VCA8617_14 [TI]

8-Channel VARIABLE GAIN AMPLIFIER;
VCA8617_14
型号: VCA8617_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-Channel VARIABLE GAIN AMPLIFIER

放大器
文件: 总35页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
8-Channel VARIABLE GAIN AMPLIFIER  
Check for Samples: VCA8617  
1
FEATURES  
DESCRIPTION  
23  
3V OPERATION  
The VCA8617 is an 8-channel variable gain amplifier  
ideally suited to portable ultrasound applications.  
Excellent dynamic performance enables use in  
low-power, high-performance portable applications.  
Each channel consists of a 20dB gain Low-Noise  
pre-Amplifier (LNA) and a Variable Gain Amplifier  
(VGA). The differential outputs of the LNA can be  
switched through the 8x10 cross-point switch, which  
is programmable through the serial interface input  
port.  
LOW INPUT NOISE:  
1.05nV/Hz at fIN = 5MHz  
EXTREMELY LOW POWER OPERATION:  
103mW/CHANNEL  
INTEGRATED LOW-PASS, ANTI-ALIASING  
BUTTERWORTH FILTER  
14.5MHz BANDWIDTH  
INTEGRATED INPUT CLAMP DIODES  
DIFFERENTIAL OUTPUT  
The output of the LNA is fed directly into the VGA  
stage. The VGA consists of two parts,  
Voltage-Controlled Attenuator (VCA) and  
a
a
INTEGRATED INPUT LNA  
Programmable Gain Amplifier (PGA). The gain and  
gain range of the PGA can be digitally configured  
separately. The gain of the PGA can vary between  
four discrete settings of 25dB, 30dB, 35dB, and  
40dB. The VCA has four programmable maximum  
attenuation settings: 29dB, 33dB, 36.5dB, and 40dB.  
Also, the VCA can be continuously varied by a control  
voltage from 0dB to a maximum of 29dB, 33dB,  
36.5dB, and 40dB.  
READABLE CONTROL REGISTERS  
INTEGRATED CONTINUOUS WAVE (CW)  
PROCESSOR  
The output of the PGA feeds directly into an  
integrated low-pass filter.  
VCA8617  
5x8  
CW Processor  
(8 x 10)  
CW(0-9)  
DOUT  
FIFO  
10  
DIN  
PG  
Serial  
CLK  
CS  
Interface  
ATN  
Analog  
Control  
VCNTRL  
OUT1  
OUT1  
2-Pole  
Filter  
IN1  
LNA  
VCA  
PGA  
·
·
·
·
·
·
VLNA  
OUT8  
OUT8  
2-Pole  
Filter  
IN8  
LNA  
VCA  
PGA  
VLNA  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2009, Texas Instruments Incorporated  
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
VCA8617PAGT  
VCA8617PAGR  
Tape and Reel, 250  
Tape and Reel, 1500  
VCA8617  
TQFP-64  
PAG  
40°C to +85°C  
VCA8617PAG  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range unless otherwise noted.  
+AVDD  
+3.6V  
Analog Input  
0.3V to +AVDD + 0.3V  
0.3V to +AVDD + 0.3V  
+100°C  
Logic Input  
Case Temperature  
Junction Temperature  
Storage Temperature  
Thermal Resistance, Junction-to-Ambient (θ JA  
+150°C  
+150°C  
)
66.6°C/W  
Thermal Resistance, Junction-to-Case (θ JC  
)
4.3°C/W  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
2
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
ELECTRICAL CHARACTERISTICS: AVDD = DVDD = 3V  
At TA = +25°C, load resistance = 1kon each output to ground, unless otherwise noted. The input to the preamp (LNA) is  
single-ended; pre-amp gain is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential,  
unless otherwise noted.  
VCA8617  
PARAMETER  
CONDITIONS  
fIN = 5MHz  
MIN  
TYP  
1.05  
1.15  
MAX  
UNIT  
Input Voltage Noise (TGC, Full Signal Chain)  
Input Voltage Noise (CW)  
PREAMPLIFIER (LNA)  
Input Resistance  
nV/Hz  
nV/Hz  
fIN = 5MHz  
4.5  
52  
1
kΩ  
pF  
Input Capacitance  
Input Bias Current  
nA  
Maximum Input Voltage(1)  
Output Swing (Differential)  
Bandwidth  
200  
2
mVPP  
VPP  
MHz  
dB  
100  
20  
1.4  
Gain  
Input Common-Mode Voltage  
ACCURACY  
V
Gain Slope  
0.2V 1.7V, VCNTRL  
0.2V 1.7V, VCNTRL  
Differential  
18  
dB/V  
dB  
Gain Error  
1.7  
Output Offset Voltage  
GAIN CONTROL INTERFACE  
Input Voltage (VCACNTRL) Range  
Input Resistance  
0.65  
mV  
0 to 2.0  
V
1
MΩ  
μs  
Response Time  
40dB Gain Change, PG = 11  
0.2  
POWER SUPPLY  
Specified Operating Range  
Power-Down Delay  
2.85  
3.0  
5
3.15  
950  
V
μs  
Power-Up Delay  
100  
825  
9
μs  
Power Dissipation (TGC Mode)  
Power-Down  
Operating All Channels  
mW  
mW  
PROGRAMMABLE VGA AND LOW-PASS FILTER  
3dB Cutoff (low-pass)  
3dB Cutoff (high-pass)  
Slew Rate  
14.5  
400  
300  
10  
MHz  
kHz  
V/µs  
Output Impedance  
Crosstalk  
49  
dB  
Output Common-Mode Voltage  
Output Swing (Differential)(2)  
3rd-Harmonic Distortion  
2nd-Harmonic Distortion  
Group Delay Variation  
CONTINUOUS WAVE PROCESSOR  
V/I Converter Transconductance  
Output Common-Mode Voltage  
Maximum Output Swing  
1.5  
V
2
VPP  
dB  
–65  
–60  
±3  
–50  
–50  
dB  
ns  
17  
20  
1.4  
3.4  
23  
mA/V  
V
mAPP  
(1) Under conditions when input signal is within linear range of LNA.  
(2) Under conditions when signal is within linear range of output amplifier.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): VCA8617  
 
