VSP5612 [TI]

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator; 16位, 4通道, CCD / CMOS传感器模拟前端与时序发生器
VSP5612
型号: VSP5612
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator
16位, 4通道, CCD / CMOS传感器模拟前端与时序发生器

传感器 CD
文件: 总47页 (文件大小:792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
16-Bit, 4-Channel, CCD/CMOS Sensor  
Analog Front-End with Timing Generator  
Check for Samples: VSP5610, VSP5611, VSP5612  
1
FEATURES  
APPLICATIONS  
23  
Four-Channel CCD/CMOS Signal: 2-Channel,  
3-Channel, and 4-Channel Selectable  
Power Supply: 3.3 V Only, Typ  
(Built-in LDO, 3.3 V to 1.8 V)  
Copiers  
Facsimile Machines  
Scanners  
Maximum Conversion Rate:  
DESCRIPTION  
VSP5610: 35 MSPS  
VSP5611: 50 MSPS  
VSP5612: 70 MSPS  
The  
VSP5610/11/12  
are  
high-speed,  
high-performance, 16-bit analog-to-digital-converters  
(ADCs) that have four independent sampling circuit  
channels for multi-output charge-coupled device  
16-Bit Resolution  
CDS/SH Selectable  
Maximum Input Signal Range: 2.0 V  
Analog and Digital Hybrid Gain:  
(CCD)  
and  
complementary  
metal  
oxide  
semiconductor (CMOS) line sensors. Pixel data from  
the sensor are sampled by the sample/hold (SH) or  
correlated double sampler (CDS) circuit, and are then  
converted to digital data by an ADC. Data output is  
selectable in low-voltage differential signaling (LVDS)  
or CMOS modes.  
Analog Gain: 0.5 V/V to 3.5 V/V in  
3/64-V/V Steps  
Digital Gain: 1 V/V to 2 V/V in  
1/256-V/V Steps  
The VSP5610/11/12 include a programmable gain to  
support the pixel level inflection caused by luminance.  
The integrated digital-to-analog-converter (DAC) can  
be used to adjust the offset level for the analog input  
signal. Furthermore, the timing generator (TG) is  
integrated in these devices for the control of sensor  
operation.  
Offset Correction DAC: ±250 mV, 8-Bit  
Standard LVDS/CMOS Selectable Output:  
LVDS:  
Data Channel: 2-Channel, 3-Channel  
Clock Channel: 1-Channel  
8-Bit/7-Bit Serializer Selectable  
The VSP5610/11/12 use 1.65 V to 1.95 V for the core  
voltage and 3.0 V to 3.6 V for I/Os. The core voltage  
is supplied by a built-in low-dropout regulator (LDO).  
CMOS: 4 Bits × 4, 8 Bits × 2  
Timing Generator:  
Fast Transfer Clock: Eight Signals  
Slow Transfer Clock: Six Signals  
Timing Adjustment Resolution: tMCLK/48  
Input Clamp/Input Reference Level  
Internal/External Selectable  
Reference DAC: 0.5 V, 1.1 V, 1.5 V, 2 V  
SPI: Three-Wire Serial  
GPIO: Four-Port  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT  
VSP5610  
VSP5611  
VSP5612  
TRANSPORT MEDIA  
Tape and Reel  
QFN-56  
QFN-56  
QFN-56  
RSH  
RSH  
RSH  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
VSP5610  
VSP5611  
VSP5612  
VSP5610RSHR  
VSP5611RSHR  
VSP5612RSHR  
Tape and Reel  
Tape and Reel  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
VSP5610, VSP5611, VSP5612  
UNIT  
V
Supply voltage: VDD, DVDD_IO, LVDD  
Supply voltage difference: VDD, DVDD_IO, LVDD  
Ground voltage difference: VSS, DVSS, LVSS  
Digital voltage input  
4.0  
±0.6  
±0.1  
V
V
0.3 to DVDD_IO + 0.3  
0.3 to VDD + 0.3  
±10  
V
Analog voltage input  
V
Digital input current  
mA  
mA  
°C  
°C  
°C  
°C  
Analog input current  
±10  
Ambient temperature under bias  
Storage temperature  
40 to +125  
55 to +150  
+150  
Junction temperature  
Package temperature (IR reflow, peak)  
+260  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
3.0  
NOM  
3.3  
MAX  
3.6  
UNIT  
LDO and analog I/O power-supply voltage  
Digital power-supply voltage  
LVDS/CMOS power-supply voltage  
Supply voltage difference  
VDD  
V
V
V
V
DVDD_IO  
3.0  
3.3  
3.6  
LVDD  
3.0  
3.3  
3.6  
VDD, DVDD_IO, LVDD  
0.3  
0.3  
Digital input logic family  
Low-voltage CMOS  
VSP5610  
VSP5611  
VSP5612  
1
1
1
11.66  
16.66  
23.33  
10  
MHz  
MHz  
MHz  
MHz  
°C  
Master clock frequency (MCLK)  
Serial I/O clock frequency (SCLK)  
Operating free-air temperature  
0
+85  
2
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ELECTRICAL CHARACTERISTICS: VSP5610  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5610  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Allowable input voltage  
Full-scale range  
0
VDD  
V
Gain = 1 V/V  
1
5
VPP  
pF  
Input capacitor  
DIGITAL INPUT  
Positive-going threshold  
Negative-going threshold  
VT+  
VT–  
ΔVT  
IIN  
DVDD_IO × 0.7  
V
V
DVDD_IO × 0.3  
Hysteresis (VT+ VT–  
)
DVDD_IO × 0.13  
V
Input current  
±1  
µA  
pF  
Input capacitor  
5
DIGITAL OUTPUT  
IOH = 2 mA  
IOH = 4 mA  
IOH = 8 mA  
IOL = 2 mA  
DVDD_IO 0.45  
DVDD_IO 0.50  
DVDD_IO 0.50  
V
V
High-level output voltage  
VOH  
V
0.35  
0.50  
0.65  
1
V
Low-level output voltage  
TG output timing skew  
VOL  
IOL = 4 mA  
V
IOL = 8 mA  
V
XP1, XP2, XP3, XP4  
Other signals  
1  
2  
ns  
ns  
MHz  
2
CMOS data output bit rate  
80  
LVDS DRIVER (TA, TB, TC, TCLK)  
Differential steady-state output  
voltage adjustment range  
|VOD  
|VOD  
|VOD  
|
|
|
RL = 100 Ω  
300  
350  
3
400  
mV  
Steps  
%
Differential steady-state output  
adjustment step  
Differential steady-state output  
voltage tolerance  
30  
30  
35  
Change in the steady-state  
differential output voltage magnitude  
between opposite binary states  
Δ|VOD  
|
mV  
V
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
RL = 100 Ω  
1.125  
1.375  
Peak-to-peak common-mode output  
voltage  
80  
150  
±24  
±10  
mV  
mA  
µA  
Short-circuit output current  
IOS VO = 0 V (VO = TA, TB, TC, TCLK)  
6  
VO = 0 V to LVDD  
IOZ  
Hi-Z output current  
(VO = TA, TB, TC, TCLK)  
Transition time, differential output  
voltage  
tLR/tLF  
0.75  
1.5  
35  
ns  
TCLK clock rate  
8
MHz  
LVDS RECEIVER (RCLK)  
Positive-going differential input  
threshold voltage  
VIT+  
VIT–  
100  
mV  
Negative-going differential input  
threshold voltage  
100  
mV  
RCLK clock rate  
1
11.66  
MHz  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VSP5610 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5610  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDO and analog I/O supply voltage  
Digital I/O supply voltage  
LVDS/CMOS supply voltage  
LDO and analog I/O current  
Digital I/O current  
VDD  
DVDD_IO  
LVDD  
3.0  
3.0  
3.0  
3.3  
3.3  
3.3  
74.9  
3.8  
10  
3.6  
3.6  
3.6  
V
V
V
VDD  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
DVDD_IO  
LVDD  
Load = 10 pF  
CMOS current  
LVDS current  
LVDD  
Three-pair data, one-pair clock  
LVDS, three-pair  
24  
339  
317  
15  
Power consumption  
CMOS output  
Standby mode (MCLK = 0 MHz)  
TEMPERATURE RANGE  
Operation temperature  
TA  
θJA  
θJC  
0
+85  
°C  
PCB (50 mm × 50 mm, four-layer),  
Thermal resistor (junction-to-air)  
29  
24  
°C/W  
°C/W  
0 lfm airflow  
Thermal resistor (junction-to-case)  
DLL, PLL  
MCLK input frequency  
MCLK modulated frequency  
MCLK modulated amplitude  
DLL tap number  
fMCLK  
1
11.66  
35  
MHz  
kHz  
%
MCLK > 5 MHz  
3.5  
0
48  
10  
Taps  
ms  
Maximum DLL and PLL lock-up time  
TRANSFER CHARACTERISTICS  
Channels  
MCLK = 1 MHz  
2
4
Channels  
Bits  
Resolution  
16  
LVDS, two- and three-channel mode  
LVDS, four-channel mode  
1
1
1
1
11.66 MHz/Ch  
8.75 MHz/Ch  
11.66 MHz/Ch  
10 MHz/Ch  
CMOS 8-bit × 2, two-channel mode  
CMOS 4-bit × 4, two-channel mode  
CMOS 8-bit × 2, three-channel  
Conversion rate  
1
1
11.66 MHz/Ch  
mode  
CMOS 4-bit × 4, three-channel  
6.7 MHz/Ch  
8.75 MHz/Ch  
mode  
CMOS 8-bit × 2, four-channel mode  
CMOS 4-bit × 4, four-channel mode  
Gain = 1 V/V, 12-bit  
1
1
5
MHz/Ch  
LSB  
Maximum differential nonlinearity  
Maximum integral nonlinearity  
No missing codes  
±0.5  
±2  
Gain = 1 V/V, 12-bit  
LSB  
Specified  
76  
Signal-to-noise ratio  
SNR  
Gain = 1 V/V  
72(1)  
dB  
LSB  
%
Analog channel crosstalk  
Total absolute gain error  
Gain = 1 V/V, 12-bit, full-scale step  
±3  
10  
10  
(1) Specified by design.  
