VMEH22501A [TI]

8-BIT UNIVERSAL BUS TRANSCEIVER AND TWO 1-BIT BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND 3-STATE OUTPUTS; 8位通用总线收发器和具备SPLIT LVTTL端口,反馈路径中的两个1位总线收发器和三态输出
VMEH22501A
型号: VMEH22501A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT UNIVERSAL BUS TRANSCEIVER AND TWO 1-BIT BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND 3-STATE OUTPUTS
8位通用总线收发器和具备SPLIT LVTTL端口,反馈路径中的两个1位总线收发器和三态输出

总线收发器 输出元件
文件: 总30页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏ ꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀꢕ ꢆ ꢐꢄ ꢆ ꢓꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
DGG OR DGV PACKAGE  
(TOP VIEW)  
D
D
Member of the Texas Instruments  
WidebusFamily  
UBTTransceiver Combines D-Type  
Latches and D-Type Flip-Flops for  
Operation in Transparent, Latched, or  
Clocked Modes  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1OEBY  
1A  
1OEAB  
2
V
CC  
3
1Y  
1B  
4
GND  
2A  
2Y  
GND  
BIAS V  
2B  
D
OECCircuitry Improves Signal Integrity  
and Reduces Electromagnetic Interference  
(EMI)  
5
CC  
6
7
V
V
CC  
CC  
8
D
D
Compliant With VME64, 2eVME, and 2eSST  
Protocols  
2OEBY  
2OEAB  
3B1  
9
3A1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
LE  
3A2  
3A3  
OE  
GND  
3A4  
CLKBA  
GND  
Bus Transceiver Split LVTTL Port Provides  
Feedback Path for Control and Diagnostics  
Monitoring  
V
CC  
3B2  
3B3  
D
D
D
D
I/O Interfaces Are 5-V Tolerant  
V
CC  
GND  
3B4  
CLKAB  
B-Port Outputs (−48 mA/64 mA)  
Y and A-Port Outputs (−12 mA/12 mA)  
I
, Power-Up 3-State, and BIAS V  
CC  
off  
Support Live Insertion  
V
V
CC  
CC  
3A5  
3A6  
GND  
3A7  
3A8  
DIR  
3B5  
3B6  
GND  
3B7  
3B8  
D
Bus Hold on 3A-Port Data Inputs  
D
26-W Equivalent Series Resistor on  
3A Ports and Y Outputs  
D
D
D
D
Flow-Through Architecture Facilitates  
Printed Circuit Board Layout  
V
CC  
Distributed V  
High-Speed Switching Noise  
and GND Pins Minimize  
CC  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
− 1000-V Charged-Device Model (C101)  
description/ordering information  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
TSSOP − DGG Tape and reel  
SN74VMEH22501ADGGR  
SN74VMEH22501ADGVR  
SN74VMEH22501AGQLR  
VMEH22501A  
VK501A  
TVSOP − DGV  
VFBGA − GQL  
Tape and reel  
Tape and reel  
−40°C to 85°C  
VK501A  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines  
are available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Motorola is a trademark of Motorola, Inc.  
OEC, UBT, and Widebus are trademarks of Texas Instruments.  
ꢑꢩ  
Copyright 2004, Texas Instruments Incorporated  
ꢥ ꢩ ꢦ ꢥꢞ ꢟꢳ ꢡꢠ ꢤ ꢬꢬ ꢪꢤ ꢢ ꢤ ꢣ ꢩ ꢥ ꢩ ꢢ ꢦ ꢮ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
description/ordering information (continued)  
The SN74VMEH22501A 8-bit universal bus transceiver has two integral 1-bit three-wire bus transceivers and  
is designed for 3.3-V V operation with 5-V tolerant inputs. The UBTtransceiver allows transparent, latched,  
CC  
and flip-flop modes of data transfer, and the separate LVTTL input and outputs on the bus transceivers provide  
a feedback path for control and diagnostics monitoring. This device provides a high-speed interface between  
cards operating at LVTTL logic levels and VME64, VME64x, or VME320 backplane topologies.  
The SN74VMEH22501A is pin-for-pin capatible to the VMEH22501, but operates at a wider operating  
temperature (−40°C to 85°C) range.  
High-speed backplane operation is a direct result of the improved OECcircuitry and high drive that has been  
designed and tested into the VME64x backplane model. The B-port I/Os are optimized for driving large  
capacitive loads and include pseudo-ETL input thresholds (1/2 V  
50 mV) for increased noise immunity.  
CC  
These specifications support the 2eVME protocols in VME64x (ANSI/VITA 1.1) and 2eSST protocols in  
VITA 1.5. With proper design of a 21-slot VME system, a designer can achieve 320-Mbyte transfer rates on  
linear backplanes and, possibly, 1-Gbyte transfer rates on the VME320 backplane.  
All inputs and outputs are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs.  
Active bus-hold circuitry holds unused or undriven 3A-port inputs at a valid logic state. Bus-hold circuitry is not  
provided on 1A or 2A inputs, any B-port input, or any control input. Use of pullup or pulldown resistors with the  
bus-hold circuitry is not recommended.  
This device is fully specified for live-insertion applications using I , power-up 3-state, and BIAS V . The I  
off  
off  
CC  
circuitry prevents damaging current to backflow through the device when it is powered off/on. The power-up  
