved  
Reserved  
CMOS (Off/Norm)(1)  
CMOS (Inv/Off)(1)  
CMOS (Norm/Norm)(1)  
CMOS (Norm/Inv)(1)  
CMOS (Inv/Norm)(1)  
CMOS (Inv/Inv)(1)  
(1) Only valid for CLKout8.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3 SYSREF, SYNC, and Device Config  
8.6.2.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT  
8-28. Register 0x138  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Selects clock distribution path source from VCO0, VCO1, or CLKIN (external  
VCO)  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
VCO Selected  
VCO 0  
6:5  
VCO_MUX  
2
0
VCO 1  
FIN1 / CLKIN1 (external VCO)  
FIN0  
Select the source for OSCout:  
0: Buffered OSCIN  
4
OSCout_MUX  
1: Feedback Mux  
Selects the output format of OSCout. When powered down, these pins may be  
used as CLKIN2.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
OSCOUT Format  
Power down (CLKIN2)  
LVDS  
Reserved  
Reserved  
LVPECL 1600 mVpp  
LVPECL 2000 mVpp  
LVCMOS (Norm / Inv)  
LVCMOS (Inv / Norm)  
LVCMOS (Norm / Norm)  
LVCMOS (Inv / Inv)  
LVCMOS (Off / Norm)  
LVCMOS (Off / Inv)  
LVCMOS (Norm / Off)  
LVCMOS (Inv / Off)  
LVCMOS (Off / Off)  
3:0  
OSCout_FMT  
4
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.2 SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX  
This register sets the source for the SYSREF outputs. Refer to 8-3 and SYNC/SYSREF.  
8-29. Register 0x139  
BIT  
7:6  
5
NAME  
POR DEFAULT  
DESCRIPTION  
NA  
0
0
Reserved  
Reserved  
NA  
Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for  
continuous pulses. When using this feature enable pulser and set  
SYSREF_MUX = 2 (Pulser).  
4
SYSREF_REQ_EN  
0
Bypass SYNC polarity invert and other circuitry.  
0: Normal  
1: SYNC signal is bypassed  
3
2
SYNC_BYPASS  
NA  
0
0
Reserved  
Selects the SYSREF source.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
SYSREF Source  
Normal SYNC  
1:0  
SYSREF_MUX  
0
Re-clocked  
SYSREF Pulser  
SYSREF Continuous  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.3 SYSREF_DIV  
These registers set the value of the SYSREF output divider.  
8-30. SYSREF_DIV[12:0]  
MSB  
LSB  
0x13A[4:0] = SYSREF_DIV[12:8]  
0x13B[7:0] = SYSREF_DIV[7:0]  
8-31. Registers 0x13A and 0x13B  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x13A  
7:5  
NA  
0
Reserved  
Divide value for the SYSREF outputs.  
Field Value  
0 to 7 (0x00 to 0x07)  
8 (0x08)  
Divide Value  
0x13A  
0x13B  
4:0  
7:0  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
12  
0
Reserved  
8
9
9 (0x09)  
...  
...  
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
8.6.2.3.4 SYSREF_DDLY  
These registers set the delay of the SYSREF digital delay value.  
8-32. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]  
MSB  
LSB  
0x13C[4:0] / SYSREF_DDLY[12:8]  
0x13D[7:0] / SYSREF_DDLY[7:0]  
8-33. Registers 0X13C and 0X13D  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x13C  
7:5  
NA  
0
Reserved  
Sets the value of the SYSREF digital delay.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Delay Value  
0x13C  
0x13D  
4:0  
7:0  
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
0
8
Reserved  
8
9
9 (0x09)  
...  
...  
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.5 SYSREF_PULSE_CNT  
This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See SYSREF_REQ_EN,  
SYNC_BYPASS, SYSREF_MUX for further description of SYSREF's outputs.  
Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by  
SYSREF_MUX and SYSREF functionality is powered up.  
8-34. Register 0x13E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:2  
NA  
0
Reserved  
Sets the number of SYSREF pulses generated when not in continuous mode.  
See SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX for more  
information on SYSREF modes.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Number of Pulses  
1 pulse  
1:0  
SYSREF_PULSE_CNT  
3
2 pulses  
4 pulses  
8 pulses  
8.6.2.3.6 PLL2_RCLK_MUX, PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN  
This register controls the feedback feature.  
8-35. Register 0x13F  
BIT  
7
NAME  
PLL2_RCLK_MUX  
NA  
POR DEFAULT  
DESCRIPTION  
Selects the source for PLL2 reference.  
0
0
0
0: OSCIN  
1: Currently selected CLKIN.  
6
Reserved  
Selects the input to the PLL2 N Divider  
0: PLL2 Prescaler  
5
PLL2_NCLK_MUX  
1: Feedback Mux  
Selects the input to the PLL1 N Divider.  
0: OSCIN  
1: Feedback Mux  
4:3  
2:1  
0
PLL1_NCLK_MUX  
0
0
0
2: PLL2 Prescaler  
When in 0-delay mode, the feedback mux selects the clock output to be fed  
back into the PLL1 N Divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Source  
CLKOUT6  
FB_MUX  
CLKOUT8  
SYSREF Divider  
External  
When using 0-delay, FB_MUX_EN must be set to 1 power up the feedback  
mux.  
0: Feedback mux powered down  
1: Feedback mux enabled  
FB_MUX_EN  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.7 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD, SYSREF_DDLY_PD,  
SYSREF_PLSR_PD  
This register contains power-down controls for OSCIN and SYSREF functions.  
8-36. Register 0x140  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Power down PLL1  
0: Normal operation  
1: Power down  
7
PLL1_PD  
1
Power down VCO_LDO  
0: Normal operation  
1: Power down  
6
5
4
VCO_LDO_PD  
VCO_PD  
1
1
0
Power down VCO  
0: Normal operation  
1: Power down  
Power down the OSCIN port.  
0: Normal operation  
1: Power down  
OSCin_PD  
Power down individual SYSREF outputs depending on the setting of  
SCLKX_Y_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows  
many SYSREF outputs to be controlled through a single bit.  
0: Normal operation  
3
2
SYSREF_GBL_PD  
SYSREF_PD  
0
0
1: Activate Power down Mode  
Power down the SYSREF circuitry and divider. If powered down, SYSREF  
output mode cannot be used. SYNC cannot be provided either.  
0: SYSREF can be used as programmed by individual SYSREF output  
registers.  
1: Power down  
Power down the SYSREF digital delay circuitry.  
0: Normal operation, SYSREF digital delay may be used. Must be powered up  
during SYNC for deterministic phase relationship with other clocks.  
1: Power down  
1
0
SYSREF_DDLY_PD  
SYSREF_PLSR_PD  
0
0
Power down the SYSREF pulse generator.  
0: Normal operation  
1: Power down  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.8 DDLYdSYSREF_EN, DDLYdX_EN  
This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is  
programmed.  
8-37. Register 0x141  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Enables dynamic digital delay on  
SYSREF outputs  
7
DDLYd _SYSREF_EN  
0
Enables dynamic digital delay on  
DCLKout12  
6
5
4
3
2
1
0
DDLYd12_EN  
DDLYd10_EN  
DDLYd8_EN  
DDLYd6_EN  
DDLYd4_EN  
DDLYd2_EN  
DDLYd0_EN  
0
0
0
0
0
0
0
Enables dynamic digital delay on  
DCLKout10  
Enables dynamic digital delay on  
DCLKout8  
0: Disabled  
1: Enabled  
Enables dynamic digital delay on  
DCLKout6  
Enables dynamic digital delay on  
DCLKout4  
Enables dynamic digital delay on  
DCLKout2  
Enables dynamic digital delay on  
DCLKout0  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.9 DDLYd_STEP_CNT  
This register sets the number of dynamic digital delay adjustments that will occur. Upon programming, the  
dynamic digital delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic  
digital delay can only be started by SPI.  