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground, unless otherwise noted. The input to the preamp (LNA) is  
single-ended; pre-amp gain is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential,  
unless otherwise noted.  
VCA8617  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INPUTS  
VIN LOW (input low voltage)  
VIN HIGH (input high voltage)  
Input Current  
0
0.6  
DVDD  
±1  
V
2.1  
V
µA  
pF  
Hz  
Input Pin Capacitance  
Clock Input Frequency  
5
10k  
25M  
4
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
Top View  
TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
IN6  
AGND  
IN5  
1
2
48 OUT8  
47 OUT8  
46 OUT7  
45 OUT7  
44 OUT6  
43 OUT6  
42 OUT5  
41 OUT5  
40 OUT4  
39 OUT4  
38 OUT3  
37 OUT3  
36 OUT2  
35 OUT2  
34 OUT1  
33 OUT1  
3
AGND  
DVDD  
DGND  
DOUT  
CLK  
4
5
6
7
8
VCA8617  
DIN  
9
CS  
10  
11  
12  
13  
14  
15  
16  
DGND  
DVDD  
AGND  
IN4  
AGND  
IN3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
PIN DESCRIPTIONS  
PIN  
DESIGNATOR  
DVDD  
DESCRIPTION  
5, 12  
Digital Supplies  
2, 4, 13, 15, 17, 19, 27, 50, 54, 62, 64  
AGND  
IN(18)  
CW(09)  
VLNA  
Analog Ground  
1, 3, 14, 16, 18, 20, 61, 63  
Single-Ended LNA Inputs  
Continuous Wave Outputs  
2226, 5559  
51  
Reference Voltage for LNAinternally generated; requires external bypass cap.  
29  
VFIL  
Reference Voltage for Output Filterinternally generated; requires external bypass cap.  
30  
VCM  
Common-Mode Voltageinternally generated; requires external bypass cap.  
34, 36, 38, 40, 42, 44, 46, 48  
OUT(18)  
OUT(18)  
VCNTRL  
DIN  
Positive Polarity PGA Outputs  
Negative Polarity PGA Outputs  
Attenuator Control Input  
33, 35, 37, 39, 41, 43, 45, 47  
52  
9
Serial Data Input Pin  
10  
CS  
Serial Data Chip Select  
8
CLK  
Serial Data Input Clock  
7
DOUT  
Serial Data Output Pin  
21, 28, 53, 60  
AVDD  
Analog Supplies  
6, 11  
49  
DGND  
VREF  
Digital Ground  
Reference Voltage for Attenuatorinternally generated; requires external bypass cap.  
Reference Power Supply  
32  
VDDR  
31  
GNDR  
Reference Ground  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
INPUT REGISTER BIT MAPS  
Table 1. Byte 1—Control Byte Register Map  
BIT #  
LSB  
1
NAME  
1
DESCRIPTION  
Start bit; always a ‘1’—40-bit countdown starts upon first ‘1’ after chip select.  
W/R  
1 = Write, 0 = Read—Read prevents latching of DATA only—Control register remains  
latched with existing data.  
2
PWR  
Power-Down control bit (all channels); 1 = Power-Down Mode Enabled (default),  
0 = Normal Operation.  
3
4
A0  
A1  
Attenuator control bit (ATN).  
Attenuator control bit (ATN).  
5
Mode  
PG0  
PG1  
1 = TGC Control mode (CW powered down), 0 = Doppler mode (TGC powered down)  
LSB of PGA Gain Control  
6
MSB  
MSB of PGA Gain Control  
Table 2. Byte 2—First Data Byte  
BIT #  
NAME  
DESCRIPTION  
LSB  
Data 1:0  
Data 1:1  
Data 1:2  
Data 1:3  
Data 2:0  
Data 2:1  
Data 2:2  
Data 2:3  
Channel 1, LSB of Matrix Control  
Channel 1, Matrix Control  
Channel 1, Matrix Control  
Channel 1, MSB of Matrix Control  
Channel 2, LSB of Matrix Control  
Channel 2, Matrix Control  
Channel 2, Matrix Control  
Channel 2, MSB of Matrix Control  
1
2
3
4
5
6
MSB  
Table 3. Byte 3—Second Data Byte  
BIT #  
NAME  
DESCRIPTION  
LSB  
Data 3:0  
Data 3:1  
Data 3:2  
Data 3:3  
Data 4:0  
Data 4:1  
Data 4:2  
Data 4:3  
Channel 3, LSB of Matrix Control  
Channel 3, Matrix Control  
Channel 3, Matrix Control  
Channel 3, MSB of Matrix Control  
Channel 4, LSB of Matrix Control  
Channel 4, Matrix Control  
Channel 4, Matrix Control  
Channel 4, MSB of Matrix Control  
1
2
3
4
5
6
MSB  
6
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
Table 4. Byte 4—Third Data Byte  
BIT #  
NAME  
DESCRIPTION  
LSB  
Data 5:0  
Data 5:1  
Data 5:2  
Data 5:3  
Data 6:0  
Data 6:1  
Data 6:2  
Data 6:3  
Channel 5, LSB of Matrix Control  
Channel 5, Matrix Control  
Channel 5, Matrix Control  
Channel 5, MSB of Matrix Control  
Channel 6, LSB of Matrix Control  
Channel 6, Matrix Control  
Channel 6, Matrix Control  
Channel 6, MSB of Matrix Control  
1
2
3
4
5
6
MSB  
Table 5. Byte 5—Fourth Data Byte  
BIT #  
NAME  
DESCRIPTION  
LSB  
Data 7:0  
Data 7:1  
Data 7:2  
Data 7:3  
Data 8:0  
Data 8:1  
Data 8:2  
Data 8:3  
Channel 7, LSB of Matrix Control  
Channel 7, Matrix Control  
Channel 7, Matrix Control  
Channel 7, MSB of Matrix Control  
Channel 8, LSB of Matrix Control  
Channel 8, Matrix Control  
Channel 8, Matrix Control  
Channel 8, MSB of Matrix Control  
1
2
3
4
5
6
MSB  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
WRITE/READ TIMING  
Generally follows SPI Timing Specification:  
All writes and reads are 40 bits at a time. Each byte consists of 8 bits;  
Separate write and read data lines;  
Reads will follow the same bit stream pattern seen in the write cycle;  
Reads will extract data from the FIFO, not the latched register;  
DOUT data is continuously available and need not be enabled with a read cycle. Selecting a read cycle in the  
control register only prevents latching of data. The control register remains latched.  
WRITE CYCLE TIMING  
t4  
t7  
CS  
t2  
t3  
CLK  
t5  
t6  
t1  
DIN  
LSB  
1
2
3
4
5
6
MSB  
NOTE: It is highly recommended that the clock be turned off after the required data has been programmed into the VCA8617.  
SERIAL PORT TIMING TABLE  
Chip Select (CS) must be held low (active LOW) during transfer. CS can be held permanently low.  
PARAMETER  
DESCRIPTION  
MIN  
40  
20  
20  
10  
5
TYP  
MAX  
UNITS  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
Serial CLK Period  
Serial CLK HIGH Time  
ns  
Serial CLK LOW Time  
ns  
CS Falling Edge to Serial CLK Falling Edge  
Data Setup Time  
ns  
ns  
Data Hold Time  
5
ns  
Serial CLK Falling Edge to CS Rising Edge  
10  
ns  
8
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
DATA SHIFT SEQUENCE  
Shift Direction  
DIN  
MSB  
MSB  
MSB  
MSB  
MSB  
6
6
6
6
6
5
5
5
5
5
4
4
4
4
4
3
3
3
3
3
2
2
2
2
2
1
1
1
1
1
LSB  
LSB  
LSB  
LSB  
LSB  
DOUT  
Table 6. Maximum Attenuation  
Table 7. PGA Gain Settings  
A1, A0  
0, 0  
MAXIMUM ATTENUATION  
PG1, PG0  
0, 0  
PGA GAIN  
25dB  
29dB  
33dB  
0, 1  
0, 1  
30dB  
1, 0  
36.5dB  
40dB  
1, 0  
35dB  
1, 1  
1, 1  
40dB  
Table 8. CW Coding for Each Channel  
CW CODING  
CHANNEL  
(MSB, LSB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CHANNEL DIRECTED TO:  
Output 0  
0
1
Output 1  
2
Output 2  
3
Output 3  
4
Output 4  
5
Output 5  
6
Output 6  
7