3-state circuitry places the outputs in the high-impedance state during power up and power down, which  
prevents driver conflict. The BIAS V  
circuitry precharges and preconditions the B-port input/output  
CC  
connections, preventing disturbance of active data on the backplane during card insertion or removal, and  
permits true live-insertion capability.  
When V  
is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down.  
CC  
However, to ensure the high-impedance state above 1.5 V, output-enable (OE and OEBY) inputs should be tied  
to V through a pullup resistor and output-enable (OEAB) inputs should be tied to GND through a pulldown  
CC  
resistor; the minimum value of the resistor is determined by the drive capability of the device connected to this  
input.  
VME320 is a patented backplane construction by Arizona Digital, Inc.  
GQL PACKAGE  
(TOP VIEW)  
terminal assignments  
1
2
3
4
5
6
1
1OEBY  
1Y  
2
NC  
3
4
5
6
1OEAB  
1B  
A
B
C
D
E
F
A
B
C
D
E
F
NC  
NC  
NC  
1A  
GND  
GND  
V
CC  
2Y  
2A  
V
V
BIAS V  
CC  
2B  
CC  
CC  
3A1  
3A2  
3A3  
3A4  
3A5  
3A7  
DIR  
2OEBY  
LE  
GND  
GND  
2OEAB  
3B1  
3B2  
3B3  
3B4  
3B5  
3B7  
V
CC  
CC  
OE  
V
G
H
J
CLKBA  
3A6  
3A8  
NC  
GND  
GND  
CLKAB  
3B6  
G
H
J
V
V
CC  
CC  
GND  
NC  
GND  
NC  
3B8  
K
NC  
V
CC  
K
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
functional description  
The SN74VMEH22501A is a high-drive (–48/64 mA), 8-bit UBT transceiver containing D-type latches and  
D-type flip-flops for data-path operation in transparent, latched, or flip-flop modes. Data transmission is true  
logic. The device is uniquely partitioned as 8-bit UBT transceivers with two integrated 1-bit three-wire bus  
transceivers.  
functional description for two 1-bit bus transceivers  
The OEAB inputs control the activity of the 1B or 2B port. When OEAB is high, the B-port outputs are active.  
When OEAB is low, the B-port outputs are disabled.  
Separate 1A and 2A inputs and 1Y and 2Y outputs provide a feedback path for control and diagnostics  
monitoring. The OEBY inputs control the 1Y or 2Y outputs. When OEBY is low, the Y outputs are active. When  
OEBY is high, the Y outputs are disabled.  
The OEBY and OEAB inputs can be tied together to form a simple direction control where an input high yields  
A data to B bus and an input low yields B data to Y bus.  
1-BIT BUS TRANSCEIVER FUNCTION TABLE  
INPUTS  
OUTPUT  
MODE  
OEAB OEBY  
L
H
L
H
H
L
Z
Isolation  
A data to B bus  
True driver  
B data to Y bus  
H
L
A data to B bus, B data to Y bus  
True driver with feedback path  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
functional description for 8-bit UBT transceiver  
The 3A and 3B data flow in each direction is controlled by the OE and direction-control (DIR) inputs. When OE  
is low, all 3A- or 3B-port outputs are active. When OE is high, all 3A- or 3B-port outputs are in the high-impedance  
state.  
FUNCTION TABLE  
INPUTS  
OUTPUT  
OE  
H
DIR  
X
Z
L
H
3A data to 3B bus  
3B data to 3A bus  
L
L
The UBT transceiver functions are controlled by latch-enable (LE) and clock (CLKAB and CLKBA) inputs. For  
3A-to-3B data flow, the UBT operates in the transparent mode when LE is high. When LE is low, the 3A data  
is latched if CLKAB is held at a high or low logic level. If LE is low, the 3A data is stored in the latch/flip-flop on  
the low-to-high transition of CLKAB.  
The UBT transceiver data flow for 3B to 3A is similar to that of 3A to 3B, but uses CLKBA.  
UBT TRANSCEIVER FUNCTION TABLE  
INPUTS  
OUTPUT  
3B  
MODE  
OE  
H
L
LE  
X
L
CLKAB  
3A  
X
X
X
L
X
H
L
Z
Isolation  
B
0
§
B
0
Latched storage of 3A data  
True transparent  
L
L
L
H
H
L
X
X
L
L
H
L
H
L
L
Clocked storage of 3A data  
L
L
H
H
3A-to-3B data flow is shown; 3B-to-3A data flow is similar, but uses CLKBA.  
Output level before the indicated steady-state input conditions were established,  
provided that CLKAB was high before LE went low  
§
Output level before the indicated steady-state input conditions were established  
The UBT transceiver can replace any of the functions shown in Table 1.  
Table 1. SN74VMEH22501A UBT Transceiver Replacement Functions  
FUNCTION  
8 BIT  
’245, ’623, ’645  
’241, ’244, ’541  
’543  
Transceiver  
Buffer/driver  
Latched transceiver  
Latch  
’373, ’573  
’646, ’652  
’374, ’574  
Registered transceiver  
Flip-flop  
SN74VMEH22501A UBT transceiver replaces all above functions  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
logic diagram (positive logic)  
48  
1OEAB  
1
1OEBY  
2
46  
1A  
1B  
3
1Y  
41  
2OEAB  
8
2OEBY  
5
43  
2A  
2B  
6
2Y  
14  
OE  
24  
DIR  