Other registers must be set: SYNC_MODE = 3  
8-38. Register 0x142  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Sets the number of dynamic digital delay adjustments that will occur.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
Dynamic Digital Delay Adjustments  
No Adjust  
1 step  
7:0  
DDLYd_STEP_CNT  
0
2 steps  
3 steps  
...  
254 (0xFE)  
255 (0xFF)  
254 steps  
255 steps  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD,  
SYNC_MODE  
This register sets general SYNC parameters such as polarization, and mode. Refer to 8-3 for block diagram.  
Refer to 8-2 for using SYNC_MODE for specific SYNC use cases.  
8-39. Register 0x143  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Except during SYSREF Setup Procedure (see SYNC/SYSREF), this bit should  
always be programmed to 0. While this bit is set, extra current is used.  
7
SYSREF_CLR  
0
SYNC one shot enables edge sensitive SYNC.  
0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC  
is asserted.  
6
SYNC_1SHOT_EN  
0
1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC.  
This results in the clock being held in SYNC for a minimum amount of time.  
Sets the polarity of the SYNC pin.  
0: Normal  
1: Inverted  
5
4
SYNC_POL  
SYNC_EN  
0
0
Enables the SYNC functionality.  
0: Disabled  
1: Enabled  
0: Off  
3
2
SYNC_PLL2_DLD  
SYNC_PLL1_DLD  
0
0
1: Assert SYNC until PLL2 DLD = 1  
0: Off  
1: Assert SYNC until PLL1 DLD = 1  
Sets the method of generating a SYNC event.  
Field Value  
SYNC Generation  
Prevent SYNC Pin, SYNC_PLL1_DLD  
flag, or SYNC_PLL2_DLD flag from  
generating a SYNC event.  
0 (0x00)  
SYNC event generated from SYNC  
pin or if enabled the  
SYNC_PLL1_DLD flag or  
SYNC_PLL2_DLD flag.  
1 (0x01)  
2 (0x02)  
1:0  
SYNC_MODE  
1
For use with pulser - SYNC/SYSREF  
pulses are generated by pulser block  
via SYNC Pin or if enabled  
SYNC_PLL1_DLD flag or  
SYNC_PLL2_DLD flag.  
For use with pulser - SYNC/SYSREF  
pulses are generated by pulser block  
when programming register 0x13E  
(SYSREF_PULSE_CNT) is written to  
(see SYSREF_PULSE_CNT).  
3 (0x03)  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.3.11 SYNC_DISSYSREF, SYNC_DISX  
SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when  
outputting SYSREF.  
8-40. Register 0x144  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Prevent the SYSREF clocks from becoming synchronized during a SYNC  
event. If SYNC_DISSYSREF is enabled, the device will continue to operate  
normally during a SYNC event.  
7
SYNC_DISSYSREF  
0
6
5
4
3
2
1
0
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0
0
0
0
0
0
0
Prevent the device clock output from becoming synchronized during a SYNC  
event or SYSREF clock. If SYNC_DIS bit for a particular output is enabled,  
then the device will continue to operate normally during a SYNC event or  
SYSREF clock.  
8.6.2.3.12 PLL1R_SYNC_EN, PLL1R_SYNC_SRC, PLL2R_SYNC_EN, FIN0_DIV2_EN, FIN0_INPUT_TYPE  
These bits are used when synchronizing PLL1 and PLL2 R dividers.  
8-41. Register 0x145  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Enable synchronization for PLL1 R divider  
0: Not enabled  
1: Enabled  
6
PLL1R_SYNC_EN  
PLL1R_SYNC_SRC  
0
0
Select the source for PLL1 R divider synchronization  
Field Value  
Definition  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Reserved  
SYNC Pin  
CLKIN0  
5:4  
Reserved  
Enable synchronization for PLL2 R divider. Synchronization for PLL2 R always  
comes from the SYNC pin.  
0: Not enabled  
1: Enabled  
3
2
PLL2R_SYNC_EN  
FIN0_DIV2_EN  
0
0
Sets the input path to use or bypass the divide-by-2.  
0: Bypassed (÷1)  
1: Divided (÷2)  
Program input type to hardware interface used.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Differential Input  
1:0  
FIN0_INPUT_TYPE  
0
Single Ended Input (FIN0_P)  
Single Ended Input (FIN0_N)  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.4 (0x146 - 0x149) CLKIN Control  
8.6.2.4.1 CLKin_SEL_PIN_EN, CLKin_SEL_PIN_POL, CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE,  
CLKin1_TYPE, CLKin0_TYPE  
This register has CLKin enable and type controls. See Input Clock Switching for more info on how clock input  
selection works.  
8-42. Register 0x146  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
CLKin_SEL_PIN_EN  
0
Enables pin control according to Input Clock Switching.  
Inverts the CLKin polarity for use in pin select mode.  
6
5
4
3
CLKin_SEL_PIN_POL  
CLKin2_EN  
0
0
1
1
0: Active High  
1: Active Low  
Enable CLKin2 to be used during auto-switching.  
0: Not enabled for auto mode  
1: Enabled for auto clock switching mode  
Enable CLKin1 to be used during auto-switching.  
0: Not enabled for auto mode  
1: Enabled for auto clock switching mode  
CLKin1_EN  
Enable CLKin0 to be used during auto-switching.  
0: Not enabled for auto mode  
CLKin0_EN  
1: Enabled for auto clock switching mode  
2
1
CLKin2_TYPE  
CLKin1_TYPE  
0
0
There are two buffer types for CLKin0,  
1, and 2: bipolar and CMOS. Bipolar is  
recommended for differential inputs  
like LVDS or LVPECL. CMOS is  
recommended for DC-coupled single  
ended inputs.  
When using bipolar, CLKinX and  
CLKinX* must be AC-coupled.  
When using CMOS, CLKinX and  
CLKinX* may be AC or DC-coupled if  
the input signal is differential. If the  
input signal is single-ended the used  
input may be either AC or DC-coupled  
and the unused input must AC  
grounded.  
0: Bipolar  
1: MOS  
0
CLKin0_TYPE  
0
8.6.2.4.2 CLKin_SEL_AUTO_REVERT_EN, CLKin_SEL_AUTO_EN, CLKin_SEL_MANUAL, CLKin1_DEMUX,  
CLKin0_DEMUX  
8-43. Register 0x147  
BIT  
7
NAME  
POR DEFAULT  
DESCRIPTION  
If the active clock is detected on a higher priority clock while the device is in  
auto clock switching mode, the clock input is immediately switched. Highest  
priority input is lowest numbered active clock input.  
CLKin_SEL_  
AUTO_REVERT_EN  
0
0
6
CLKin_SEL_AUTO_EN  
CLKin_SEL_MANUAL  
Enables pin control according to 8-7.  
Selects the clock input when in manual mode according to 8-7.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
CLKIN0  
CLKIN1  
CLKIN2  
Holdover  
5:4  
1
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
BIT  
8-43. Register 0x147 (continued)  
NAME  
POR DEFAULT  
DESCRIPTION  
Selects where the output of the CLKin1 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin1 Destination  
FIN  
3:2  
CLKin1_DEMUX  
0
Feedback Mux (0-delay mode)  
PLL1  
Off  
Selects where the output of the CLKin0 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin0 Destination  
SYSREF Mux  
Reserved  
PLL1  
1:0  
CLKin0_DEMUX  
3
Off  
8.6.2.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE  
This register has CLKin_SEL0 controls.  
8-44. Register 0x148  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This set the output value of the CLKin_SEL0 pin. This register only applies if  
CLKin_SEL0_TYPE is set to an output mode  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin0 LOS  
CLKin0 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL0_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL0 pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
description of input  
mode.  
1 (0x01)  
Input with pullup resistor  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
CLKin_SEL0_TYPE  
2
Output (push-pull)  
Output modes; the  
CLKin_SEL0_MUX  
register for description of  
outputs.  
Output inverted (push-  
pull)  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE  
This register has CLKin_SEL1 controls and register readback SDIO pin type.  