4
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ELECTRICAL CHARACTERISTICS: VSP5610 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5610  
PARAMETER  
TEST CONDITIONS  
MIN  
0.5  
TYP  
MAX  
3.5  
UNIT  
ANALOG PROGRAMMABLE GAIN (APG)  
Gain range  
APG_x  
V/V  
Steps  
%
Gain step  
63  
Gain relative error  
Gain monotonicity  
DIGITAL PROGRAMMABLE GAIN (DPG)  
Gain range  
Basis gain = 1 V/V  
Only APG_x  
10  
10  
Specified  
DPG_x  
1.0  
2.0  
V/V  
Gain step  
255  
Steps  
Gain monotonicity  
AIN REFERENCE LEVEL (REF_AIN)  
Only DPG_x  
Specified  
Setting code = 2  
Setting code = 3  
0.5  
1.1  
1.5  
2.0  
V
V
Internal DAC output  
VRINT  
Setting code = 0 (default)  
Setting code = 1  
V
V
Internal DAC output tolerance  
VRINT  
VRINT  
VREXT  
10  
2  
10  
2
%
Internal DAC output temperature  
drift  
TA = 0°C to +85°C(2)  
%
V
External reference range  
0.5  
VDD 0.9  
INPUT CLAMP  
Internal reference level clamp  
External reference level clamp  
Fixed level clamp  
VRINT  
VREXT  
2.2  
V
V
V
Ω
Clamp level  
VCLP  
Clamp-on resistance  
OFFSET DAC  
Resolution  
RCLP  
500  
8
Bits  
mV  
%
Output range  
±250  
Setting tolerance  
Temperature drift  
10  
2  
10  
2
TA = 0°C to +85°C(2)  
%
(2) Specified by design.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VSP5611  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5611  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Allowable input voltage  
Full-scale range  
0
VDD  
V
Gain = 1 V/V  
1
5
VPP  
pF  
Input capacitor  
DIGITAL INPUT  
Positive-going threshold  
Negative-going threshold  
VT+  
VT–  
ΔVT  
IIN  
DVDD_IO × 0.7  
V
V
DVDD_IO × 0.3  
Hysteresis (VT+ VT–  
)
DVDD_IO × 0.13  
V
Input current  
±1  
µA  
pF  
Input capacitor  
5
DIGITAL OUTPUT  
IOH = 2 mA  
IOH = 4 mA  
IOH = 8 mA  
IOL = 2 mA  
DVDD_IO 0.45  
DVDD_IO 0.50  
DVDD_IO 0.50  
V
V
High-level output voltage  
VOH  
V
0.35  
0.50  
0.65  
1
V
Low-level output voltage  
TG output timing skew  
VOL  
IOL = 4 mA  
V
IOL = 8 mA  
V
XP1, XP2, XP3, XP4  
Other signals  
1  
2  
ns  
ns  
MHz  
2
CMOS data output bit rate  
80  
LVDS DRIVER (TA, TB, TC, TCLK)  
Differential steady-state output  
voltage adjustment range  
|VOD  
|VOD  
|VOD  
|
|
|
RL = 100 Ω  
300  
350  
3
400  
mV  
Steps  
%
Differential steady-state output  
adjustment step  
Differential steady-state output  
voltage tolerance  
30  
30  
35  
Change in the steady-state  
differential output voltage magnitude  
between opposite binary states  
Δ|VOD  
|
mV  
V
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
RL = 100 Ω  
1.125  
1.375  
Peak-to-peak common-mode output  
voltage  
80  
150  
±24  
±10  
mV  
mA  
µA  
Short-circuit output current  
IOS VO = 0 V (VO = TA, TB, TC, TCLK)  
6  
VO = 0 V to LVDD  
IOZ  
Hi-Z output current  
(VO = TA, TB, TC, TCLK)  
Transition time, differential output  
voltage  
tLR/tLF  
0.75  
1.5  
50  
ns  
TCLK clock rate  
8
MHz  
LVDS RECEIVER (RCLK)  
Positive-going differential input  
threshold voltage  
VIT+  
VIT–  
100  
mV  
Negative-going differential input  
threshold voltage  
100  
mV  
RCLK clock rate  
1
16.66  
MHz  
6
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ELECTRICAL CHARACTERISTICS: VSP5611 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5611  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDO and analog I/O supply voltage  
Digital I/O supply voltage  
LVDS/CMOS supply voltage  
LDO and analog I/O current  
Digital I/O current  
VDD  
DVDD_IO  
LVDD  
3.0  
3.0  
3.0  
3.3  
3.3  
3.3  
99.6  
5.4  
10  
3.6  
3.6  
3.6  
V
V
V
VDD  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
DVDD_IO  
LVDD  
Load = 10 pF  
CMOS current  
LVDS current  
LVDD  
Three-pair data, one-pair clock  
LVDS, three-pair  
24  
426  
398  
15  
Power consumption  
CMOS output  
Standby mode (MCLK = 0 MHz)  
TEMPERATURE RANGE  
Operation temperature  
TA  
θJA  
θJC  
0
+85  
°C  
PCB (50 mm × 50 mm, four-layer),  
Thermal resistor (junction-to-air)  
29  
24  
°C/W  
°C/W  
0 lfm airflow  
Thermal resistor (junction-to-case)  
DLL, PLL  
MCLK input frequency  
MCLK modulated frequency  
MCLK modulated amplitude  
DLL tap number  
fMCLK  
1
16.66  
35  
MHz  
kHz  
%
MCLK > 5 MHz  
3.5  
0
48  
10  
Taps  
ms  
Maximum DLL and PLL lock-up time  
TRANSFER CHARACTERISTICS  
Channel  
MCLK = 1 MHz  
2
4
Channels  
Bits  
Resolution  
16  
LVDS, two- and three-channel mode  
LVDS, four-channel mode  
1
1
1
1
16.66 MHz/Ch  
12.5 MHz/Ch  
16.66 MHz/Ch  
10 MHz/Ch  
CMOS 8-bit × 2, two-channel mode  
CMOS 4-bit × 4, two-channel mode  
CMOS 8-bit × 2, three-channel  
Conversion rate  
1
1
13.3 MHz/Ch  
mode  
CMOS 4-bit × 4, three-channel  
6.7 MHz/Ch  
10 MHz/Ch  
mode  
CMOS 8-bit × 2, four-channel mode  
CMOS 4-bit × 4, four-channel mode  
Gain = 1 V/V, 12-bit  
1
1
5
MHz/Ch  
LSB  
Maximum differential nonlinearity  
Maximum integral nonlinearity  
No missing codes  
±0.5  
±2  
Gain = 1 V/V, 12-bit  
LSB  
Specified  
76  
Signal-to-noise ratio  
SNR  
Gain = 1 V/V  
72(1)  
dB  
LSB  
%
Analog channel crosstalk  
Total absolute gain error  
Gain = 1 V/V, 12-bit, full-scale step  
±6.5  
10  
10  
(1) Specified by design.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VSP5611 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5611  
PARAMETER  
TEST CONDITIONS  
MIN  
0.5  
TYP  
MAX  
3.5  
UNIT  
ANALOG PROGRAMMABLE GAIN (APG)  
Gain range  
APG_x  
V/V  
Steps  
%
Gain step  
63  
Gain relative error  
Gain monotonicity  
DIGITAL PROGRAMMABLE GAIN (DPG)  
Gain range  
Basis gain = 1 V/V  
Only APG_x  
10  
10  
Specified  
DPG_x  
1.0  
2.0  
V/V  
Gain step  
255  
Steps  
Gain monotonicity  
AIN REFERENCE LEVEL (REF_AIN)  
Only DPG_x  
Specified  
Setting code = 2  
Setting code = 3  
0.5  
1.1  
1.5  
2.0  
V
V
Internal DAC output  
VRINT  
Setting code = 0 (default)  
Setting code = 1  
V
V
Internal DAC output tolerance  
VRINT  
VRINT  
VREXT  
10  
2  
10  
2
%
Internal DAC output temperature  
drift  
TA = 0°C to +85°C(2)  
%
V
External reference range  
0.5  
VDD 0.9  
INPUT CLAMP  
Internal reference level clamp  
External reference level clamp  
Fixed level clamp  
VRINT  
VREXT  
2.2  
V
V
V
Ω
Clamp level  
VCLP  
Clamp-on resistance  
OFFSET DAC  
Resolution  
RCLP  
500  
8
Bits  
mV  
%
Output range  
±250  
Setting tolerance  
Temperature drift  
10  
2  
10  
2
TA = 0°C to +85°C(2)  
%
(2) Specified by design.  