32  
CLKAB  
11  
LE  
17  
CLKBA  
9
40  
3A1  
1D  
C1  
3B1  
CLK  
1D  
C1  
CLK  
To Seven Other Channels  
Pin numbers shown are for the DGG and DGV packages.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
and BIAS V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CC  
CC  
Input voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
I
Voltage range applied to any output in the high-impedance  
or power-off state, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
O
Voltage range applied to any output in the high or low state, V  
O
(see Note 1): 3A port or Y output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
CC  
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Output current in the low state, I : 3A port or Y output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Output current in the high state, I : 3A port or Y output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
O
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −100 mA  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
IK  
OK  
I
Output clamp current, I  
(V < 0 or V > V ): B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
O O CC  
Package thermal impedance, θ (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W  
JA  
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W  
GQL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42°C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
2. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions (see Notes 3 and 4)  
MIN  
TYP  
MAX  
UNIT  
V
,
CC  
BIAS V  
Supply voltage  
3.15  
3.3  
3.45  
V
CC  
Control inputs or A port  
B port  
V
5.5  
5.5  
CC  
V
V
V
Input voltage  
V
V
I
V
CC  
Control inputs or A port  
B port  
2
High-level input voltage  
IH  
IL  
0.5 V  
CC  
+ 50 mV  
Control inputs or A port  
B port  
0.8  
Low-level input voltage  
Input clamp current  
V
0.5 V  
CC  
− 50 mV  
I
IK  
−18  
−12  
−48  
12  
mA  
3A port and Y output  
B port  
I
High-level output current  
Low-level output current  
mA  
mA  
OH  
OL  
3A port and Y output  
B port  
I
64  
t/v  
t/V  
Input transition rise or fall rate  
Power-up ramp rate  
Outputs enabled  
10  
ns/V  
µs/V  
°C  
20  
CC  
T
A
Operating free-air temperature  
−40  
85  
NOTES: 3. All unused control inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application  
CC  
report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
4. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V  
= 3.3 V first, I/O second, and  
CC  
V
CC  
= 3.3 V last, because the BIAS V  
precharge circuitry is disabled when any V pin is connected. The control inputs can be  
CC  
CC  
connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence  
is acceptable, but generally, GND is connected first.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
electrical characteristics over recommended operating free-air temperature range for A and B  
ports (unless otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
IK  
V
V
= 3.15 V,  
I = −18 mA  
−1.2  
V
CC  
I
3A port, any B ports,  
and Y outputs  
= 3.15 V to 3.45 V,  
I
= −100 µA  
V
CC  
−0.2  
CC  
OH  
I
I
I
I
= −6 mA  
2.4  
2
OH  
OH  
OH  
OH  
3A port and Y outputs  
Any B port  
V
= 3.15 V  
V
OH  
V
CC  
= −12 mA  
= −24 mA  
= −48 mA  
2.4  
2
V
V
= 3.15 V  
CC  
3A port, any B ports,  
and Y outputs  
= 3.15 V to 3.45 V,  
I
= 100 µA  
0.2  
CC  
OL  
I
I
I
I
I
= 6 mA  
0.55  
0.8  
0.4  
0.55  
0.6  
1
OL  
OL  
OL  
OL  
OL  
3A port and Y outputs  
Any B port  
V
V
= 3.15 V  
= 3.15 V  
CC  
= 12 mA  
= 24 mA  
= 48 mA  
= 64 mA  
V
V
OL  
CC  
V
V
= 3.45 V,  
V = V  
CC  
or GND  
Control inputs,  
1A and 2A  
CC  
I
I
I
µA  
µA  
I
= 0 or 3.45 V,  
V = 5.5 V  
5
CC  
I
3A port, any B port,  
and Y outputs  
V
= 3.45 V,  
= 3.45 V,  
V
= V  
CC  
or 5.5 V  
5
CC  
CC  
O
O
OZH  
−5  
−20  
10  
3A port and Y outputs  
Any B port  
V
V
= GND  
µA  
I
OZL  
I
I
I
I
I
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 0, BIAS V  
= 3.15 V,  
= 3.15 V,  
= 3.45 V,  
= 3.45 V,  
= 0,  
V or V = 0 to 5.5 V  
µA  
µA  
µA  
µA  
µA  
off  
CC  
I
O
§
3A port  
3A port  
3A port  
3A port  
V = 0.8 V  
75  
−75  
BHL  
BHH  
I
V = 2 V  
I
#
V = 0 to V  
500  
BHLO  
I
CC  
||  
V = 0 to V  
−500  
BHHO  
I
CC  
1.3 V, V = 0.5 V to V  
CC  
V = GND or V , OE = don’t care  
,
O
10  
µA  
I
k
OZ(PU/PD)  
I
CC  
§
All typical values are at V  
For I/O ports, the parameters I  
= 3.3 V, T = 25°C.  
A
CC  
and I include the input leakage current.  
OZH  
OZL  
The bus-hold circuit can sink at least the minimum low sustaining current at V max. I  
IL  
should be measured after lowering V to GND, then  