8-45. Register 0x149  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the SDIO pin to open drain when during SPI readback in 3 wire mode.  
6
SDIO_RDBK_TYPE  
1
0: Output, push-pull  
1: Output, open drain.  
This set the output value of the CLKin_SEL1 pin. This register only applies if  
CLKin_SEL1_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin1 LOS  
CLKin1 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL1_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL1 pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
description of input  
mode.  
1 (0x01)  
Input with pullup resistor  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
CLKin_SEL1_TYPE  
2
Output (push-pull)  
Output modes; see the  
CLKin_SEL1_MUX  
register for description of  
outputs.  
Output inverted (push-  
pull)  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.5 RESET_MUX, RESET_TYPE  
This register contains control of the RESET pin.  
8-46. Register 0x14A  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This sets the output value of the RESET pin. This register only applies if  
RESET_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
Reserved  
5:3  
RESET_MUX  
0
2 (0x02)  
CLKin2 Selected  
DAC Locked  
DAC Low  
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
This sets the IO type of the RESET pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
1 (0x01)  
Input with pullup resistor  
Reset Mode  
Reset pin high = Reset  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
RESET_TYPE  
2
Output (push-pull)  
Output inverted (push-  
pull)  
Output modes; see the  
RESET_MUX register for  
description of outputs.  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.6 (0x14B - 0x152) Holdover  
8.6.2.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]  
This register contains the holdover functions.  
8-47. Register 0x14B  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This controls the amount of time in which no activity on a CLKin forces a clock  
switch event.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Timeout  
5 MHz typical  
25 MHz typical  
100 MHz typical  
200 MHz typical  
7:6  
LOS_TIMEOUT  
0
Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs.  
5
4
LOS_EN  
0
0
0: Disabled  
1: Enabled  
Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover  
mode. After device reset, tracking starts at DAC code = 512.  
Tracking can be used to monitor PLL1 voltage in any mode.  
0: Disabled  
TRACK_EN  
1: Enabled, will only track when PLL1 is locked.  
This bit forces holdover mode. When holdover mode is forced, if  
MAN_DAC_EN = 1, then the DAC will set the programmed MAN_DAC value.  
Otherwise, the tracked DAC value will set the DAC voltage.  
0: Disabled  
HOLDOVER  
_FORCE  
3
0
1: Enabled.  
This bit enables the manual DAC mode.  
2
MAN_DAC_EN  
MAN_DAC[9:8]  
1
2
0: Automatic  
1: Manual  
1:0  
See MAN_DAC for more information on the MAN_DAC settings.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.6.2 MAN_DAC  
These registers set the value of the DAC in holdover mode when used manually.  
8-48. MAN_DAC[9:0]  
MSB  
LSB  
0x14B[1:0]  
0x14C[7:0]  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
See LOS_TIMEOUT, LOS_EN, TRACK_EN,  
HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8] for  
information on these bits.  
0x14B  
7:2  
Sets the value of the manual DAC when in manual DAC  
mode.  
Field Value  
0 (0x00)  
DAC Value  
0x14B  
0x14C  
1:0  
7:0  
MAN_DAC[9:8]  
MAN_DAC[7:0]  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
8.6.2.6.3 DAC_TRIP_LOW  
This register contains the high value at which holdover mode is entered.  
8-49. Register 0x14D  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET  
is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_LOW  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH  
This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is  
entered.  
8-50. Register 0x14E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the  
DAC value is tracked.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
DAC Multiplier Value  
4
7:6  
DAC_CLK_MULT  
0
64  
1024  
16384  
Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is  
enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_HIGH  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
8.6.2.6.5 DAC_CLK_CNTR  
This register contains the value of the DAC when in tracked mode.  
8-51. Register 0x14F  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This with DAC_CLK_MULT set the rate at which the DAC is updated. The  
update rate is = DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Value  
0
1
2
7:0  
DAC_CLK_CNTR  
127  
3
...  
253 (0xFD)  
254 (0xFE)  
255 (0xFF)  
253  
254  
255  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.6.6 CLKin_OVERRIDE, HOLDOVER_EXIT_MODE, HOLDOVER_PLL1_DET, LOS_EXTERNAL_INPUT,  
HOLDOVER_VTUNE_DET, CLKin_SWITCH_CP_TRI, HOLDOVER_EN  
This register has controls for enabling clock in switch events.  
8-52. Register 0x150  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
When manual clock select is enabled, then CLKin_SEL_MANUAL = 0/1/2  
selects a manual clock input. CLKin_OVERRIDE = 1 will force that clock input.  
CLKin_OVERRIDE = 1 is used with clock distribution mode for best  
performance.  
CLKin  
_OVERRIDE  
6
0
0: Normal, no override.  
1: Force select of only CLKin0/1/2 as specified by CLKin_SEL_MANUAL in  
manual mode. Dynamic digital delay will not operate.  
0: Exit based on LOS status. If clock is active by LOS, then begin exit.  
1: Exit based on PLL1 DLD. When the PLL1 phase detector confirming valid  
clock.  
HOLDOVER_  
EXIT_MODE  
5
4
0
0
This enables the HOLDOVER when PLL1 lock detect signal transitions from  
high to low.  
0: PLL1 DLD does not cause a clock switch event  
1: PLL1 DLD causes a clock switch event  
HOLDOVER  
_PLL1_DET  
Use external signals for LOS status instead of internal LOS circuitry.  
CLKin_SEL0 pin is used for CLKin0 LOS, CLKin_SEL1 pin is used for CLKin1  
LOS, and Status_LD1 is used for CLKin2 LOS. For any of these pins to be  
valid, the corresponding _TYPE register must be programmed as an input.  
0: Disabled  
3
2
LOS_EXTERNAL_INPUT  
0
0
1: Enabled  
Enables the DAC Vtune rail detector. When the DAC achieves a specified  
Vtune, if this bit is enabled, the current clock input is considered invalid and an  
input clock switch event is generated.  
0: Disabled  
HOLDOVER_  
VTUNE_DET  
1: Enabled  
Enable clock switching with tri-stated charge pump.  
0: Not enabled.  
1: PLL1 charge pump tri-states during clock switching.  
1
0
CLKin_SWITCH_CP_TRI  
HOLDOVER_EN  
0
0
Sets whether holdover mode is active or not.  
0: Disabled  
1: Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.6.7 HOLDOVER_DLD_CNT  
8-53. HOLDOVER_DLD_CNT[13:0]  
MSB  
LSB  
0x151[5:0] / HOLDOVER_DLD_CNT[13:8]  
0x152[7:0] / HOLDOVER_DLD_CNT[7:0]  
This register has the number of valid clocks of PLL1 PDF before holdover is exited.  
8-54. Registers 0x151 and 0x152  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x151  
7:6  
NA  
0
Reserved  
The number of valid clocks of PLL1 PDF before holdover  
mode is exited.  
HOLDOVER  
_DLD_CNT[13:8]  
Field Value  
0 (0x00)  
Count Value  
0x151  
0x152  
5:0  
7:0  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
HOLDOVER  
_DLD_CNT[7:0]  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.7 (0x153 - 0x15F) PLL1 Configuration  
8.6.2.7.1 CLKin0_R  
8-55. CLKin0_R[13:0]  
MSB  
LSB  
0x153[5:0] / CLKin0_R[13:8]  
0x154[7:0] / CLKin0_R[7:0]  
These registers contain the value of the CLKin0 divider.  
8-56. Registers 0x153 and 0x154  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x153  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin0 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x153  
0x154  
5:0  
7:0  
CLKin0_R[13:8]  
CLKin0_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
120  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
8.6.2.7.2 CLKin1_R  
MSB  
8-57. CLKin1_R[13:0]  
LSB  
0x155[5:0] / CLKin1_R[13:8]  
0x156[7:0] / CLKin1_R[7:0]  
These registers contain the value of the CLKin1 R divider.  