8
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ELECTRICAL CHARACTERISTICS: VSP5612  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5612  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Allowable input voltage  
Full-scale range  
0
VDD  
V
Gain = 1 V/V  
1
5
VPP  
pF  
Input capacitor  
DIGITAL INPUT  
Positive-going threshold  
Negative-going threshold  
VT+  
VT–  
ΔVT  
IIN  
DVDD_IO × 0.7  
V
V
DVDD_IO × 0.3  
Hysteresis (VT+ VT–  
)
DVDD_IO × 0.13  
V
Input current  
±1  
µA  
pF  
Input capacitor  
5
DIGITAL OUTPUT  
IOH = 2 mA  
IOH = 4 mA  
IOH = 8 mA  
IOL = 2 mA  
DVDD_IO 0.45  
DVDD_IO 0.50  
DVDD_IO 0.50  
V
V
High-level output voltage  
VOH  
V
0.35  
0.50  
0.65  
1
V
Low-level output voltage  
TG output timing skew  
VOL  
IOL = 4 mA  
V
IOL = 8 mA  
V
XP1, XP2, XP3, XP4  
Other signals  
1  
2  
ns  
ns  
MHz  
2
CMOS data output bit rate  
80  
LVDS DRIVER (TA, TB, TC, TCLK)  
Differential steady-state output  
voltage adjustment range  
|VOD  
|VOD  
|VOD  
|
|
|
RL = 100 Ω  
300  
350  
3
400  
mV  
Steps  
%
Differential steady-state output  
adjustment step  
Differential steady-state output  
voltage tolerance  
30  
30  
35  
Change in the steady-state  
differential output voltage magnitude  
between opposite binary states  
Δ|VOD  
|
mV  
V
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
RL = 100 Ω  
1.125  
1.375  
Peak-to-peak common-mode output  
voltage  
80  
150  
±24  
±10  
mV  
mA  
µA  
Short-circuit output current  
IOS VO = 0 V (VO = TA, TB, TC, TCLK)  
6  
VO = 0 V to LVDD  
IOZ  
Hi-Z output current  
(VO = TA, TB, TC, TCLK)  
Transition time, differential output  
voltage  
tLR/tLF  
0.75  
1.5  
70  
ns  
TCLK clock rate  
8
MHz  
LVDS RECEIVER (RCLK)  
Positive-going differential input  
threshold voltage  
VIT+  
VIT–  
100  
mV  
Negative-going differential input  
threshold voltage  
100  
mV  
RCLK clock rate  
1
23.33  
MHz  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VSP5612 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5612  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LDO and analog I/O supply voltage  
Digital I/O supply voltage  
LVDS/CMOS supply voltage  
LDO and analog I/O current  
Digital I/O current  
VDD  
DVDD_IO  
LVDD  
3.0  
3.0  
3.0  
3.3  
3.3  
3.3  
133  
7.5  
10  
3.6  
3.6  
3.6  
V
V
V
VDD  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
DVDD_IO  
LVDD  
Load = 10 pF  
CMOS current  
LVDS current  
LVDD  
Three-pair data, one-pair clock  
LVDS, three-pair  
24  
542  
507  
15  
Power consumption  
CMOS output  
Standby mode (MCLK = 0 MHz)  
TEMPERATURE RANGE  
Operation temperature  
TA  
θJA  
θJC  
0
+85  
°C  
PCB (50 mm × 50 mm, four-layer),  
Thermal resistor (junction-to-air)  
29  
24  
°C/W  
°C/W  
0 lfm airflow  
Thermal resistor (junction-to-case)  
DLL, PLL  
MCLK input frequency  
MCLK modulated frequency  
MCLK modulated amplitude  
DLL tap number  
fMCLK  
1
23.33  
35  
MHz  
kHz  
%
MCLK > 5 MHz  
3.5  
0
48  
10  
Taps  
ms  
Maximum DLL and PLL lock-up time  
TRANSFER CHARACTERISTICS  
Channel  
MCLK = 1 MHz  
2
4
Channels  
Bits  
Resolution  
16  
LVDS, two- and three-channel mode  
LVDS, four-channel mode  
1
1
1
1
23.33 MHz/Ch  
17.5 MHz/Ch  
20 MHz/Ch  
10 MHz/Ch  
CMOS 8-bit × 2, two-channel mode  
CMOS 4-bit × 4, two-channel mode  
CMOS 8-bit × 2, three-channel  
Conversion rate  
1
1
13.3 MHz/Ch  
mode  
CMOS 4-bit × 4, three-channel  
6.7 MHz/Ch  
10 MHz/Ch  
mode  
CMOS 8-bit × 2, four-channel mode  
CMOS 4-bit × 4, four-channel mode  
Gain = 1 V/V, 12-bit  
1
1
5
MHz/Ch  
LSB  
Maximum differential nonlinearity  
Maximum integral nonlinearity  
No missing codes  
±0.5  
±2  
Gain = 1 V/V, 12-bit  
LSB  
Specified  
75  
Signal-to-noise ratio  
SNR  
Gain = 1 V/V  
72(1)  
dB  
LSB  
%
Analog channel crosstalk  
Total absolute gain error  
Gain = 1 V/V, 12-bit, full-scale step  
±15  
10  
10  
(1) Specified by design.  
10  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ELECTRICAL CHARACTERISTICS: VSP5612 (continued)  
All specifications at TA = +25°C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless  
otherwise noted.  
VSP5612  
PARAMETER  
TEST CONDITIONS  
MIN  
0.5  
TYP  
MAX  
3.5  
UNIT  
ANALOG PROGRAMMABLE GAIN (APG)  
Gain range  
APG_x  
V/V  
Steps  
%
Gain step  
63  
Gain relative error  
Gain monotonicity  
DIGITAL PROGRAMMABLE GAIN (DPG)  
Gain range  
Basis gain = 1 V/V  
Only APG_x  
10  
10  
Specified  
DPG_x  
1.0  
2.0  
V/V  
Gain step  
255  
Steps  
Gain monotonicity  
AIN REFERENCE LEVEL (REF_AIN)  
Only DPG_x  
Specified  
Setting code = 2  
Setting code = 3  
0.5  
1.1  
1.5  
2.0  
V
V
Internal DAC output  
VRINT  
Setting code = 0 (default)  
Setting code = 1  
V
V
Internal DAC output tolerance  
VRINT  
VRINT  
VREXT  
10  
2  
10  
2
%
Internal DAC output temperature  
drift  
TA = 0°C to +85°C(2)  
%
V
External reference range  
0.5  
VDD 0.9  
INPUT CLAMP  
Internal reference level clamp  
External reference level clamp  
Fixed level clamp  
VRINT  
VREXT  
2.2  
V
V
V
Ω
Clamp level  
VCLP  
Clamp-on resistance  
OFFSET DAC  
Resolution  
RCLP  
500  
8
Bits  
mV  
%
Output range  
±250  
Setting tolerance  
Temperature drift  
10  
2  
10  
2
TA = 0°C to +85°C(2)  
%
(2) Specified by design.  
THERMAL INFORMATION  
VSP561xRSH  
RSH  
THERMAL METRIC(1)  
UNITS  
56 PINS  
25.8  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
13.2  
3.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3.5  
θJCbot  
0.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
PARAMETERIC MEASUREMENT INFORMATION  
Analog Input Specification (AIN1, AIN2, AIN3, AIN4)  
The analog input specification has two signal inputs: negative and positive. These inputs are shown in Figure 1a  
and Figure 1b, respectively.  
1/fPIX  
1/fPIX  
VDD  
VDD  
VSIG  
VRST  
VSIG  
VOFFSET  
VOFFSET  
VSS  
VSS  
a) Negative Signal Input (AINx_POL(1) = 0)  
b) Positive Signal Input (AINx_POL(1) = 1)  
Figure 1. Analog Input Definition  
Table 1. Timing Characteristics for Figure 1  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
TYP  
MAX  
UNIT  
1
1
1
11.66 MHz/Ch  
16.66 MHz/Ch  
23.33 MHz/Ch  
Input pixel rate  
fPIX  
VSP5611  
VSP5612  
Negative (AINx_POL(1) = 0)  
Positive (AINx_POL(1) = 1)  
Gain = 0.5 V/V  
VOFFSET  
VDD VOFFSET  
2.2  
V
V
V
Signal range  
VSIG  
Maximum full-scale range  
VSIG  
1.8  
2
Reset field through noise  
range  
VRST  
VOFFSET  
VDD VOFFSET  
V
V
V
Fixed level clamp mode (REF_SEL = 0)  
2.2  
Internal reference level clamp mode  
(REF_SEL = 1)  
VRINT  
VREXT  
Offset level  
VOFFSET  
External reference level clamp mode  
(REF_SEL = 2)  
V
(1) AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).  
12  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
LVDS Output Voltage Specification  
The test load and voltage definition for the LVDS outputs are shown in Figure 2.  