IN  
BHL  
raising it to V max.  
IL  
The bus-hold circuit can source at least the minimum high sustaining current at V min. I  
should be measured after raising V to V , then  
BHH IN CC  
IH  
lowering it to V min.  
IH  
#
||  
k
An external driver must source at least I  
to switch this node from low to high.  
BHLO  
to switch this node from high to low.  
An external driver must sink at least I  
BHHO  
High-impedance state during power up or power down  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
electrical characteristics over recommended operating free-air temperature range for A and B  
ports (unless otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
30  
UNIT  
Outputs high  
Outputs low  
V
= 3.45 V, I = 0,  
CC  
V = V  
O
30  
I
mA  
CC  
or GND  
I
CC  
Outputs disabled  
30  
V
= 3.45 V, I = 0,  
O
CC  
CC  
V = V  
µA/  
Outputs enabled  
Outputs disabled  
76  
19  
or GND,  
I
clock  
MHz/  
input  
One data input switching at  
one-half clock frequency,  
50% duty cycle  
I
CCD  
V
= 3.15 V to 3.45 V, One input at V − 0.6 V,  
CC  
CC  
Other inputs at V  
750  
µA  
I  
CC  
h
or GND  
CC  
1A and 2A inputs  
Control inputs  
1Y or 2Y outputs  
3A port  
2.8  
2.6  
5.6  
7.9  
11  
C
C
C
V = 3.15 V or 0  
pF  
pF  
pF  
i
I
V
O
= 3.15 V or 0  
o
V
CC  
= 3.3 V,  
V
O
= 3.3 V or 0  
io  
Any B port  
12.5  
h
All typical values are at V  
CC  
= 3.3 V, T = 25°C.  
A
This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V  
or GND.  
CC  
live-insertion specifications over recommended operating free-air temperature range for B port  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
5
UNIT  
mA  
µA  
V
V
V
= 0 to 3.15 V,  
BIAS V  
= 3.15 V to 3.45 V,  
I
I
= 0  
= 0  
CC  
CC  
CC  
CC  
CC  
CC  
O(DC)  
I
(BIAS V )  
CC  
CC  
= 3.15 V to 3.45 V , BIAS V  
= 3.15 V to 3.45 V,  
= 3.15 V to 3.45 V  
10  
O(DC)  
V
O
= 0,  
= 0  
CC  
BIAS V  
1.3  
−20  
20  
1.5  
1.7  
V
V
= 0,  
BIAS V  
BIAS V  
= 3.15 V  
= 3.15 V  
−100  
100  
O
O
CC  
I
V
CC  
µA  
O
V
= 3 V,  
CC  
All typical values are at V  
− 0.5 V < BIAS V  
= 3.3 V, T = 25°C.  
A
V
CC  
CC  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
timing requirements over recommended operating conditions for UBT transceiver (unless  
otherwise noted) (see Figures 1 and 2)  
MIN  
MAX  
UNIT  
f
t
Clock frequency  
Pulse duration  
120  
MHz  
clock  
LE high  
2.5  
3
ns  
w
CLK high or low  
Data high  
Data low  
CLK high  
CLK low  
Data high  
Data low  
CLK high  
CLK low  
Data high  
Data low  
2.1  
2.2  
2
3A before CLK↑  
3A before LE↓  
3B before CLK↑  
3B before LE↓  
3A after CLK↑  
3A after LE↓  
2
t
su  
Setup time  
ns  
2.5  
2.7  
2
2
0
0
CLK high  
CLK low  
Data high  
Data low  
CLK high  
CLK low  
1
1
0
0
1
1
t
h
Hold time  
ns  
3B after CLK↑  
3B after LE↓  
switching characteristics over recommended operating conditions for bus transceiver function  
(unless otherwise noted) (see Figures 1 and 2)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
t
4.8  
4.5  
6.2  
6.1  
3.9  
3.7  
3.3  
1.8  
8.9  
7.8  
14.5  
13  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
1A or 2A  
1A or 2A  
OEAB  
1B or 2B  
1Y or 2Y  
1B or 2B  
1B or 2B  
ns  
ns  
8.1  
7.4  
9.7  
4.8  
ns  
OEAB  
ns  
t
4.3  
4.3  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
r
t
t
t
t
t
t
t
f
1.6  
1.6  
1.2  
1.8  
0.9  
1.4  
5.6  
5.6  
5.6  
4.9  
5.4  
4.5  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
1B of 2B  
1Y or 2Y  
1Y or 2Y  
1Y or 2Y  
ns  
ns  
ns  
OEBY  
OEBY  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
switching characteristics over recommended operating conditions for UBT transceiver (unless  
otherwise noted) (see Figures 1 and 2)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
f
t
t
t
t
t
t
t
t
t
t
120  
5.1  
4.7  
5.5  
4.9  
5.8  
4.2  
4.2  
3.2  
4.2  
2.4  
MHz  
max  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
9.3  
8.3  
3A  
LE  
3B  
3B  
3B  
3B  
3B  
ns  
ns  
ns  
ns  
ns  
10.6  
8.7  
10.1  
8.4  
CLKAB  
OE  
9.3  
8.5  
9.3  
OE  
5.7  
t
r
t
f
4.3  
4.3  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
t
t
t
t
t
t
t
t
t
t
1.5  
1.7  
1.7  
1.7  
1.1  
1.4  
1.5  
2.1  
0.8  
2.3  
5.9  
5.9  
5.9  
5.9  
5.5  
5.5  
6.2  
5.5  
6.2  
5.6  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
3B  
3A  
3A  
3A  
3A  
3A  
ns  
ns  
ns  
ns  
ns  
LE  
CLKBA  
OE  
OE  
skew characteristics for bus transceiver for specific worst-case V  
and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figures 1 and 2)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