8-58. Registers 0x155 and 0x156  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x155  
7:6  
NA  
0
Reserved  
The value of PLL1 R counter when CLKin1 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x155  
0x156  
5:0  
7:0  
CLKin1_R[13:8]  
CLKin1_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.7.3 CLKin2_R  
8-59. CLKin2_R[13:0]  
MSB  
LSB  
0x157[5:0] / CLKin2_R[13:8]  
0x158[7:0] / CLKin2_R[7:0]  
8-60. Registers 0x157 and 0x158  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x157  
7:6  
NA  
0
Reserved  
The value of PLL1 R counter when CLKin2 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x157  
0x158  
5:0  
7:0  
CLKin2_R[13:8]  
CLKin2_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
8.6.2.7.4 PLL1_N  
8-61. PLL1_N[13:0]  
MSB  
LSB  
0x159[5:0] / PLL1_N[13:8]  
0x15A[7:0] / PLL1_N[7:0]  
These registers contain the N divider value for PLL1.  
8-62. Registers 0x159 and 0x15A  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x159  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
0x159  
0x15A  
5:0  
7:0  
PLL1_N[13:8]  
PLL1_N[7:0]  
0
Not Valid  
1
2
120  
...  
4,095 (0xFFF)  
4,095  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN  
This register controls the PLL1 phase detector.  
8-63. Register 0x15B  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If  
the phase error between the reference and feedback of PLL1 is less than  
specified time, then the PLL1 lock counter increments.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
4 ns  
7:6  
PLL1_WND_SIZE  
3
9 ns  
19 ns  
43 ns  
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into  
TRI-STATE.  
0: PLL1 CPout1 is active  
1: PLL1 CPout1 is at TRI-STATE  
5
4
PLL1_CP_TRI  
PLL1_CP_POL  
0
1
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use  
positive slope.  
A positive slope VCXO increases output frequency with increasing voltage. A  
negative slope VCXO decreases output frequency with increasing voltage.  
0: Negative Slope VCO/VCXO  
1: Positive Slope VCO/VCXO  
This bit programs the PLL1 charge pump output current level.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
...  
Gain  
50 µA  
150 µA  
250 µA  
350 µA  
450 µA  
...  
3:0  
PLL1_CP_GAIN  
4
14 (0x0E)  
15 (0x0F)  
1450 µA  
1550 µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.7.6 PLL1_DLD_CNT  
8-64. PLL1_DLD_CNT[13:0]  
MSB  
LSB  
0x15C[5:0] / PLL1_DLD_CNT[13:8]  
0x15D[7:0] / PLL1_DLD_CNT[7:0]  
This register contains the value of the PLL1 DLD counter.  
8-65. Registers 0x15C and 0x15D  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x15C  
7:6  
NA  
0
Reserved  
The reference and feedback of PLL1 must be within the  
window of phase error as specified by PLL1_WND_SIZE for  
this many phase detector cycles before PLL1 digital lock  
detect is asserted.  
PLL1_DLD  
_CNT[13:8]  
0x15C  
0x15D  
5:0  
7:0  
32  
Field Value  
0 (0x00)  
Delay Value  
Reserved  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL1_DLD  
_CNT[7:0]  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
8.6.2.7.7 HOLDOVER_EXIT_NADJ  
8-66. Register 0x15E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:5  
NA  
0
Reserved  
When holdover exists, PLL1 R counter and PLL1 N  
counter are reset. HOLDOVER_EXIT_NADJ is a 2s  
complement number which provides a relative timing  
offset between PLL1 R and PLL1 N divider.  
4:0  
HOLDOVER_EXIT_NADJ  
30  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.7.8 PLL1_LD_MUX, PLL1_LD_TYPE  
This register configures the PLL1 LD pin.  
8-67. Register 0x15F  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This sets the output value of the Status_LD1 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
1 (0x01)  
PLL1 DLD  
2 (0x02)  
PLL2 DLD  
3 (0x03)  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL1_LD_MUX  
1
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
DAC High  
11 (0x0B)  
PLL1_N /2  
12 (0x0C)  
PLL1_N / 4  
PLL2_N / 2  
PLL2_N / 4  
PLL1_R / 2  
PLL1_R / 4  
PLL2_R(1) / 2  
PLL2_R / 4(1)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
17 (0x11)  
18 (0x12)  
Sets the IO type of the Status_LD1 pin.  
Field Value  
TYPE  
0 (0x00)  
1 (0x01)  
Input for External CLKin2 LOS  
Input for External CLKin2 LOS (pullup)  
Input for External CLKin2 LOS  
(pulldown)  
2:0  
PLL1_LD_TYPE  
6
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
Output (open-drain)  
(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8 (0x160 - 0x16E) PLL2 Configuration  
8.6.2.8.1 PLL2_R  
8-68. PLL2_R[11:0]  
MSB  
LSB  
0x160[3:0] / PLL2_R[11:8]  
0x161[7:0] / PLL2_R[7:0]  
This register contains the value of the PLL2 R divider.  
8-69. Registers 0x160 and 0x161  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x160  
7:4  
NA  
0
Reserved  
Valid values for the PLL2 R divider.  
Field Value  
0 (0x00)  
Divide Value  
0x160  
0x161  
3:0  
7:0  
PLL2_R[11:8]  
PLL2_R[7:0]  
0
2
Not Valid  
1 (0x01)  
1
2
2 (0x02)  
3 (0x03)  
3
...  
...  
4,094 (0xFFE)  
4,095 (0xFFF)  
4,094  
4,095  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8.2 PLL2_P, OSCin_FREQ, PLL2_REF_2X_EN  
This register sets other PLL2 functions.  
8-70. Register 0x162  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
The PLL2 N Prescaler divides the output of the VCO as selected by  
Mode_MUX1 and is connected to the PLL2 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Value  
8
2
2
3
4
5
6
7
7:5  
PLL2_P  
2
The frequency of the PLL2 reference input to the PLL2 Phase Detector  
(OSCIN_P/OSCIN_N pins) must be programmed to support proper operation  
of the frequency calibration routine which locks the internal VCO to the target  
frequency.  
Field Value  
0 (0x00)  
OSCIN Frequency  
0 to 63 MHz  
4:2  
OSCin_FREQ  
3
1 (0x01)  
>63 MHz to 127 MHz  
>127 MHz to 255 MHz  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
>255 MHz to 500 MHz  
Reserved  
5 (0x05) to 7(0x07)  
1
0
NA  
0
1
Reserved  
Enabling the PLL2 reference frequency doubler allows for higher phase  
detector frequencies on PLL2 than would normally be allowed with the given  
VCXO frequency.  
Higher phase detector frequencies reduces the PLL2 N values which makes  
the design of wider loop bandwidth filters possible.  
0: Doubler Disabled  
PLL2_REF_2X_EN  
1: Doubler Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8.3 PLL2_N_CAL  
PLL2_N_CAL[17:0]  
PLL2 never uses 0-delay during frequency calibration. These registers contain the value of the PLL2 N divider  
used with PLL2 pre-scaler during calibration for cascaded 0-delay mode. Once calibration is complete, PLL2 will  
use the PLL2_N value. Cascaded 0-delay mode occurs when PLL2_NCLK_MUX = 1.  
8-71. PLL2_N_CAL[17:0]  
MSB  
LSB  
0x163[1:0] / PLL2_N_CAL[17:16]  
0x164[7:0] / PLL2_N_CAL[15:8]  
0x165[7:0] / PLL2_N_CAL[7:0]  
8-72. Registers 0x163, 0x164, and 0x165  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x163  
7:2  
NA  
0
Reserved  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
0x163  
0x164  
0x165  
1:0  
7:0  
7:0  
PLL2_N _CAL[17:16]  
PLL2_N_CAL[15:8]  
PLL2_N_CAL[7:0]  
0
Not Valid  
1
2
0
...  
12  
262,143 (0x3FFFF)  
262,143  
8.6.2.8.4 PLL2_N  
This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168  
starts a VCO calibration routine if PLL2_FCAL_DIS = 0.  