RL/2(1)  
Tx+  
VOD  
RL/2(1)  
VOC  
Tx-  
100%  
80%  
VOD(H)  
0 V  
VOD(L)  
20%  
0%  
tLF  
tLR  
VOC(PP)  
VOC(SS)  
VOC(SS)  
0 V  
(1) RL/2 = 49.9 Ω ± 1%  
Figure 2. Test Load and Voltage Definition for LVDS Outputs  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
PIN CONFIGURATION  
RSH PACKAGE  
QFN-56  
(TOP VIEW)  
LVSS  
TEST  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
LVDD  
AVDD_LDO  
VSS  
TA+/D0  
TA-/D1  
TB+/D2  
TB-/D3  
TC+/D4  
TC-/D5  
TCLK+/CK0/D6  
TCLK-/CK1/D7  
SCLK  
3
AIN1  
4
AINGND1  
AIN2  
5
6
AINGND2  
AIN3  
7
8
AINGND3  
AIN4  
9
10  
11  
12  
13  
14  
AINGND4  
VSS  
SDI  
SEN  
REF_AIN  
ISET  
DVSS  
14  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
PIN ASSIGNMENTS  
PIN  
NUMBER  
PIN NAME  
TEST  
TYPE(1)  
DI3.3  
AP1.8  
AGND  
AI3.3  
AI3.3  
AI3.3  
AI3.3  
AI3.3  
AI3.3  
AI3.3  
AI3.3  
AGND  
DESCRIPTION  
1
2
Internal test pin; connect to DGND  
AVDD_LDO  
VSS  
Analog core power voltage output; not connected, open  
3
LDO and analog I/O ground  
4
AIN1  
First channel analog signal input(2)  
First channel analog signal ground(2)  
Second channel analog signal input(2)  
Second channel analog signal ground(2)  
Third channel analog signal input(2)  
Third channel analog signal ground(2)  
Fourth channel analog signal input(2)  
Fourth channel analog signal ground(2)  
LDO and analog I/O ground  
5
AINGND1  
AIN2  
6
7
AINGND2  
AIN3  
8
9
AINGND3  
AIN4  
10  
11  
12  
AINGND4  
VSS  
REF_DAC_IN  
13  
REF_AIN  
AI3.3/AO3.3  
0 = Analog signal reference output (default)  
1 = Analog signal reference input  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
ISET  
VSS  
LVO1.8  
AGND  
AO1.8  
AO1.8  
AGND  
AP3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
Internal reference voltage output;bypass to ground with a 10-kΩ ±1% resister  
LDO and analog I/O ground  
REFP  
REFN  
VSS  
Positive reference; bypass to AGND with a 0.1-μF capacitor  
Negative reference; bypass to AGND with a 0.1-μF capacitor  
LDO and analog I/O ground  
VDD  
LDO and analog I/O power supply  
Sensor shift gate output 1  
XSH1  
XSH2  
XSH3  
XSH4  
Sensor shift gate output 2  
Sensor shift gate output 3  
Sensor shift gate output 4  
GPIO0_SEL  
24  
GPIO0  
DIO3.3  
0 = GPI0, general-purpose input port 0 (default) (In case of input, internal pull-down resistor)  
1 = GPO0, general-purpose output port 0  
GPIO2_SDO_SEL  
0 = GPI2, general-purpose input port 2 (default) (In case of input, internal pull-down resistor)  
1 = GPO2, general-purpose output port 2  
2 = Reserved  
25  
SDO/GPIO2  
DIO3.3  
3 = SDO, serial I/F data output  
26  
27  
28  
29  
30  
DVSS  
RCLKN  
RCLKP  
DVSS  
SEN  
DGND  
LVI3.3  
LVI3.3  
DGND  
DI3.3  
Digital ground  
LVDS clock input  
CMOS master clock input/positive LVDS clock input  
Digital ground  
Serial I/F enable; active low, internal pull-up resistor  
SDI_BUFF_CTRL  
31  
SDI  
DIO3.3  
0 = Serial I/F data input  
1 = Serial I/F data input/output (Internal pull-down resistor)  
32  
33  
SCLK  
DI3.3  
Serial I/F clock (internal pull-down resistor)  
TCLK/CK1/  
LVO3.3  
Negative LVDS clock output/Clock output 1/Data output bit 7  
D7  
TCLK+/CK0/  
D6  
34  
LVO3.3  
Positive LVDS clock output/Clock output 0/Data output bit 6  
(1) AP3.3 = 3.3-V analog power supply; AP1.8 = 1.8-V analog power supply; AGND = analog ground; GND = ground; AO3.3 = 3.3-V analog  
output; AO1.8 = 1.8-V analog output; AI3.3 = 3.3-V analog input; DP3.3 = 3.3-V digital power supply; DP1.8 = 1.8-V digital power  
supply; DGND = digital ground; DO3.3 = 3.3-V digital output; DI3.3 = 3.3-V digital input; DIO3.3 = 3.3-V digital I/O; LVP3.3 = 3.3-V  
LVDS power supply; LVGND = LVDS ground; LVO3.3 = 3.3-V LVDS output; LVI3.3 = 3.3-V LVDS input; and LVO = 3.3-V LVDS output.  
(2) If these pins are unused, they can be opened or decoupled to GND with a decoupling capacitor.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
PIN ASSIGNMENTS (continued)  
PIN  
NUMBER  
PIN NAME  
TYPE(1)  
LVO3.3  
LVO3.3  
LVO3.3  
LVO3.3  
LVO3.3  
LVO3.3  
LVP3.3  
LVGND  
DP3.3  
DESCRIPTION  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
TC/D5  
TC+/D4  
TB/D3  
TB+/D2  
TA/D1  
TA+/D0  
LVDD  
Negative TC channel LVDS data output/Data output bit 5  
Positive TC channel LVDS data output/Data output bit 4  
Negative TB channel LVDS data output/Data output bit 3  
Positive TB channel LVDS data output/Data output bit 2  
Negative TA channel LVDS data output/Data output bit 1  
Positive TA channel LVDS data output/Data output bit 0  
LVDS/CMOS output power supply  
LVSS  
LVDS/CMOS output ground  
DVDD_IO  
DVSS  
Digital I/O power supply  
DGND  
Digital ground  
XLSYNC_SEL  
0 = Internal line synchronous signal output (default)  
(In case of input, internal pull-down resistor)  
1 = External line synchronous signal input. Polarity is set by the XLSYNC_POL register  
(default is active high).  
45  
46  
47  
XLSYNC  
SDO/GPIO1  
XST/GPIO3  
DIO3.3  
DIO3.3  
DIO3.3  
GPIO1_SDO_SEL  
0 = GPI1, general-purpose input port 1 (default) (In case of input, internal pull-down resistor)  
1 = GPO1, general-purpose output port 1  
2 = Reserved, internal test input  
3 = SDO, serial I/F data output  
GPIO3_XST_SEL  
0 = GPI3, general-purpose input port 3 (default) (In case of input, internal pull-down resistor)  
1 = GPO3, general-purpose output port 3  
2 = Reserved, internal test input  
3 = XST, storage pulse output  
48  
49  
50  
51  
52  
53  
54  
55  
56  
XCLR  
XP1  
XP2  
XP3  
XP4  
X1L  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
DO3.3  
Sensor clear gate output  
Fast transfer clock output φ1  
Fast transfer clock output φ2  
Fast transfer clock output φ3  
Fast transfer clock output φ4  
Fast transfer clock output 1L  
Fast transfer clock output 2L  
Clamp gate clock output  
X2L  
XCP  
XRS  
Reset gate clock output  
16  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
FUNCTIONAL BLOCK DIAGRAM  
3.3 V  
3.3 V  
3.3 V  
10 kꢀ  
±1%  
4
LDO  
3.3 V to 1.8 V  
Ref  
DAC  
REF_AIN  
TA+/D0  
Serializer  
8-Bit  
Clamp  
Clamp  
Clamp  
Clamp  
Parallel Load  
7- or 8-Bit Shift  
Register  
DAC  
LVDS  
TA /D1  
AIN1  
+
+
+
+
CDS  
/SH  
APG  
AINGND1  
TB+/D2  
TB /D3  
Serializer  
Parallel Load  
7- or 8-Bit Shift  
Register  
LVDS  
LVDS  
LVDS  
MUX  
8-Bit  
DAC  
AIN2  
TC+/D4  
TC /D5  
Serializer  
CDS  
/SH  
APG  
APG  
APG  
Parallel Load  
7- or 8-Bit Shift  
Register  
AINGND2  
16  
4:1  
MUX  
16-Bit  
ADC  
8-Bit  
DPG  
DAC  
TCLK+/CK0/D6  
TCLK /CK1/D7  
AIN3  
CDS  
/SH  
AINGND3  
PLL  
8-Bit  
DAC  
ADCK  
LVCK  
AIN4  
SHD_A, SHD_B,  
SHP_A, SHP_B  
CDS  
/SH  
DLL  
48 Taps  
AINGND4  
DLL Tap Selector  
REFP  
REFN  
Internal  
Reference  
Line  
Sync  
Timing Generator  
RCLKP  
RCLKN  
Serial Interface/Register  
LVDS  
Figure 3. VSP5610/11/12 Block Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
SYSTEM OVERVIEW  
INTRODUCTION  
The VSP5610/11/12 are analog front-end (AFE) devices for CCD and CMOS line image sensor applications such  
as copiers, facsimile machines, etc. The VSP5610/11/12 each provide four independent data processing  
channels.  