0.8  
0.7  
0.7  
0.7  
t
t
t
t
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
1A or 2A  
1B or 2B  
1B or 2B  
1Y or 2Y  
ns  
ns  
1A or 2A  
1B or 2B  
1A or 2A  
1B or 2B  
1B or 2B  
1Y or 2Y  
1B or 2B  
1Y or 2Y  
3.9  
1.5  
3.6  
1.4  
ns  
ns  
t
sk(t)  
t
sk(pp)  
t
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
sk(t)  
packaged device. The specifications are given for specific worst-case V  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢙꢔ  
ꢔꢄ  
ꢑꢚ  
SCES620 – DECEMBER 2004  
skew characteristics for UBT for specific worst-case V  
and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figures 1 and 2)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX  
UNIT  
1.4  
1.1  
0.8  
0.8  
0.7  
0.6  
0.7  
0.6  
t
t
t
t
t
t
t
t
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
3A  
3B  
3B  
3A  
3A  
ns  
CLKAB  
3B  
ns  
ns  
ns  
CLKBA  
3A  
CLKAB  
3B  
3B  
3B  
3A  
3A  
3B  
3B  
3A  
3A  
3.9  
3.9  
1.6  
1.2  
3.6  
3.5  
1.3  
1.2  
ns  
ns  
t
sk(t)  
CLKBA  
3A  
CLKAB  
3B  
t
sk(pp)  
CLKBA  
t
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
sk(t)  
packaged device. The specifications are given for specific worst-case V  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
A PORT  
6 V  
S1  
Open  
GND  
500 Ω  
From Output  
Under Test  
TEST  
S1  
t
t
/t  
Open  
6 V  
PLH PHL  
/t  
C
= 50 pF  
t
L
PLZ PZL  
/t  
500 Ω  
(see Note A)  
GND  
Open  
PHZ PZH  
B-to-A Skew  
LOAD CIRCUIT  
t
w
3 V  
0 V  
3 V  
0 V  
1.5 V  
Input  
1.5 V  
Timing  
Input  
1.5 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
t
t
h
su  
3 V  
0 V  
Data  
Input  
3 V  
0 V  
V
/2  
V
CC  
/2  
CC  
1.5 V  
1.5 V  
Output Control  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
t
t
PZL  
PLZ  
Output  
Waveform 1  
S1 at 6 V  
3 V  
V
3 V  
0 V  
1.5 V  
Input  
V
V
+ 0.3 V  
V
CC  
/2  
V
CC  
/2  
OL  
(see Note B)  
OL  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
V
OH  
− 0.3 V  
OH  
1.5 V  
Output  
1.5 V  
1.5 V  
0 V  
(see Note B)  
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. includes probe and jig capacitance.  
C
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t 2 ns, t 2 ns.  
O
r
f
D. The outputs are measured one at a time, with one transition per measurement.  
Figure 1. Load Circuit and Voltage Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
B PORT  
6 V  
S1  
Open  
GND  
500 Ω  
From Output  
Under Test  
TEST  
S1  
t
t
/t  
Open  
6 V  
PLH PHL  
/t  
C
= 50 pF  
t
L
PLZ PZL  
/t  
500 Ω  
(see Note A)  
GND  
Open  
PHZ PZH  
A-to-B Skew  
LOAD CIRCUIT  
t
w
3 V  
0 V  
3 V  
0 V  
Input  
1.5 V  
1.5 V  
Timing  
Input  
1.5 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
t
t
h
su  
3 V  
0 V  
Data  
Input  
3 V  
0 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
Output Control  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
t
t
PZL  
PLZ  
Output  
Waveform 1  
S1 at 6 V  
3 V  
V
3 V  
0 V  
V
/2  
CC  
Input  
1.5 V  
1.5 V  
V
V
+ 0.3 V  
OL  
(see Note B)  
OL  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
V
OH  
− 0.3 V  
OH  
V
/2  
CC  
Output  
V
/2  
V
/2  
CC  
CC  
0 V  
(see Note B)  
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. includes probe and jig capacitance.  
C
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t 2 ns, t 2 ns.  
O
r
f
D. The outputs are measured one at a time, with one transition per measurement.  
Figure 2. Load Circuit and Voltage Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS  
The preceding switching characteristics tables show the switching characteristics of the device into the lumped load  
shown in the parameter measurement information (PMI) (see Figures 1 and 2). All logic devices currently are tested  
into this type of load. However, the designer’s backplane application probably is a distributed load. For this reason,  
this device has been designed for optimum performance in the VME64x backplane as shown in Figure 3.  
5 V  
5 V  
330 Ω  
0.42”  
330 Ω  
0.42”  
0.42”  
0.84”  
0.84”  
0.42”  
Z
O
470 Ω  
470 Ω  
Conn.  
Conn.  
Conn.  
Conn.  
Conn.  
Conn.  
Z
O
1.5”  
1.5”  
1.5”  
1.5”  
1.5”  
1.5”  
Rcvr  
Rcvr  
Rcvr  
Rcvr  
Rcvr  
Drvr  
Slot 1  
Slot 2  
Slot 3  
Slot 19  
Slot 20  
Slot 21  
Unloaded backplane trace natural impedence (Z ) is 45 Ω. 45 to 60 is allowed, with 50 being ideal.  
O
Card stub natural impedence (Z ) is 60 .  
O
Figure 3. VME64x Backplane  
The following switching characteristics tables derived from TI-SPICE models show the switching characteristics of  