8-73. PLL2_N[17:0]  
MSB  
LSB  
0x166[1:0] / PLL2_N[17:16]  
0x167[7:0] / PLL2_N[15:8]  
0x168[7:0] / PLL2_N[7:0]  
8-74. Registers 0x166, 0x167, and 0x168  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x166  
0x166  
7:3  
NA  
0
0
Reserved  
Setting this to 1 disables PLL2 frequency calibration on  
programming of register 0x168  
2
PLL2_FCAL_DIS  
Field Value  
0 (0x00)  
Divide Value  
0x166  
0x167  
0x168  
1:0  
PLL2_N[17:16]  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
0
Not Valid  
1 (0x01)  
1
7:0  
7:0  
2 (0x02)  
2
...  
...  
12  
262,143 (0x3FFFF)  
262,143  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI  
This register controls the PLL2 phase detector.  
8-75. Register 0x169  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If  
the phase error between the reference and feedback of PLL2 is less than  
specified time, then the PLL2 lock counter increments.  
Maximum Phase Detector  
Field Value  
Frequency / Window Size  
6:5  
PLL2_WND_SIZE  
2
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Reserved  
320 MHz / 1 ns  
240 MHz / 1.8 ns  
160 MHz / 2.6 ns  
This bit programs the PLL2 charge pump output current level. The table below  
also shows the impact of the PLL2 TRISTATE bit in conjunction with  
PLL2_CP_GAIN.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Reserved  
Reserved  
1600 µA  
4:3  
PLL2_CP_GAIN  
3
3200 µA  
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO  
requires the negative charge pump polarity to be selected. Many VCOs use  
positive slope.  
A positive slope VCO increases output frequency with increasing voltage. A  
negative slope VCO decreases output frequency with increasing voltage.  
2
PLL2_CP_POL  
0
Field Value  
Description  
0
1
Negative Slope VCO/VCXO  
Positive Slope VCO/VCXO  
PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump.  
1
0
PLL2_CP_TRI  
PLL2_DLD_EN  
0
0
0: Disabled  
1: TRI-STATE  
PLL2 DLD circuitry is enabled when the PLL2 DLD is used to provide an output  
to a lock detect status pin. PLL2_DLD_EN allows enabling the PLL2 DLD  
circuitry without needing to provide PLL2 DLD to a status pin. This enables  
PLL2 DLD status to be read back using SPI while allowing the Status pins to  
be used for other purposes.  
0: PLL2 DLD circuitry is on only of PLL2 DLD or PLL1 + PLL2 DLD signal is  
output from a Status_LD_MUX.  
1: PLL2 DLD circuitry is forced on.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8.6 PLL2_DLD_CNT  
8-76. PLL2_DLD_CNT[13:0]  
MSB  
LSB  
0x16A[5:0] / PLL2_DLD_CNT[13:8]  
0x16B[7:0] / PLL2_DLD_CNT[7:0]  
This register has the value of the PLL2 DLD counter.  
8-77. Registers 0x16A and 0x16B  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x16A  
7
NA  
0
Reserved  
The reference and feedback of PLL2 must be within the  
window of phase error as specified by PLL2_WND_SIZE for  
PLL2_DLD_CNT cycles before PLL2 digital lock detect is  
asserted.  
PLL2_DLD  
_CNT[13:8]  
0x16A  
0x16B  
5:0  
7:0  
32  
Field Value  
0 (0x00)  
Divide Value  
Not Valid  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL2_DLD_CNT  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.8.7 PLL2_LD_MUX, PLL2_LD_TYPE  
This register sets the output value of the Status_LD2 pin.  
8-78. Register 0x16E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This sets the output value of the Status_LD2 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
1 (0x01)  
PLL1 DLD  
2 (0x02)  
PLL2 DLD  
3 (0x03)  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL2_LD_MUX  
0
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
11 (0x0B)  
DAC High  
PLL1_N / 2  
PLL1_N / 4  
PLL2_N / 2  
PLL2_N / 4  
PLL1_R / 2  
PLL1_R / 4  
PLL2_R / 2(1)  
PLL2_R / 4(1)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
17 (0x11)  
18 (0x12)  
Sets the IO type of the Status_LD2 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL2_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.9 (0x16F - 0x555) Misc Registers  
8.6.2.9.1 PLL2_PRE_PD, PLL2_PD, FIN0_PD  
8-79. Register 0x173  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
N/A  
0
Reserved  
Powerdown PLL2 prescaler  
0: Normal Operation  
1: Powerdown  
6
5
PLL2_PRE_PD  
PLL2_PD  
1
1
Powerdown PLL2  
0: Normal Operation  
1: Powerdown  
Powerdown FIN0  
0: Normal Operation  
1: Powerdown  
4
FIN0_PD  
N/A  
1
0
3:0  
Reserved  
8.6.2.9.2 PLL1R_RST  
Refer to PLL1 R Divider Synchronization for more information on synchronizing PLL1 R divider.  
8-80. Register 0x177  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
When set, PLL1 R divider will be held in reset. PLL1 will never lock with  
PLL1R_RST = 1. This bit is used in when synchronizing the PLL1 R divider.  
0: PLL1 R divider normal operation.  
5
PLL1R_RST  
NA  
0
0
1: PLL1 R divider held in reset.  
4:0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.9.3 CLR_PLL1_LD_LOST, CLR_PLL2_LD_LOST  
8-81. Register 0x182  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:2  
NA  
0
Reserved  
To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0.  
0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge.  
1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow  
RB_PLL1_LD_LOST to become set again.  
1
0
CLR_PLL1_LD_LOST  
CLR_PLL2_LD_LOST  
0
0
To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0.  
0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge.  
1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow  
RB_PLL2_LD_LOST to become set again.  
8.6.2.9.4 RB_PLL1_LD_LOST, RB_PLL1_LD, RB_PLL2_LD_LOST, RB_PLL2_LD  
For PLL2 DLD read back to be valid, either PLL2 DLD or PLL1 + PLL2 DLD signal must be output from the  
status pins, or PLL2_DLD_EN bit must be set = 1.  
8-82. Register 0x183  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
N/A  
0
Reserved  
This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD  
is low.  
3
2
1
RB_PLL1_LD_LOST  
RB_PLL1_LD  
0
0
0
Read back 0: PLL1 DLD is low.  
Read back 1: PLL1 DLD is high.  
This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD  
is low.  
RB_PLL2_LD_LOST  
PLL1_LD_MUX or PLL2_LD_MUX must select setting 2 (PLL2 DLD) for valid  
reading of this bit.  
Read back 0: PLL2 DLD is low.  
0
RB_PLL2_LD  
0
Read back 1: PLL2 DLD is high.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6.2.9.5 RB_DAC_VALUE (MSB), RB_CLKinX_SEL, RB_CLKinX_LOS  
This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs  
are shared with the RB_DAC_VALUE. See the RB_DAC_VALUE section for more information.  
8-83. Register 0x184  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
RB_DAC_VALUE[9:8]  
See the RB_DAC_VALUE section.  
Read back 0: CLKin2 is not selected for input to PLL1.  
Read back 1: CLKin2 is selected for input to PLL1.  
5
4
RB_CLKin2_SEL  
RB_CLKin1_SEL  
Read back 0: CLKin1 is not selected for input to PLL1.  
Read back 1: CLKin1 is selected for input to PLL1.  
Read back 0: CLKin0 is not selected for input to PLL1.  
Read back 1: CLKin0 is selected for input to PLL1.  
3
2
1
RB_CLKin0_SEL  
N/A  
Read back 1: CLKin1 LOS is active.  
Read back 0: CLKin1 LOS is not active.  
RB_CLKin1_LOS  
Read back 1: CLKin0 LOS is active.  
Read back 0: CLKin0 LOS is not active.  
0
RB_CLKin0_LOS  
8.6.2.9.6 RB_DAC_VALUE  
Contains the value of the DAC for user readback.  