Output 7  
8
Output 8  
9
Output 9  
10  
11  
12  
13  
14  
15  
Channel tied to +V (internal)  
Channel tied to +V (internal)  
Channel tied to +V (internal)  
Channel tied to +V (internal)  
Channel tied to +V (internal)  
Channel tied to +V (internal)  
Applies to bytes 2 through 5.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
GAIN vs VCNTRL  
(PG = 00, 25dB)  
GAIN vs VCNTRL  
(PG = 01, 30dB)  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ATN = 00  
ATN = 00  
ATN = 01  
ATN = 01  
ATN = 11  
ATN = 10  
ATN = 11  
ATN = 10  
0
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
Figure 1.  
Figure 2.  
GAIN vs VCNTRL  
(PG = 10, 35dB)  
GAIN vs VCNTRL  
(PG = 11, 40dB)  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ATN = 00  
ATN = 00  
ATN = 01  
ATN = 01  
ATN = 11  
ATN = 11  
ATN = 10  
ATN = 10  
0
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
Figure 3.  
Figure 4.  
10  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
GAIN ERROR vs VCNTRL  
(PG = 00)  
GAIN ERROR vs VCNTRL  
(PG = 01)  
2.0  
1.5  
2.0  
1.5  
ATN = 01  
ATN = 00  
1.0  
1.0  
ATN = 01  
0.5  
0.5  
ATN = 00  
0
0
ATN = 10  
ATN = 11  
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
ATN = 10  
ATN = 11  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
Figure 5.  
Figure 6.  
GAIN ERROR vs VCNTRL  
(PG = 10)  
GAIN ERROR vs VCNTRL  
(PG = 11)  
2.0  
1.5  
2.0  
1.5  
ATN = 01  
ATN = 00  
1.0  
1.0  
ATN = 01  
ATN = 00  
0.5  
0.5  
0
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
ATN = 11  
ATN = 10  
ATN = 11  
ATN = 10  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
Figure 7.  
Figure 8.  
GAIN ERROR vs VCNTRL vs FREQUENCY  
GAIN ERROR vs VCNTRLvs TEMPERATURE  
2.0  
1.5  
2.0  
1.8  
10MHz  
1.6  
1.4  
1.0  
1.2  
1.0  
5MHz  
2MHz  
0.5  
+85°C  
0.8  
0.6  
0
0.4  
0.2  
+25°C  
0.5  
1.0  
1.5  
2.0  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40°C  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
VCNTRL (V)  
Figure 9.  
Figure 10.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
TIME GAIN CONTROL (TGC) CURRENT  
vs TEMPERATURE  
CONTINUOUS WAVE (CW) CURRENT  
vs TEMPERATURE  
285  
284  
283  
282  
281  
280  
279  
278  
277  
276  
275  
274  
273  
272  
271  
270  
269  
268  
220  
218  
216  
214  
212  
210  
208  
206  
204  
202  
200  
198  
196  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
Temperature (°C)  
Temperature (°C)  
Figure 11.  
Figure 12.  
GAIN MATCH  
GAIN MATCH  
(VCNTRL = 0.2V)  
(VCNTRL = 1.7V)  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
Delta Gain (dB)  
Delta Gain (dB)  
Figure 13.  
Figure 14.  
12  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
GAIN vs FREQUENCY  
CW ACCURACY  
(ATN = 00, VCNTRL = 0.2V)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
PG = 11  
PG = 10  
PG = 01  
PG = 00  
0
5  
10  
15  
0.1  
1
10  
100  
Frequency (MHz)  
Transconductance (mA/V)  
Figure 15.  
Figure 16.  
GAIN vs FREQUENCY  
(ATN = 00, VCNTRL = 1.7V)  
OUTPUT-REFERRED NOISE vs VCNTRL  
(ATN = 00, fIN = 2MHz)  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
PG = 11  
PG = 11  
PG = 10  
PG = 10  
PG = 01  
PG = 01  
PG = 00  
PG = 00  
1.8 2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.1  
1
10  
100  
VCNTRL (V)  
Frequency (MHz)  
Figure 17.  
Figure 18.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
OUTPUT-REFERRED NOISE vs VCNTRL  
(ATN = 00, fIN = 5MHz)  
INPUT-REFERRED NOISE vs VCNTRL  
(ATN = 00, fIN = 2MHz)  
20  
18  
16  
14  
12  
10  
8
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
PG = 00  
PG = 11  
PG = 11  
PG = 10  
PG = 01  
PG = 01  
6
PG = 10  
4
2
PG = 00  
1.8 2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
VCNTRL (V)  
VCNTRL (V)  
Figure 19.  
Figure 20.  
INPUT-REFERRED NOISE vs VCNTRL  
(ATN = 00, fIN = 5MHz)  
NOISE FIGURE vs VCNTRL  
(ATN = 00, fIN = 2MHz)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
30  
25  
20  
15  
10  
5
PG = 00  
PG = 00  
PG = 11  
PG = 01  
PG = 11  
PG = 10  
PG = 01  
PG = 10  
0.6  
0
0
0.2  
0.4  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VCNTRL (V)  
VCNTRL (V)  
Figure 21.  
Figure 22.  
14  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
NOISE FIGURE vs VCNTRL  
(ATN = 00, fIN = 5MHz)  
OUTPUT-REFERRED NOISE vs VCNTRL  
(ATN = 11, fIN = 2MHz)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
PG = 00  
PG = 11  
PG = 01  
PG = 11  
PG = 10  
PG = 10  
PG = 01  
PG = 00  
1.8 2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
VCNTRL (V)  
VCNTRL (V)  
Figure 23.  
Figure 24.  
OUTPUT-REFERRED NOISE vs VCNTRL  
(ATN = 11, fIN = 5MHz)  
INPUT-REFERRED NOISE vs VCNTRL  
(ATN = 11, fIN = 2MHz)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
PG = 00  
PG = 01  
PG = 11  
PG = 10  
PG = 01  
PG = 00  
PG = 11  
PG = 10  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VCNTRL (V)  
VCNTRL (V)  
Figure 25.  
Figure 26.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): VCA8617  
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
INPUT-REFERRED NOISE vs VCNTRL  
(ATN = 11, fIN = 5MHz)  
NOISE FIGURE vs VCNTRL  
(ATN = 11, fIN = 2MHz)  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
PG = 00  
PG = 01  
PG = 10  
PG = 00  
PG = 01  
PG = 11  
PG = 11  
PG = 10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VCNTRL (V)  
VCNTRL (V)  
Figure 27.  
Figure 28.  
NOISE FIGURE vs VCNTRL  
(ATN = 11, fIN = 5MHz)  
INPUT-REFERRED NOISE  
(2MHz, 2V VCNTRL  
)
40  
35  
30  
25  
20  
15  
10  
5
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
AT00  
AT11  
PG = 00  
PG = 01  
PG = 11  
PG = 10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
PG 00  
PG 01  
PG 10  
PG 11  
VCNTRL (V)  
Gain Setting  
Figure 29.  
Figure 30.  
16  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
INPUT-REFERRED NOISE  
(5MHz, 2V VCNTRL  
INPUT-REFERRED NOISE  
(CW Output)  
)
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
1.10  
1.05  
1.00  
AT00  
AT11  
1
2
3
4
5
PG 00  
PG 01  
PG 10  
PG 11  
Frequency (MHz)  
Gain Setting  
Figure 31.  
Figure 32.  
DISTORTION vs FREQUENCY  
DISTORTION vs FREQUENCY  
(ATN = 00, PG = 00, VCNTL = 2.0V)  
(ATN = 00, PG = 01, VCNTL = 2.0V)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
2nd−Harmonic  
3rd−Harmonic  
2nd−Harmonic  
3rd−Harmonic  
1
10  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Figure 33.  
Figure 34.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
DISTORTION vs FREQUENCY  
DISTORTION vs FREQUENCY  