the device into the backplane under full and minimum loading conditions, to help the designer better understand the  
performance of the VME device in this typical backplane. See www.ti.com/sc/etl for more information.  
driver in slot 11, with receiver cards in all other slots (full load)  
switching characteristics over recommended operating conditions for bus transceiver function  
(unless otherwise noted) (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
§
PARAMETER  
MIN TYP  
MAX  
UNIT  
t
t
t
5.9  
5.5  
8.5  
8.7  
PLH  
1A or 2A  
1B or 2B  
ns  
PHL  
r
9
8.6  
9
11.4  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
t
f
8.9  
10.8  
§
All typical values are at V  
CC  
All t and t times are taken at the first receiver.  
A
r
f
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
driver in slot 11, with receiver cards in all other slots (full load) (continued)  
switching characteristics over recommended operating conditions for UBT (unless otherwise  
noted) (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
6.2  
5.6  
6.1  
5.6  
6.2  
5.7  
8.9  
9
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
3A  
LE  
3B  
3B  
3B  
ns  
9.1  
9
ns  
9.1  
9
CLKAB  
ns  
9
8.6  
9
11.4  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
r
t
f
8.9  
10.8  
All typical values are at V  
CC  
All t and t times are taken at the first receiver.  
A
r
f
skew characteristics for bus transceiver for specific worst-case V  
and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
2.5  
3
t
t
t
t
sk(LH)  
1A or 2A  
1B or 2B  
ns  
sk(HL)  
§
1A or 2A  
1A or 2A  
1B or 2B  
1B or 2B  
1
ns  
ns  
sk(t)  
0.5  
3.4  
sk(pp)  
§
All typical values are at V  
CC  
sk(t)  
packaged device. The specifications are given for specific worst-case V  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
A
t
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
skew characteristics for UBT for specific worst-case V  
and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
2.4  
3.4  
2.7  
3.4  
t
t
t
t
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
3A  
3B  
3B  
ns  
CLKAB  
ns  
3A  
3B  
3B  
3B  
3B  
1
1
§
ns  
ns  
t
sk(t)  
CLKAB  
3A  
0.5  
0.6  
3.4  
3.5  
t
sk(pp)  
CLKAB  
§
All typical values are at V  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
A
CC  
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
t
sk(t)  
packaged device. The specifications are given for specific worst-case V  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
driver in slot 1, with one receiver in slot 21 (minimum load)  
switching characteristics over recommended operating conditions for bus transceiver function  
(unless otherwise noted) (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
t
t
t
5.5  
5.3  
7.4  
7.4  
4.4  
PLH  
1A or 2A  
1B or 2B  
ns  
PHL  
r
3.9  
3.7  
3.4  
3.4  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
t
f
4.8  
All typical values are at V  
CC  
All t and t times are taken at the first receiver.  
A
r
f
switching characteristics over recommended operating conditions for UBT (unless otherwise  
noted) (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
5.8  
5.5  
5.9  
5.5  
5.9  
5.5  
7.9  
7.7  
8
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
3A  
LE  
3B  
3B  
3B  
ns  
ns  
7.8  
8.1  
7.7  
4.4  
CLKAB  
ns  
3.9  
3.7  
3.4  
3.4  
ns  
ns  
Transition time, B port (10%−90%)  
Transition time, B port (90%−10%)  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
r
t
f
4.8  
All typical values are at V  
CC  
All t and t times are taken at the first receiver.  
A
r
f
skew characteristics for bus transceiver for specific worst-case V  
and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
1.7  
2.1  
1
t
t
t
t
sk(LH)  
1A or 2A  
1B or 2B  
ns  
sk(HL)  
§
1A or 2A  
1A or 2A  
1B or 2B  
1B or 2B  
ns  
ns  
sk(t)  
0.2  
2.1  
sk(pp)  
§
All typical values are at V  
CC  
sk(t)  
packaged device. The specifications are given for specific worst-case V  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
A
t
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
driver in slot 1, with one receiver in slot 21 (minimum load) (continued)  
skew characteristics for UBT for specific worst-case V and temperature within the  
CC  
recommended ranges of supply voltage and operating free-air temperature (see Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN TYP  
MAX  
UNIT  
2
2.3  
2.1  
2.4  
t
t
t
t
sk(LH)  
sk(HL)  
sk(LH)  
sk(HL)  
3A  
3B  
3B  
ns  
CLKAB  
ns  
3A  
3B  
3B  
3B  
3B  
1
1
ns  
ns  
t
sk(t)  
CLKAB  
3A  
0.2  
0.2  
2.5  
2.9  
t
sk(pp)  
CLKAB  
All typical values are at V  
= 3.3 V, T = 25°C. All values are derived from TI-SPICE models.  