8-84. RB_DAC_VALUE[9:0]  
MSB  
LSB  
0x184 [7:6] / RB_DAC_VALUE[9:8]  
0x185 [7:0] / RB_DAC_VALUE[7:0]  
8-85. Registers 0x184 and 0x185  
REGISTER  
BIT  
NAME  
POR DEFAULT  
RB_DAC_  
VALUE[9:8]  
0x184  
7:6  
2
DAC value is 512 on power on reset, if PLL1 locks upon  
power-up the DAC value will change.  
RB_DAC_  
VALUE[7:0]  
0x185  
7:0  
0
8.6.2.9.7 RB_HOLDOVER  
8-86. Register 0x188  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:5  
N/A  
Reserved  
Read back 0: Not in HOLDOVER.  
Read back 1: In HOLDOVER.  
4
RB_HOLDOVER  
N/A  
3:0  
Reserved  
8.6.2.9.8 SPI_LOCK  
Prevents SPI registers from being written to, except for 0x555.  
This register cannot be read back.  
8-87. Register 0x555  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0: Registers unlocked.  
1 to 255: Registers locked.  
7:0  
SPI_LOCK  
0
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
Texas Instruments provides the TICSPRO software to assist with device setup, frequency divider calculations,  
and general device programming as well as the PLLatinum™ simulation software for loop filter design and phase  
noise/jitter simulation on ti.com.  
9.1.1 Treatment of Unused Pins  
Not all pins are needed for every application. In general, power down the unused feature in software. The  
unused pin may be left floating or grounded through a 1-kresistor.  
9-1. Treatment of Unused Pins  
PINS  
TREATMENT IF UNUSED  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
1 kΩto GND or float pin  
CLKOUTx_P/CLKOUTx_N  
RESET/GPO  
SYNC/SYSREF_REQ  
FIN0_P/FIN0_N  
STATUS_LD1,STATUS_LD2  
CPOUT1,CPOUT2  
OSCOUT_P/CLKIN2_P  
OSCOUT_N/CLKIN2_N  
9.1.2 Frequency Planning and Spur Minimization  
Frequency planning refers to strategically assigning frequencies to outputs for the purposes of spur minimization.  
Spurs vary as a function of output frequency, output format, and output assignments. Spurs can be directly  
coupling from one output to the next or be caused by a mixing product. For instance, if one output is at 3 GHz  
and another output is at 750 MHz, one can see a 750 MHz-spur coupling through the 3-GHz output. In some  
situations, it is also possible to have a spur that occurs at the greatest common divisor of the two frequencies  
(250 MHz in this case). In either case, the choice of which outputs the 3-GHz and 750-MHz frequencies are  
assigned to can have an impact on spurs.  
9-2. Factors Impacting Spurs  
Factor  
General Guidelines and Tips  
Output Frequency  
To a point, higher frequencies tend to couple stronger to other outputs, but bypassing impacts this.  
Stronger signals and single-ended signals tend to couple stronger to other outputs. LVDS tends to couple  
less than LVPECL as well. For LVCMOS, consider using both sides of the output with one side inverted to  
the other (Norm/Inv) to minimize crosstalk.  
Output Format  
Outputs that are physically closer and that share the same power supply tend to have stronger crosstalk.  
Outputs are grouped by supply in the following manner: Clock Group 0: (CLK0,CLK1,CLK12,CLK13),  
Clock Group 1: (CLK2, CLK3), Clock Group 2 (CLK4, CLK5, CLK6, CLK7), Clock Group 3 (CLK8, CLK9,  
CLK10, CLK11). Use frequency planning to minimize spur levels to the most critical outputs.  
Frequency Assignment to  
Output  
(Frequency Planning)  
Frequency planning involves trial and error, but there is some strategy in planning. Try to ensure that the same  
frequencies are placed on outputs that have the strongest crosstalk and that different frequencies are placed on  
outputs that have weaker crosstalk  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9-3. Crosstalk Matrix  
CLK0,CLK1  
n/a  
CLK2,CLK3  
M
CLK4,CLK5  
CLK6,CLK7  
CLK8,CLK9  
L
CLK10,CLK11  
M
CLK12,CLK13  
CLK0,  
CLK1  
L
M
n/a  
H
L
H
CLK2,  
CLK3  
M
L
n/a  
M
L
L
H
L
L
M
M
M
M
CLK4,  
CLK5  
CLK6,  
CLK7  
L
n/a  
L
L
M
M
CLK8,  
CLK9  
L
L
L
n/a  
H
H
M
CLK10,  
CLK11  
M
H
M
M
M
M
M
M
n/a  
H
H
CLK12,  
CLK13  
M
n/a  
L = Low Crosstalk, M = Medium Crosstalk, H = High Crosstalk  
9.1.3 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A  
window size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback  
signals of the PLL for each event to occur. When a PLL digital lock event occurs, the digital lock detect of the  
PLL is asserted true. When the holdover exit event occurs, the device will exit holdover mode when  
HOLDOVER_EXIT_MODE = 1 (Exit based on DLD).  
9-4. Digital Lock Detect Related Fields  
EVENT  
PLL  
PLL1  
WINDOW SIZE  
LOCK COUNT  
PLL1 Locked  
PLL2 Locked  
Holdover exit  
PLL1_WND_SIZE  
PLL2_WND_SIZE  
PLL1_WND_SIZE  
PLL1_DLD_CNT  
PLL2_DLD_CNT  
PLL2  
PLL1  
HOLDOVER_DLD_CNT  
For a digital lock detect event to occur, there must be a lock count number of phase detector cycles of PLLX  
during which the time and phase error of the PLLX_R reference and PLLX_N feedback signal edges are within  
the user programmable window size. There must be at least one lock count phase detector event before a lock  
event occurs, therefore a minimum digital lock event time can be calculated as lock count / fPDX where X = 1 for  
PLL1 or 2 for PLL2.  
By using 方程式 4, values for a lock count and window size can be chosen to set the frequency accuracy  
required by the system in ppm before the digital lock detect event occurs:  
1e6 × PLLX_WND_SIZE × fPDX  
ppm =  
PLLX_DLD_CNT  
(4)  
The effect of the lock count value is that it shortens the effective lock window size by dividing the window size by  
lock count.  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window  
size, then the lock count value is reset to 0.  
9.1.3.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and  
PLL2_DLD_CNT = 10,000. Then, the minimum lock time of PLL2 will be 10,000 / 40 MHz = 250 µs.  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.1.4 Driving CLKIN AND OSCIN Inputs  
9.1.4.1 Driving CLKIN and OSCIN PINS With a Differential Source  
CLKin and OSCin pins can be driven by differential signals. TI recommends setting the input mode to bipolar  
(CLKinX_BUF_TYPE = 0) when using differential reference clocks. The device internally biases the input pins so  
the differential interface should be AC-coupled. The recommended circuits for driving the CLKin pins with either  
LVDS or LVPECL are shown in 9-1 and 9-2.  
CLKINx_P  
0.1 µF  
LVDS  
Output  
100 Trace  
(Di eren al)  
Input  
CLKINx_N  
0.1 µF  
9-1. CLKINx_P/CLKINx_N or OSCIN Termination for an LVDS Reference Clock Source  
CLKINx_P  
0.1 µF  
LVPECL  
Output  
100 Trace  
(Di eren al)  
Input  
CLKINx_N  
0.1 µF  
9-2. CLKINx_P/CLKINx_N or OSCIN Termination for an LVPECL Reference Clock Source  
Finally, a reference clock source that produces a differential sine wave output can drive the CLKIN pins using the  
following circuit. Note: the signal level must conform to the requirements for the CLKIN pins listed in the  
Electrical Characteristics table.  