(ATN = 00, PG = 10, VCNTL = 2.0V)  
(ATN = 00, PG = 11, VCNTL = 2.0V)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
2nd−Harmonic  
2nd−Harmonic  
3rd−Harmonic  
3rd−Harmonic  
1
10  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Figure 35.  
Figure 36.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 00, PG = 10, fIN = 2MHz, 750mVPP  
)
(ATN = 01, PG = 10, fIN = 2MHz, 750mVPP)  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
2nd-Harmonic  
3rd-Harmonic  
2nd-Harmonic  
3rd-Harmonic  
1.7  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2.0  
0.2  
0.5  
0.8  
1.1  
1.4  
2.0  
VCNTRL (V)  
VCNTRL (V)  
Figure 37.  
Figure 38.  
18  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 10, PG = 10, fIN = 2MHz, 750mVPP  
)
(ATN = 11, PG = 10, fIN = 2MHz, 750mVPP)  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
Under this test condition, at lower VCA  
control voltage, the LNA is overloaded.  
2nd-Harmonic  
2nd-Harmonic  
3rd-Harmonic  
3rd-Harmonic  
0.2  
0.5  
0.8  
1.1  
1.4  
1.7  
2.0  
VCNTRL (V)  
VCNTRL (V)  
Figure 39.  
Figure 40.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 00, PG = 00, 500mVPP, 2nd-Harmonic)  
(ATN = 00, PG = 01, 500mVPP, 2nd-Harmonic)  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
2MHz  
1MHz  
1MHz  
VCNTRL (V)  
VCNTRL (V)  
Figure 41.  
Figure 42.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 00, PG = 10, 500mVPP, 2nd-Harmonic)  
(ATN = 00, PG = 10, 500mVPP, 2nd-Harmonic)  
30  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
2MHz  
1MHz  
1MHz  
VCNTRL (V)  
VCNTRL (V)  
Figure 43.  
Figure 44.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 00, PG = 00, 500mVPP, 3rd-Harmonic)  
(ATN = 00, PG = 01, 500mVPP, 3rd-Harmonic)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
2MHz  
10MHz  
5MHz  
10MHz  
5MHz  
1MHz  
2MHz  
1MHz  
VCNTRL (V)  
VCNTRL (V)  
Figure 45.  
Figure 46.  
20  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
DISTORTION vs VCNTRL  
DISTORTION vs VCNTRL  
(ATN = 00, PG = 10, 500mVPP, 3rd-Harmonic)  
(ATN = 00, PG = 11, 500mVPP, 3rd-Harmonic)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
10MHz  
10MHz  
5MHz  
5MHz  
2MHz  
2MHz  
1MHz  
1MHz  
VCNTRL (V)  
VCNTRL (V) )  
Figure 47.  
Figure 48.  
CROSSTALK vs VCNTRL  
CROSSTALK vs VCNTRL  
(ATN = 00, fIN = 2MHz, CH4 to CH5)  
(ATN = 00, fIN = 5MHz, CH4 to CH5)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
PG10  
PG11  
PG10  
PG11  
PG = 00  
PG = 01  
PG = 01  
PG = 00  
VCNTRL (V)  
VCNTRL (V)  
Figure 49.  
Figure 50.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): VCA8617  
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
CROSSTALK vs VCNTRL  
CROSSTALK to VCNTRL  
(ATN = 00, fIN = 10MHz, CH4 to CH5)  
(ATN = 11, PG = 11, CH4 to CH5)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
PG10  
PG11  
10MHz  
5MHz  
PG = 00  
PG = 01  
2MHz  
VCNTRL (V)  
VCNTRL (V)  
Figure 51.  
Figure 52.  
CROSSTALK to VCNTRL; CH1 vs CHn  
(at 5MHz, AT = 00, PG = 00)  
CROSSTALK to VCNTRL; CH1 vs CHn  
(at 5MHz, AT = 11, PG = 00)  
30  
35  
40  
45  
50  
55  
60  
30  
35  
40  
45  
50  
55  
60  
1-2  
1-3  
1-4  
1-2  
1-3  
1-4  
1-6  
1-5  
1-5  
1-7  
1-6 1-7  
1-8  
1-8  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VCNTRL (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VCNTRL (V)  
Figure 53.  
Figure 54.  
22  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
TYPICAL CHARACTERISTICS: AVDD = DVDD = 3V (continued)  
At TA = +25°C, load resistance = 1kon each output to ground; the input to the preamp (LNA) is single-ended; pre-amp gain  
is fixed at +20dB, fIN = 2MHz, PG = 01, ATN = 00, and the output from the VCA is differential, unless otherwise noted.  
CROSSTALK to VCNTRL; CH1 vs CHn  
(at 5MHz, AT = 00, PG = 11)  
CROSSTALK to VCNTRL; CH1 vs CHn  
(at 5MHz, AT = 11, PG = 11)  
30  
35  
40  
45  
50  
55  
60  
30  
35  
40  
45  
50  
55  
60  
1-2  
1-3  
1-4  
1-8  
1-2  
1-4  
1-3  
1-5  
1-6  
1-6  
1-7  
1-7  
1-5  
1-8  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VCNTRL (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VCNTRL (V)  
Figure 55.  
Figure 56.  
INPUT IMPEDANCE  
INPUT IMPEDANCE  
0
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
10  
20  
30  
40  
50  
60  
70  
80  
0
90  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Figure 57.  
Figure 58.  
OVERLOAD RECOVERY vs TIME  
(ATN = 00, PG = 00, VCNTRL = 1V)  
OVERLOAD RECOVERY vs TIME  
(ATN = 00, PG = 01, VCNTRL = 2V)  
Output  
(2V/div)  
Output  
(2V/div)  
The signal is greater than 2VPP input, so the LNA is  
severely overloaded. Overload recovery time is 528ns.  
The signal is greater than 40mVPP input, so the LNA is in the linear region  
and the output amplifier is overloaded. Overload recovery time is 400ns.  
Input  
(1V/div)  
Input  
(20mV/div)  
Time (400ns/div)  
Time (400ns/div)  
Figure 59.  
Figure 60.  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): VCA8617  
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
APPLICATION INFORMATION  
to a little over 2VPP differential swing. This implies a  
maximum input voltage swing of approximately  
200mVPP to be operating in the linear range at 5MHz.  
Larger input signals can be accepted by the LNA, but  
distortion performance will degrade with larger input  
signals.  
NOTE: For current users of the VCA8613 who are  
switching to the VCA8617, pin 32 of the VCA8617 is  
a VDD reference pin and requires a minimum 0.1μF  
bypass capacitor to ground.  
INPUT CIRCUIT  
CW DOPPLER PROCESSOR  
The input of the VCA8617 integrates several  
commonly-used elements. Before reaching the input  
of the LNA, the receive signal should be coupled with  
a capacitor of at least 10nF (preferably more). When  
this ac-coupling element is inserted, the LNA input  
bias point is held to a common-mode value of 1.4V  
by an integrated 4.5kresistor. This common-mode  
value changes with temperature and may also vary  
from chip to chip, but for each chip, it will be held  
constant. Two back-to-back clipping diodes are in  
parallel with this resistor. These diodes prevent  
excessive input voltages from passing through to the  
LNA input, preventing deep saturation effects in the  
LNA itself. These integrated diodes are designed to  
handle a dc-current of up to about 10mA. If the  
application requires improved overload protection,  
external Schottky diodes, such as the BAS40 series  
by Infineon, should be considered.  
The VCA8617 integrates many of the elements  