The data from each image sensor channel are sampled and held by either the SH or CDS circuit and are then  
converted into digital data by an ADC. The digital data for each channel are later converted into serial data that  
can be output in either LVDS mode or CMOS mode.  
AFE BLOCK  
ANALOG SIGNAL INPUT  
These devices have four channels that can be used as analog input ports for an image sensor. In addition to the  
four-channel input, this AFE device also supports three-channel and two-channel inputs. Table 2 shows the  
register settings required to select the different channel modes.  
Table 2. Analog Input Channel Mode Selection  
MODE  
AIN_CH_SEL  
AIN1  
Active  
Active  
Active  
AIN2  
Standby  
Active  
AIN3  
Active  
Active  
Active  
AIN4  
Standby  
Standby  
Active  
Two-channel  
Three-channel  
Four-channel  
2
1
0
Active  
Each analog input supports CDS and simple SH circuits to accommodate CCD and CMOS image sensors. The  
sampling mode can be selected independently for each channel by configuring the internal registers. As shown in  
Table 3, if AINx_SH_CDS is set to '0', then the corresponding channel operates in CDS mode.  
Table 3. CDS/SH Mode Selection  
AINx_SH_CDS(1)  
SH/CDS  
CDS  
0
1
SH  
(1) AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).  
In addition, these devices also support independent selection of the input signal polarity for each channel. Input  
signal polarity can be set using the AINx_POL register, where x = 1, 2, 3, or 4. The input signal range and  
polarity are defined in the Analog Input Specification section.  
18  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
Correlated Double Sampler (CDS) Mode (AINx_SH_CDS = 0)  
CDS mode is designed to accommodate inputs from the CCD sensor. The output signal of a CCD image sensor  
is sampled twice during one pixel period. First, the reference interval is sampled by the SHP pulse, then the data  
interval is sampled by the SHD pulse. Subtracting these two samples provides the video information of the pixel  
as well as removes any noise common to both intervals. Thus, CDS plays an important role in reducing the reset  
noise and other low-frequency noises that are present on the CCD output signal. Figure 4 shows a diagram of  
CDS mode.  
VCLP  
OFDAC_x[7:0]  
CLPDM  
SHP_y  
Offset  
DAC  
SH_REFx_EN  
CLP_y  
CSx  
CFBx  
CLP_y  
SHP  
/SHD  
AINx_POL  
CSx  
RCLP  
AINx(1)  
AINGNDx(1)  
+
VP  
VN  
CSx  
CSx  
SHP  
CFBx  
Figure 4. CDS Mode Input Circuit for CCD Signal  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
Sample Hold (SH) Mode (AINx_SH_CDS = 1)  
SH mode supports CCD and CMOS sensors. For the CCD sensor, the sensor signal pedestal level is clamped to  
the VCLP level using an internal clamp circuit. SH samples only once during a pixel period. The SHD pulse is  
used to sample the CCD signal data interval. After sampling, the SH circuit takes the difference of the data and  
VCLP levels to extract the video information.  
For the CMOS input, the input clamp function should be set according to the requirements. If the sensor output is  
within the allowable input range, an ac-coupling capacitor for analog input may not be needed. When the sensor  
signal is directly input to the AFE, the SH circuit requires a reference voltage to set the black level. To use VCLP  
as a reference, SH_REFx_EN should be enabled and AINGNDx then opened or coupled to GND with a  
capacitor. To use an external reference, it can be input to AINGNDx with sensor signals connected to AINx.  
Figure 5 shows a diagram of the SH mode.  
VCLP  
OFDAC_x[7:0]  
CLPDM  
SHP_y  
Offset  
DAC  
SH_REFx_EN  
CLP_y  
CSx  
CFBx  
CLP_y  
AINx_POL  
CSx  
SHD  
RCLP  
AINx(1)  
AINGNDx(1)  
+
VP  
VN  
CSx  
CSx  
SHD  
CFBx  
(1) Under some conditions, the sensor signal can be directly input to the AFE without requiring an external capacitor.  
(2) In SH mode, the SHP clock should be programmed so that it does not overlap the SHD clock.  
Figure 5. SH Mode Input Circuit for CCD or CMOS Signal  
INPUT CLAMP AND SENSOR REFERENCE  
The CCD output signal has a large dc offset that may exceed the input range of the AFE input circuit. Therefore,  
this output signal is ac-coupled to the AFE through a capacitor, and the internal dc level is set to the clamp  
voltage (VCLP) by an internal clamp circuit. The VSP5610/11/12 provide three modes for clamp operation: pixel  
clamp, line clamp, and not clamped. These modes are shown in Table 4. The clamp mode can be set  
independently for each channel by configuring the AINx_CLP_SEL register.  
Table 4. Clamp Mode Selection  
MODE SETTING  
AINx_CLP_SEL(1)  
CLAMP ACTIVE CONDITION AND SETTING  
CLAMP MODE  
CLPDM AND  
CDS/SH  
CLP_y(2)  
SH_REF_EN  
SHP_y(2)  
Pixel clamp  
Line clamp  
0 (default)  
CDS/SH  
CDS/SH  
Only SH  
Only SH  
Active  
Active  
Active  
Off  
Off  
On  
Off  
1
2
3
Not clamped  
(1) AINx_CLP_SEL (x = 1, 2, 3, and 4).  
(2) y = A and B.  
20  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
In pixel clamp mode, CLP_A/B is used for clamping. The input signal is clamped to VCLP via the CLP_A/B pulse  
during each pixel period, as shown in Figure 6a. Because the ac-coupling capacitor is charged on a pixel-to-pixel  
basis, the clamp level droop can be controlled by the clamp pulse width.  
In line clamp mode, SHP_A/B is used for clamping when CLPDM is active, as shown in Figure 6b. The input  
signal is clamped only in the CLPDM period within one line cycle of the sensor. The signal is clamped in this  
method because the charge leaks the least from the coupling capacitor during the CLPDM period. Accordingly,  
because there may be a large droop in the clamp level, this device does not support line clamp in the SH mode.  
The not-clamped mode is mainly used in for a CMOS sensor input. If the sensor signal is directly connected to  
the AFE, this mode should be configured without an ac-coupling capacitor at the input port. This mode has two  
options to select a reference for the sensor black level: internal reference and external input. In the internal  
reference option, the internal reference (VCLP) is used with AINx_CLP_SEL = 2. In the external input option, the  
external input is used from AINGNDx with AINx_CLP_SEL = 3.  
MCLK  
MCLK  
AINx(1)  
AINx(1)  
tFC_y  
tCW_y  
CLP_y(2)  
tRP_y tPW_y  
tRP_y tPW_y  
SHP_y(2)  
SHD_y(2)  
SHP_y(2)  
SHD_y(2)  
a) Pixel Clamp  
b) Clamp During CLPDM Active  
(1) x = AIN channel number, x = 1, 2, 3, and 4.  
(2) y = Group code of sample pulse signals. When x = 1 or 2, y = A. When x = 3 or 4, y = B.  
Figure 6. Input Clamp Function  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
As shown in Figure 7, the internal VCLP node provides the clamp reference voltage. As for the clamp level, it is  
possible to select three reference voltage modes by setting the AINx_REF_SEL register. The first mode provides  
a fixed 2.2 V, the second mode provides selectable outputs (0.5 V, 1.1 V, 1.5 V, and 2.0 V) of an internal DAC,  
and the third mode allows an external input from the REF_AIN pin to be used as the clamp reference. This  
REF_AIN pin is bidirectional and also acts as an output of the internal DAC. Table 5 shows the relationship  
between the register and clamp level. Table 6 shows the DAC configuration.  
(1) If the sensor signal is directly input to the AFE, the enternal capacitor should not be connected.  
Figure 7. VCLP Block Diagram  
Table 5. Clamp Level Selection  
MODE SETTING  
AINx_REF_SEL[1:0](1)  
CLAMP LEVEL  
0
2.2 V  
VRINT  
VREXT  
Reference DAC (0.5 V, 1.1 V, 1.5 V, and  
2.0 V)  
1
2
REF_AIN external input  
(1) AINx_CLP_SEL (x = 1, 2, 3, and 4).  
Table 6. VRINT Voltage Selection  
SETTING CODE VRINT_SEL  
REF DAC VRINT (V)  
2
3
0
1
0.5  
1.1  
1.5 (default)  
2.0  
22  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
If line clamp mode is used, the CLPDM period should be configured by the internal registers. The CLPDM period  
is determined with reference to the line cycle signal for the sensor (LS). Thus, the start and end of CLPDM are  
each defined as the number of pixels from the LS falling edge. Because CLPDM is used as the clamp period, it  
should be assigned for the interval of any dummy or optical black pixels. Figure 8 shows the relationship  
between LS and CLPDM.  