CLKINx_P  
0.1 µF  
100 Trace  
(Di eren al)  
Input  
CLKINx_N  
Di eren al  
Sinewave Clock  
0.1 µ F  
9-3. CLKINx_P/CLKINx_N or OSCIN Termination for a Differential Sinewave Reference Clock Source  
9.1.4.2 Driving CLKIN Pins With a Single-Ended Source  
The CLKIN and OSCIN pins can be driven using a single-ended reference clock source, for example, either a  
sine wave source or an LVCMOS/LVTTL source. CLKIN supports both AC coupling or DC coupling. OSCin must  
use AC coupling. In the case of the sine wave source that is expecting a 50-Ω load, TI recommends using AC  
coupling as shown in 9-4 with a 50-Ωtermination.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
备注  
The signal level must conform to the requirements for the CLKin or OSCin pins listed in the Electrical  
Characteristics table.  
To support LOS functionality, CLKinX_BUF_TYPE must be set to MOS mode (CLKinX_BUF_TYPE =  
1) when AC-coupled. When AC coupling, if the 100-Ω termination is placed on the IC side of the  
blocking capacitors, then the LOS functionality will not be valid.  
CLKINx_P  
50  
0.1 µF  
Input  
Clock Source  
CLKINx_N  
0.1 µ F  
9-4. CLKINx_P/CLKINx_N Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode  
(CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC-coupled,  
MOS-mode clock inputs given in the Electrical Characteristics table. If AC coupling is used, the  
CLKinX_BUF_TYPE should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at  
the input pins must meet the specifications for AC-coupled, bipolar mode clock inputs given in the Electrical  
Characteristics table. In this case, some attenuation of the clock input level may be required. A simple resistive  
divider circuit before the AC-coupling capacitor is sufficient.  
CLKINx_P  
50  
0.1 µF  
Input  
LVCMOS/LVTTL  
Clock Source  
CLKINx_N  
0.1 µF  
9-5. DC-Coupled LVCMOS/LVTTL Reference Clock  
9.1.5 OSCin Doubler for Best Phase Noise Performance  
PLL2 OSCin input path includes an on-chip Frequency Doubler. To have the best phase noise performance, TI  
recommends to maximize the PLL2 phase detector frequency. For example, using 122.88-MHz VCXO, PLL2  
phase detector frequency can be increased to 245.76 MHz by setting PLL2_REF_2X_EN. Doubler path is a high  
performance path for OSCin clock. For configuration where doubler cannot be used, TI recommends to use  
Doubler and PLL2_RDIV = 2. To have deterministic phase relationship between input clock and output clocks, 0-  
delay modes should be used (nested 0-delay mode for dual loop configuration instead of cascaded 0-delay  
mode).  
9.1.6 Radiation Environments  
9.1.6.1 Total Ionizing Dose  
Radiation Hardness assured (RHA) products are those part numbers with a total ionizing dose (TID) level  
specified in the ordering information. Testing and qualification of these product is done according to MIL-  
STD-883, test method 1019.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.1.6.2 Single Event Effect  
One-time single event effect (SEE), including single event latch-up (SEL) and single event functional interrupt  
(SEFI) testing was performed according to EIA/JEDEC Standard, EIA/JEDEC57. A test report is available upon  
request.  
9.2 Typical Application  
This design example highlights the available tools used to design loop filters and create a programming map.  
CLKOUT10  
VCXO  
Mul ple “clean” clocks  
at di erent and much  
higher frequencies  
LMX2615-SP  
Recovered  
CLKOUT11  
PLL+VCO  
“dirty” clock  
or clean clock  
CLKIN0  
OSCOUT  
CLKOUT8  
CLKOUT9  
FPGA  
Backup  
Reference  
Clock  
LMK04832-SEP  
CLKIN1  
CLKOUT4 &  
CLKOUT6  
CLKOUT5 &  
CLKOUT7  
CLKOUT0 &  
CLKOUT2  
CLKOUT12,  
CLKOUT13  
DAC  
ADC12DJ3200  
QML-SP  
CLKOUT1 &  
CLKOUT3  
Serializer/  
Deserializer  
9-6. Typical Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
Clocks outputs:  
1x 122.88 MHz LVCMOS  
1x 122.88 MHz HSDS  
1x 245.76 MHz LVPECL  
1x 983.04 MHz LVDS  
1x 2949.12 MHz CML  
For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz  
VCXO is used. Assume that the 2949.12-MHz CML clock is the most performance critical one.  
9.2.2 Detailed Design Procedure  
TI has the TICSPRO and PLLatinumsimulation tools that can be used to determine register values and design  
the loop filter. CML and LVPECL output formats have the best noise floor, but consume more current, therefore it  
is best to use these formats when noise floor matters. As for frequency planning, CLKOUT4 has the most critical  
output, and this output has a strong interaction with the CLKOUT6. To avoid a strong interaction, the CLKOUT6  
was not used in this example and a spur was added to the CLKOUT4. The 122.88-MHz HSDS clock could  
potentially generate a lot of spurs and mixing products, so this HSDS clock was placed on the CLKOUT8 that  
has the weakest interaction with the other channels.  
9.2.2.1 Device Selection  
Enter the required frequencies into the tools. In this design, VCO0 and VCO1 both meet the design  
requirements. VCO0 offers a relatively improved VCO performance over VCO1. In this case, choose VCO0 for  
improved RMS jitter in the 12-kHz to 20-MHz integration range.  
9.2.2.1.1 Clock Architect  
Under the advanced tab of the Clock Architect, filtering of specific parts can be done using regular expressions  
in the Part Filter box. [LMK04832.*] will filter for only the LMK04832 device (without brackets). More detailed  
filters can be given such as the entire part name LMK04832_VCO0 to force an LMK04832 using VCO0 solution  
if one is available.  
9.2.2.2 Device Configuration and Simulation  
The tools automatically configure the simulation to meet the input and output frequency requirements given, and  
make assumptions about other parameters to give some default simulations. However, the user may chose to  
make adjustments for more accurate simulations to their application. For example:  
Entering the VCO Gain of the external VCXO or possible external VCO used device.  
Adjust the charge pump current to help with loop filter component selection. Lower charge pump currents  
result in smaller components but may increase impacts of leakage and at the lowest values reduce PLL  
phase noise performance.  
Clock Architect allows loading a custom phase noise plot for reference or VCXO block. Typically, a custom  
phase noise plot is entered for CLKin to match the reference phase noise to device; a phase noise plot for the  
VCXO can additionally be provided to match the performance of VCXO used. For improved accuracy in  
simulation and optimum loop filter design, be sure to load these custom noise profiles for use in application.  
The PLLatinumSimulation tool can also be used to design and simulate a loop filter.  
9.2.2.3 Device Setup  
Frequency Planning  
Even clock outputs have the simplest output path and lowest noise floor, so they were chosen.  
CLKOUT4 is used so therefore CLKOUT6 & CLKOUT7 should either not be used or at least be assigned the  
same frequency as CLKOUT4.  
CLKOUT8 is used, so therefore CLKOUT10 & CLKOUT11 should either not be used or at least be assigned  
the same frequency as CLKOUT8.  
Output Formats  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
CML and LVPECL are chosen for the 983.04 and 2949.12 MHz clocks for the lower noise floor  
CMOS is chosen for the 122.88 MHz clock for lower current consumption  
Programming  
Using the clock design tools configuration the TICS Pro software is manually updated with this information to  
meet the required application.  
For best performance the input and output drive level bits may be set. Best noise floor performance is  
achieved with CLKout2_3_IDL = 1 and CLKout2_3_ODL = 1.  
The CLKoutX_Y_ODL bit has no impact on even clock outputs in high performance bypass mode.  