necessary to allow for the implementation of a simple  
CW Doppler processing circuit. One circuit that was  
integrated was a V/I converter following the LNA, as  
shown in Figure 61. The V/I converter converts the  
differential LNA voltage output to a current, which is  
then passed through an 8x10 switch matrix (see  
Figure 62). Within this switch matrix, any of the eight  
LNA outputs can be connected to any of 10 CW  
output  
pins.  
This  
example  
is  
a
simple  
current-summing circuit, such that each CW output  
can represent the sum of any or all the channel  
currents. The transconductance of the V/I converter is  
approximately 20mA/V relative to the LNA input. For  
proper operation of the CW Doppler Processor, it is  
mandatory to have  
a
bias voltage on the  
output/outputs that are selected (see Figure 63).  
The CW output common-mode is 1.4V.  
LOW-NOISE PRE-AMPLIFIER (LNA)  
The CW outputs are typically routed to a passive  
delay line, allowing coherent summing of the signals.  
After summing, IQ separation and down conversion to  
baseband precedes a pair of high-resolution, low  
sample rate ADCs.  
The VCA8617 integrates a low-noise pre-amplifier.  
Because of the high level of integration in the system,  
noise performance was traded for power  
consumption, resulting in an extremely low-power  
pre-amplifier, with 0.8nV/Hz noise performance at  
5MHz. The LNA is configured as a fixed-gain 20dB  
amplifier. Of this total gain, 6dB results from the  
single-ended to differential conversion accomplished  
within the LNA itself. The output of the LNA is limited  
VCM = 1.5V  
Buffer  
Cross-Point  
Switch  
LNA  
CW Output  
Input 1  
4.5kW  
20dB  
Buffer  
Control  
Logic  
VLNA  
VCM = 1.5V  
(+1.4V)  
Figure 61. Basic CW Processing Block Diagram  
24  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
V/I  
Converter  
Channel 1  
Input  
CW0  
CW1  
CW2  
CW3  
SDI  
Decode  
Logic  
CW4  
CLK  
CW5  
CW6  
CW7  
CW8  
CW9  
+V  
SDO  
V/I  
Converter  
Channel 8  
Input  
SDI  
Decode  
Logic  
SDO  
Figure 62. Basic CW Cross-Point Switch Matrix for All Eight Channels  
VCA8617  
R
To CW Circuitry  
CW Output  
OPA  
VBIAS = 1.2V to 1.6V  
Figure 63. Operational Amplifier  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
VOLTAGE-CONTROLLED ATTENUATOR  
(VCA)—DETAIL  
shown as two sub-elements, QNA and QNB. Selector  
switches, driven by the MGS bits, activate either or  
both of the sub-element FETs to adjust the maximum  
RON and thus achieve the stepped attenuation  
options.  
The VCA is designed to have a dB-linear attenuation  
characteristic; that is, the gain loss in dB is constant  
for each equal increment of the VCNTRL control  
voltage. Figure 64 shows a block diagram of the  
VCA. The attenuator is essentially a variable voltage  
divider consisting of one series input resistor, RS, and  
10 identical shunt FETs, placed in parallel and  
The VCA can be used to process either differential or  
single-ended signals. Fully differential operation will  
reduce 2nd-harmonic distortion by about 10dB for  
full-scale signals.  
controlled  
by  
sequentially-activated  
clipping  
Input impedance of the VCA varies with gain setting,  
because of the changing resistances of the  
programmable voltage divider structure. At large  
attenuation factors (that is, low gain settings), the  
impedance will approach the series resistor value of  
approximately 120.  
amplifiers. Each clipping amplifier can be thought of  
as a specialized voltage comparator with a soft  
transfer characteristic and well-controlled output limit  
voltages. The reference voltages V1 through V10 are  
equally spaced over the 0V to 2.0V control voltage  
range. As the control voltage rises through the input  
range of each clipping amplifier, the amplifier output  
will rise from 0V (FET completely ON) to VCM – VT  
(FET nearly OFF), where VCM is the common source  
voltage and VT is the threshold voltage of the FET. As  
each FET approaches its OFF state and the control  
voltage continues to rise, the next clipping  
amplifier/FET combination takes over for the next  
As with the LNA stage, the VCA output is ac-coupled  
into the PGA. This ac-coupling means that the  
attenuation-dependent dc common-mode voltage will  
not propagate into the PGA, and so the PGA dc  
output level will remain constant.  
Finally, note that the VCACNTRL input consists of FET  
gate inputs. This architecture provides very high  
impedance and ensures that multiple VCA8617  
devices may be connected in parallel with no  
significant loading effects. The nominal voltage range  
for the VCNTRL input spans from 0V to 2.0V.  
Overdriving this input (greater than 3V) does not  
affect the performance.  
portion  
of  
the  
piecewise-linear  
attenuation  
characteristic. Thus, low control voltages have most  
of the FETs turned ON, while high control voltages  
have most turned OFF. Each FET acts to decrease  
the shunt resistance of the voltage divider formed by  
RS and the parallel FET network.  
The attenuator is comprised of two sections, with five  
parallel clipping amplifier/FET combinations in each.  
Special reference circuitry is provided so that the  
(VCM VT) limit voltage will track temperature and IC  
process variations, minimizing the effects on the  
attenuator control characteristic.  
PGA POST-AMPLIFIER  
See Figure 66 for a simplified circuit diagram of the  
PGA. PGA gain is programmed through the serial  
port, and can be configured to 24 different gain  
settings of 25dB, 30dB, 35dB, and 40dB, as shown in  
Table 9. A patented circuit has been implemented in  
the PGA that allows for exceptional overload signal  
recovery.  
In addition to the analog VCACNTRL gain setting input,  
the attenuator architecture provides digitally-  
programmable adjustment in four steps, via the two  
attenuation bits. These bits adjust the maximum  
achievable gain (corresponding to minimum  
attenuation in the VCA, with VCNTRL = 2.0V) in 5dB  
increments. This function is accomplished by  
providing multiple FET sub-elements for each of the  
Q1 to Q10 FET shunt elements (see Figure 65). In the  
simplified diagram of Figure 64, each shunt FET is  
Table 9. PGA Gain Settings  
PG1, PG0  
0, 0  
GAIN  
25dB  
30dB  
35dB  
0, 1  
1, 0  
1, 1  
40dB  
RS  
OUTPUT  
INPUT  
Q1A  
Q1B  
Q2A  
Q2B  
Q3A  
Q3B  
Q4A  
Q4B  
Q5A  
Q5B  
VCM  
A0  
A1  
Figure 64. Programmable Attenuator Section  
26  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
 