A
CC  
− Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs of the same  
t
sk(t)  
packaged device. The specifications are given for specific worst-case V  
and temperature and apply to any outputs switching in opposite  
CC  
directions, both low to high (LH) and high to low (HL) [t  
].  
sk(t)  
By simulating the performance of the device using the VME64x backplane (see Figure 3), the maximum peak current  
in or out of the B-port output, as the devices switch from one logic state to another, was found to be equivalent to  
driving the lumped load shown in Figure 4.  
5 V  
165 Ω  
From Output  
Under Test  
235 Ω  
390 pF  
LOAD CIRCUIT  
Figure 4. Equivalent AC Peak Output-Current Lumped Load  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢗꢐ ꢑ ꢇ ꢀꢙ ꢔ ꢐ ꢑ ꢔꢄꢑ ꢑꢔ ꢙ ꢘꢓ ꢑꢚ ꢛꢆ ꢆ ꢖꢏ ꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙꢒꢑ ꢀ  
SCES620 – DECEMBER 2004  
driver in slot 1, with one receiver in slot 21 (minimum load) (continued)  
In general, the rise- and fall-time distribution is shown in Figure 5. Since VME devices were designed for use into  
distributed loads like the VME64x backplane (B/P), there are significant differences between low-to-high (LH) and  
high-to-low (HL) values in the lumped load shown in the PMI (see Figures 1 and 2).  
6.4  
6.2  
6.0  
5.8  
LH  
5.6  
5.4  
5.2  
5.0  
HL  
Full B/P Load  
Minimum B/P Load  
PMI Lumped Load  
Figure 5  
Characterization-laboratory data in Figures 6 and 7 show the absolute ac peak output current, with different supply  
voltages, as the devices change output logic state. A typical nominal process is shown to demonstrate the devices’  
peak ac output drive capability.  
162  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
160  
158  
156  
154  
152  
150  
148  
146  
144  
3.15  
3.30  
− V  
3.45  
3.15  
3.30  
− V  
3.45  
V
V
CC  
CC  
Figure 6  
Figure 7  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREQUENCY  
A TO B  
FREQUENCY  
B TO A  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
CC  
= 3.15 V  
V
= 3.45 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.45 V  
V
CC  
= 3.15 V  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
f − Switching Frequency − MHz  
f − Switching Frequency − MHz  
Figure 8  
Figure 9  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅ ꢆꢇ ꢈꢈꢉ ꢊ ꢋꢌ  
ꢍꢎ ꢏꢐ ꢑ ꢒ ꢁꢐ ꢄ ꢆꢓ ꢀꢌ ꢔ ꢏꢒ ꢀ ꢑꢓ ꢌꢁ ꢀꢕ ꢆꢐ ꢄ ꢆ ꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓꢀ  
ꢑꢔ  
ꢘꢓ  
ꢑꢚ  
SCES620 – DECEMBER 2004  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
300  
250  
200  
150  
100  
50  
V
= 3.15 V  
CC  
V
CC  
= 3.3 V  
V
= 3.45 V  
CC  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
I
− High-Level Output Current − mA  
OH  
Figure 10. V vs I  
OL  
OL  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
CC  
= 3.45 V  
V
CC  
= 3.3 V  
V
CC  
= 3.15 V  
0.0  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
I
− Low-Level Output Current − mA  
OL  
Figure 11. V  
vs I  
OH  
OH  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢈꢈ ꢉꢊ ꢋꢌ  
ꢍ ꢎꢏꢐ ꢑ ꢒꢁ ꢐ ꢄꢆ ꢓꢀ ꢌꢔ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆꢐ ꢄꢆꢓ ꢌꢁꢖ ꢑ ꢗ ꢘ ꢋ ꢎꢏꢐ ꢑ ꢏꢒꢀ ꢑ ꢓꢌꢁꢀ ꢕꢆ ꢐ ꢄꢆ ꢓ ꢀ  
ꢗ ꢐ ꢑꢇ ꢀ ꢙꢔ ꢐ ꢑ ꢔꢄꢑ ꢑ ꢔ ꢙꢘ ꢓꢑꢚ ꢛ ꢆꢆꢖ ꢏꢌꢕꢜ ꢙꢌꢑ ꢇꢚ ꢌꢁꢖ ꢝ ꢎꢀꢑꢌꢑ ꢆ ꢘ ꢒꢑ ꢙ ꢒꢑꢀ  
SCES620 – DECEMBER 2004  
VMEbus SUMMARY  
In 1981, the VMEbus was introduced as a backplane bus architecture for industrial and commercial applications. The  
data-transfer protocols used to define the VMEbus came from the MotorolaVERSA bus architecture, which owed  
its heritage to the then recently introduced Motorola 68000 microprocessor. The VMEbus, when introduced, defined  
two basic data-transfer operations – single-cycle transfers consisting of an address and a data transfer, and a block  
transfer (BLT) consisting of an address and a sequence of data transfers. These transfers were asynchronous, using  
a master-slave handshake. The master puts address and data on the bus and waits for an acknowledgment. The  
selected slave either reads or writes data to or from the bus, then provides a data-acknowledge (DTACK*) signal. The  
VMEbus system data throughput was 40 Mbyte/s. Previous to the VMEbus, it was not uncommon for the backplane  
buses to require elaborate calculations to determine loading and drive current for interface design. This approach  
made designs difficult and caused compatibility problems among manufacturers. To make interface design easier  
and to ensure compatibility, the developers of the VMEbus architecture defined specific delays based on a 21-slot  
terminated backplane and mandated the use of certain high-current TTL drivers, receivers, and transceivers.  