9.2.3 Application Curve  
-80  
OSCOUT  
CLKOUT8  
CLKOUT0  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
CLKOUT2  
CLKOUT4  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
1x108  
Offset (Hz)  
9-7. Offset vs Phase Noise  
9-5. Offset vs Phase Noise  
Phase Noise (dBc/Hz)  
Frequency  
(MHz)  
Jitter  
(fs)  
Output  
Format  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
Floor  
OSCOUT  
CLKOUT8  
122.88  
LVCMOS  
132.2  
87.7  
-111.8  
-137.3  
-148.3  
-144.4  
-154.0  
-155.4  
-157.2  
-155.9  
-156.0  
HSDS  
(8 mA)  
122.88  
245.76  
983.04  
2949.12  
-111.7  
-98.0  
-92.7  
-81.4  
-134.7  
-127.6  
-115.9  
-106.5  
-146.4  
-139.1  
-128.2  
-118.8  
-162.7  
-161.9  
-157.4  
-154.7  
-162.8  
-162.6  
-159.4  
-158.0  
LVPECL  
(2 Vpp)  
CLKOUT0  
CLKOUT2  
CLKOUT4  
70.0  
67.1  
65.4  
-137.2  
-125.7  
-116.3  
-154.1  
-141.4  
-132.0  
LVPECL  
(1.6 Vpp)  
CML  
(32 mA)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3 Power Supply Recommendations  
9.3.1 Current Consumption  
Current consumption varies considerably with the number of outputs and output formats. This can be calculated  
the TI TICSPro software.  
9.3.2 Cold Sparing Considerations  
9-8 below demonstrates how this part can be used for cold sparing  
VCC1 = 3.3V ± 0.3V  
VCC2 = 0V  
+
+
Output of LMK  
Device configured  
as CMOS  
220  
Unpowered LMK  
Device  
(acting as cold spare)  
CLKINX or SYNC  
Powered  
LMK Device  
CLKinX  
Copyright © 2022, Texas Instruments Incorporated  
9-8. Cold Sparing Devices Setup  
9.3.2.1 Damage Prevention Details to Unpowered Device  
Setting two devices in a cold sparing setup leads to the unpowered device receiving DC-coupled LVCMOS  
pulses on the CLKIN0 or SYNC inputs periodically throughout the lifetime of the unpowered device. The  
cumulative lifetime limit for the unpowered device DC input current is 10 hours at maximum junction  
temperature. Also, the device can remain within specifications for much longer than this limit if the typical cold-  
spare junction temperature is lower than maximum junction temperature. However, by placing a 220-Ω in series  
between the output of the poweredde to the inputs of the unpowered devP, even when connected to a 3.3-V or  
3.6-V powered system, DC pulses from the powered device do not damage the unpowered device. DC-coupling  
3.3V or 3.6-V I/O can occur without the transmitter for the SYNC signal failing high and destroying the receiver,  
or any other circuitry within the unpowered device. Also, the 220-Ωresistor limits the current to about 7 mA, with  
less than 12 mW dissipated onto the unpowered device.  
Additionally, if CLKIN is damaged or fails short in one of the CLKIN paths with the 220-Ω resistor in series to  
ground on the fault path, the current is limited. The initial damage won't short to the outputs of the transmitter  
powered device, and therefore, no damage occurs to the rest of the system. The inputs and outputs of each  
device have separate power supply pins that are not connected internally; therefore, if the unpowered device is  
powered, no issues can occur to the outputs, even if one of the inputs is damaged over the lifetime of the  
unpowered device.  
When driving the CLKINx or OSCin inputs of an unpowered device, signal levels up to ± 400 mV can be AC-  
coupled through 0.01 µF across the operating frequency range. Under these constraints, the magnitude of the  
RMS currents injected into the CLKinX ESD structures is within acceptable power and current limits across the  
full junction temperature range and won't cause long-term degradation of function. Larger amplitudes, higher  
frequencies, or different coupling capacitors can be acceptable as long as the signal is AC-coupled and the  
unpowered current limit of 7 mA going into or coming out of the CLKIN or OSCIN pins is observed.  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
CLKIN or OSCIN  
0.01 F  
Unpowered  
Device  
± 400 mV square  
wave source  
Copyright © 2022, Texas Instruments Incorporated  
9-9. AC-Coupled ± 400 mV Signal Inputted to Unpowered Device  
9.4 Layout  
9.4.1 Layout Guidelines  
In general, the following general guidelines are useful to keep in mind.  
GND pins on the outer perimeter of the package may be routed on the package back to the DAP  
Ensure the DAP on device is well-grounded with many vias.  
Use a low loss dielectric material, such as Rogers 4350B, for optimal output power.  
For power supply bypassing, isolate each clock group .  
In addition to this, there are special considerations for the routing of the outputs. The outputs are divided in to  
several output groups.  
Clock Group 0: CLKOUT0, CLKOUT1, CLKOUT12, CLKOUT13  
Clock Group 1: CLKOUT2, CLKOUT3  
Clock Group 2: CLKOUT4, CLKOUT5, CLKOUT6, CLKOUT7  
Clock Group 3: CLKOUT8, CLKOUT9, CLKOUT10, CLKOUT11  
It is optimal to isolate the power supply pins for these clock group pins with a ferrite bead to crosstalk between  
the outputs, especially if the output groups have different frequencies. If there is flexibility in planning which  
frequencies go to which outputs, crosstalk can be minimized by putting different frequencies in different output  
groups (as opposed to putting them in the same output group).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: LMK04832-SEP  
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.2 Layout Example  
9-10. Top Layer  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Emi er resistors for  
LVPECL can be put on  
back side of the board.  
Resistors, Ferrite  
Beads, and  
Capacitors on back  
side of board  
provide power  
supply ltering  
9-11. Bottom Layer  
9.4.3 Thermal Management  
Power consumption can be high enough to require attention from thermal management. For reliability and  
performance reasons, the die temperature should be limited to a maximum of 125°C. That is, as an estimate, TA  
(ambient temperature) plus device power consumption times RθJA should not exceed 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: LMK04832-SEP  
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
10.1.1.1 Clock Architect  
Part selection, loop filter design, simulation.  
To run the online Clock Architect tool, go to www.ti.com/clockarchitect.  
10.1.1.2 PLLatinum Simulation  
Supports loop filter design and simulation. All simulation is for a single loop, to perform dual loop simulations, the  
result of the first PLL simulation must be loaded as a reference to the second PLL simulation.  
To download the PLLatinum™ simulation tool, go to www.ti.com/tool/PLLATINUMSIM-SW  
10.1.1.3 TICS Pro  
EVM programming software. Can also be used to generate register map for programming and calculate current  
consumption estimate.  
For TICS Pro, go to www.ti.com/tool/TICSPRO-SW  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation, see the following:  
AN-912 Common Data Transmission Parameters and their Definitions (SNLA036)  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
PLLatinumand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: LMK04832-SEP  
 
 
 
 
 
 
 
 
 
LMK04832-SEP  
ZHCSPJ6A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This data is subject to change  
without notice and revision of this document.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: LMK04832-SEP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
250  
160  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04832MPAPSEP  
LMK04832PAP/EM  
V62P22612-01XE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
PAP  
64  
64  
64  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
25 to 25  
LMK04832  
MPAPSEP  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
PAP  
NIPDAU  
NIPDAU  
LMK04832  
PAP/EM  
PAP  
LMK04832  
MPAPSEP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMK04832-SEP :  
Space : LMK04832-SP  
NOTE: Qualified Version Definitions:  
Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application  
Addendum-Page 2  
PACKAGE OUTLINE  
TM  
PAP0064E  
PowerPAD TQFP - 1.2 mm max height  
SCALE 1.300  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
33  
16  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
65  
6.08  
4.67  
DETAIL A  
A
17  
TYPICAL  
1
48  
49  
64  
4228332/A 01/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064E  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8)  
NOTE 8  
(
6.08)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.3 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
17  
32  
SEE DETAILS  
(1.3 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4228332/A 01/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064E  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.08)  
BASED ON 0.125  
THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
6.80 X 6.80  
6.08 X 6.08 (SHOWN)  
5.55 X 5.55  
0.125  
0.15  
0.175  
5.14 X 5.14  
4228332/A 01/2022  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

V63-200

8 PIN DIP VCXO
CONNOR-WINFIE
CONNOR-WINFIE
CONNOR-WINFIE

V6300

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300ASP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300BSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300CSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300DSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300ESP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300FSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300GSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO

V6300HSP5B

Ultra Low Power 3-Pin Power-On Reset IC
EMMICRO