 
VCA8617  
www.ti.com  
Attenuator  
Input  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
A1-A10 Attenuator Stages  
QS  
Attenuator  
Output  
RS  
Q1  
A2  
Q2  
A3  
Q3  
A4  
Q4  
A5  
Q5  
Q6  
Q7  
A8  
Q8  
A9  
Q9  
A10  
Q10  
VCM  
A1  
A6  
A7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Control  
Input  
C1-C10 Clipping Amplifiers  
0dB  
-4dB  
Attenuation Characteristic of Individual FETs  
V
CM - VT  
0
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Characteristic of Attenuator Control Stage Output  
Overall Control Characteristics of Attenuator  
0dB  
-40dB  
0.2V  
2.0V  
Control Signal (VCNTRL  
)
Figure 65. Piecewise Approximation to Logarithmic Control Characteristics  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): VCA8617  
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
OUTPUT FILTER  
SERIAL INTERFACE  
The VCA8617 integrates an almost three-pole,  
15MHz low-pass Butterworth filter in the output stage.  
The cutoff frequency is implemented with passive  
semiconductor elements and as such, the cutoff  
frequency will not be precise. The output pins of the  
VCA8617, as shown in Figure 66, nominally sit at  
approximately 1.5VDC. However, this dc voltage  
varies slightly over PG gain settings as well as from  
chip to chip as a result of process variations. For  
users who cannot tolerate this slight variation, an ac  
coupling capacitor is recommended between the VCA  
outputs and the ADC inputs. The smaller the value of  
this capacitor, the better, because it reduces the  
pulse signal settling time. For the typical performance  
charts in this data sheet, a 560pF capacitor was  
used.  
The serial interface of the VCA8617 allows flexibility  
in the use of the part. The following parameters are  
set from the serial control registers:  
Mode  
TGC mode  
CW mode  
Attenuation range  
PGA gain  
Power-down (this is the default state in which the  
VCA8617 initializes)  
CW output selection for each input channel  
The serial interface uses an SPI™ style of interface  
format. The Input Register Bit Maps show the  
functionality of each control register.  
2M  
VCM  
OUT+  
80pF  
VCM  
Attenuator  
80pF  
OUT  
VCM  
2M  
Figure 66. Simplified PGA and Output Filter Circuit  
28  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
 