Dummy Pixels  
Optical Black  
Active Pixels  
AINx  
(External)  
LS  
(Internal)  
DM_END  
DM_STR  
CLPDM  
(Internal)  
Clamp with CLP_y  
Clamp with CLP_y  
Clamp with SHP_y  
Figure 8. Line Clamp Period Setting  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
Pixel Clamp Period Setting  
In pixel clamp mode, without CLPDM, the sensor signal is clamped with CLP_A and CLP_B pulses. CLP_A  
corresponds to AIN1 and AIN2; CLP_B corresponds to AIN3 and AIN4. The start of these pulses is synchronized  
with the SHP_y rising edge (where y = A or B). There are two options to configure the end position: first, to  
automatically set the pulse width to 50% that of SHP_y; and second, to manually configure the end position  
using an internal register. Figure 9 and Figure 10 illustrate the details of the clamp pulse function in automatic  
and manual modes, respectively.  
Automatic Mode (CLP_TF_AT_DIS = 0)  
Figure 9 shows the automatic mode when CLP_TF_AT_DIS is '0'.  
36  
0
12  
24  
36  
0
12  
DLL Setting  
Number  
48  
48  
SHP_y_TF  
tPW_Y  
SHP_y_TR  
SHP_y  
CLP_y  
tCW_y = tPW_Y/2  
Figure 9. Automatic Mode  
Manual Mode (CLP_TF_AT_DIS = 1)  
Figure 10 shows the manual mode when CLP_TF_AT_DIS is '1'.  
36  
0
12  
24  
36  
0
12  
DLL Setting  
Number  
48  
48  
SHP_y_TF  
SHP_y_TR  
SHP_y  
CLP_y  
CLP_y_TF  
Figure 10. Manual Mode  
24  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
In pixel clamp mode when CLPDM is active, the sensor signal is clamped with SHP_y. Therefore, the pixel clamp  
operation is closely related with the status of CLPDM. The condition of CLPDM should be properly defined with  
the internal registers. Because CLPDM is always high during a default condition after reset or power up, the  
status of CLPDM should be defined according to this sequence. Furthermore, the CLPDM status should be  
defined in the second step of the flowchart shown in Figure 11 for either configuration. All other user-dependent  
settings, except XLSYNC_SEL and EN_OUT of the software reset sequence, are described in Figure 11.  
(1) Internal registers: AINx_CLP_SEL = addresses 16 and 17; LINT = address 7; DM_STR = address 8; DM_END = address 9; and  
EN_CLPDM = address 399, bit 1.  
Figure 11. Configuration Sequence for Pixel Clamp  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
ANALOG PROGRAMMABLE GAIN (APG)  
The SH output can be amplified using programmable analog gain. This gain can be set from 0.5 V/V to 3.5 V/V  
with a step size of 3/64 V/V.  
The gain setting can be controlled by an internal register (APG_x). Equation 1 shows the relationship between  
the setting code and gain. The gain of each of the four channels can be set independently using different  
registers. Note that the black pixel level may possibly change as a result of the change in the gain; therefore, the  
appropriate timing of the gain change should be used to avoid degradation in image quality. Figure 12 shows  
analog gain as a function of gain control code in terms of V/V. Figure 13 shows the maximum allowed input  
signal as a function of gain control code.  
3
APG (V/V) =  
(Code = 0 LSB to 63 LSB)  
´ Code + 0.5  
63  
(1)  
3.5  
3
2
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
Input Code for Analog Gain Control (0 LSB to 63 LSBs)  
Input Code for Analog Gain Control (0 LSB to 63 LSBs)  
Figure 12. Analog Gain vs Setting Code  
Figure 13. Input Range vs Analog Gain Setting  
Code  
DIGITAL PROGRAMMABLE GAIN (DPG)  
The VSP5610/11/12 provide a maximum digital gain of 2 V/V. The total gain is fixed by the combination of  
CDS/SH analog gain (APG) and digital gain (DPG). DPG is controlled by an 8-bit internal register (DPG_x) that  
can set the gain from 1 V/V to 2 V/V, as defined by Equation 2. This register is included in each of the four  
channels, so the gain of each channel can be set independently.  
Figure 14 shows the relationship between the digital gain and register code. Note that the default value is 1 V/V.  
1
DPG (V/V) =  
(Code = 0 LSB to 255 LSB)  
´ Code + 1  
256  
(2)  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0
32  
64  
96  
128  
160  
192  
224  
256  
Input Code for Digital Gain Control (0 LSB to 255 LSBs)  
Figure 14. Digital Gain Setting Code  
26  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
ADC  
The ADC output format is selectable as twos complement or offset binary by configuring a register. Table 7  
shows the relationship between register setting and condition.  
Table 7. ADC Data Format Configuration  
ADC_DAT_FRM  
MODE  
0 (default)  
1
Twos complement  
Offset binary  
OFFSET DAC  
The VSP5610/11/12 have an independent DAC in each channel for offset level correction of the input signal. The  
correction range is ±250 mV and resolution is 8 bits. The DAC output voltage can be set by register settings.  
Table 8 and Figure 15 show the relationship between the output and setting codes. The setting code is defined in  
twos complement format. The DAC output offset voltage in millivolts as a function of the register setting is given  
in Equation 3.  
Table 8. Offset DAC Setting Code  
SETTING CODE  
OFDAC_x[7:0](1)  
OUTPUT (mV)  
248.05  
246.09  
7Fh  
7Eh  
01h  
00h  
FFh  
1.95  
0
1.95  
81h  
80h  
248.05  
250.00  
(1) × = 1, 2, 3, and 4.  
250  
128  
DAC Output (mV) =  
´ OFDAC_x[7:0]  
where:  
x = 1, 2, 3, and 4  
(3)  
300  
200  
100  
0
-100  
-200  
-300  
-128 -96  
-64  
-32  
0
32  
64  
96  
128  
8-Bit DAC Code (LSB)  
Figure 15. Offset DAC Setting Code vs Output Voltage  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
 
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
TIMING GENERATOR (TG)  
The image sensor timing generator (TG) is incorporated into these devices. The TG provides six signals that  
function as slow transfer clocks and eight signals that function as fast transfer clocks. In addition, the fast clock  
signals can also be used as slow clock signals. The TG signals are synchronized with LS (which is the image  
sensor line cycle) and are completely controlled by the internal registers. Because the TG output is locked under  
the default setting, EN_OUT (address 2, bit 10) should be set to '1' to enable the outputs.  
LINE SYNCHRONOUS FUNCTION  
The VSP5610/11/12 have two modes for synchronizing the sensor line cycle: internal line (Figure 16) and  
external line syncronous mode (Figure 17). In internal line synchronous mode, the line cycle signal (LS) is  
generated after a certain number of MCLK cycles that are counted by an internal counter (PIX_CNT). The  
number of MCLK cycles is determined by the LINT[19:0] register; the counter clears after LS is generated. The  
active LS period is equal to one MCLK cycle period.  
MCLK  
(External)  
・・・・・  
MCK  
・・・・・  
(Internal)  
PIX_CNT[19:0]  
(Internal)  
LINT-3  
LINT-2  
LINT-1  
LINT  
0
1
2
LINT-3  
LINT-2  
LINT-1  
LINT  
0
1
3
・・・・・  
tLINE  
LS_INT  
(Internal)  
LS  
(Internal)  
Figure 16. Internal Line Synchronous Mode (XLSYNC_SEL = 1)  
tXLS_ACT  
XLSYNC  
(External)  
More Than 3 Clocks  
XLSYNC_POL = 0 (Active High)  
tXLS_H  
tXLS_S  
tXLS_H  
tXLS_S  
MCLK  
(External)  
・・・・・  
・・・・・  
MCK  
(Internal)  
PIX_CNT[19:0]  
(Internal)  
LINT - 1  
LINT  
LINT + 1  
0
1
XLSYNC Mask Period  
XLSYNC Unmask Period  
XLSYNC Mask Period  
LS_MSK  
(Internal)  
LS  
(Internal)  
Figure 17. External Line Synchronous Mode (XLSYNC_SEL = 0, default)  
Table 9. Timing Requirements for Figure 16 and Figure 17  
PARAMETER  
TEST CONDITION  
XLSYNC = 1  
XLSYNC = 0  
XLSYNC = 0  
XLSYNC = 0  
MIN  
3
TYP  
MAX  
220 1  
UNIT  
tLINE  
Line cycle period setting  
XLSYNC active period  
XLSYNC setup to MCLK  
XLSYNC hold to MCLK  
LINT + 1  
Clocks  
Clocks  
ns  
tXLS_ACT  
tXLS_S  
tXLS_H  
3
10  
10  
ns  
28  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
The other mode is the external line synchronous mode which requires an external signal (XLSYNC). In this  
mode, if the logic circuit detects an active XLSYNC period for more than three MCLK cycles, the internal line  
synchronous signal (LS) is generated. This mode has a function that mask XLSYNC in order to avoid noise  
interference. The duration of the XLSYNC mask can be set by the LINT[19:0] register, which is also used in the  
internal line synchronous mode.  
The two line synchronous modes and the polarity can be selected by the XLSYNC_SEL and XLSYNC_POL  
registers, respectively. The default settings are external mode and active high polarity. XLSYNC can be used to  
output some internal signals. Table 10 shows the register settings required to select the desired output signals.  