In 1989, multiplexing block transfer (MBLT) effectively increased the number of bits from 32 to 64, thereby doubling  
the transfer rate. In 1995, the number of handshake edges was reduced from four to two in the double-edge transfer  
(2eVME) protocol, doubling the data rate again. In 1997, the VMEbus International Trade Association (VITA)  
established a task group to specify a synchronous protocol to increase data-transfer rates to 320 Mbyte/s, or more.  
The unreleased specification, VITA 1.5 [double-edge source synchronous transfer (2eSST)], is based on the  
asynchronous 2eVME protocol. It does not wait for acknowledgement of the data by the receiver and requires  
incident-wave switching. Sustained data rates of 1 Gbyte/s, more than ten times faster than traditional VME64  
backplanes, are possible by taking advantage of 2eSST and the 21-slot VME320 star-configuration backplane. The  
VME320 backplane approximates a lumped load, allowing substantially higher-frequency operation over the VME64x  
distributed-load backplane. Traditional VME64 backplanes with no changes theoretically can sustain 320 Mbyte/s.  
From BLT to 2eSST − A Look at the Evolution of VMEbus Protocols by John Rynearson, Technical Director, VITA,  
provides additional information on VMEbus and can be obtained at www.vita.com.  
maximum data transfer rates  
FREQUENCY (MHz)  
DATA BITS  
PER CYCLE PER CLOCK CYCLE  
DATA TRANSFERS  
PER SYSTEM  
(Mbyte/s)  
DATE  
TOPOLOGY  
PROTOCOL  
BACKPLANE  
CLOCK  
10  
1981  
1989  
1995  
1997  
1999  
BLT  
32  
64  
64  
64  
64  
1
40  
80  
10  
10  
10  
VMEbus IEEE-1014  
VME64  
MBLT  
1
10  
2eVME  
2eSST  
2eSST  
2
160  
20  
VME64x  
2-No Ack  
2-No Ack  
160−320  
320−1000  
10−20  
20−40  
VME64x  
20−62.5  
40−125  
VME320  
applicability  
Target applications for VME backplanes include industrial controls, telecommunications, simulation,  
high-energy physics, office automation, and instrumentation systems.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-May-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
74VMEH22501ADGGRE4  
74VMEH22501ADGVRE4  
74VMEH22501ADGVRG4  
SN74VMEH22501ADGGR  
SN74VMEH22501ADGVR  
SN74VMEH22501AGQLR  
TSSOP  
DGG  
48  
48  
48  
48  
48  
56  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TVSOP  
TVSOP  
TSSOP  
TVSOP  
DGV  
DGV  
DGG  
DGV  
GQL  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
BGA MI  
CROSTA  
R JUNI  
OR  
1000  
TBD  
SNPB  
Level-1-240C-UNLIM  
SN74VMEH22501AZQLR  
ACTIVE  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQL  
56  
1000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-May-2007  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
(mm)  
24  
SN74VMEH22501ADGGR DGG  
SN74VMEH22501ADGVR DGV  
SN74VMEH22501AGQLR GQL  
48  
48  
56  
56  
MLA  
MLA  
HIJ  
8.6  
6.8  
4.8  
4.8  
15.8  
10.1  
7.3  
1.8  
1.6  
12  
12  
8
24  
24  
16  
16  
Q1  
Q1  
Q1  
Q1  
24  
16  
1.45  
1.45  
SN74VMEH22501AZQLR  
ZQL  
HIJ  
16  
7.3  
8
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
SN74VMEH22501ADGGR  
SN74VMEH22501ADGVR  
SN74VMEH22501AGQLR  
SN74VMEH22501AZQLR  
DGG  
DGV  
GQL  
ZQL  
48  
48  
56  
56  
MLA  
MLA  
HIJ  
333.2  
333.2  
346.0  
346.0  
333.2  
333.2  
346.0  
346.0  
31.75  
31.75  
33.0  
HIJ  
33.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-May-2007  
Pack Materials-Page 3  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

VMEM

Military Clock Oscillator
VECTRON

VMEM2Q-B3A-110M000000

CMOS Output Clock Oscillator, 110MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-114M000000

CMOS Output Clock Oscillator, 114MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-125M000000

CMOS Output Clock Oscillator, 125MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-12M7300000

CMOS Output Clock Oscillator, 12.73MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-14M3181800

CMOS Output Clock Oscillator, 14.31818MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-14M7460000

CMOS Output Clock Oscillator, 14.746MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-150M000000

CMOS Output Clock Oscillator, 150MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-1M00000000

CMOS Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-20M0000000

CMOS Output Clock Oscillator, 20MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-21M0000000

CMOS Output Clock Oscillator, 21MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI

VMEM2Q-B3A-23M0000000

CMOS Output Clock Oscillator, 23MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
MICROSEMI