VCA8617  
www.ti.com  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
LAYOUT CONSIDERATIONS  
The VCA8617 is a multi-channel amplifier with  
integrated digital controls, capable of high gains.  
Layout of the VCA8617 is fairly straightforward. By  
connecting all of the grounds (including the digital  
grounds) to the analog ground, noise performance  
can be maintained.  
Power-supply decoupling and decoupling of the  
control voltage (VCNTRL) pin are essential in order to  
ensure that the noise performance be maintained. For  
further help in determining basic values, refer to  
Figure 67.  
The analog ground should be  
a
solid plane.  
V
CNTRL  
1
0.01mF  
2.2mF  
0.1mF  
NOTE: (1) 0.1mF capacitor  
(2) 2.2mF capacitor  
(1)  
(2)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(1)  
+3V  
+3V  
U
15  
2.2mF  
0.1mF  
5
12  
7
29  
V
FIL  
DV  
DV  
DD  
DD  
51  
V
LNA  
2.2mF  
0.1mF  
59  
58  
57  
56  
55  
26  
25  
24  
23  
22  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
DOUT  
CLK  
DIN  
CW0  
DOUT  
CLK  
CW0  
CW2  
8
CW2  
9
CW4  
DIN  
CW4  
10  
6
CS  
CW6  
CS  
CW6  
VCA8617  
CW8  
DGND  
DGND  
IN8  
CW8  
11  
61  
63  
1
CW9  
CW9  
Input 8  
Input 7  
Input 6  
Input 5  
Input 4  
Input 3  
Input 2  
Input 1  
CW7  
CW7  
CW5  
IN7  
CW5  
IN6  
CW3  
CW3  
3
IN5  
CW1  
CW1  
14  
16  
18  
20  
62  
64  
2
IN4  
OUT8  
OUT8  
OUT7  
OUT7  
OUT6  
OUT6  
OUT5  
OUT5  
OUT4  
OUT4  
OUT3  
OUT8  
OUT8  
OUT7  
OUT7  
OUT6  
OUT6  
OUT5  
OUT5  
OUT4  
OUT4  
OUT3  
IN3  
IN2  
IN1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
4
13  
15  
17  
19  
Figure 67. Basic Connection Diagram  
Copyright © 2004–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): VCA8617  
 