PIX_CNT can be automatically reset by LS_CNT_RST (which is an internal register). Before performing this  
function, a software reset must be executed in order set RST_ALL to '1'. If LS_CNT_RST is set to '1' after a  
software reset, the pixel counter is then held at '0'. To make the counter active, LS_CNT_RST should return to  
'0'.  
Table 10. XLSYNC Output Signal (XLSYNC_SEL = 1)  
REGISTER SETTING  
XLSYNC_OUT  
OUTPUT SIGNAL  
LS  
0
1
2
3
CLPDM  
Reserved  
Reserved  
SLOW TRANSFER CLOCK SETTING (XST, XSHn, XCLR)  
XST, XSHn (where n = 1 to 4), and XCLR are slow transfer clocks that can be configured by setting the initial  
polarity and toggle points. As shown in Table 11, the predetermined number of toggle points is different for each  
signal. Because the two toggles generate one pulse, the number of pulses is half the number of toggles.  
Table 11. Toggle Number and Generated Pulse  
SIGNAL  
XST  
TOGGLE  
PULSE  
8
4
8
XSHn  
XCLR  
16  
48  
24  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
Each toggle position is defined by a register that is exclusive for each signal. The toggle position is synchronized  
with LS and the gap between the toggle position and the LS falling edge. The LS falling edge is defined in terms  
of tMCLK, the cycle period of MCLK. This gap is set by register settings and is defined by Equation 4:  
t = (Xn_T(k) + 1) × tMCLK  
where:  
n = ST, SHn, CLR  
k = 0 to 7 (XST); k = 0 to 15 (XSHn); k = 0 to 47 (XCLR)  
Xn_T(k) is less than LINT and is the register value of the toggle setting  
(4)  
The toggle for each signal can be disabled with register settings. To make the toggle active, Xn_TGL_EN should  
be set to '1'. However, because XST shares a pin with GPIO3, pin function should be configured with the  
GPIO3_XST_SEL register. Figure 18 shows the configuration regarding the slow transfer clock.  
1 Line Cycle (Max = MCLK  
2 )  
LS  
(Internal)  
XST Configuration  
XST_T7 + 1  
XST_T6 + 1  
Toggle  
Setting  
XST_T1 + 1  
XST_T0 + 1  
XST_P = 0 (Initial Polarity = Low)  
XST  
(Output)  
・・・  
XST_P = 1 (Initial Polarity = High)  
XST  
(Output)  
・・・  
XSHn Configuration (n = 1 to 4)  
XSHn_T15 + 1  
Toggle  
Setting  
XSHn_T2 + 1  
XSHn_T1 + 1  
XSHn_T0 + 1  
XSHn_P = 0 (Initial Polarity = Low)  
XSHn  
(Output)  
・・・  
XSHn_P = 1 (Initial Polarity = High)  
XSHn  
(Output)  
・・・  
XCLR Configuration  
XCLR_T47 + 1  
Toggle  
Setting  
XCLR_T3 + 1  
XCLR_T1 + 1  
XCLR_T0 + 1  
XCLR_P = 0 ( Initial Polarity = Low)  
XCLR  
(Output)  
・・・  
XCLR_P = 1 (Initial Polarity = High)  
XCLR  
(Output)  
・・・  
(1) If Xn_Tn is set to '0', the toggle position is ignored (except for Xn_T0).  
(2) The period between the toggle position and LS falling edge = (Xn_T(k) + 1) × tMCLK  
(3) The following requirement must be satisfied: Xn_T(k) < Xn_T(k + 1).  
(4) The signal is set to the desired polarity settings at the falling edge of LS.  
.
Figure 18. Slow Transfer Gate Signal Setting for XST, XSHn, and XCLR  
30  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
FAST TRANSFER CLOCK PULSE SETTING  
XP1/2, X1L, X2L, XRS, XCP, and XP3/4 are fast transfer clock signals with rising and falling edges that are  
configurable via register settings. Figure 19 shows the block diagram of the fast clock configuration. In Figure 19,  
the DLL Tap Selector is used to select both the rising and the falling edges of each signal from among 48 tap  
positions.  
The XP2 clock signal is an inverse of XP1 and shares rising and falling edge settings. Similarly, XP4 is an  
inverse of XP3 and likewise shares rising and falling edge settings. The other signals have individual  
configuration registers for setting the position of both edges.  
In addition, it is possible to change the clock rate of each signal with register settings. The clock rate is based on  
the frequency of MCLK. XP1 and XP2 can select x1, x2, or x4 modes with common settings. XP3 and XP4 can  
also select x1, x2, or x4 modes with common settings. The other signals can choose between the x1 and x2 rate  
settings.  
Note that two independent sets of registers are available to set the clock rate, the clock rising edge, and the  
clock falling edge for operation in x1-mode and x2-mode.  
DLL  
48 Taps  
DLL Tap Selector  
MCLK  
x1  
x2  
x4  
x1 x1 x1 x1  
x2 x2 x2 x2  
x1  
x2  
x4  
Timing Generator  
Figure 19. Fast Transfer Clock Pulse Generator  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
Fast Transfer Clock Pulse Timing  
This section describes the timing of the fast transfer clock pulse for XRS (Figure 20), XCP (Figure 21), XP1 and  
XP2 (Figure 22), XP3 and XP4 (Figure 23), and X1L and X2L (Figure 24).  
tMCLK  
MCLK  
(External)  
tMCKD  
MCK  
(Internal)  
x1 Mode  
tTR_RS  
tTF_RS  
tRS  
tW_RS  
XRS  
(Output)  
x2 Mode  
tTR_RS  
tTF_RS  
tRS  
tW_RS  
XRS  
(Output)  
Figure 20. XRS Fast Transfer Clock Pulse Setting  
Table 12. Timing Requirements for Figure 20  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
1
TYP  
MAX  
11.66  
16.66  
23.33  
UNIT  
MHz  
MHz  
MHz  
ns  
fMCLK  
MCLK frequency  
VSP5611  
1
VSP5612  
1
tMCLK  
tMCKD  
MCLK period  
1/fMCLK  
2
MCLK to MCK delay  
ns  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
tMCLK  
ns  
tRS  
XRS period  
t
MCLK × 1/2  
ns  
0
0
0
0
2
2
t
t
t
t
MCLK × 47/48  
MCLK × 23/24  
MCLK × 47/48  
MCLK × 23/24  
ns  
tTR_RS  
tTF_RS  
tW_RS  
XRS rising edge delay from MCK  
XRS falling edge delay from MCK  
XRS pulse width  
ns  
ns  
ns  
tMCLK 2  
ns  
tMCLK × 1/2 2  
ns  
32  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
tMCLK  
MCLK  
(External)  
tMCKD  
MCK  
(Internal)  
x1 Mode  
tTR_CP  
tTF_CP  
tCP  
tW_CP  
XCP  
(Output)  
x2 Mode  
tTR_CP  
tTF_CP  
tRS  
tW_CP  
XCP  
(Output)  
Figure 21. XCP Fast Transfer Clock Pulse Setting  
Table 13. Timing Requirements for Figure 21  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
1
TYP  
MAX  
11.66  
16.66  
23.33  
UNIT  
MHz  
MHz  
MHz  
ns  
fMCLK  
MCLK frequency  
VSP5611  
1
VSP5612  
1
tMCLK  
tMCKD  
MCLK period  
1/fMCLK  
2
MCLK to MCK delay  
ns  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
tMCLK  
ns  
tCP  
XCP period  
t
MCLK × 1/2  
ns  
0
0
0
0
2
2
t
t
t
t
MCLK × 47/48  
MCLK × 23/24  
MCLK × 47/48  
MCLK × 23/24  
ns  
tTR_CP  
tTF_CP  
tW_CP  
XCP rising edge delay from MCK  
XCP falling edge delay from MCK  
XCP pulse width  
ns  
ns  
ns  
tMCLK 2  
ns  
tMCLK × 1/2 2  
ns  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
tMCLK  
MCLK  
(External)  
tMCKD  
MCK  
(Internal)  
x1 Mode  
tTR_P1_x1  
tP1  
tTF_P1_x1  
tW_P1  
XP1  
(Output)  
XP2  
(Output)  
x2 Mode  
tTR_P1_x2  
tTF_P1_x2  
tP1  
tW_P1  
XP1  
(Output)  
XP2  
(Output)  
x4 Mode  
tTR_P1_x4  
tTF_P1_x4  
tP1  
tW_P1  
XP1  
(Output)  
XP2  
(Output)  
Figure 22. XP1 and XP2 Fast Transfer Clock Pulse Setting  
34  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
Table 14. Timing Requirements for Figure 22  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
1
TYP  
MAX  
11.66  
16.66  
23.33  
UNIT  
MHz  
MHz  
MHz  
ns  
fMCLK  
MCLK frequency  
VSP5611  
1
VSP5612  
1
tMCLK  
tMCKD  
MCLK period  
1/fMCLK  
2
MCLK to MCK delay  
ns  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
tMCLK  
ns  
tPn  
XP1, XP2 period  
t
MCLK × 1/2  
MCLK × 1/4  
ns  
t
ns  
tTR_P_x1  
tTR_P_x2  
tTR_P_x3  
tTF_P_x1  
tTF_P_x2  
tTF_P_x3  
0
0
0
0
0
0
2
2
2
t
t
t
t
t
t
MCLK × 47/48  
MCLK × 23/24  
MCLK × 11/12  
MCLK × 47/48  
MCLK × 23/24  
MCLK × 11/12  
ns  
XP1, XP2 rising edge delay from MCK  
XP1, XP2 falling edge delay from MCK  
XP1, XP2 pulse width  
ns  
ns  
ns  
ns  