VCA8617  
SBOS308F AUGUST 2004REVISED NOVEMBER 2009  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (November, 2007) to Revision F  
Page  
Corrected y-axis labels for Figure 59 .................................................................................................................................. 23  
Corrected y-axis labels for Figure 60 .................................................................................................................................. 23  
Changes from Revision D (May, 2005) to Revision E  
Page  
Changed "100mW/channel" feature to "103mW/channel" .................................................................................................... 1  
Changed Electrical Characteristics measured voltage; included DVDD ................................................................................ 3  
Added Input Common-Mode Voltage specification ............................................................................................................... 3  
Changed Input Voltage Range typical specification from 20V to 2.0V ................................................................................. 3  
Changed Electrical Characteristics measured voltage; included DVDD ................................................................................ 4  
Replaced Figure 22 ............................................................................................................................................................ 14  
Replaced Figure 23 ............................................................................................................................................................ 15  
Replaced Figure 28 ............................................................................................................................................................ 16  
Replaced Figure 29 ............................................................................................................................................................ 16  
Replaced Figure 43 ............................................................................................................................................................ 20  
Replaced Figure 44 ............................................................................................................................................................ 20  
Replaced Figure 47 ............................................................................................................................................................ 21  
Replaced Figure 48 ............................................................................................................................................................ 21  
Revised Application Information Section ............................................................................................................................ 24  
30  
Submit Documentation Feedback  
Copyright © 2004–2009, Texas Instruments Incorporated  
Product Folder Link(s): VCA8617  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2014  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
VCA8617PAGR  
ACTIVE  
TQFP  
PAG  
64  
1500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-4-260C-72 HR  
-40 to 85  
VCA8617  
VCA8617PAGRG4  
VCA8617PAGT  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PAG  
PAG  
64  
64  
TBD  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
250  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-4-260C-72 HR  
VCA8617  
VCA8617  
VCA8617PAGTG4  
ACTIVE  
TQFP  
PAG  
64  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-4-260C-72 HR  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2014  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

VCAC

Controlled Capacitance Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC040230X380NWP

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NDP

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NDZ

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NRP

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NRZ

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NTP

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060309B102NTZ

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060317X330MDP

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX

VCAC060317X330MDZ

SMD Multilayer Varistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
KYOCERA AVX