ns  
tMCLK 2  
ns  
tW_P1  
t
MCLK × 1/2 2  
MCLK × 1/4 2  
ns  
t
ns  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
tMCLK  
MCLK  
(External)  
tMCKD  
MCK  
(Internal)  
x1 Mode  
tTR_P3_x1  
tP3  
tTF_P3_x1  
tW_P3  
XP3  
(Output)  
XP4  
(Output)  
x2 Mode  
tTR_P3_x2  
tP3  
tTF_P3_x2  
tW_P3  
XP3  
(Output)  
XP4  
(Output)  
x4 Mode  
tTR_P3_x4  
tP3  
tTF_P3_x4  
tW_P3  
XP3  
(Output)  
XP4  
(Output)  
Figure 23. XP3 and XP4 Fast Transfer Clock Pulse Setting  
36  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
Table 15. Timing Requirements for Figure 23  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
1
TYP  
MAX  
11.66  
16.66  
23.33  
UNIT  
MHz  
MHz  
MHz  
ns  
fMCLK  
MCLK frequency  
VSP5611  
1
VSP5612  
1
tMCLK  
tMCKD  
MCLK period  
1/fMCLK  
2
MCLK to MCK delay  
ns  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
x1 mode  
x2 mode  
x4 mode  
tMCLK  
ns  
tP3  
XP3, XP4 period  
t
MCLK × 1/2  
MCLK × 1/4  
ns  
t
ns  
tTR_P3_x1  
tTR_P3_x2  
tTR_P3_x3  
tTF_P3_x1  
tTF_P3_x2  
tTF_P3_x3  
0
0
0
0
0
0
2
2
2
t
t
t
t
t
t
MCLK × 47/48  
MCLK × 23/24  
MCLK × 11/12  
MCLK × 47/48  
MCLK × 23/24  
MCLK × 11/12  
ns  
XP3, XP4 rising edge delay from MCK  
XP3, XP4 falling edge delay from MCK  
XP3, XP4 pulse width  
ns  
ns  
ns  
ns  
ns  
tMCLK 2  
ns  
tW_P3  
t
MCLK × 1/2 2  
MCLK × 1/4 2  
ns  
t
ns  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
tMCLK  
MCLK  
(External)  
tMCKD  
MCK  
(Internal)  
tTR_Ln  
x1 Mode  
tLn  
tTF_Ln  
tW_Ln  
XnL (n = 1, 2)  
(Output)  
tTR_Ln  
x2 Mode  
tLn  
tTF_Ln  
tW_Ln  
XnL (n = 1, 2)  
(Output)  
Figure 24. X1L and X2L Fast Transfer Clock Pulse Setting  
Table 16. Timing Requirements for Figure 24  
PARAMETER  
TEST CONDITIONS  
VSP5610  
MIN  
1
TYP  
MAX  
11.66  
16.66  
23.33  
UNIT  
MHz  
MHz  
MHz  
ns  
fMCLK  
MCLK frequency  
VSP5611  
1
VSP5612  
1
tMCLK  
tMCKD  
MCLK period  
1/fMCLK  
2
MCLK to MCK delay  
ns  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
x1 mode  
x2 mode  
tMCLK  
ns  
XLn period  
(n = 1,2)  
tLn  
t
MCLK × 1/2  
ns  
0
0
0
0
2
2
t
t
t
t
MCLK × 47/48  
MCLK × 23/24  
MCLK × 47/48  
MCLK × 23/24  
ns  
XLn rising edge delay from MCK  
(n = 1,2)  
tTR_Ln  
tTF_Ln  
tW_Ln  
ns  
ns  
XLn falling edge delay from MCK  
(n = 1,2)  
ns  
tMCLK 2  
ns  
XLn pulse width  
(n = 1,2)  
tMCLK × 1/2 2  
ns  
38  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
VSP5610  
VSP5611  
VSP5612  
www.ti.com  
SBES021 JUNE 2011  
SERIAL INTERFACE  
All device functions and settings are controlled through the serial interface. The serial interface consists of three  
signals (SCLK, SEN, and SDI) for register writing, and a fourth signal (SDO) for readback. SDO shares the  
terminal with the GPIO signal; thus, a register setting is required to activate the SDO function. Other signals are  
assigned to individual terminals.  
Serial data are composed of 30 bits total, as shown in Figure 25. 10 bits are assigned for the register address  
and 20 bits for register data. The input serial data at SDI are sequentially stored in a shift register at the SCLK  
rising edge. Data shift operation is performed at the SCLK rising edges with SEN low. All 30 input data bits are  
loaded to a parallel latch in an internal register at the rising edge of SEN.  
This device has two modes: read and write. The mode selection can be made via the SPL_RW internal register,  
located at bit 0 of address 0. SPL_RW = 0 implies a write mode and SPL_RW = 1 implies read mode.  
10-Bit Address  
20-Bit Data  
¼
¼
A9  
A8  
A1  
A0  
D19  
D18  
D1  
D0  
MSB  
LSB  
Figure 25. Serial I/F Data Format  
WRITE MODE (SPI_RW = 0, Default)  
Normally, one serial interface command is sent by one address and data combination. The address should be  
sent MSB first. Data are stored into the respective register, as indicated by the address. If the serial data at the  
end of the data stream are less than 30 bits, the last incomplete serial data are discarded. Figure 26 shows the  
SPI signal flow while in write mode.  
SEN  
SCLK  
SDI  
XX  
A[9:0]  
D[19:0]  
XX  
A[9:0]  
Figure 26. SPI Signal Flow of Write Mode  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
VSP5610  
VSP5611  
VSP5612  
SBES021 JUNE 2011  
www.ti.com  
READ MODE (SPI_RW = 1)  
In read mode, two types of connections are possible between the AFE and external systems such as an ASIC or  
CPU. One connection is the four-wire connection in which the SDI and SDO pins are separately connected to the  
system as shown in Figure 27a.  
The other connection is a three-wire connection in which only the SDI pin is connected to the bidirectional I/O  
port of the external system, as shown in Figure 27b. In this case, SDI_BUFF_CTRL should be set to '1' to create  
an SPI bidirectional port. The bit flow of the four-wire connection is shown in Figure 28. The bit flow of the  
three-wire connection is shown in Figure 29. As shown in Figure 29, SDI changes from an input to an output at  
the SCLK falling edge after the end of the A[9:0] input. Because the SDI port is always in pull down mode, the  
external pull down resistance is unnecessary.  
Device  
ASIC/CPU  
Device  
ASIC/CPU  
SEN  
SEN  
SEN  
SEN  
SCLK  
SCLK  
SCLK  
SCLK  
SDI  
SDI  
SDI  
SDIO  
SDO  
SDO  
SDO  
SDO_EN  
SDO_EN  
a) Four-Wire Connection  
SDI Input Port: SDI_BUFF_CTRL = 0  
b) Three-Wire Connection  
SDI Bidirectional Port: SDI_BUFF_CTRL = 1  
Figure 27. SPI Connection Between AFE and System  
SEN  
SCLK  
SDI  
XX  
A[9:0], Input  
D[19:0], Input  
XX  
A[9:0], Input  
Hi-Z  
Hi-Z  
D[19:0], Output  
SDO  
SDO_EN  
(Internal)  
20 SCLK Cycles  
for 20-Bit Data  
Figure 28. SPI Signal Flow of Read Mode for Four-Wire Connection  
SEN  
SCLK  
SDI/SDO  
XX  
A[9:0], Input  
D[19:0], Input  
XX  
A[9:0], Input  
SDO_EN  
(Internal)  
20 SCLK Cycles  
for 20-Bit Data  
Figure 29. SPI Signal Flow of Read Mode for Three-Wire Connection  
40  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): VSP5610 VSP5611 VSP5612  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Aug-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
VSP5610RSHR  
VSP5611RSHR  
VSP5612RSHR  
PREVIEW  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RSH  
RSH  
RSH  
56  
56  
56  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Aug-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
VSP5610RSHR  
VSP5611RSHR  
VSP5612RSHR  
VQFN  
VQFN  
VQFN  
RSH  
RSH  
RSH  
56  
56  
56  
2500  
2500  
2500  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Aug-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
VSP5610RSHR  
VSP5611RSHR  
VSP5612RSHR  
VQFN  
VQFN  
VQFN  
RSH  
RSH  
RSH  
56  
56  
56  
2500  
2500  
2500  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
33.0  
33.0  
33.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

VSP5612RSHR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5620

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5620RSLR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5621

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5621RSLR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5622

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5622RSLR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP7500

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP7500ZWV

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP7500ZWVR

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP7502ZWV

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP7502ZWVR

FOUR-CHANNEL IMAGE SENSOR ANALOG FRONT-END

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI