XA2944BGALT [TI]

AWR2944 Single-Chip 76- and 81-GHz FMCW Radar Sensor;
XA2944BGALT
型号: XA2944BGALT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AWR2944 Single-Chip 76- and 81-GHz FMCW Radar Sensor

文件: 总93页 (文件大小:2256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR2944  
SWRS273 – NOVEMBER 2021  
AWR2944 Single-Chip 76- and 81-GHz FMCW Radar Sensor  
On Chip RAM  
– 3.5 – 4 MBytes (AWR2943 with 3.5MB &  
AWR2944 with 4MB)  
1 Features  
FMCW transceiver  
– Integrated PLL, Transmitter, Receiver,  
Baseband and ADC  
– Memory space split between DSP, MCU, and  
shared L3  
– 76-81 GHz coverage with 5GHz available  
Bandwidth  
Device Security (on select part numbers)  
– Programmable embedded Hardware security  
module (HSM)  
– Secure authenticated and encrypted boot  
support  
– Customer programmable root keys, symmetric  
keys (256 bit), Asymmetric keys (up to RSA-4K  
or ECC-512) with Key revocation capability  
– Crypto hardware accelerators - PKA with ECC,  
AES (up to 256 bit), SHA (up to 512 bit), TRNG/  
DRGB  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation will be available to aid ISO  
26262 functional safety system design  
– Hardware integrity up to ASIL B targeted  
AEC-Q100 qualified  
Advanced Features  
– Embedded self-monitoring with no external  
processor involvement  
– Embedded interference detection capability  
Power Management  
– On die LDO network for enhanced PSRR  
– LVCMOS IO supports dual voltage 3.3V/1.8V  
Clock source  
– 4 Receive and 3 – 4 Transmit channels  
(AWR2943 with 3 channels & AWR2944 with  
4 channels) for PCB interface to antennas  
– Per Transmit phase shifter  
– Ultra-Accurate Chirp engine based on  
fractional-N PLL  
– TX power  
12 dBm  
– RX noise Figure  
13 dB  
– Phase Noise @ 1MHz  
-96 dBc/Hz [76 to 77 GHz]  
-95 dBc/Hz [76 to 81 GHz]  
Built in calibration and Self-Test  
– Built in Firmware (ROM)  
– Self-calibrating system across process and  
temperature  
Processing Elements  
– ARM R5F ® Core [Supports lock step  
operation]  
– TI Digital Signal Processor C66x  
– TI Radar Hardware Accelerator (HWA2.0) for  
operations like FFT, Log Magnitude, memory  
compression etc..  
– Multiple EDMA Instances for Data Movement  
Host Interface  
– 40 MHz crystal with internal oscillator  
– Supports external oscillator at 40 MHz  
– Supports externally driven clock (Square/Sine)  
at 40 MHz  
Cost Reduced Hardware Design  
– 0.65mm pitch, 12 mm × 12 mm flip chip BGA  
package for easy assembly and low cost PCB  
design  
– Small solution size  
Supports Automotive Temperature Operating  
– 2x CAN-FD  
– 10/100 Mbps RGMII/RMII/MII Ethernet  
Supports a Serial Flash Memory Interface (loading  
user application from QSPI flash memory)  
Other Interfaces Available to User Application  
– Up to 9 ADC Channels  
– 2 SPIs  
– 4 UARTs  
– I2C  
– GPIOs  
Range  
– Operating junction temperature range: –40°C to  
140°C  
– 3 EPWMs  
– 4-Lane Aurora LVDS Interface for Raw ADC  
Data and Debug Instrumentation  
– CSI2 Rx interface to enable playback of the  
captured data  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
2 Applications  
Lane Change Assist  
Blind Spot detection  
Automatic Emergency Braking  
Adaptive Cruise Control  
Cross Traffic Alert  
40-MHz  
Crystal  
Serial  
Flash  
Power Management  
QSPI  
Integrated MCU  
ARM Cortex-R5F  
Ethernet  
PHY  
Automotive  
Network  
Ethernet  
Antenna  
RX1  
Structure  
RX2  
MCAN  
PHY  
Automotive  
Network  
CAN FD (2)  
RX3  
RX4  
Radar  
Front End  
TX1  
TX2  
TX3  
TX4  
Integrated DSP  
TI C66x  
mmWave Sensor  
Figure 2-1. Autonomous Radar Sensor For Automotive Applications  
3 Description  
The AWR294x is a single chip mmWave Sensor composed of a FMCW transceiver, capable of operation in the  
76-81 GHz band, radar data processing elements, and peripherals for in-vehicle networking. It is built with TI’s  
low power, 45 nm RFCMOS process and enables unprecedented levels of integration in a small form factor and  
minimal BOM. AWR294x is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the  
automotive space.  
TI’s low-power, 45-nm RFCMOS process enables a monolithic implementation of a 3-4 TX, 4 RX system  
with integrated PLL, VCO, mixer, and baseband ADC. Integrated in the DSP Subsystem (DSS), is TI's high-  
performance C66x DSP for radar signal processing. The device includes a Radio Processor Subsystem (RSS),  
which is responsible for radar front-end configuration, control, and calibration. Within the Main Subsystem  
(MSS), the device implements a user programmable ARM R5F allowing for custom control and automotive  
interface applications. The Hardware Accelerator block (HWA 2.0) supplements the DSS and MSS by offloading  
comon radar processing such as FFT, Constant False Alarm rate (CFAR), scaling, and compression. This saves  
MIPS on the DSS and MSS, opening up resources for custom applications and higher level algorithms.  
A Hardware Security Module (HSM) is also provisioned in the device (available for only Secure Part variants).  
The HSM consists of a programmable ARM Cortex M4 core and the necessary infrastructure to provide a secure  
zone of operation within the device.  
Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with  
the possibility of dynamic reconfiguration for implementing a multimode sensor.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Additionally, the AWR294x device is provided as a complete platform solution including TI hardware and  
software reference designs, software drivers, sample configurations, API guides, and user documentation.  
Device Information  
PART NUMBER  
XA2943BGALT  
XA2944BGALT  
XA2944BDALT  
XA2944BSALT  
PACKAGE(1)  
FCBGA (266)  
FCBGA (266)  
FCBGA (266)  
FCBGA (266)  
BODY SIZE (NOM)  
12 mm × 12 mm  
12 mm × 12 mm  
12 mm × 12 mm  
12 mm × 12 mm  
(1) For more information, see Section 14, Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
3.1 Functional Block Diagram  
Figure 3-1 represents the functional block diagram for the device.  
9
GPADC  
QSPI  
Main Sub-System  
(Customer Programmed)  
Serial Flash Interface  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU Interface  
SPI  
ARM Cortex-R5F  
(Lock Step)  
@ 300 MHz  
PMIC Control  
Digital  
Front-end  
SPI / I2C  
CAN-FD  
Primary Communication  
Interfaces (Automotive)  
(Decimation  
Filter Chain)  
Prog  
Cache  
16KB  
Data  
Cache  
16KB  
L1 Data  
RAM  
128KB(A)  
L2 RAM  
960KB(A)  
Debug  
UARTs  
For Debug  
Test/  
Debug  
JTAG for Debug/  
Development  
DMA  
Hardware Security  
Module (B)  
100Mbps Alternate Data  
Communication Interface  
PA  
û-  
û-  
û-  
û-  
Ethernet  
ADC  
Buffer  
Mailbox  
PA  
PA  
PA  
DSP Sub-System  
(Customer Programmed)  
Synth  
(20 GHz)  
Ramp  
Generator  
x4  
C66x DSP Core  
@ 360 MHz  
Radio (BIST)  
Processor  
Aurora  
LVDS  
High-Speed ADC Output  
Interface (for Recording)  
High-Speed Interface to  
enable playback of the  
captured data  
(For RF Calibration  
& Self-Test œ TI  
Programmed)  
CSI2 RX  
L1P L1D  
(32KB) (32KB)  
L2  
(384KB)  
Prog RAM  
& ROM  
Data  
RAM  
DMA  
CRC  
Radar Data Memory(A)  
AWR2943 - 2.0MB /  
AWR2944 - 2.5MB  
Osc.  
GPADC  
VMON  
Temp  
Radio Processor  
Sub-System  
(TI Programmed)  
Radar Hardware Accelerator  
(FFT, Log mag, and others)  
RF/Analog Sub-System  
A. Configurable memory can be switched from Radar Data memory to the Main R5F program and Data RAMs per application usecase  
needs.  
B. This feature is only available in select part variants as indicated by the Device Type identifier in the Section 3, Device Information table.  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................4  
4 Revision History.............................................................. 5  
5 Device Comparison.........................................................6  
6 Related Products.............................................................8  
7 Pin Configurations and Functions.................................9  
7.1 Pin Diagram................................................................ 9  
7.2 Pin Attributes.............................................................14  
7.3 Signal Descriptions - Digital......................................26  
7.4 Signal Descriptions - Analog.....................................33  
8 Specifications................................................................ 35  
8.1 Absolute Maximum Ratings...................................... 35  
8.2 ESD Ratings............................................................. 35  
8.3 Power-On Hours (POH) ...........................................36  
8.4 Recommended Operating Conditions.......................36  
8.5 VPP Specifications for One-Time Programmable  
8.12 Peripheral Information.............................................43  
8.13 Emulation and Debug............................................. 66  
9 Detailed Description......................................................69  
9.1 Overview...................................................................69  
9.2 Functional Block Diagram.........................................69  
9.3 Subsytems................................................................ 70  
9.4 Other Subsystems.................................................... 74  
10 Monitoring and Diagnostics....................................... 76  
10.1 Monitoring and Diagnostic Mechanisms................. 76  
11 Applications, Implementation, and Layout............... 81  
11.1 Application Information............................................81  
11.2 Short and Medium Range Radar............................ 81  
11.3 Reference Schematic..............................................81  
12 Device and Documentation Support..........................82  
12.1 Device Support....................................................... 82  
13 Device Nomenclature..................................................82  
13.1 Tools and Software................................................. 83  
13.2 Documentation support...........................................83  
13.3 Support Resources................................................. 83  
13.4 Trademarks.............................................................83  
13.5 Electrostatic Discharge Caution..............................83  
13.6 Glossary..................................................................83  
14 Mechanical, Packaging, and Orderable  
(OTP) eFuses..............................................................37  
8.6 Power Supply Specifications.....................................38  
8.7 Power Consumption Summary................................. 38  
8.8 RF Specifications......................................................39  
8.9 Thermal Resistance Characteristics ........................ 40  
8.10 Power Supply Sequencing and Reset Timing.........41  
8.11 Input Clocks and Oscillators....................................42  
Information.................................................................... 84  
4 Revision History  
DATE  
REVISION  
NOTES  
November 2021  
*
APL Release  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
5 Device Comparison  
Table 5-1. Device Features Comparison  
FUNCTION  
AWR2943  
AWR2944  
AWR2243P  
AWR1843  
Number of receivers  
Number of transmitters  
On-chip memory  
4
3
4
4
4
3(1)  
4
3(1)  
2MB  
10  
3.5MB  
15  
4MB  
15  
Max I/F (Intermediate Frequency) (MHz)  
Max real/complex 2x sampling rate (Msps)  
Max complex 1x sampling rate (Msps)  
Safety and Security (3)  
Device Security(4)  
20  
37.5 (2)  
37.5 (2)  
45  
25  
(2)  
(2)  
22.5  
12.5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
AEC-Q100 Qualified  
Processor  
Yes  
MCU (RxF)  
Yes(5)  
Yes(6)  
Yes(7)  
Yes  
Yes(5)  
Yes(6)  
Yes(7)  
Yes  
Yes  
Yes  
Yes  
DSP (C6xx)  
Hardware accelerator  
Hardware Security Module (HSM) (8)  
Security Accelerators (8)  
Peripherals  
Yes  
Yes  
Yes  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
LVDS/Debug  
2
Yes  
Yes  
Yes  
Yes  
1
2
Yes  
Yes  
Yes  
Yes  
1
1
2
Yes  
Yes  
Yes  
Aurora LVDS  
Ethernet Interface  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
CAN FD  
1
1
Yes  
1
2
2
Trace  
Yes  
Yes  
Yes  
Yes(9)  
Yes  
Yes  
Yes  
Yes(9)  
Yes  
Yes  
Yes  
Yes  
ePWM  
DMM Interface  
GPADC  
Yes  
Yes  
CSI2 TX  
CSI2 RX (10)  
Yes  
Yes  
Cascade (20-GHz sync)  
JTAG  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Per chirp configurable Tx phase shifter  
Yes  
PRODUCT PREVIEW (PP),  
ADVANCE INFORMATION (AI),  
or PRODUCTION DATA (PD)  
Product  
AI  
AI  
PD  
PD  
status(11)  
(1) 3 Tx Simultaneous operation in AWR1843 and AWR2243P is supported only with 1V LDO bypass and PA LDO disable mode. In this  
mode 1V supply needs to be fed on the VOUT PA pin. Please refer to the respective datasheets for more information.  
(2) AWR294x supports a real only receiver.  
(3) Developed for Functional Safety applications, the AWR294x device is targeted to support hardware integrity upto ASIL-B. For other  
devices, refer to the respective Datasheets.  
(4) Device security features including Secure Boot and Customer Programmable Keys are applicable to select part number variants as  
indicated by the Device Type identifier in the Section 3, Device Information table.  
(5) In AWR294x, Main-Subsytem Processing core is changed from ARM CR4F in AWR1843 to ARM CR5F.  
(6) The DSP processing core in AWR294x is upgraded from C67x in AWR1843 to C66x.  
(7) The hardware accelerator in AWR294x is upgraded to HWA2.0 with additional features as compared to AWR1843.  
(8) Only applicable for AWR294x Secure Part Variant  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
(9) AWR294x has a dedicated GPADC for external voltage monitoring.  
(10) AWR294x support CSI2 Rx based playback functionality .  
(11) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of allparameters.  
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and  
other specifications are subject to change without notice.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
6 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave Sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for automotive applications.  
Automotive  
TI’s automotive mmWave sensor portfolio offers high-performance radar front end to ultra-  
mmWave Sensors high resolution, small and low-power single-chip radar solutions. TI’s scalable sensor  
portfolio enables design and development of ADAS system solution for every performance,  
application and sensor configuration ranging from comfort functions to safety functions in  
all vehicles.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
7 Pin Configurations and Functions  
7.1 Pin Diagram  
Figure 7-1 shows the pin locations for the 12 x12 mm FCBGA package. Figure 7-2, Figure 7-3, Figure 7-4and  
Figure 7-5 show the same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
MSS_UARTB DSS_UARTA  
MSS_MCANB  
_RX  
A
B
C
D
E
F
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
OSC_CLKOUT  
VSS  
VIOIN  
MSS_GPIO_1  
VSS  
_TX  
_TX  
DSS_UARTA  
_RX  
MSS_UARTA MSS_MCANB  
CLKM  
VSSA  
CLKP  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
TX4  
VSSA  
VSSA  
VSSA  
VSSA  
NERROR_OUT  
XREF_CLK1  
VSS  
WARM_RESET XREF_CLK0  
MSS_GPIO_0  
VIOIN  
_RX  
_TX  
MSS_UARTA  
MSS_EPWMB0MSS_EPWMA1  
_TX  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ADC1  
ADC3  
ADC5  
VPP  
VSSA  
VSSA  
TCK  
TMS  
MSS_MCANA MSS_MCANA  
VDDA_10RF2 VDDA_10RF2  
VDDA_18CLK  
TDI  
TDO  
VIOIN_18  
_RX  
_TX  
MSS_RS232  
_TX  
VDDA_18VCO  
VDD  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
MSS_EPWMA0  
VSS  
MSS_RS232  
_RX  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDD  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP2 LVDS_TXM2  
VOUT  
_14SYNTH  
G
H
J
VSSA  
VSSA  
VSSA  
VSSA  
RX3  
VSS  
VSS  
MSS_GPIO_2  
_CLKP  
_CLKM  
VOUT  
_14APLL  
LVDS_TXP3 LVDS_TXM3  
_FRCLKP _FRCLKM  
VSS  
VSS  
NRESET  
MSS_GPIO  
_11  
VSSA  
RX2  
VSS  
VSS  
LVDS_TXP1 LVDS_TXM1  
VIOIN  
_18LVDS  
VIOIN  
_18CSI  
K
L
VBGAP  
VSS  
VSS  
VSS  
CSI2  
_RX0CLKP  
CSI2  
_RX0CLKM  
VSSA  
RX1  
VSS  
VSS  
MSS_GPIO_4  
MSS_GPIO_9  
MCU_CLKOUT  
VIDDA  
_10RF1  
BSS_UARTA  
_TX  
M
N
P
R
T
VSS  
VSS  
CSI2_RX0P1 CSI2_RX0M1  
CSI2_RX0P0 CSI2_RX0M0  
VSSA  
VDDA_18BB  
VDDA_18PM  
ADC7  
VSSA  
ADC2  
ADC4  
ADC8  
ADC6  
VSS  
VSS  
VSS  
MSS_GPIO  
VSS  
VDD  
VDD  
VSS  
MSS_GPIO_3  
_30  
MSS_MDIO  
_CLK  
MSS_RGMII  
_TCTL  
MSS_I2CA  
_SDA  
MSS_QSPI  
_CLK  
MSS_MIBSPIB  
_CS2  
MSS_GPIO  
VIOIN  
MSS_QSPI_3  
_28  
MSS_MDIO  
_DATA  
MSS_RGMII  
_RCTL  
MSS_RGMII  
_RCLK  
MSS_MIBSPIB  
_CLK  
MSS_MIBSPIA MSS_MIBSPIA  
_CS0 _CLK  
PMIC  
MSS_QSPI_2  
MSS_QSPI_0  
MSS_QSPI_1  
MSS_GPIO_8  
_CLKOUT  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
_TD3  
MSS_GPIO  
_17  
MSS_I2CA  
_SCL  
MSS_RGMII  
_RD3  
MSS_QSPI MSS_MIBSPIB MSS_MIBSPIB MSS_MIBSPIA MSS_MIBSPIA MSS_GPIO  
U
V
ADC9  
VIOIN_18  
_TD1  
_TD2  
_TD0  
_CS  
_MISO  
_CS0  
_MOSI  
_MISO  
_31  
MSS  
_MIBSPIA  
_HOSTIRQ  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
_TCLK _RD1 _RD2 _RD0  
MSS_MIBSPIB  
_MOSI  
MSS_MIBSPIB  
_CS1  
VSSA  
VDD_SRAM  
VIOIN  
VSS  
VIOIN_18  
VNWA  
VSS  
VIOIN  
VSS  
Not to scale  
Figure 7-1. Pin Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSSA  
CLKM  
VSSA  
CLKP  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
TX4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_10RF2 VDDA_10RF2  
VDDA_18CLK  
VDDA_18VCO  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VOUT  
_14SYNTH  
G
H
VSSA  
VSSA  
RX3  
VOUT  
_14APLL  
VSS  
VSS  
Not to scale  
1
3
2
4
Figure 7-2. Top Left Quadrant  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
10  
11  
12  
13  
14  
15  
16  
17  
18  
MSS_UARTB DSS_UARTA  
MSS_MCANB  
_RX  
A
B
C
D
E
F
VSSA  
OSC_CLKOUT  
VSS  
VIOIN  
MSS_GPIO_1  
VSS  
_TX  
_TX  
DSS_UARTA  
_RX  
MSS_UARTA MSS_MCANB  
VSSA  
VSSA  
VSSA  
NERROR_OUT  
XREF_CLK1  
VSS  
WARM_RESET XREF_CLK0  
MSS_GPIO_0  
VIOIN  
_RX  
_TX  
MSS_UARTA  
_TX  
TCK  
TMS  
MSS_EPWMB0MSS_EPWMA1  
MSS_MCANA MSS_MCANA  
TDI  
TDO  
VIOIN_18  
_RX  
_TX  
MSS_RS232  
_TX  
VDD  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
MSS_EPWMA0  
VSS  
MSS_RS232  
_RX  
VSS  
VSS  
VSS  
VSS  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP2 LVDS_TXM2  
G
H
VSS  
MSS_GPIO_2  
_CLKP  
_CLKM  
LVDS_TXP3 LVDS_TXM3  
_FRCLKP  
VSS  
NRESET  
_FRCLKM  
Not to scale  
1
3
2
4
Figure 7-3. Top Right Quadrant  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
1
2
3
4
5
6
7
8
9
J
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
K
L
RX2  
VSSA  
RX1  
VSSA  
VSSA  
VSSA  
VSSA  
ADC1  
ADC3  
ADC5  
VPP  
VBGAP  
VSSA  
VSSA  
VSSA  
VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VIDDA  
_10RF1  
M
N
P
R
T
U
V
VSSA  
VDDA_18BB  
VDDA_18PM  
ADC7  
VSSA  
ADC2  
ADC4  
ADC8  
ADC6  
VSS  
VDD  
MSS_MDIO  
_CLK  
MSS_RGMII  
_TCTL  
MSS_I2CA  
_SDA  
MSS_MDIO  
_DATA  
MSS_RGMII  
_RCTL  
MSS_RGMII  
_RCLK  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
MSS_GPIO  
_17  
MSS_I2CA  
_SCL  
ADC9  
_TD3  
_TD1  
_TD2  
_TD0  
MSS_RGMII MSS_RGMII MSS_RGMII MSS_RGMII  
_TCLK _RD1 _RD2 _RD0  
VSSA  
VDD_SRAM  
VIOIN  
VSS  
Not to scale  
1
3
2
4
Figure 7-4. Bottom Left Quadrant  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
10  
11  
12  
13  
14  
15  
16  
17  
18  
MSS_GPIO  
_11  
J
VSS  
VSS  
VSS  
VSS  
VDD  
LVDS_TXP1 LVDS_TXM1  
VIOIN  
_18LVDS  
VIOIN  
_18CSI  
K
L
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
CSI2  
_RX0CLKP  
CSI2  
_RX0CLKM  
MSS_GPIO_4  
MSS_GPIO_9  
MCU_CLKOUT  
BSS_UARTA  
_TX  
M
N
P
R
T
U
V
VSS  
CSI2_RX0P1 CSI2_RX0M1  
CSI2_RX0P0 CSI2_RX0M0  
VSS  
MSS_GPIO  
VSS  
VSS  
MSS_GPIO_3  
_30  
MSS_QSPI  
_CLK  
MSS_MIBSPIB  
_CS2  
MSS_GPIO  
VIOIN  
MSS_QSPI_3  
_28  
MSS_MIBSPIB  
_CLK  
MSS_MIBSPIA MSS_MIBSPIA  
_CS0 _CLK  
PMIC  
MSS_QSPI_2  
MSS_QSPI_0  
MSS_QSPI_1  
MSS_GPIO_8  
_CLKOUT  
MSS_RGMII  
_RD3  
MSS_QSPI MSS_MIBSPIB MSS_MIBSPIB MSS_MIBSPIA MSS_MIBSPIA MSS_GPIO  
VIOIN_18  
_CS  
_MISO  
_CS0  
_MOSI  
_MISO  
_31  
MSS  
_MIBSPIA  
_HOSTIRQ  
MSS_MIBSPIB  
_MOSI  
MSS_MIBSPIB  
_CS1  
VIOIN_18  
VNWA  
VSS  
VIOIN  
VSS  
Not to scale  
1
2
4
3
Figure 7-5. Bottom Right Quadrant  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
7.2 Pin Attributes  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
V16  
PAD NAME  
BALL NAME 2  
MSS_MIBSPIB_CS1  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
PAD_AA  
MSS_GPIO_12  
0
1
IO  
O
O
IO  
IO  
IO  
O
I
Output Disabled  
Pull Down  
MSS_MIBSPIA_HOSTIRQ  
ADC_VALID  
2
MSS_MIBSPIB_CS1  
MSS_GPIO_13  
6
B15  
PAD_AB  
MSS_GPIO_0  
0
Output Disabled  
Pull Down  
MSS_GPIO_0  
1
PMIC_CLKOUT  
MSS_EPWM_TZ2  
MSS_EPWMA1  
MSS_EPWMB0  
MSS_GPIO_16  
2
3
10  
11  
0
O
O
IO  
IO  
O
I
A16  
PAD_AC  
MSS_GPIO_1  
Output Disabled  
Pull Down  
MSS_GPIO_1  
1
SYNC_OUT  
2
MSS_EPWM_TZ1  
BSS_UARTA_TX  
READY_INT  
3
7
O
O
O
I
8
LVDS_VALID  
9
DMM_MUX_IN  
12  
13  
14  
15  
0
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_EPWMA_SYNCI  
MSS_GPIO_21  
IO  
IO  
I
V12  
U13  
PAD_AH  
PAD_AI  
MSS_MIBSPIB_MOSI  
MSS_MIBSPIB_MISO  
IO  
IO  
IO  
O
I
Output Disabled  
Pull Up  
MSS_MIBSPIB_MOSI  
MSS_I2CA_SDA  
MSS_EPWMA0  
MSS_MCANB_RX  
MSS_GPIO_22  
1
2
3
7
0
IO  
IO  
IO  
O
IO  
O
Output Disabled  
Pull Up  
MSS_MIBSPIB_MISO  
MSS_I2CA_SCL  
MSS_EPWMB0  
DSS_UARTA_TX  
MSS_MCANB_TX  
1
2
3
6
7
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
BALL NUMBER 1  
T13  
PAD NAME  
BALL NAME 2  
MSS_MIBSPIB_CLK  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
TYPE 7  
PAD_AJ  
MSS_GPIO_5  
0
1
2
3
6
7
8
0
1
2
6
7
9
0
1
2
0
1
2
8
0
1
2
8
0
1
2
8
0
1
2
6
0
1
2
0
0
IO  
IO  
IO  
O
Output Disabled Pull Up  
MSS_MIBSPIB_CLK  
MSS_UARTA_RX  
MSS_EPWMC0  
MSS_UARTB_TX  
BSS_UARTA_TX  
MSS_MCANA_RX  
MSS_GPIO_4  
IO  
O
I
U14  
PAD_AK  
MSS_MIBSPIB_CS0  
IO  
IO  
IO  
IO  
O
Output Disabled  
Pull Up  
MSS_MIBSPIB_CS0  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UARTA_TX  
MSS_MCANA_TX  
MSS_GPIO_8  
O
U11  
V11  
PAD_AL  
PAD_AM  
MSS_QSPI_0  
MSS_QSPI_1  
IO  
IO  
IO  
IO  
I
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
MSS_QSPI_0  
MSS_MIBSPIB_MISO  
MSS_GPIO_9  
MSS_QSPI_1  
MSS_MIBSPIB_MOSI  
MSS_MIBSPIB_CS2  
MSS_GPIO_10  
MSS_QSPI_2  
IO  
IO  
IO  
I
T11  
R12  
R10  
U12  
PAD_AN  
PAD_AO  
PAD_AP  
PAD_AQ  
MSS_QSPI_2  
MSS_QSPI_3  
MSS_QSPI_CLK  
MSS_QSPI_CS  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Down  
Pull Up  
ADC_VALID  
O
MSS_MCANA_TX  
MSS_GPIO_11  
O
IO  
I
MSS_QSPI_3  
ADC_VALID  
O
MSS_MCANA_RX  
MSS_GPIO_7  
I
IO  
IO  
IO  
IO  
IO  
O
MSS_QSPI_CLK  
MSS_MIBSPIB_CLK  
DSS_UARTA_TX  
MSS_GPIO_6  
MSS_QSPI_CS  
MSS_MIBSPIB_CS0  
WARM_RESET  
NERROR_OUT  
IO  
IO  
O
B12  
C11  
PAD_AS  
PAD_AT  
WARM_RESET  
NERROR_OUT  
HiZ Input (Open drain)  
HiZ (Open drain)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
C12  
PAD NAME  
BALL NAME 2  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
PAD_AU  
TCK  
MSS_GPIO_17  
TCK  
0
IO  
I
Output Disabled  
Pull Down  
1
MSS_UARTB_TX  
BSS_UARTA_RX  
MSS_MCANA_TX  
MSS_GPIO_18  
TMS  
2
IO  
I
6
8
O
IO  
IO  
O
I
C14  
D13  
D15  
PAD_AV  
PAD_AW  
PAD_AX  
TMS  
TDI  
0
Output Disabled  
Output Disabled  
Output Enabled  
Pull Up  
Pull Up  
1
BSS_UARTA_TX  
MSS_MCANA_RX  
MSS_GPIO_23  
TDI  
2
6
0
IO  
I
1
MSS_UARTA_RX  
DSS_UARTA_RX  
SOP[0]  
2
IO  
IO  
I
7
TDO  
During Power-up  
MSS_GPIO_24  
TDO  
0
1
IO  
O
IO  
IO  
O
O
IO  
O
O
O
O
O
I
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UARTA_TX  
NDMM_EN  
2
6
7
9
R15  
PAD_AY  
MCU_CLKOUT  
MSS_GPIO_25  
MCU_CLKOUT  
TRACE_CLK  
FRAME_START  
READY_INT  
0
Output Disabled  
Pull Down  
1
2
7
8
LVDS_VALID  
BSS_UARTA_RX  
MSS_EPWMA0  
DMM_CLK  
9
10  
12  
14  
15  
O
I
OBS_CLKOUT  
O
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
BALL NUMBER 1  
G15  
PAD NAME  
BALL NAME 2  
MSS_GPIO_2  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
TYPE 7  
PAD_AZ  
MSS_GPIO_26  
MSS_GPIO_2  
0
IO  
IO  
IO  
IO  
O
O
O
O
O
I
Output Disabled  
Pull Down  
1
MSS_UARTB_TX  
MSS_GPIO_2  
SYNC_OUT  
7
1
9
PMIC_CLKOUT  
CHIRP_START  
CHIRP_END  
10  
11  
12  
FRAME_START  
MSS_EPWM_TZ0  
LVDS_VALID  
SOP[2]  
13  
14  
15  
O
I
T17  
PAD_BA  
PMIC_CLKOUT  
During Power-up  
Output Disabled  
No Pull  
MSS_GPIO_27  
PMIC_CLKOUT  
OBS_CLKOUT  
TRACE_CTL  
0
1
IO  
O
O
O
O
O
O
O
O
O
O
I
2
3
CHIRP_START  
CHIRP_END  
6
7
FRAME_START  
READY_INT  
8
9
LVDS_VALID  
MSS_EPWMA1  
MSS_EPWMB0  
DMM_SYNC  
10  
11  
12  
13  
0
R17  
PAD_BB  
MSS_GPIO_28  
MSS_GPIO_28  
SYNC_IN  
IO  
I
Output Disabled  
Pull Down  
1
ADC_VALID  
2
O
IO  
I
MSS_UARTB_RX  
DMM_MUX_IN  
DSS_UARTA_RX  
SYNC_OUT  
6
7
8
IO  
O
9
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
R14  
PAD NAME  
BALL NAME 2  
MSS_MIBSPIB_CS2  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
PAD_BC  
SOP[1]  
During Power-up  
I
Output Disabled  
MSS_GPIO_29  
SYNC_OUT  
RCOSC_CLK  
READY_INT  
LVDS_VALID  
DMM_MUX_IN  
0
1
IO  
O
O
O
O
I
2
6
7
9
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_EPWMB0  
MSS_EPWMB1  
MSS_GPIO_15  
MSS_RS232_RX  
MSS_UARTA_RX  
TRACE_CLK  
10  
11  
12  
13  
0
IO  
IO  
O
O
IO  
IO  
IO  
O
O
IO  
I
F16  
PAD_BD  
MSS_RS232_RX  
Output Disabled  
Pull Up  
1
2
3
BSS_UARTA_TX  
MSS_UARTB_RX  
MSS_MCANA_RX  
MSS_I2CA_SCL  
MSS_EPWMB0  
MSS_EPWMB1  
MSS_EPWMC0  
MSS_GPIO_14  
MSS_RS232_TX  
TRACE_CTL  
6
7
8
9
IO  
O
O
O
IO  
IO  
O
IO  
IO  
O
O
O
O
IO  
O
O
O
O
10  
11  
12  
0
E17  
PAD_BE  
MSS_RS232_TX  
Output Enabled  
Pull Up  
1
2
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UARTA_TX  
READY_INT  
5
6
7
8
LVDS_VALID  
9
MSS_MCANA_TX  
MSS_I2CA_SDA  
MSS_EPWMA0  
MSS_EPWMA1  
NDMM_EN  
10  
11  
12  
13  
14  
15  
MSS_EPWMB0  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
BALL NUMBER 1  
PAD NAME  
BALL NAME 2  
MSS_GPIO_31  
SIGNAL NAME 3  
TRACE_DATA_0  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
TYPE 7  
U17  
PAD_BF  
0
1
2
4
10  
0
1
2
3
4
6
10  
0
1
2
3
6
7
0
1
2
4
6
7
0
1
2
4
6
0
1
2
4
5
6
O
IO  
I
Output Disabled  
Pull Down  
MSS_GPIO_31  
DMM0  
MSS_UARTA_TX  
MSS_I2CA_SDA  
TRACE_DATA_1  
MSS_GPIO_30  
DMM1  
IO  
IO  
O
IO  
I
P17  
PAD_BG  
MSS_GPIO_30  
Output Disabled  
Pull Down  
MSS_EPWMC_SYNCI  
MSS_UARTA_RX  
MSS_GPIO_0  
MSS_I2CA_SCL  
TRACE_DATA_2  
MSS_GPIO_29  
DMM2  
I
IO  
IO  
IO  
O
IO  
I
T18  
PAD_BH  
MSS_GPIO_8  
Output Disabled  
Pull Down  
MSS_EPWMB_SYNCI  
MSS_GPIO_1  
MSS_GPIO_8  
TRACE_DATA_3  
MSS_GPIO_28  
DMM3  
I
IO  
IO  
O
IO  
I
N15  
PAD_BI  
MSS_GPIO_9  
Output Disabled  
Pull Down  
MSS_EPWMC_SYNCO  
MSS_GPIO_2  
MSS_GPIO_9  
TRACE_DATA_4  
MSS_GPIO_3  
DMM4  
O
IO  
IO  
O
IO  
I
P16  
L15  
PAD_BJ  
PAD_BK  
MSS_GPIO_3  
MSS_GPIO_4  
Output Disabled  
Pull Down  
MSS_EPWMB_SYNCO  
MSS_GPIO_27  
TRACE_DATA_5  
MSS_GPIO_4  
DMM5  
O
IO  
O
IO  
I
Output Disabled  
Pull Down  
MSS_EPWM_TZ2  
MSS_UARTB_TX  
MSS_GPIO_26  
I
IO  
IO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
M16  
PAD NAME  
BALL NAME 2  
BSS_UARTA_TX  
SIGNAL NAME 3  
TRACE_DATA_6  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
PAD_BL  
0
1
2
4
5
6
7
0
1
2
4
5
6
7
0
1
2
4
5
6
0
1
2
4
5
6
0
1
2
3
4
6
0
1
2
3
4
6
O
IO  
I
Output Disabled  
Pull Down  
MSS_GPIO_5  
DMM6  
MSS_EPWM_TZ1  
BSS_UARTA_TX  
MSS_GPIO_25  
MSS_GPIO_10  
TRACE_DATA_7  
MSS_GPIO_6  
DMM7  
I
O
IO  
IO  
O
IO  
I
J15  
PAD_BM  
MSS_GPIO_11  
Output Disabled  
Pull Down  
MSS_EPWM_TZ0  
DSS_UARTA_TX  
MSS_GPIO_24  
MSS_GPIO_11  
TRACE_DATA_8  
MSS_GPIO_7  
DMM8  
I
IO  
IO  
IO  
O
IO  
I
D17  
D16  
E15  
C18  
PAD_BN  
PAD_BO  
PAD_BP  
PAD_BQ  
MSS_MCANA_TX  
MSS_MCANA_RX  
MSS_EPWMA0  
MSS_EPWMA1  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
MSS_MCANA_TX  
MSS_EPWMA_SYNCI  
MSS_GPIO_23  
TRACE_DATA_9  
MSS_GPIO_8  
DMM9  
O
I
IO  
O
IO  
I
MSS_MCANA_RX  
MSS_EPWMA_SYNCO  
MSS_GPIO_22  
TRACE_DATA_10  
MSS_GPIO_9  
DMM10  
I
O
IO  
O
IO  
I
MSS_EPWMA0  
MSS_EPWMC0  
MSS_GPIO_21  
TRACE_DATA_11  
MSS_GPIO_10  
DMM11  
O
O
IO  
O
IO  
I
MSS_EPWMA1  
MSS_EPWMC1  
MSS_GPIO_20  
O
O
IO  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
BALL NUMBER 1  
PAD NAME  
BALL NAME 2  
MSS_MCANB_TX  
SIGNAL NAME 3  
TRACE_DATA_12  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
TYPE 7  
B17  
A17  
C17  
PAD_BR  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
6
0
1
2
6
0
1
2
3
6
0
1
2
3
6
0
1
2
3
6
O
IO  
I
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
MSS_GPIO_11  
DMM12  
MSS_EPWMB0  
MSS_EPWMA0  
MSS_MCANB_TX  
MSS_GPIO_19  
TRACE_DATA_13  
MSS_GPIO_12  
DMM13  
O
O
O
IO  
O
IO  
I
PAD_BS  
MSS_MCANB_RX  
Pull Down  
MSS_EPWMB1  
MSS_EPWMA1  
MSS_MCANB_RX  
MSS_GPIO_18  
TRACE_DATA_14  
MSS_GPIO_13  
DMM14  
O
O
I
IO  
O
IO  
I
PAD_BT  
MSS_EPWMB0  
Pull Down  
MSS_EPWMC0  
MSS_EPWMB0  
MSS_GPIO_17  
MSS_GPIO_17  
MSS_MII_COL  
MSS_RMII_REFCLK  
MSS_EPWMA1  
MSS_GPIO_18  
MSS_MII_CRS  
MSS_RMII_CRS_DV  
MSS_I2CA_SDA  
MSS_EPWMB1  
MSS_GPIO_19  
MSS_MII_RXER  
MSS_RMII_RXER  
MSS_I2CA_SCL  
MSS_EPWMC1  
MSS_GPIO_20  
MSS_MII_TXEN  
MSS_RMII_TXEN  
MSS_RGMII_TCTL  
MSS_EPWMA0  
O
O
IO  
IO  
I
U8  
R8  
PAD_BX  
PAD_BY  
MSS_GPIO_17  
MSS_I2CA_SDA  
Output Disabled  
Output Disabled  
Pull Down  
IO  
O
IO  
I
HiZ (Open drain)  
I
IO  
O
IO  
I
U9  
R6  
PAD_BZ  
PAD_CA  
MSS_I2CA_SCL  
Output Disabled  
HiZ (Open drain)  
I
IO  
O
IO  
O
O
O
O
MSS_RGMII_TCTL  
Output Disabled  
Pull Down  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
PAD NAME  
BALL NAME 2  
MSS_RGMII_RCTL  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
T7  
PAD_CB  
MSS_GPIO_21  
0
1
3
4
5
6
0
1
3
5
6
0
1
3
0
1
2
3
0
1
2
3
0
1
3
0
1
3
4
0
1
3
0
1
3
0
1
2
3
IO  
I
Output Disabled  
MSS_MII_RXDV  
MSS_RGMII_RCTL  
MSS_RMII_CRS_DV  
MSS_UARTB_RX  
MSS_EPWMB0  
MSS_GPIO_22  
I
I
IO  
O
IO  
O
O
IO  
O
IO  
O
O
IO  
O
O
O
IO  
O
O
O
IO  
I
U4  
PAD_CC  
MSS_RGMII_TD3  
Output Disabled  
Pull Down  
MSS_MII_TXD3  
MSS_RGMII_TD3  
MSS_UARTB_TX  
MSS_EPWMC0  
MSS_GPIO_23  
U6  
U5  
PAD_CD  
PAD_CE  
MSS_RGMII_TD2  
MSS_RGMII_TD1  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
MSS_MII_TXD2  
MSS_RGMII_TD2  
MSS_GPIO_24  
MSS_MII_TXD1  
MSS_RMII_TXD1  
MSS_RGMII_TD1  
MSS_GPIO_25  
U7  
PAD_CF  
MSS_RGMII_TD0  
Output Disabled  
Pull Down  
MSS_MII_TXD0  
MSS_RMII_TXD0  
MSS_RGMII_TD0  
MSS_GPIO_26  
V3  
T9  
PAD_CG  
PAD_CH  
MSS_RGMII_TCLK  
MSS_RGMII_RCLK  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
MSS_MII_TXCLK  
MSS_RGMII_TCLK  
MSS_GPIO_27  
O
IO  
I
MSS_MII_RXCLK  
MSS_RGMII_RCLK  
MSS_RMII_REFCLK  
MSS_GPIO_28  
I
IO  
IO  
I
U10  
V5  
PAD_CI  
PAD_CJ  
PAD_CK  
MSS_RGMII_RD3  
MSS_RGMII_RD2  
MSS_RGMII_RD1  
Output Disabled  
Output Disabled  
Output Disabled  
MSS_MII_RXD3  
MSS_RGMII_RD3  
MSS_GPIO_29  
I
IO  
I
MSS_MII_RXD2  
MSS_RGMII_RD2  
MSS_GPIO_30  
I
V4  
IO  
I
MSS_MII_RXD1  
MSS_RMII_RXD1  
MSS_RGMII_RD1  
I
I
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
BALL NUMBER 1  
PAD NAME  
BALL NAME 2  
MSS_RGMII_RD0  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
TYPE 7  
V6  
PAD_CL  
MSS_GPIO_31  
MSS_MII_RXD0  
0
IO  
I
Output Disabled  
1
MSS_RMII_RXD0  
MSS_RGMII_RD0  
MSS_GPIO_30  
2
I
3
I
T5  
PAD_CM  
PAD_CN  
PAD_CO  
PAD_CP  
PAD_CQ  
PAD_CR  
PAD_CS  
MSS_MDIO_DATA  
0
IO  
IO  
IO  
O
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
MSS_MDIO_DATA  
MSS_GPIO_31  
1
R4  
MSS_MDIO_CLK  
0
MSS_MDIO_CLK  
MSS_GPIO_0  
1
U15  
U16  
T16  
T15  
V17  
MSS_MIBSPIA_MOSI  
MSS_MIBSPIA_MISO  
MSS_MIBSPIA_CLK  
MSS_MIBSPIA_CS0  
MSS_MIBSPIA_HOSTIRQ  
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
MSS_MIBSPIA_MOSI  
MSS_GPIO_1  
5
0
MSS_MIBSPIA_MISO  
MSS_GPIO_2  
5
0
MSS_MIBSPIA_CLK  
MSS_GPIO_3  
5
0
MSS_MIBSPIA_CS0  
MSS_GPIO_4  
5
0
Pull Down  
MSS_GPIO_2  
2
MSS_GPIO_8  
3
MSS_MIBSPIA_HOSTIRQ  
MSS_MIBSPIB_CS2  
MSS_GPIO_2  
5
6
IO  
IO  
IO  
IO  
O
7
MSS_GPIO_8  
10  
B16  
PAD_DA  
MSS_UARTA_RX  
MSS_GPIO_12  
0
Output Disabled  
Pull Up  
MSS_CPTS0_TS_SYNC  
MSS_GPIO_8  
1
3
IO  
IO  
IO  
IO  
I
MSS_UARTB_TX  
MSS_UARTA_RX  
DSS_UARTA_TX  
SOP[4]  
4
5
6
C16  
PAD_DB  
MSS_UARTA_TX  
During Power-up  
Output Disabled  
MSS_GPIO_13  
0
1
3
4
5
6
IO  
I
MSS_CPTS0_HW2TSPUSH  
MSS_GPIO_9  
IO  
IO  
IO  
IO  
MSS_UARTB_RX  
MSS_UARTA_TX  
DSS_UARTA_RX  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PULL UP/DOWN  
TYPE 7  
BALL NUMBER 1  
A15  
PAD NAME  
BALL NAME 2  
DSS_UARTA_TX  
SIGNAL NAME 3  
MODE 4,8  
TYPE 5  
BALL RESET STATE 6  
PAD_DC  
MSS_GPIO_14  
0
IO  
I
Output Disabled  
Pull Up  
MSS_CPTS0_HW1TSPUSH  
MSS_GPIO_10  
DSS_UARTA_TX  
MSS_UARTA_RX  
MSS_GPIO_15  
DSS_UARTA_RX  
MSS_GPIO_11  
MSS_UARTA_TX  
SOP[3]  
1
3
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
4
6
B14  
A14  
PAD_DD  
PAD_DE  
DSS_UARTA_RX  
MSS_UARTB_TX  
0
Output Disabled  
Output Disabled  
Pull Up  
1
3
6
During Power-up  
MSS_GPIO_0  
0
1
IO  
IO  
I
DSS_UARTA_TX  
MSS_EPWMB_SYNCI  
MSS_UARTA_TX  
MSS_UARTB_TX  
LVDS_VALID  
3
5
IO  
IO  
O
6
8
MSS_GPIO_31  
MSS_GPIO_1  
12  
0
IO  
IO  
I
B13  
D11  
PAD_DF  
PAD_DG  
XREF_CLK0  
XREF_CLK1  
Output Disabled  
Pull Down  
XREF_CLK0  
1
MSS_GPIO_8  
3
IO  
O
MCU_CLKOUT  
MSS_GPIO_30  
MSS_GPIO_2  
6
12  
0
IO  
IO  
I
Output Disabled  
Pull Down  
XREF_CLK1  
1
MSS_GPIO_9  
3
IO  
O
PMIC_CLKOUT  
MSS_GPIO_29  
7
12  
IO  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken based on an example implementation).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).  
4. MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode column has bit  
range value.  
5. TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
6. BALL RESET STATE: The state of the terminal at power-on reset  
7. PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled  
via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
HiZ  
8. Pin Mux Control Value maps to lower 4 bits of register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
 
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
7.3 Signal Descriptions - Digital  
Note  
All digital IO pins of the device (except NERROR_OUT and WARM_RESET) are non-failsafe; hence,  
care needs to be taken that they are not driven externally without the VIO supply being present to the  
device.  
Note  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low , a tri-state buffer  
should be used to isolate the GPIO output from the radar device and a pull resister used to define the  
required state in the application. The NRESET signal to the radar device could be used to control the  
output enable (OE) of the tri-state buffer.  
Table 7-1. Signal Descriptions - Digital  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
T16  
MSS_MIBSPIA_CLK  
MSS_MIBSPIA_MOSI  
MSS_MIBSPIA_MISO  
MSS_MIBSPIA_CS0  
MSS_MIBSPIA_HOSTIRQ  
IO  
IO  
IO  
IO  
O
SPI Channel A - Clock  
SPI Channel A - Master Out Slave In  
SPI Channel A - Master In Slave Out  
SPI Channel A Chip Select  
U15  
U16  
T15  
Out of Band Interrupt to an external host  
communicating over SPI  
V16,V17  
SPI Interface  
MSS_MIBSPIB_CLK  
MSS_MIBSPIB_MOSI  
MSS_MIBSPIB_MISO  
MSS_MIBSPIB_CS0  
MSS_MIBSPIB_CS1  
MSS_MIBSPIB_CS2  
MSS_MCANA_RX  
MSS_MCANA_TX  
MSS_MCANB_RX  
MSS_MCANB_TX  
MSS_UARTA_RX  
IO  
IO  
IO  
IO  
IO  
IO  
I
SPI Channel B - Clock  
T13,R10  
V12,V11  
SPI Channel B - Master Out Slave In  
SPI Channel B - Master In Slave Out  
SPI Channel B Chip Select (Instance ID 0)  
SPI Channel B Chip Select (Instance ID 1)  
SPI Channel B Chip Select (Instance ID 2)  
CAN-FD A (MCAN) Receive Signal  
CAN-FD A (MCAN) Transmit Signal  
CAN-FD B (MCAN) Receive Signal  
CAN-FD B (MCAN) Transmit Signal  
U13,U11  
U14,U12  
V16,A16,R14  
A16,V11,R14,V17  
T13,R12,C14,F16,D16  
U14,T11,C12,E17,D17  
V12,A17  
O
CAN-FD  
I
O
U13,B17  
IO  
Main Subsystem - UART A Receive  
(For Flash programming)  
T13,D13,F16,P17,B16,A15  
MSS_UARTA_TX  
MSS_UARTB_TX  
IO  
IO  
Main Subsystem - UART A Transmit (For  
Flash programming)  
U14,D15,E17,U17,C16,B14,  
A14  
UART (MSS)  
Main Subsystem - UART B Receive  
T13,U14,C12,D15,G15,E17,  
L15,U4,B16,A14  
MSS_UARTB_RX  
MSS_QSPI_0  
IO  
IO  
Main Subsystem - UART B Transmit  
R17,F16,T7,C16  
U11  
QSPI Data Line #0 (Used with Serial Data  
Flash)  
MSS_QSPI_1  
MSS_QSPI_2  
MSS_QSPI_3  
I
I
I
QSPI Data Line #1 (Used with Serial Data  
Flash)  
V11  
T11  
R12  
QSPI Data Line #2 (Used with Serial Data  
Flash)  
QSPI for Serial  
Flash  
QSPI Data Line #3 (Used with Serial Data  
Flash)  
MSS_QSPI_CLK  
MSS_QSPI_CS  
IO  
O
QSPI clock (Used with Serial Data Flash)  
R10  
U12  
QSPI chip select (Used with Serial Data  
Flash)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
V12,E17,U17,R8  
U13,F16,P17,U9  
F16  
MSS_I2CA_SDA  
MSS_I2CA_SCL  
MSS_RS232_RX  
IO  
IO  
IO  
I2C Clock  
I2C Data  
I2C interface  
Debug UART (Operates as Bus controller) -  
Receive Signal  
RS232 UART  
MSS_RS232_TX  
IO  
Debug UART (Operates as Bus controller) -  
Transmit Signal  
E17  
MSS_EPWMA0  
O
O
I
PWM Module 1 - Output A0  
PWM Module 1 - Output A1  
PWM Module 1 - Sync Input  
PWM Module 1 - Sync Output  
PWM Module 2 - Output B0  
V12,R15,E17,E15,B17,R6  
B15,T17,E17,C18,A17,U8  
A16,D17  
MSS_EPWMA1  
MSS_EPWMA_SYNCI  
MSS_EPWMA_SYNCO  
MSS_EPWMB0  
O
O
D16  
B15,U13,T17,R14,F16,E17,  
B17,C17,T7  
MSS_EPWMB1  
O
I
PWM Module 2 - Output B1  
PWM Module 2 - Sync Input  
PWM Module 2 - Sync Output  
PWM Module 3 - Output C0  
PWM Module 3 - Output C1  
PWM Module 3 - Sync Input  
PWM Module 3 - Sync Output  
PWM module Trip Signal 0  
PWM module Trip Signal 1  
PWM module Trip Signal 2  
R14,F16,A17,R8  
T18,A14  
MSS_EPWMB_SYNCI  
MSS_EPWMB_SYNCO  
MSS_EPWMC0  
PWM Module  
O
O
O
I
P16  
T13,F16,E15,C17,U4  
C18,U9  
MSS_EPWMC1  
MSS_EPWMC_SYNCI  
MSS_EPWMC_SYNCO  
MSS_EPWM_TZ0  
MSS_EPWM_TZ1  
MSS_EPWM_TZ2  
P17  
O
I
N15  
G15,J15  
I
A16,M16  
B15,L15  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
MSS_MII_COL  
MSS_MII_CRS  
I
I
U8  
R8  
MSS Ethernet MII Collision Detect  
MSS Ethernet MII Carrier Sense  
MSS Ethernet MII Receive Error  
MSS Ethernet MII Transmit Enable  
MSS_MII_RXER  
MSS_MII_TXEN  
MSS_MII_RXDV  
I
O
I
U9  
R6  
T7  
MSS Ethernet MII Receive Data Valid  
MSS_MII_TXD3  
MSS_MII_TXD2  
MSS_MII_TXD1  
MSS_MII_TXD0  
MSS_MII_TXCLK  
MSS_MII_RXCLK  
MSS_MII_RXD3  
MSS_MII_RXD2  
MSS_MII_RXD1  
MSS_MII_RXD0  
MSS_RMII_REFCLK  
MSS_RMII_CRS_DV  
O
O
O
O
I
MSS Ethernet MII Transmit Data 3  
MSS Ethernet MII Transmit Data 2  
MSS Ethernet MII Transmit Data 1  
MSS Ethernet MII Transmit Data 0  
MSS Ethernet MII Transmit Clock  
MSS Ethernet MII Receive Clock  
MSS Ethernet MII Receive Data 0  
MSS Ethernet MII Receive Data 1  
MSS Ethernet MII Receive Data 2  
MSS Ethernet MII Receive Data 3  
MSS Ethernet RMII Clock Input  
U4  
U6  
U5  
U7  
V3  
I
T9  
I
U10  
V5  
I
I
V4  
I
V6  
IO  
I
U8,T9  
R8,T7  
MSS Ethernet RMII Carrier Sense/Receive  
Data Valid  
MSS_RMII_RXER  
MSS_RMII_TXEN  
MSS_RMII_TXD1  
MSS_RMII_TXD0  
MSS_RMII_RXD1  
MSS_RMII_RXD0  
MSS_RGMII_TCTL  
MSS_RGMII_RCTL  
MSS_RGMII_TD3  
MSS_RGMII_TD2  
MSS_RGMII_TD1  
MSS_RGMII_TD0  
MSS_RGMII_TCLK  
MSS_RGMII_RCLK  
MSS_RGMII_RD3  
MSS_RGMII_RD2  
MSS_RGMII_RD1  
MSS_RGMII_RD0  
MSS_MDIO_DATA  
I
O
O
O
I
MSS Ethernet RMII Receive Error  
MSS Ethernet RMII Transmit Enable  
MSS Ethernet RMII Transmit Data 1  
MSS Ethernet RMII Transmit Data 0  
MSS Ethernet MII Receive Data 1  
MSS Ethernet MII Receive Data 0  
MSS Ethernet RGMII Transmit Control  
MSS Ethernet RGMII Receive Control  
MSS Ethernet RGMII Transmit Data 3  
MSS Ethernet RGMII Transmit Data 2  
MSS Ethernet RGMII Transmit Data 1  
MSS Ethernet RGMII Transmit Data 0  
MSS Ethernet RGMII Transmit Clock  
MSS Ethernet RGMII Receive Clock  
MSS Ethernet RGMII Receive Data 0  
MSS Ethernet RGMII Receive Data 1  
MSS Ethernet RGMII Receive Data 2  
MSS Ethernet RGMII Receive Data 3  
U9  
R6  
U5  
U7  
V4  
V6  
R6  
T7  
RGMII/RMII/MII  
Ethernet  
I
O
I
O
O
O
O
O
I
U4  
U6  
U5  
U7  
V3  
T9  
I
U10  
V5  
V4  
V6  
T5  
I
I
I
IO  
MSS Ethernet Manage Data Input/Output  
data  
MSS_MDIO_CLK  
O
MSS Ethernet Manage Data Input/Output  
Clock  
R4  
MSS_CPTS0_TS_SYNC  
O
I
Ethernet Timestamp SYNC output  
B16  
C16  
MSS_CPTS0_HW2TSPUS  
H
Ethernet hardware Timestamp Inputs Pins  
MSS_CPTS0_HW1TSPUS  
H
I
A15  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
U17  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
TRACE_DATA_8  
TRACE_DATA_9  
TRACE_DATA_10  
TRACE_DATA_11  
TRACE_DATA_12  
TRACE_DATA_13  
TRACE_DATA_14  
TRACE_CLK  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Clock  
P17  
T18  
N15  
P16  
L15  
M16  
J15  
Trace Signal  
D17  
D16  
E15  
C18  
B17  
A17  
C17  
R15,F16  
T17,E17  
TRACE_CTL  
Debug Trace Output - Control  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
DMM0  
DMM1  
DMM2  
DMM3  
DMM4  
DMM5  
DMM6  
DMM7  
DMM8  
DMM9  
DMM10  
DMM11  
DMM12  
DMM13  
DMM14  
DMM_CLK  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Debug Interface (Hardware In Loop) - Data  
Line  
U17  
P17  
T18  
N15  
P16  
L15  
M16  
J15  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
D17  
D16  
E15  
C18  
B17  
A17  
C17  
R15  
Debug Interface (Hardware In Loop) - Data  
Line  
DMM Interface  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) - Data  
Line  
Debug Interface (Hardware In Loop) -  
Clock  
DMM_SYNC  
I
I
Debug Interface (Hardware In Loop) - Sync  
T17  
DMM_MUX_IN  
Debug Interface (Hardware In Loop) Mux  
Select between DMM1 and DMM2 (Two  
Instances)  
A16,R17,R14  
NDMM_EN  
O
Debug Interface (Hardware In Loop)  
Enable - Active Low Signal  
D15,E17  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
B15,P17,U15,A14  
A16,T18,U16,B13  
G15,N15,T16,V17,D11  
P16,T15  
MSS_GPIO_0  
MSS_GPIO_1  
MSS_GPIO_2  
MSS_GPIO_3  
MSS_GPIO_4  
MSS_GPIO_5  
MSS_GPIO_6  
MSS_GPIO_7  
MSS_GPIO_8  
MSS_GPIO_9  
MSS_GPIO_10  
MSS_GPIO_11  
MSS_GPIO_12  
MSS_GPIO_13  
MSS_GPIO_14  
MSS_GPIO_15  
MSS_GPIO_16  
MSS_GPIO_17  
MSS_GPIO_18  
MSS_GPIO_19  
MSS_GPIO_20  
MSS_GPIO_21  
MSS_GPIO_22  
MSS_GPIO_23  
MSS_GPIO_24  
MSS_GPIO_25  
MSS_GPIO_26  
MSS_GPIO_27  
MSS_GPIO_28  
MSS_GPIO_29  
MSS_GPIO_30  
MSS_GPIO_31  
DSS_UARTA_TX  
DSS_UARTA_RX  
ADC_VALID  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
Debug UART Transmit [DSP]  
Debug UART Receive [DSP]  
When high, indicating valid ADC samples  
U14,L15,V17  
T13,M16  
U12,J15  
R10,D17  
U11,T18,D16,V17,B16,B13  
V11,N15,E15,C16,D11  
T11,M16,C18,A15  
R12,J15,B17,B14  
V16,A17,B16  
B15,C17,C16  
E17,A15  
F16,B14  
General-purpose  
I/Os  
A16  
C12,C17,U8  
C14,A17,R8  
B17,U9  
C18,R6  
V12,E15,T7  
U13,D16,U4  
D13,D17,U6  
D15,J15,U5  
R15,M16,U7  
G15,L15,V3  
T17,P16,T9  
R17,N15,U10  
R14,T18,V5,D11  
P17,V4,T5,B13  
U17,V6,R4,A14  
U13,R10,J15,B16,A15,A14  
D13,R17,C16,B14  
V16,T11,R12,R17  
G15,T17  
UART (DSS)  
CHIRP_START  
O
Pulse signal indicating the start of each  
chirp  
Chirp/Frame signals  
CHIRP_END  
O
O
O
O
O
Pulse signal indicating the end of each  
chirp  
G15,T17  
FRAME_START  
LVDS_VALID  
Pulse signal indicating the start of each  
frame  
R15,G15,T17  
When high, indicating valid LVDS data  
A16,R15,G15,T17,R14,E17,  
A14  
LVDS_VALID  
MCU_CLKOUT  
PMIC_CLKOUT  
Programmable clock given out to external  
MCU or the processor  
R15,B13  
External clock out  
Output Clock from the device for PMIC  
B15,G15,T17,D11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
System  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
SYNC_IN  
I
Low frequency Synchronization signal input  
R17  
SYNC_OUT  
O
Low Frequency Synchronization Signal  
output  
A16,G15,R17,R14  
Synchronization  
OBS_CLKOUT  
RCOSC_CLK  
XREF_CLK0  
XREF_CLK1  
TCK  
O
O
I
Observation Clock Output  
Internal RCOSC Clock Output  
External reference input clock 0  
External reference input clock 1  
JTAG Test Clock  
R15,T17  
R14  
Clock Output  
B13  
Reference Clock  
I
D11  
I
C12  
TMS  
IO  
I
JTAG Test Mode Signal  
C14  
JTAG  
TDI  
JTAG Test Data Input  
D13  
TDO  
O
O
JTAG Test Data Output  
D15  
BSS_UARTA_TX  
Debug UART Transmit [Radar Block]  
A16,T13,U14,C14,D15,F16,  
E17,M16  
UART (BSS)  
Reset  
BSS_UARTA_RX  
WARM_RESET  
I
Debug UART Receive [Radar Block]  
C12,R15  
B12  
IO  
Open drain fail safe warm reset signal. Can  
be driven from PMIC for diagnostic or can  
be used as status signal that the device is  
going through reset.  
NERROR_OUT  
O
Open drain fail safe output signal.  
Connected to PMIC/Processor/MCU to  
indicate that some severe criticality fault  
has happened. Recovery would be through  
reset.  
C11  
Safety  
SOP[0]  
SOP[1]  
SOP[2]  
SOP[3]  
SOP[4]  
I
I
I
I
I
The SOP pins are driven externally (weak  
drive) and the mmWave device senses the  
state of these pins during bootup to decide  
the bootup mode. After boot the same pins  
have other functionality.  
D15  
R14  
T17  
A14  
C16  
[SOP2 SOP1 SOP0] = [0 0 1] ->  
Functional QSPI load mode  
[SOP2 SOP1 SOP0] = [1 0 1] -> UART  
load mode  
Sense On power  
[SOP2 SOP1 SOP0] = [0 1 1] -> debug  
and development mode  
The following configuration of SOP pins  
help decide the reference crystal frequency  
[SOP4 SOP3] = [0 0] -> 40 MHz  
CSI2_RX0M0  
CSI2_RX0P0  
CSI2_RX0CLKM  
CSI2_RX0CLKP  
CSI2_RX0M1  
CSI2_RX0P1  
I
I
I
I
I
I
CSI2.0 Receiver #1, Negative Polarity,  
Lane 0  
N18  
N17  
L18  
L17  
M18  
M17  
CSI2.0 Receiver #1, Positive Polarity, Lane  
0
CSI2.0 Receiver #1, Clock Input, Negative  
Polarity  
CSI2 RX  
CSI2.0 Receiver #1, Clock Input, Positive  
Polarity  
CSI2.0 Receiver #1, Negative Polarity Lane  
1
CSI2.0 Receiver #1, Positive Polarity Lane  
1
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 7-1. Signal Descriptions - Digital (continued)  
FUNCTION  
SIGNAL NAME  
PIN TYPE DESCRIPTION  
PIN NUMBER  
F18  
LVDS_TXM0  
O
O
O
O
O
O
O
O
LVDS/Aurora Transmitter, Data Output,  
Lane 0  
LVDS_TXP0  
F17  
LVDS_TXM2_CLKM  
LVDS_TXP2_CLKP  
LVDS_TXM3_FRCLKM  
LVDS_TXP3_FRCLKP  
LVDS_TXM1  
G18  
LVDS Clock, Aurora Data output - Lane 2  
G17  
Aurora LVDS  
H18  
LVDS Frame Clock, Aurora Data Output -  
Lane 3  
H17  
J18  
LVDS/Aurora Transmitter, Data Output,  
Lane 1  
LVDS_TXP1  
J17  
7.4 Signal Descriptions - Analog  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
BALL NO.  
TX1  
TX2  
TX3  
TX4  
RX1  
RX2  
RX3  
RX4  
O
O
O
O
I
Single ended transmitter 1 O/P  
Single ended transmitter 2 O/P  
Single ended transmitter 3 O/P  
Single ended transmitter 4 O/P  
Single ended receiver 1 I/P  
Single ended receiver 2 I/P  
Single ended receiver 3 I/P  
Single ended receiver 4 I/P  
Power on reset for chip. Active low  
B3  
B5  
B7  
B9  
M2  
K2  
H2  
F2  
Transmitters  
I
Receivers  
Reset  
I
I
NRESET  
I
H16  
In XTAL mode: Input for the reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
I
I
D1  
B1  
Reference  
Oscillator  
In XTAL mode: Feedback drive for the reference  
crystal  
CLKM  
In External clock mode: Connect this port to ground  
Reference clock output from clocking subsystem  
after cleanup PLL  
Reference clock  
Bandgap voltage  
OSC_CLKOUT  
VBGAP  
O
O
A11  
K4  
Device's Band Gap Reference Output  
E12,E13,E14,F14,H  
14,J14,K14,L14,N6,  
N14,P6,P7,P9,P10,  
P11,P13,P14  
VDD  
Power 1.2V digital power supply  
VDD_SRAM  
VNWA  
Power 1.2V power rail for internal SRAM  
V7  
Power 1.2V power rail for SRAM array back bias  
V13  
I/O Supply (3.3V or 1.8V): All CMOS I/Os would  
operate on this supply  
A13,B18,R18,V8,V1  
5
VIOIN  
Power  
Power supply  
VIOIN_18  
Power 1.8V supply for CMOS IO  
Power 1.8V supply for clock module  
Power 1.8V supply for PM module  
Power 1.8V supply for LVDS port  
Power 1.8V supply for CSI port  
Power Voltage supply for fuse chain  
D18,U18,V10  
VDDA_18CLK  
VDDA_18PM  
VIOIN_18LVDS  
VIOIN_18CSI  
VPP  
D9  
R1  
K17  
K18  
U3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
 
AWR2944  
www.ti.com  
BALL NO.  
SWRS273 – NOVEMBER 2021  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
VIDDA_10RF1  
DESCRIPTION  
1V Analog and RF supply,VDDA_10RF1 and  
VDDA_10RF2 could be shorted on the board  
Power  
M4  
VDDA_10RF2  
VDDA_18BB  
VDDA_18VCO  
Power 1V Analog and RF supply  
Power 1.8V Analog base band power supply  
Power 1.8V RF VCO supply  
D6, D7  
P1  
E4  
A12,A18,E11,E18,F  
8,F9,F10,F11,F12,F  
13,G7,G8,G9,G10,  
G11,G12,G13,G14,  
H7,H8,H9,H10,H11,  
H12,H13,J7,J8,J9,J  
10,J11,J12,J13,K7,  
K8,K9,K10,K11,K12  
,K13,K16,L7,L8,L9,  
L10,L11,L12,L13,M  
7,M8,M9,M10,M11,  
M12,M13,M14,N7,N  
8,N9,N10,N11,N12,  
N13,P8,P12,P18,V2  
,V9,V14,V18  
VSS(2)  
Ground Digital ground  
Power supply  
A1,A2,A4,A6,A8,A1  
0,B2,B4,B6,B8,B10,  
B11,C1,C2,C3,C4,C  
5,C6,C7,C8,C9,C10  
,D2,D3,E1,E2,E3,F  
3,F6,F7,G1,G2,G3,  
G6,H3,H6,J1,J2,J3,  
J6,K3,K6,L1,L2,L3,  
L6,M3,M6,N1,N2,N  
3,V1  
VSSA(3)  
Ground Analog ground  
VOUT_14APLL  
VOUT_14SYNTH  
ADC1  
O
Internal LDO output  
Internal LDO output  
ADC Channel 1  
ADC Channel 2  
ADC Channel 3  
ADC Channel 4  
ADC Channel 5  
ADC Channel 6  
ADC Channel 7  
ADC Channel 8  
ADC Channel 9  
H4  
G4  
P3  
P2  
R3  
R2  
T3  
U2  
T1  
T2  
U1  
Internal LDO output/  
inputs  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
ADC2  
ADC3  
General purpose  
ADC inputs for  
external voltage  
monitoring(1)  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
(1) For details, see Section 9.4.3  
(2) Corner BGAs are VSS and redundant, meaning if they fail the device will still function.  
(3) The VSSA BGAs around the launches are not redundant and are required for functionality.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
PARAMETERS  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDD  
1.2 V digital power supply  
V
V
V
VDD_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
1.4  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
–0.5  
–0.5  
2
2
V
V
VDDA_18CLK  
1.8 V supply for clock module  
VDDA_18PM  
VIOIN_18CSI  
VIOIN_18LVDS  
1.8 V supply for the PM Module  
1.8 V supply for CSI2 port  
1.8 V supply for LVDS port  
-0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VDDA_10RF1  
VDDA_10RF2  
VDDA_18BB  
1 V Analog and RF supply, VDDA_10RF1 and VDDA_10RF2  
could be shorted on the board.  
–0.5  
1.4  
V
1.8-V Analog baseband power supply  
–0.5  
–0.5  
2
V
VDDA_18VCO supply 1.8-V RF VCO supply  
2
V
RX1-4  
TX1-4  
Externally applied power on RF inputs  
10  
10  
dBm  
dBm  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operatedat 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
140  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma= 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
All pins  
V(ESD) Electrostatic discharge  
All pins  
V
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
CONDITION  
(1) (2)  
–40°C  
75°C  
1440 (6%)  
4800 (20%)  
15600 (65%)  
1920 (8%)  
240 (1%)  
95°C  
130°C  
140°C  
50% duty cycle  
1.2  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDD  
1.2 V digital power supply  
V
V
V
VDD_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
V
V
V
VDDA_18CLK  
VDDA_18PM  
1.8 V supply for clock module  
1.8 V supply for the PM module  
1.9  
1.71  
1.71  
1.71  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
VIOIN_18CSI  
1.8 V supply for CSI2 port  
1.8 V supply for LVDS port  
V
V
VIOIN_18LVDS  
VDDA_10RF1  
VDDA_10RF2  
VDDA_18BB  
VDDA_18VCO  
1 V Analog and RF supply. VDDA_10RF1 and VDDA_10RF2  
could be shorted on the board  
0.95  
1
1.05  
V
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.8  
1.8  
1.9  
1.9  
V
V
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
1.17  
0.3 + VIOIN  
0.3 + VIOIN  
0.3*VIOIN  
0.62  
VIH  
VIL  
V
V
2.25  
-0.3  
-0.3  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.45  
VIH (1.8V Mode)  
0.96  
NRESET  
SOP[4:0]  
V
VIL (3.3V Mode)  
0.65  
140  
VIH (3.3V Mode)  
1.57  
-40  
TJ  
Operating junction temperature range  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.5 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses and is applicable only  
for high-security (AWR294x HS) devices. During the process of writing the customer specific keys or other fields  
like Software version etc. in the efuse , the user needs to provide the VPP supply.  
8.5.1 Recommended Operating Conditions for OTP eFuse Programming  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Supply voltage range for the eFuse ROM domain during  
normal operation  
NC  
VPP  
Supply voltage range for the eFuse ROM domain during OTP  
programming(1)  
1.65  
1.7  
1.75  
50  
V
I(VPP)  
mA  
(1) During normal operation, no voltage should be applied to VPP. This can be typically achieved by disabling the external regulator  
attached to the VPP terminal.  
8.5.2 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP power supply must be disabled when not programming OTP registers.  
8.5.3 Impact to Your Hardware Warranty  
You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You  
acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a failure  
may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI device  
specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR ANY TI  
DEVICES THAT HAVE BEEN eFUSED.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.6 Power Supply Specifications  
Table 8-1 describes the four required power rails which must be provided to the AWR294x from an external  
power supply. In the case when 1.8V LVCMOS IO is utilized, VIOIN will be powered from a 1.8V rail and the  
3.3V rail can be ommited, so only three rails must be provided. Also, depending on the power topology utilized,  
additional power supply filtering may be required for the RF 1.0V and baseband, clock and VCO 1.8V supplies  
to meet the required ripple specifications. This additional filtering will result in separate supply power nets being  
generated from these four basic rails.  
Table 8-1. Power Supply Rails Characteristics  
SUPPLY VOLTAGE  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
DEVICE POWER NETS  
Input: VDDA_18VCO, VDDA_18CLK, VDDA_18PM,  
VDDA_18BB, VIOIN_18CSI, VIOIN_18LVDS,  
VIOIN_18  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, CSI2, LVDS, LVCMOS IO  
1.8 V  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
1.0 V  
Input: VDDA_10RF2, VDDA_10RF1  
VIOIN  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
LVCMOS IO  
1.2 V  
1.7 V  
Core Digital and SRAM  
VDD, VDD_SRAM, VNWA  
VPP  
Programming OTP eFuse (For secure devices)  
The 1.0 V and 1.8 V power supply ripple specifications are mentioned in Table 8-2 The spur and ripple levels  
have a dB to dB relationship, for example, a 1dB increase in supply ripple leads to a ~1dB increase in spur level.  
Values quoted are rms levels for a sinusoidal input applied at the specified frequency.  
Table 8-2. Ripple Specifications (TBD)  
RF RAIL  
1V (µVRMS  
TBD  
VCO/IF RAIL  
FREQUENCY (kHz)  
)
1.8 V (µVRMS)  
TBD  
TBD  
8.7 Power Consumption Summary  
Table 8-3 and Table 8-4 summarize the power consumption at the power terminals.  
Table 8-3. Maximum Current Ratings at Power Terminals  
PARAMETER(1)  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX(1)  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDD, VDD_SRAM, VNWA  
2100  
Total current drawn by all  
nodes driven by 1V rail  
when all 4 transmitters  
are used  
VDDA_10RF1, VDDA_10RF2  
2300  
Current consumption  
mA  
VIOIN_18, VDDA_18CLK,  
VDDA_18PM, VIOIN_18CSI,  
VIOIN_18LVDS, VDDA_18BB,  
VDDA_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
600  
Total current drawn by all  
nodes driven by 3.3V rail  
VIOIN  
50(2)  
(1) The specified current values are at Max supply voltage level (Recommended operating conditions).  
(2) The exact value will depend on the system use case and design.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 8-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION(2)  
DESCRIPTION  
MIN  
TYP(1)  
MAX UNIT  
25% duty  
cycle  
Use Case: Regular mode, 37.5  
Msps sampling rate, 25.6 ms frame  
periodicity, 256 chirps, 256 samples/  
chirp, 2-µs idle time, 7us ADC start  
time and excess ramp time  
1.47  
3TX, 4RX  
50% duty  
cycle  
2.09  
1.54  
25% duty  
cycle  
Activity of cores :  
Average power consumption  
in single chip mode.  
W
70% MSS R5F  
70% C66x DSP and HWA  
50% ARM M4F  
4TX, 4RX  
50% duty  
cycle  
2.25  
Ethernet and CAN-FD interface is  
enabled for data transfer  
(1) The Power consumption numbers are for a typical usecase i.e. for a Nominal device at 25C ambient temperature and nominal voltage  
conditions.  
(2) Frame duty cycle represents the ratio of Frame Active and Interframe time.  
8.8 RF Specifications  
over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
13  
-11  
44  
20  
2
MAX  
UNIT  
dB  
Noise figure  
1-dB compression point (Out Of Band)(1)  
dBm  
dB  
Maximum gain  
Gain range  
dB  
Gain step size  
dB  
IF bandwidth(2)  
15  
MHz  
Msps  
Bits  
dB  
Receiver  
ADC sampling rate  
37.5  
ADC resolution  
12  
-10  
±0.5  
±3  
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
Idle Channel Spurs  
dB  
°
-90  
12  
dBFS  
dBm  
°
Output power  
Phase shifter accuracy  
Temperature sensor accuracy  
Amplitude noise  
±5  
Transmitter  
±5  
-145  
dBc/Hz  
GHz  
MHz/μs  
dBc/Hz  
Frequency range  
76  
81  
Ramp rate  
250(3)  
Clock subsystem  
Phase noise at 1- 76 to 77 GHz (VCO1)  
MHz offset  
-96  
-95  
76 to 81 GHz (VCO2)  
(1) 1-dB Compression Point (Out Of Band) is measured by feeding a continuous wave tone at 5% of the programmed HPF cut-off  
frequency (i.e. blocker tone) along with a second in-band tone. The compression point is determined by the blocker power that results  
in a 1dB compression of the in-band tone at the RX ADC.  
(2) The analog IF stages include a second order high pass filter that can be configured to the following -6dB corner frequencies:  
Available HPF Corner Frequencies (kHz)  
HPF  
300, 350, 700, 1400,  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
(3) The max ramp rate depends on the PLL bandwidth configuration set using the"AWR_APLL_SYNTH_BW_CONTROL_SB" API. For  
more details, refer to the mmWave Radar Interface Control document.  
Figure 8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain  
programmed  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
NF (dB)  
In-band P1dB (dBm)  
30  
32  
34  
36  
38  
40  
42  
44  
RX Gain (dB)  
Figure 8-1. Noise Figure, In-band P1dB vs Receiver Gain  
8.9 Thermal Resistance Characteristics  
THERMAL METRICS(1) (4)  
°C/W(2) (3)  
3.3  
JC  
JB  
JA  
PsiJC  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
Junction-to-case  
2.9  
14.9  
0.1  
PsiJB  
Junction-to-board  
2.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
A junction temperature of 140°C is assumed.  
(4) Air flow = 1 m/s  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.10 Power Supply Sequencing and Reset Timing  
The AWR294x device expects all external 1.2V, 1.8V and 3.3V voltage rails as well as all SOP[4:0] lines to be  
stable before NRESET is deasserted for a successful device bootup. IO state is not guaranteed until the VIOIN  
and VIOIN_18 supplies are available. Figure 8-2 describes the device wake-up sequence.  
Note  
Hardware platform must support supplying 1.7V on the VPP pin only during OTP eFuse programming.  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDD,  
VDD_SRAM  
VNWA  
VIOIN_18  
VDDA_18CLK  
VIOIN_18CSI  
VIOIN_18LVDS  
VDDA_18BB  
VDDA_10RF1  
VDDA_10RF2  
VIOIN  
SOP IO  
Reuse  
SOP[4.3.2.1.0]  
SOP IO‘s can be used as functional IO‘s  
nRESET  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
QSPI_CS  
OUTPUT  
8 ms (XTAL Mode)  
Figure 8-2. Device Wake-up Sequence  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.11 Input Clocks and Oscillators  
8.11.1 Clock Specifications  
An external crystal is connected to the device pins. Figure 8-3 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
Figure 8-3. Crystal Implementation  
Note  
The load capacitors, Cf1 and Cf2 in Figure 8-3, should be chosen such that Equation 1 is satisfied.  
CL in the equation is the load specified by the crystal manufacturer. All discrete components used  
to implement the oscillator circuit should be placed as close as possible to the associated oscillator  
CLKP and CLKM pins.Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.  
Note  
The board routing parasitics between CLKP/CLKM pins also need to be included in the estimates of  
CP  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
Table 8-5 lists the electrical characteristics of the clock crystal.  
Table 8-5. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
Parallel resonance crystal frequency  
Crystal load capacitance  
MIN  
TYP  
40  
8
MAX  
UNIT  
MHz  
pF  
fp  
CL  
ESR  
5
12  
50  
Crystal ESR  
Ω
Temperature range  
Expected temperature range of operation  
Crystal frequency tolerance(1) (2)  
-40  
125  
Frequency  
tolererance  
ppm  
-100  
100(3)  
200  
Drive level  
50  
μW  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) For Ethernet operation, tighter specifications of less than 100 PPM frequency error is required. If the Ethernet interface is not used , a  
PPM error up to 200 PPM can be tolerated.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. Table 8-6  
lists the electrical characteristics of the external clock signal.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
 
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 8-6. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MAX  
MIN  
TYP  
Frequency  
40  
MHz  
AC-Amplitude  
700  
1200  
10  
mV (pp)  
ns  
DC-trise/fall  
Input Clock: External AC-  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
-132  
–143  
–152  
–153  
65  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
coupled sine wave or DC-  
coupled square wave Phase  
Noise referred to 40 MHz  
35  
Freq Tolerance  
-100  
100  
ppm  
8.12 Peripheral Information  
Initial peripheral descriptions and features are provided in the following sections. Additional peripheral details  
and interface timing information shall be provided in a later product preview or datasheet release.  
8.12.1 QSPI Flash Memory Peripheral  
The device includes a Quad-Serial Peripheral Interface for external flash memory access. Flash memory can  
be utilized for many purposes including: Secondary boot-loader memory, application program memory, security  
keys storage, and long-term data logs for security and error conditions.  
Following features are supported by the QSPI Interface on the device:  
Loopback skew cancellation for clock signal to supported faster flash interface clock rates  
Two chip-select signals to connect two external flash devices  
Memory mapped 'direct' mode and software triggered 'indirect' mode of operation for performing flash data  
transfers  
8.12.1.1 QSPI Timing Conditions  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.12.1.2 QSPI Timing Requirements(1) (2)  
SPECIFICATION  
NUMBER  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Q12  
tsu(D-SCLK)  
Setup time, D[3:0] valid before falling SCLK edge  
(Q12)  
ns  
13.2  
1
Q13  
Q14  
th(SCLK-D)  
tsu(D-SCLK)  
Hold time, D[3:0] valid after falling SCLK edge (Q13)  
ns  
ns  
Setup time, final D[3:0] bit valid before final falling  
SCLK edge  
13.2-P(3)  
Q15  
th(SCLK-D)  
Hold time, final D[3:0] bit valid after final falling SCLK  
edge  
ns  
1+P(3)  
(1) Clock Mode 0 (clock polarity = 0 ; clock phase = 0) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although  
nonstandard, The falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.1.3 QSPI Switching Characteristics(1) (2)  
SPECIFICATION  
NUMBER  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
tc(SCLK)  
Cycle time, sclk  
15  
0.5*P – 1.5  
0.5*P – 1.5  
–M*P – 1  
N*P – 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SCLKL)  
Pulse duration, sclk low  
tw(SCLKH)  
td(CS-SCLK)  
td(SCLK-CS)  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
Pulse duration, sclk high  
Delay time, sclk falling edge to cs active edge  
Delay time, sclk falling edge to cs inactive edge  
Delay time, sclk falling edge to d[0] transition  
Enable time, cs active edge to d[0] driven (lo-z)  
–M*P + 2.5  
N*P + 2.5  
5.5  
–2.5  
–P – 4  
–P +1  
Disable time, cs active edge to d[0] tri-stated  
(hi-z)  
Q8  
Q9  
–P – 4  
–3– P  
–P +1  
td(SCLK-D1)  
Delay time, sclk first falling edge to first d[1]  
transition (for PHA = 0 only)  
ns  
3.5 – P  
(1) P = SCLK period in ns.  
(2) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
Figure 8-4. QSPI Read (Clock Mode 0)  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Command  
Bit n-1  
Q6  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 8-5. QSPI Write (Clock Mode 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.2 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.12.2.1 MibSPI Peripheral Description  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The device includes two, Multi-Buffered Serial Peripheral Interface (MIBSPI) in the Main Sub-System (MSS).  
These are intended for external MCU, PMIC, EEPROM and Watchdog communication.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (Controller mode) or received from an external clock source  
(Peripheral mode)  
Maximum clock rate supported over each MIBSPI module shall be 40MHz.  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
8.12.2.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit  
transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be  
partitioned into multiple transfer group with variable number of buffers each.  
Section 8.12.2.2.2 and Section 8.12.2.2.3 assume the operating conditions stated in Section 8.12.2.2.1.  
8.12.2.2.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.2.2.2 SPI Controller Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
MIN  
40  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
td(SPCH-SIMO)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
ns  
3(4)  
0.5tc(SPC)M  
14  
4(4)  
ns  
ns  
td(SPCL-SIMO)M  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
0.5tc(SPC)M  
14  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
0.5tc(SPC)M – 18  
0.5tc(SPC)M – 18  
5(4)  
CSHOLD = 0  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
6(5)  
tC2TDELAY  
ns  
ns  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
0.5*tc(SPC)M  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
7(5)  
tT2CDELAY  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
8(4)  
ns  
ns  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
9(4)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The Controller bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, refer to the device Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
(3) When the SPI is in controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25ns, where PS is the prescale value set in the  
SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 8-6. SPI Controller Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 8-7. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 0)  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.2.2.3 SPI Controller Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
MIN  
40  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
td(SPCH-SIMO)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
ns  
3(4)  
0.5tc(SPC)M  
14  
4(4)  
ns  
ns  
td(SPCL-SIMO)M  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
0.5tc(SPC)M  
14  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tC2TDELAY  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
0.5tc(SPC)M – 18  
0.5tc(SPC)M – 18  
5(4)  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
(C2TDELAY +  
2)*tc(VCLK) – 7  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
(C2TDELAY +  
2)*tc(VCLK) – 7  
6(5)  
ns  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
(C2TDELAY+2)*tc(V  
CLK) – 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+3)*tc(V  
CLK) – 7  
(C2TDELAY+3) *  
tc(VCLK) + 7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
7(5)  
8(4)  
9(4)  
tT2CDELAY  
ns  
ns  
ns  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
th(SPCL-SOMI)M  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
th(SPCH-SOMI)M  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The Controller bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, refer to the device Technical Reference Manual.  
(3) When the SPI is in Controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where PS is the prescale value set in the  
SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 8-8. SPI Controller Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 8-9. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.2.3 SPI Peripheral Mode I/O Timings  
8.12.2.3.1 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1) (2) (3)  
SPECIFICATIO  
N NUMBER  
PARAMETER(5)  
MIN  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPICLK (4)  
50  
20  
20  
20  
20  
ns  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
2
3
4
ns  
ns  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
10  
10  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
td(SPCH-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5
4
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
14  
14  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
2
2
6
6
1
1
5
6
7
ns  
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity =  
1; clock phase = 1)  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock  
tsu(SIMO-SPCH)S polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
th(SPCL-SIMO)S  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
th(SPCL-SIMO)S  
(1) The Controller bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, refer to the device Technical Reference Manual.  
(4) When the SPI is in Peripheral mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 8-10. SPI Peripheral Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 8-11. SPI Peripheral Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.3 Ethernet Switch (RGMII/RMII/MII) Peripheral  
The device integrates a two port Ethernet with one external RGMII/RMII/MII port and another port servicing the  
Main Sub-System (MSS). This interface is intended to operate primarily as a 100Mbps ECU interface. It can also  
be used as an instrumentation interface.  
Full Duplex 10/100Mbps wire rate interface to Ethernet PHY over RGMII, RMII, or MII parallel interface  
MDIO Clause 22 and 45 PHY management interface  
IEEE 1588 Synchronous Ethernet support  
AWR synchronous trigger output allowing Ethernet to trigger radar frames  
8.12.3.1 RGMII/GMII/MII Timing Conditions  
SPECIFIC  
ATION  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NUMBER  
Input Conditions  
1
2
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
3
2
20  
pF  
8.12.3.2 RGMII Transmit Clock Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
MAX  
440  
44  
UNIT  
1
tc(TXC)  
Cycle time, rgmiin_txc  
360  
36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3
4
tw(TXCH)  
tw(TXCL)  
tt(TXC)  
Pulse duration, rgmiin_txc high  
Pulse duration, rgmiin_txc low  
Transition time, rgmiin_txc  
160  
16  
240  
24  
160  
16  
240  
24  
0.75  
0.75  
8.12.3.3 RGMII Transmit Data and Control Switching Characteristics  
NO.(1) PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
5
tosu(TXD-TXC)  
Output Setup time, transmit selected signals valid to  
MSS_RGMII_TCLK high/low  
RGMII, Internal Delay  
Enabled, 10/100 Mbps  
1.2  
ns  
6
toh(TXC-TXD)  
Output Hold time, transmit selected signals valid  
after MSS_RGMII_TCLK high/low  
RGMII, Internal Delay  
Enabled, 10/100 Mbps  
1.2  
ns  
(1) For RGMII, transmit selected signals include: MSS_RGMII_TXD[3:0] and MSS_RGMII_TCTL.  
1
4
2
4
3
rgmiin_txc(A)  
[internal delay enabled]  
5
rgmiin_txd[3:0](B)  
rgmiin_txctl(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
6
A. TXC is delayed internally before being driven to the rgmiin_txc pin. This internal delay is always enabled.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
B. Data and control information is transmitted using both edges of the clocks. rgmiin_txd[3:0] carries data bits 3-0 on the rising edge of  
rgmiin_txc and data bits 7-4 on the falling edge of rgmiin_txc. Similarly, rgmiin_txctl carries TXEN on rising edge of rgmiin_txc and  
TXERR of falling edge of rgmiin_txc.  
Figure 8-12. RGMII Transmit Interface Switching Characteristics  
8.12.3.4 RGMII Recieve Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
360  
36  
MAX  
440  
44  
UNIT  
ns  
1
tc(RXC)  
Cycle time, rgmiin_rxc  
ns  
2
3
4
tw(RXCH)  
tw(RXCL)  
tt(RXC)  
Pulse duration, rgmiin_rxc high  
Pulse duration, rgmiin_rxc low  
Transition time, rgmiin_rxc  
160  
16  
240  
24  
ns  
ns  
160  
16  
240  
24  
ns  
ns  
0.75  
0.75  
ns  
ns  
8.12.3.5 RGMII Recieve Data and Control Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
5
tsu(RXD-RXCH)  
Setup time, receive selected signals valid before MSS_RGMII_RCLK  
high/low  
1
ns  
6
th(RXCH-RXD)  
Hold time, receive selected signals valid after MSS_RGMII_RCLK  
high/low  
4.5  
ns  
1
4
2
4
3
rgmiin_rxc(A)  
5
1st Half-byte  
6
2nd Half-byte  
rgmiin_rxd[3:0](B)  
rgmiin_rxctl(B)  
RGRXD[3:0]  
RXDV  
RGRXD[7:4]  
RXERR  
A. rgmiin_rxc must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. MSS_RGMII_RXD[3:0] carries data bits 3-0 on the rising edge  
of rgmiin_rxc and data bits 7-4 on the falling edge ofrgmiin_rxc. Similarly, rgmiin_rxctl carries RXDV on rising edge of rgmiin_rxc and  
RXERR on falling edge of rgmiin_rxc.  
Figure 8-13. MAC Receive Interface Timing, RGMIIn operation  
8.12.3.6 RMII Transmit Clock Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
20  
7
MAX  
UNIT  
ns  
RMII7 tc(REF_CLK)  
RMII8 tw(REF_CLKH)  
RMII9 tw(REF_CLKL)  
RMII10 tt(REF_CLK)  
Cycle time, REF_CLK  
Pulse duration, REF_CLK high  
Pulse duration, REF_CLK low  
Transistion time, REF_CLK  
13  
13  
3
ns  
7
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.3.7 RMII Transmit Data and Control Switching Characteristics  
NO.  
RMII11 td(REF_CLK-TXD)  
tdd(REF_CLK-TXEN)  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Delay time, REF_CLK high to selected transmit signals valid  
3
14.2  
ns  
RMII7  
RMII8  
RMII9  
RMII10  
RMII11  
REF_CLK (PRCM)  
rmiin_txd1−rmiin_txd0,  
rmiin_txen (Outputs)  
SPRS8xx_GMAC_RMIITX_06  
Figure 8-14. MAC Transmit Interface Timing, RMIIn Operation  
8.12.3.8 RMII Receive Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
20  
7
MAX  
UNIT  
ns  
RMII1 tc(REF_CLK)  
RMII2 tw(REF_CLKH)  
RMII3 tw(REF_CLKL)  
RMII4 ttt(REF_CLK)  
Cycle time, REF_CLK  
Pulse duration, REF_CLK high  
Pulse duration, REF_CLK low  
Transistion time, REF_CLK  
13  
13  
3
ns  
7
ns  
ns  
8.12.3.9 RMII Receive Data and Control Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
RMII5  
tsu(RXD-REF_CLK)  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
Setup time, receive selected signals valid before REF_CLK  
4
ns  
RMII6  
Hold time, receive selected signals valid after REF_CLK  
2
ns  
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
RMII1  
RMII3  
RMII2  
RMII4  
RMII6  
RMII5  
REF_CLK (PRCM)  
rmiin_rxd1−rmiin_rxd0,  
rmiin_crs, rmin_rxer (inputs)  
SPRS8xx_GMAC_RMIIRX_05  
Figure 8-15. MAC Receive Interface Timing, RMIIn operation  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.3.10 MII Transmit Switching Characteristics  
NO.  
PARAMETER  
td(TX_CLK-TXD)  
td(TX_CLK-TX_EN)  
td(TX_CLK-TX_ER)  
DESCRIPTION  
MIN  
MAX  
UNIT  
1
Delay time, miin_txclk to transmit selected signals valid  
3
25  
ns  
1
miin_txclk (input)  
miin_txd3 − miin_txd0,  
miin_txen, miin_txer (outputs)  
Figure 8-16. MAC Transmit Interface Timing, MIIn operation  
8.12.3.11 MII Receive Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
400  
40  
MAX  
UNIT  
ns  
1
tc(RX_CLK)  
Cycle time, miin_rxclk  
ns  
2
3
4
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Pulse duration, miin_rxclk high  
Pulse duration, miin_rxclk low  
Transition time, miin_rxclk  
140  
14  
260  
26  
260  
26  
3
ns  
ns  
140  
14  
ns  
ns  
ns  
3
ns  
1
4
2
3
miin_rxclk  
4
Figure 8-17. Clock Timing (MAC Receive) - MIIn operation  
8.12.3.12 MII Receive Timing Requirements  
NO.  
PARAMETER  
tsu(RXD-RX_CLK)  
DESCRIPTION  
MIN  
MAX  
UNIT  
1
Setup time, receive selected signals valid before miin_rxclk  
8
ns  
tsu(RX_DV-RX_CLK)  
tsu(RX_ER-RX_CLK)  
th(RX_CLK-RXD)  
2
Hold time, receive selected signals valid after miin_rxclk  
8
ns  
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
1
2
miin_rxclk (Input)  
miin_rxd3−miin_rxd0,  
miin_rxdv, miin_rxer (Inputs)  
Figure 8-18. MAC Receive Interface Timing, MIIn operation  
8.12.3.13 MII Transmit Clock Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
SPEED  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
10 Mbps  
100 Mbps  
MIN  
400  
40  
MAX  
UNIT  
ns  
1
tc(TX_CLK)  
Cycle time, miin_txclk  
ns  
2
3
4
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Pulse duration, miin_txclk high  
Pulse duration, miin_txclk low  
Transition time, miin_txclk  
140  
14  
260  
26  
260  
26  
3
ns  
ns  
140  
14  
ns  
ns  
ns  
3
ns  
1
4
2
3
miin_txclk  
4
Figure 8-19. Clock Timing (MAC Transmit) - MIIn operation  
8.12.3.14 MDIO Interface Timings  
CAUTION  
The IO Timings provided in this section are only valid for some MAC usage modes when the  
corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables  
found in this section.  
Table 8-7, Table 8-8 and Figure 8-20 present switching characteristics and timing requirements for the MDIO  
interface.  
Table 8-7. Timing Requirements for MDIO Input  
No  
PARAMETER  
tc(MDC)  
DESCRIPTION  
MIN  
400  
160  
160  
90  
MAX  
UNIT  
ns  
MDIO1  
MDIO2  
MDIO3  
MDIO4  
MDIO5  
Cycle time, MDC  
tw(MDCH)  
Pulse Duration, MDC High  
ns  
tw(MDCL)  
Pulse Duration, MDC Low  
ns  
tsu(MDIO-MDC)  
th(MDIO_MDC)  
Setup time, MDIO valid before MDC High  
Hold time, MDIO valid from MDC High  
ns  
0
ns  
Table 8-8. Switching Characteristics Over Recommended Operating Conditions for MDIO Output  
NO  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
MDIO6  
tt(MDC)  
Transition time, MDC  
5
ns  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 8-8. Switching Characteristics Over Recommended Operating Conditions for MDIO Output  
(continued)  
NO  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
MDIO7  
td(MDC-MDIO)  
Delay time, MDC low to MDIO valid  
10  
(P * 0.5) - 10  
ns  
1
MDIO2  
MDIO3  
MDCLK  
MDIO6  
MDIO6  
MDIO4  
MDIO5  
MDIO  
(input)  
MDIO7  
MDIO  
(output)  
Figure 8-20. MAC MDIO diagrams  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.4 LVDS/Aurora Instrumentation and Measurement Peripheral  
The device supports a set of LVDS interfaces in two different modes.  
Legacy LVDS mode  
STM-TWP Aurora interface  
The LVDS IO are shared between the above two measurement interface options.  
Following features are supported :  
2-data lane LVDS interface (two additional lanes for Data Clock and Frame Clock)  
4-Lane STM-TWP-Aurora-LVDS interface mode. It has the following features:  
– Configurable 4/2/1 lane of operation.  
– Transmit data compliant to Aurora 8B/10B Serial Simplex Operation  
– Transmit data compliant to Aurora 64B/66B Serial Simplex Operation  
Please see the device TRM for information regarding programming options for both LVDS interfaces.  
8.12.4.1 LVDS Interface Configuration  
The supported LVDS lane configuration is four Data lanes (LVDS_TXP/M), one Bit Clock lane (LVDS_CLKP/M)  
and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the number of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 8-21. LVDS Interface Lane Configuration And Relative Timings  
8.12.4.2 LVDS Interface Timings  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 8-22. Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 8-9. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
8.12.5 UART Peripheral  
The device includes four UART interfaces. One UART is intended as a secondary boot loader source, one is  
intended for use as a register debug interface (with XDS110 emulator) and the remaining two are meant for  
general UART communication support.  
Maximum baud-rate supported shall be at least 1536K baud in all the different clock frequency modes  
UART interfaces multiplexed with other I/O to allow for widest peripheral use flexibility  
8.12.5.1 SCI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
921.6  
kHz  
8.12.6 Inter-Integrated Circuit Interface (I2C)  
The device supports one Controller/Target Inter-integrated Circuit interface and is intended to be connected to an  
external PMIC or EEPROM device (alternative control SPI).  
The I2C has the following features:  
Standard/fast mode I2C interface compliant with Philips I2C bus specification, v2.1 (The I2C Specification,  
Philips document number 9398 393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-controller transmitter/ target receiver mode  
– Multi-controller receiver/ target transmitter mode  
– Combined controller transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Note  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the target address second byte every  
time it sends the target address first byte)  
8.12.6.1 I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
UNIT  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
(1)  
th(SCLL-SDA)  
3.45  
0.9  
tw(SDAH)  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 8-23. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Note  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-  
mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
8.12.7 Controller Area Network - Flexible Data-rate (CAN-FD)  
The device integrates two CAN-FD interfaces, MSS_MCANA and MSS_MCANB. This enables support of a  
typical use case where one CAN-FD interface is used as ECU network interface while the other interface is used  
as a local network interface, providing communication with the neighboring sensors.  
Support CAN-FD according to ISO 11898-7 protocol with data rate up to 8Mbps  
Multiplexed GPIO can be used for CAN-FD external driver control  
AWRx synchronous trigger output allows CAN-FD to trigger radar frames  
8.12.7.1 Dynamic Characteristics for the CAN-FD TX and RX Pins  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
td(MSS_CANA_TX)  
td(MSS_CANB_TX)  
td(MSS_MCANA_RX)  
td(MSS_MCANB_RX)  
Delay time, transmit shift register to  
MSS_CANA_TX pin  
15  
ns  
Delay time, transmit shift register to  
MSS_CANB_TX pin  
15  
10  
10  
ns  
ns  
ns  
Delay time, MSS_MCANA_RX pin to receive  
shift register  
Delay time, MSS_MCANB_RX pin to receive  
shift register  
(1) These values do not include rise/fall times of the output buffer.  
8.12.8 CSI2 Receiver Peripheral  
The device integrates one 3-lane MIPI CSI2, D-PHY receiver peripheral in the Radio processing subsystem.  
The CSI2 interface is primarily functional of operating as a hardware-in-the-loop (HIL) interface, allowing for the  
playback of recorded radar data for development purposes.  
Interface is compliant with the MIPI CSI-2 D-PHY standard revision 1.2  
1x 3-lane (2 data lanes, 1 clock lane) CSI2 receiver interface, working simultaneously at 600 Mbps/lane  
2-lane, or 1-lane CSI2 configurations  
Support for 4 simultanoeus virtual channels and data types  
Support for 8/10/12/14/16-bit RAW data mode with capability of sign extension or zero padding to align with  
16-bit memory addressing for RAW 10/12/14 modes  
Support for user defined data types  
Please refer to the device Technical Reference Manual for a complete description of all the programmable  
options.  
8.12.8.1 CSI2 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Low Power Receiver (LP-RX)  
(1)  
VIL  
Logic 0 input threshold  
Logic 1 input threshold  
Input Hysteresis  
550  
mV  
mV  
mV  
(2)  
VIH  
880  
25  
VHYST  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
 
AWR2944  
www.ti.com  
UNIT  
SWRS273 – NOVEMBER 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
High Speed Receiver (HS-RX)  
VIDTH  
Differential input high threshold  
70  
mV  
mV  
VIDTL  
Differential input low threshold  
-70  
VIDMAX  
VILHS  
Maximum differential input voltage  
Single-ended input low voltage  
270  
mV  
-40  
70  
mV  
VIHHS  
Single-ended input high voltage  
Common-mode voltage  
460  
330  
200  
50  
mV  
VCMRXDC  
ΔVCMRX(HF)  
ΔVCMRX(LF)  
mV  
Common-mode interference beyond 450 MHz  
mVPP  
mVPP  
Common mode interference 50MHz – 450MHz  
-50  
HS DATA-CLOCK Timing Specification (3) (5)  
UIINST  
TSETUP  
THOLD  
TR, , TF  
Data/Clock Unit Interval  
1.11  
166  
166  
166  
ns  
ps  
ps  
ps  
Data to Clock setup time  
Clock to Data hold time  
Rise/Fall Times  
(4)  
0.4*UIINST  
(1) The input low-level voltage, VIL, is the voltage at which the receiver is required to detect a low state in the input signal. VIL is larger  
than the maximum single-ended line voltage during HS transmission. Therefore, both LP receivers will detect low during HS signaling  
(2) The input high-level voltage, VIH, is the voltage at which the receiver is required to detect a high state in the input signal.  
(3) TSKEW in the figure is the skew between the clock and data HS signals that can be tolerated at the receiver input. It is only a  
descriptive parameter. Rx timing is specified by TSETUP/THOLD only.  
(4) Rise/Fall from VIDTL to VIDTH  
.
(5) Setup/hold specification is assuming identical common mode and rise/fall time for both data and clock lane at receiver input. i.e.  
VCMRXDC and TR, TF must be same for clock lane and data lane while measuring TSETUP and THOLD  
Figure 8-24. Clock and Data Timing in HS Transmission  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.12.9 Enhanced Pulse-Width Modulator (ePWM)  
The device includes three Enhanced Pulse-Width Modulation (ePWM) modules. These modules can be used  
to generate duty-cycled controlled waveforms for a power regulator, or a power management systems, or more  
complex waveforms for motor control applications.  
The module supports the following features:  
Dedicated 16-bit time-base counter with period and frequency control for each PWM module  
Each module contains two PWM outputs (EPWMxA and EPWMxB) that shall be usable in the following  
configurations:  
– Two independent PWM outputs with single-edge operation  
– Two independent PWM outputs with dual-edge symmetric operation  
– One independent PWM output with dual-edge asymmetric operation  
8.12.10 General-Purpose Input/Output  
Section 8.12.10.1 lists the switching characteristics of output timing relative to load capacitance.  
8.12.10.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)(1) (2)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
ns  
ns  
ns  
Slew control = 1  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.13 Emulation and Debug  
8.13.1 Emulation and Debug Description  
8.13.2 JTAG Interface  
The JTAG interface implements the IEEE1149.1 standard interface for processor debug and boundary scan  
testing.  
Section 8.13.2.1 and Section 8.13.2.2 assume the operating conditions stated in Figure 8-25.  
8.13.2.1 Timing Requirements for IEEE 1149.1 JTAG  
Table 8-10. JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
Table 8-11. JTAG Timing Requirements  
NO.  
1
MIN  
TYP  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time TCK  
33.33  
13.33  
1a  
tw(TCKH)  
Pulse duration  
TCK high (40% of  
tc)  
ns  
1b  
3
tw(TCKL)  
Pulse duration  
TCK low (40% of  
tc)  
13.33  
2.5  
2.5  
18  
ns  
ns  
ns  
ns  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
Input setup time  
TDI valid to TCK  
high  
3
Input setup time  
TMS valid to TCK  
high  
4
Input hold time  
TDI valid from  
TCK high  
4
Input hold time  
TMS valid from  
TCK high  
18  
8.13.2.2 Switching Characteristics for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
27.1  
ns  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 8-25. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
8.13.3 ETM Trace Interface  
The ETM Trace interface provides a means of exporting real time processor debug information to a host PC  
through a compatible emulator toolset.  
Section 8.13.3.1 and Section 8.13.3.2 describe the operating conditions shown in Figure 8-26 and Figure 8-27.  
8.13.3.1 ETM TRACE Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
2
20  
pF  
8.13.3.2 ETM TRACE Switching Characteristics  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tcyc(ETM)  
th(ETM)  
tl(ETM)  
Cycle time, TRACECLK  
period  
16  
ns  
1
Pulse Duration, TRACECLK  
High  
7
7
ns  
ns  
2
3
Pulse Duration, TRACECLK  
Low  
4
5
tr(ETM)  
Clock and data rise time  
Clock and data fall time  
3.3  
3.3  
ns  
ns  
ns  
tf(ETM)  
td(ETMTRACECLKH-ETMDATAV)  
Delay time, ETM trace clock  
high to ETM data valid  
1
1
14.5  
6
7
td(ETMTRACECLKl-ETMDATAV)  
Delay time, ETM trace clock  
low to ETM data valid  
ns  
14.5  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
Figure 8-26. ETMTRACECLKOUT Timing  
Figure 8-27. ETMDATA Timing  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The AWR294x device includes the entire Millimeter Wave blocks, and analog baseband signal chain, for three  
or four transmitters and four receivers, as well as a customer-programmable MCU and DSP. This device is  
applicable as a radar-on-a-chip in use-cases with modest requirements for memory, processing capacity, and  
application code size. These could be cost-sensitive automotive applications that are evolving from 24 GHz  
narrowband implementation and some emerging, ultra-short-range radar applications.  
To support additional scalability, the device can also be paired with an external host MCU, to provide additional  
control and processing platform so as to address more complex applications. To interface to external host MCU,  
the device provides SPI, CAN-FD and I2C for host control.  
9.2 Functional Block Diagram  
Figure 9-1 represents the functional block diagram for the device.  
9
GPADC  
Main Sub-System  
(Customer Programmed)  
Serial Flash Interface  
QSPI  
SPI  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU Interface  
ARM Cortex-R5F  
(Lock Step)  
@ 300 MHz  
PMIC Control  
Digital  
Front-end  
SPI / I2C  
CAN-FD  
Primary Communication  
Interfaces (Automotive)  
(Decimation  
Filter Chain)  
Prog  
Cache  
16KB  
Data  
Cache  
16KB  
L1 Data  
RAM  
128KB(A)  
L2 RAM  
960KB(A)  
Debug  
UARTs  
For Debug  
Test/  
Debug  
JTAG for Debug/  
Development  
DMA  
Hardware Security  
Module (B)  
100Mbps Alternate Data  
Communication Interface  
PA  
û-  
û-  
û-  
û-  
Ethernet  
ADC  
Buffer  
Mailbox  
PA  
PA  
PA  
DSP Sub-System  
(Customer Programmed)  
Synth  
(20 GHz)  
Ramp  
Generator  
x4  
C66x DSP Core  
@ 360 MHz  
Radio (BIST)  
Processor  
Aurora  
LVDS  
High-Speed ADC Output  
Interface (for Recording)  
High-Speed Interface to  
enable playback of the  
captured data  
(For RF Calibration  
& Self-Test œ TI  
Programmed)  
CSI2 RX  
L1P L1D  
(32KB) (32KB)  
L2  
(384KB)  
Prog RAM  
& ROM  
Data  
RAM  
DMA  
CRC  
Radar Data Memory(A)  
AWR2943 - 2.0MB /  
AWR2944 - 2.5MB  
Osc.  
GPADC  
VMON  
Temp  
Radio Processor  
Sub-System  
(TI Programmed)  
Radar Hardware Accelerator  
(FFT, Log mag, and others)  
RF/Analog Sub-System  
A. Configurable memory can be switched from Radar Data memory to the Main R5F program and Data RAMs per application usecase  
needs.  
B. This feature is only available in select part variants as indicated by the Device Type identifier in the Section 3, Device Information table.  
Figure 9-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
9.3 Subsytems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The four transmit and  
the receive channels can all be operated simultaneously for transmit beamforming purpose and receiving data  
as required.  
9.3.1.1 RF Clock Subsystem  
The device clock subsystem generates 76 to 81 GHz from an input reference of 40 MHz crystal. It has a built-in  
oscillator circuit followed by an Analog PLL and a RF synthesizer circuit. The output of the RF synthesizer is  
then processed by an x4 multiplier to create the required frequency in the 76 to 81 GHz spectrum. The RF  
synthesizer output can be modulated by the timing engine block to create the required waveforms for effective  
sensor operation or it can input a fixed signal of 1GHz directly from APLL.  
The Analog PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
Figure 9-2 describes the clock subsystem.  
Self Test  
RX LO  
Timing  
Engine  
SYNC_OUT  
SYNCIN  
x4  
MULT  
TX LO  
RF SYNTH  
~1 GHz  
(Fixed Clock Domain)  
APLL  
XO/  
Slicer  
40 MHz  
Figure 9-2. RF Clock Subsystem  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
9.3.1.2 Transmit Subsystem  
The device Transmit subsystem consists of four parallel transmit chains, each with independent phase and  
amplitude control. All four transmitters can be used simultaneously or in time-multiplexed fashion. The device  
supports binary phase modulation and a 6 bit programmable phase shifter for beamforming control on a per  
chirp basis for each channel as indicated in the figure below.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also  
support programmable backoff for system optimization.  
Figure 9-3 describes the transmit subsystem.  
Self Test  
LO Loopback  
Path  
Beamforming  
Control  
PA Loopback  
Path  
6 bits  
PCB  
12dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Figure 9-3. Transmit Subsystem (Per Channel)  
9.3.1.3 Receive Subsystem  
The device Receive subsystem consists of four parallel channels. A single receive channel consists of an LNA,  
mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the same  
time. An individual power-down option is also available for system optimization.  
The device supports a real-only receiver. The band-pass IF chain has configurable cutoff frequencies above 350  
kHz and can support bandwidths up to 15 MHz.  
Figure 9-4 describes the receive subsystem.  
Self Test  
RSSI  
Loopback  
Path  
Saturation Detect  
DAC  
PCB  
50  
GSG  
LNA  
IFA  
DSM  
LORX  
Figure 9-4. Receive Subsystem (Per Channel)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
9.3.2 Processor Subsystem  
Figure 9-5 shows the block diagram for customer programmable processor subsystems in the device. At a  
high level there are two customer programmable subsystems. Left hand side shows the DSP Subsystem  
which contains TI's high performance C66x DSP, HWA 2.0, a high-bandwidth interconnect for high performance  
(128-bit, 150MHz), and associated peripherals – six EDMAs for data transfer,Aurora and LVDS interface for  
Measurement data output, L3 Radar data cube memory, ADC buffers, CRC engine, and data handshake  
memory (additional memory provided on interconnect).  
For more information, see the TMS320C66x DSP CorePac User Guide  
The right side of the diagram shows the Main subsystem (MSS). Main subsystem as the name suggests is the  
primary controller of the device and controls all the device peripherals and house-keeping activities of the device.  
Main subsystem contains Cortex-R5F (MSS R5F) processor and associated peripherals and housekeeping  
components such as EDMAs, CRC and Peripherals (I2C, UART, SPIs, CAN-FD, EPWM, and others) connected  
to the primary Interconnect through Peripheral Central Resource (PCR interconnect).  
The Radio Processing Subsytem or the BIST Subsystem (RSS) is responsible for initializing and calibrating the  
Analog/RF modules. It periodically monitors the Analog/RF functionality such that all the Analog/RF modules  
work in their defined limits.  
General Purpose ADC (GPADC), Fast Fourier Transformation engine (FFT engine) and other modules are  
provided to monitor the signal from different points in the transmitter and receiver chains. Digital front-end filters  
(DFE), Ramp Generation module and Analog/DFE registers, which are mainly under the control of BSS, can be  
indirectly controlled through the API calls from the Main Subsytem.  
The device also integrates one two-lane CSI2 receiver interfaces in the Radio processing subsystem. The prime  
functionality of this interface is the Hardware in loop (HIL) functionality, that can be used to perform the radar  
operations feeding the captured data from outside into the device without involving the RF subsystem.  
Please refer to the Device TRM (Technical Reference Manual) for MSS R5F and DSP C66x memory map.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
DSP SS  
Main SS  
Uart#2  
L2  
384 KB  
L3 Memory  
Bank  
UART  
Cache/RAM  
I2C  
L1P  
32 KB  
2/2.5 MB  
MPU  
CAN FD #2  
C66x  
JTAG  
L1D  
32 KB  
DSPSS L2  
Interconnect  
SPI #2  
RS232  
EPWM #3  
Development Interfaces  
CPSW  
DSPSS L1 Interconnect (ECC)  
MCU Interfaces  
EDMA  
TC  
DSPSS L2 Interconnect  
EDMA  
#3  
CRC  
TC  
HWA 2.0  
(CPUSS, FFT,  
CFAR, Histogram etc)  
(TPCC #2)  
#6  
(TPCC #3)  
QSPI  
HSM  
MCU Cortex 32 KB  
R5F  
Cache  
FUSA  
CRYPTO  
ACCELERATORS  
MSS R5F TCM (128 KB)  
MSS R5F L2 (960 KB)  
BSS  
EDMA  
TC  
#1  
Mailbox  
Interrupts/  
SW Triggers  
(Complete SS including ARM  
CR4F (Lockstep), DFE,  
RF/Analog Control,  
(TPCC #1)  
Monitoring, Calibration)  
ESM Signals  
RSS L1 Interconnect (ECC)  
Reset  
Watch  
Dog  
VIM  
#2  
Clocks  
RCSS L2 Interconnect  
LBIST,  
PBIST  
RTI  
#3  
Interrupts/  
SW Triggers  
DCC  
GPIO/  
MUX  
#4  
2L  
CSI2  
FUSE  
ROM  
ESM  
CRC  
RSS Radar Subsystem  
DBG/  
TRACE  
GPADC  
FUSA  
DPLL  
CNTRL  
RF/ANALOG  
FRONT END  
77 GHz  
WAKEUP SS  
Figure 9-5. Processor Subsystem  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
9.3.3 Automotive Interfaces  
The device communicates with the automotive network over the following main interfaces:  
CAN-FD  
Ethernet  
9.4 Other Subsystems  
9.4.1 Hardware Accelerator Subsystem  
In addition to the DSP core, the device incorporates Radar Hardware Accelerators (HWA2.0) to offload the DSP  
from pre-processing computations.  
To understand the capabilities offered by the Radar Hardware Accelerator 2.0 so as to achieve the desired  
functionality, please refer to Radar Hardware Accelerator User's Guide.  
9.4.2 Security - Hardware Security Module  
A Hardware Security Module (HSM), which performs a secure zone operation is provisioned in the device  
(operational only in select part variants). A programmable core, ARM Cortex M4 core is deployed to realize the  
crypto-agility requirements.  
The cryptographic algorithms can be accelerated using the Hardware modules provisioned within the HSM. They  
include acceleration of AES, SHA, Public Key Accelerator (PKA) to perform big math operation for Asymmetric  
key crypto requirements and True Random Number Generation.  
The Main subsystem (MSS) Cortex R5F interfaces with the HSM subsystem to perform the crypto operations  
required for the secure boot and secure runtime communications.  
Further details on Security can be found in the concerned collaterals. Please reach out to your local TI sales  
representative for more information.  
9.4.3 ADC Channels (Service) for User Application  
The device includes provision for an ADC service for user application, where the GPADC engine present inside  
the device can be used to measure up to nine external and internal voltages. The ADC1, ADC2, ADC3, ADC4,  
ADC5, ADC6, ADC7, ADC8 and ADC9 pins are used for this purpose.  
Note  
GPADC structures are also used for measuring the output of internal temperature sensors.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
Table 9-1. GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
ADC INL  
ADC sample rate  
ADC sampling time  
400  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 9-1. GP-ADC Parameter (continued)  
PARAMETER  
TYP  
UNIT  
pF  
ADC internal cap  
10  
2
ADC buffer input capacitance  
ADC input leakage current  
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
10 Monitoring and Diagnostics  
10.1 Monitoring and Diagnostic Mechanisms  
Table 10-1 is a list of the main monitoring and diagnostic mechanisms available in the device.  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR294x  
NO  
FEATURE  
DESCRIPTION  
MAIN SUB-SYSTEM  
1
2
Lockstep operation of MSS R5F  
Core  
Device architecture supports lockstep operation of the MSS R5F core that is the operating  
core in the Main subsystem that is provisioned as the safety island in the device.  
Boot time LBIST For MSS R5F  
Core and associated VIM  
Device architecture supports hardware logic BIST (LBIST) engine self-test Controller  
(STC). This logic is used to provide a very high diagnostic coverage (>90%) on the MSS  
R5F CPU core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM need to be triggered by application code before starting  
the functional safety application. A reset of the CPU is initiated at the end of the STC  
operation and the reset cause register would capture the status of reset. The STC  
registers may then be read out to identify the status of the STC execution to determine if  
there were any errors. CPU stays there in while loop and does not proceed further if a fault  
is identified.  
There can be a fault injection test also performed which would also lead to a reset of the  
CPU with the error status signaled in the STC registers.  
3
Boot time PBIST for MSS R5F  
Memories  
MSS R5F has Tightly coupled Memories (TCM) Level 1 (L1) memories TCMA, TCMB0  
and TCMB1 as well as the Level 2 (L2) Memories. Device architecture supports a  
hardware programmable memory BIST (PBIST) engine. This logic is used to provide a  
very high diagnostic coverage (March-13n) on the implemented MSS R5F TCMs at a  
transistor level.  
PBIST for L1 and L2 memories is triggered by Bootloader at the boot time before starting  
download of application from Flash or peripheral interface. CPU stays there in while loop  
and does not proceed further if a fault is identified.  
4
End to End ECC for MSS R5F  
Memories  
TCMs and L2 Memory diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. For L2 Memory, an 8-bit code word is used to store  
the ECC data as calculated over the 64-bit data bus, whereas for TCMs, a 7-bit code word  
is used to store the ECC data for a 32-bit data bus. ECC evaluation for TCMs is done by  
the ECC control logic inside the CPU. This scheme provides end-to-end diagnostics on  
the transmissions between CPU and TCM. CPU can be configured to have predetermined  
response (Ignore or Abort generation) to single and double bit error conditions.  
5
MSS R5F bit multiplexing  
Logical TCM and L2 Memory word and its associated ECC code is split and stored in  
two physical SRAM banks. This scheme provides an inherent diagnostic mechanism for  
address decode failures in the physical SRAM banks. Faults in the bank addressing are  
detected by the CPU as an ECC fault.  
Further, bit multiplexing scheme implemented such that the bits accessed to generate  
a logical (CPU) word are not physically adjacent. This scheme helps to reduce the  
probability of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest  
as multiple single bit faults. As the SECDED TCM ECC can correct a single bit fault in a  
logical word, this scheme improves the usefulness of the TCM ECC diagnostic.  
Both these features are hardware features and cannot be enabled or disabled by  
application software.  
6
Clock Monitor  
Device architecture supports Four Digital Clock Comparators (EDCCs) and an internal  
RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
EDCCA is dedicated for ADPLL/APLL lock detection monitoring, comparing the ADPLL/  
APLL output divided version with the Reference input clock of the device. Failure detection  
for EDCCA could be programmed to cause the device to go into limp mode.  
Additionally, there is a provision to feed an external reference clock to monitor the internal  
clock using the EDCCA.  
EDCCB, EDCCC, EDCCD module is one which is available for user software. From the  
list of clock options given in detailed spec, any two clocks can be compared. One example  
usage is to compare the CPU clock with the Reference or internal RCOSC clock source.  
Failure detection is indicated to the MSS R5F CPU via Error Signaling Module (ESM).  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR294x (continued)  
NO  
FEATURE  
DESCRIPTION  
7
RTI/WDT for MSS R5F  
Device architecture supports the use of an internal watchdog that is implemented in the  
real-time interrupt (RTI) module. The internal watchdog has two modes of operation: digital  
watchdog (DWD) and digital windowed watchdog (DWWD). The modes of operation are  
mutually exclusive; the designer can elect to use one mode or the other but not both at the  
same time.  
Watchdog can issue either an internal (warm) system reset or a CPU non-mask able  
interrupt upon detection of a failure.  
The Watchdog is enabled by the bootloader in DWD mode at boot time to track the boot  
process. Once the application code takes up the control, Watchdog can be configured  
again for mode and timings based on specific customer requirements.  
8
9
MPU for MSS R5F  
Cortex-R5F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 16 regions.  
It is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
PBIST for Peripheral interface  
SRAMs - SPIs,CANs, Ethernet,  
EDMA, Mailbox  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
Peripheral SRAMs as well.  
PBIST for peripheral SRAM memories can be triggered by the application. User can  
elect to run the PBIST on one SRAM or on groups of SRAMs based on the execution  
time, which can be allocated to the PBIST diagnostic. The PBIST tests are destructive to  
memory contents, and as such are typically run only at boot time. However, the user has  
the freedom to initiate the tests at any time if peripheral communication can be hindered.  
Any fault detected by the PBIST results in an error indicated in PBIST status registers.  
10  
11  
ECC for Peripheral interface  
SRAMs – SPIs, CANs, Ethernet,  
EDMA, Mailbox  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected, the  
MSS R5F is notified via ESM (Error Signaling Module). This feature is disabled after reset.  
Software must configure and enable this feature in the peripheral and ESM module. ECC  
failure (both single bit corrected and double bit uncorrectable error conditions) is reported  
to the MSS R5F as an interrupt via ESM module.  
Configuration registers protection  
for Main SS peripherals  
All the Main SS peripherals (SPIs, CANs, Ethernet, I2C, DMAs, RTI/WD, DCCs, EDMA,  
IOMUX etc.) are connected to interconnect via Peripheral Central resource (PCR). This  
provides two diagnostic mechanisms that can limit access to peripherals. Peripherals can  
be clock gated per peripheral chip select in the PCR. This can be utilized to disable  
unused features such that they cannot interfere. In addition, each peripheral chip select  
can be programmed to limit access based on privilege level of transaction. This feature  
can be used to limit access to entire peripherals to privileged operating system code only.  
These diagnostic mechanisms are disabled after reset. Software must configure and  
enable these mechanisms. Protection violation also generates an ‘aerror’ that result in  
abort to MSS R5F or error response to other hosts such as DMAs.  
12  
Cyclic Redundancy Check–Main  
SS  
Device architecture supports hardware CRC engine on Main SS implementing the below  
polynomials.  
CRC16 CCITT – 0x10  
CRC32 Ethernet – 0x04C11DB7  
CRC64  
CRC 32C – CASTAGNOLI – 0x1EDC6F4  
CRC32P4 – E2E Profile4 – 0xF4ACFB1  
CRC-8 – H2F Autosar – 0x2F  
CRC-8 – VDA CAN – 0x1D  
The read operation of the SRAM contents to the CRC can be done by CPU or by DMA.  
The comparison of results, indication of fault, and fault response are the responsibility of  
the software managing the test.  
13  
14  
MPU  
Device architecture supports MPUs on certain slave ports in the Main SS that include L2  
Memory, PCR peripheral access, QSPI access, R5F AXI-Slave access. This would allow  
configuring access permissions to these key regions in the Main SS.  
By default, this control would reside with the HSM.  
MPU for DMAs  
Device architecture supports MPUs on Main SS EDMAs. EDMAs also includes MPUs on  
both read and writes host ports. EDMA MPUs supports 8 regions. Failure detection by  
MPU is reported to the core as an interrupt via local ESM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR294x (continued)  
NO  
FEATURE  
DESCRIPTION  
15  
16  
Interconnect ECC  
Device architecture supports hardware based ECC protection mechanisms for transfers  
over the system interconnect. Since code execution includes instruction fetches from  
memories hosted on the interconnect, the transfers over the interconnect are ensured  
to be safe by a combination of ECC and redundancy based mechanisms. Any failures  
detected in the transfers are reported over the ESM interface. This mechanism is enabled  
by default in HW.  
Error Signaling Error Output  
When a diagnostic detects a fault, the error must be indicated. The Device architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using a peripheral logic known as the Error Signaling Module (ESM). The ESM provides  
mechanisms to classify errors by severity and to provide programmable error response.  
ESM module is configured by customer application code and specific error signals can be  
enabled or masked to generate an interrupt (Low/High priority) for the MSS R5F CPU.  
Device supports Nerror output signal (IO) which can be monitored externally to identify any  
kind of high severity faults in the design which could not be handled by the R5F.  
17  
18  
Temperature Sensor  
Voltage Monitors  
Device architecture supports various temperature sensors at temperature hotspots in  
digital across the device that can be monitored by the application using an internal GPADC  
channel.  
Device architecture supports monitoring the supply rails connected to the chip, in  
conjunction with external voltage monitors.  
HSM SUB-SYSTEM  
1
2
Boot time LBIST For HSM M4 Core Device architecture supports hardware logic BIST (LBIST) even for HSM Cortex M4 core.  
This logic provides very high diagnostic coverage (>90%) on the BIST R4F CPU core and  
VIM.  
This needs to be triggered by HSM Runtime Firmware before starting the security and  
functional safety application.  
Boot time PBIST for HSM  
Memories (SRAM, Secure RAM,  
Mailbox)  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
HSM Memories which provide a very high diagnostic coverage (March-13n).  
PBIST for HSM memories is triggered by Bootloader at the boot time before starting  
download of application from Flash or peripheral interface. CPU stays there in while loop  
and does not proceed further if a fault is identified.  
3
4
5
End to End ECC for HSM Memories HSM memories diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the HSM CM4 while  
double bit error is communicated to MSS R5F as an interrupt so that application code  
becomes aware of this and takes appropriate action.  
HSM Memory bit multiplexing  
Logical memory word and its associated ECC code is split and stored in two physical  
SRAM banks. This scheme provides an inherent diagnostic mechanism for address  
decode failures in the physical SRAM banks and helps to reduce the probability of physical  
multi-bit faults resulting in logical multi-bit faults.  
Clock Monitor  
Device architecture supports One Digital Clock Comparators (DCC) and an internal 32  
KHz RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
From the list of clock options given in detailed spec, any two clocks can be compared. One  
example usage is to compare the CPU clock with the Reference or internal RCOSC clock  
source. Failure detection is indicated to the HSM M4 CPU via Error Signaling Module  
(ESM).  
6
7
RTI/WDT for HSM CM4  
MPU/Firewall  
Device architecture supports an internal watchdog for HSM M4. Timeout condition is  
reported via an interrupt to MSS R5F and rest is left to application code to take the device  
to a safe state.  
Device architecture supports Firewalls/MPUs on the HSM and crypto engine access both  
for safety and security reasons. This would allow configuring access permissions to these  
key regions in the HSM.  
By default, this control would reside with the HSM.  
DSP SUB-SYSTEM  
1
Boot time LBIST for DSP core  
Device supports boot time LBIST for the DSP Core. LBIST can be triggered by the  
MSS R5F secondary bootloader/application code before starting the functional safety  
application.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR294x (continued)  
NO  
FEATURE  
DESCRIPTION  
2
Boot time PBIST for L1P, L1D, L2  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
and L3 Memories, HWA memories, DSPSS and RSS memories which provide a very high diagnostic coverage (March-13n).  
RSS Memories (ADCBUF, CQ  
Memory), Mailbox  
PBIST is triggered by MSS R5F secondary bootloader/application code before starting the  
functional safety application.  
3
4
Parity on L1P, ECC on L1D  
ECC on DSP’s L2 Memory  
Device architecture supports Parity diagnostic on DSP’s L1P memory. Parity error is  
reported to the CPU as an interrupt.  
L1D memory is covered by SECDED ECC.  
Device architecture supports both Parity Single error correction double error detection  
(SECDED) ECC diagnostic on DSP’s L1D and L2 memory. L2 Memory is a unified 384KB  
of memory used to store program and Data sections for the DSP. A 12-bit code word is  
used to store the ECC data as calculated over the 256-bit data bus (logical instruction  
fetch size). The ECC logic for the L2 access is located in the DSP and evaluation is done  
by the ECC control logic inside the DSP. This scheme provides end-to-end diagnostics on  
the transmissions between DSP and L2. Byte aligned Parity mechanism is also available  
on L2 to take care of data section.  
5
6
ECC on Radar Data Cube (L3)  
Memory, HWA Memories, RSS  
Memory (ADCBUF), Mailbox  
L3 memory is used as Radar data section in the device. The architecture supports Single  
error correction double error detection (SECDED) ECC diagnostic on L3 memory. A 12-bit  
code word is used to store the ECC data as calculated over the 256-bit data bus.  
The RSS memory (ADCBUF) too supports the SECDED ECC diagnostics.  
Failure detection by ECC logic is reported to the DSP core as an interrupt via ESM.  
RTI/WDT for DSP Core  
Device architecture supports the use of an internal watchdog for BIST R4F that is  
implemented in the real-time interrupt (RTI) module – replication of same module as used  
in Main SS. This module supports same features as that of RTI/WD for MSS/BIST R4F.  
This watchdog is enabled by customer application code and Timeout condition is reported  
via an interrupt to MSS R5F and rest is left to application code in MSS R5F to take the  
device to a safe state.  
7
CRC for DSP Sub-System  
Device architecture supports hardware CRC engine on DSPSS implementing the below  
polynomials.  
CRC16 CCITT – 0x10  
CRC32 Ethernet – 0x04C11DB7  
CRC64  
CRC 32C – CASTAGNOLI – 0x1EDC6F4  
CRC32P4 – E2E Profile4 – 0xF4ACFB1  
CRC-8 – H2F Autosar – 0x2F  
CRC-8 – VDA CAN – 0x1D  
The read operation of the SRAM contents to the CRC can be done by CPU or by DMA.  
The comparison of results, indication of fault, and fault response are the responsibility of  
the software managing the test.  
8
MPU for DSP  
Device architecture supports MPUs for DSP memory accesses (L1D, L1P, and L2). L2  
memory supports 64 regions and 16 regions for L1P and L1D each. Failure detection by  
MPU is reported to the DSP core as an abort.  
BIST (Within RADAR SUB-SYSTEM)  
1
2
Lockstep operation of BIST R4F  
Core  
Device architecture supports lockstep operation of the BIST R4F core.  
Boot time LBIST For BIST R4F  
Core and associated VIM  
Device architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This needs to be triggered by MSS R5F secondary bootloader/application code before  
starting the functional safety application.  
3
Boot time PBIST for BIST R4F TCM Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
Memories, Mailbox  
BIST R4F TCMs, Mailbox which provide a very high diagnostic coverage (March-13n) on  
the BIST R4F TCMs.  
PBIST is triggered by MSS R5F secondary bootloader/application code before starting the  
functional safety application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
Table 10-1. Monitoring and Diagnostic Mechanisms for AWR294x (continued)  
NO  
FEATURE  
DESCRIPTION  
4
5
6
End to End ECC for BIST R4F TCM BIST R4F TCMs, Mailbox diagnostic is supported by Single error correction double  
Memories, Mailbox  
error detection (SECDED) ECC diagnostic. Single bit error is communicated to the BIST  
R4FCPU while double bit error is communicated to MSS R5F as an interrupt so that  
application code becomes aware of this and takes appropriate action.  
BIST R4F TCM bit multiplexing  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode  
failures in the physical SRAM banks and helps to reduce the probability of physical multi-  
bit faults resulting in logical multi-bit faults.  
Temperature Sensors  
Tx Power Monitors  
Device architecture supports various temperature sensors all across the device (next  
to power hungry modules such as PAs, etc) which is monitored during the inter-frame  
period(1)  
.
7
8
Device architecture supports power detectors at the Tx output(2)  
.
Synthesizer (Chirp) frequency  
monitor  
Monitors Synthesizer’s frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold,  
if any, are detected and reported.  
9
Ball break detection for TX ports  
(TX Ball break monitor)  
Device architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can  
indicate a ball break.  
Monitoring is done by TIs code running on BIST R4F and failure is reported to the MSS  
R5F via Mailbox.  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F  
10  
11  
12  
RX loopback test  
IF loopback test  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc. This monitor also covers ball breaks on the RX pins.  
Built-in IF (square wave) test tone input to monitor IF filter’s frequency response and  
detect failure.  
RX saturation detect  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
interference.  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the  
temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
11 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
Key device features driving the following applications are:  
Integration of Radar Front End and Programmable MCU  
Flexible boot modes: Autonomous application boot using a serial flash or external boot over SPI  
Hardware Security Module  
High speed 100Mbps Fast Ethernet Support  
11.2 Short and Medium Range Radar  
40-MHz  
Crystal  
Serial  
Flash  
Power Management  
QSPI  
Integrated MCU  
ARM Cortex-R5F  
Ethernet  
PHY  
Automotive  
Network  
Ethernet  
Antenna  
RX1  
Structure  
RX2  
RX3  
MCAN  
PHY  
Automotive  
Network  
CAN FD (2)  
RX4  
Radar  
Front End  
TX1  
TX2  
TX3  
TX4  
Integrated DSP  
TI C66x  
mmWave Sensor  
Figure 11-1. Short- and Medium-Range Radar  
11.3 Reference Schematic  
The reference schematic and power supply information can be found in the AWR2944 EVM Documentation.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up details for PCB at the AWR2944  
EVM Product page.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Device Support  
13 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, XA2943BGALT). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, your package), the temperature range (for example, blank is the default commercial temperature  
range), and the device speed range, in megahertz (for example, your device speed range). Figure x provides a  
legend for reading the complete device name for any your device device.  
For orderable part numbers of your device devices in the your package package types, see the Package Option  
Addendum of this document, ti.com, or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR2944 Errata  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
2
9
44  
B
XA  
G
ALT  
Q1  
Qualification  
Prefix  
Q1 = AEC-Q100  
Blank = no special Qual  
XA = Pre-production Automotive  
AWR = Production Automotive  
Tray or Tape & Reel  
Generation  
T = Small Reel  
R = Big Reel  
1, 2 = 76 - 81 GHz  
Blank = Tray  
Variant  
Package  
ALT = BGA  
Security  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
8 = FE + FFT + MCU + DSP  
9 = FE + FFT + MCU + DSP  
G = General  
S = Secure  
D = Development Secure  
Num RX/TX Channels  
Safety  
RX = 1,2,3,4  
TX = 1,2,3,4  
Q = Quality Manage  
A = ASIL A Targeted  
B = ASIL B Targeted  
Silicon PG Revision  
Blank = Rev 1.0  
A = Rev 2.0 / Rev 3.0  
Features  
Blank = Baseline  
N = Narrow Band (76-77 GHz)  
Figure 13-1. Device Nomenclature  
13.1 Tools and Software  
The contents in this section will be updated in subsequent versions.  
13.2 Documentation support  
The contents in this section will be updated in subsequent versions.  
13.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
 
 
 
 
 
 
AWR2944  
SWRS273 – NOVEMBER 2021  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
 
PACKAGE OUTLINE  
ALT0266A  
FCBGA - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
0.15 C  
0.2 C  
1.2 MAX  
C
SEATING PLANE  
0.1 C  
0.462  
0.216  
11.05 TYP  
SYMM  
(0.475)  
(0.475)  
V
U
T
R
P
N
M
L
SYMM  
K
11.05 TYP  
J
H
G
F
E
D
C
0.46  
266X  
0.36  
0.15  
0.08  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0.65 TYP  
0.65 TYP  
4226546/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALT0266A  
FCBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
266X ( 0.35)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
B
C
D
E
F
(0.65) TYP  
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.35)  
(
0.35)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226546/A 02/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALT0266A  
FCBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
266X ( 0.35)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
B
C
D
E
F
(0.65) TYP  
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
4226546/A 02/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XA2943BGALT  
XA2944BGALT  
ACTIVE  
ACTIVE  
FCCSP  
FCCSP  
ALT  
ALT  
266  
266  
1
1
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 140  
-40 to 140  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Nov-2021  
Addendum-Page 2  
PACKAGE OUTLINE  
ALT0266A  
FCBGA - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
0.15 C  
0.2 C  
1.2 MAX  
C
SEATING PLANE  
0.1 C  
0.462  
0.216  
11.05 TYP  
SYMM  
(0.475)  
(0.475)  
V
U
T
R
P
N
M
L
SYMM  
K
11.05 TYP  
J
H
G
F
E
D
C
0.46  
266X  
0.36  
0.15  
0.08  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0.65 TYP  
0.65 TYP  
4226546/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALT0266A  
FCBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
266X ( 0.35)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
B
C
D
E
F
(0.65) TYP  
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.35)  
(
0.35)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226546/A 02/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALT0266A  
FCBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
266X ( 0.35)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
A
B
C
D
E
F
(0.65) TYP  
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
4226546/A 02/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

XA2944BSALT

AWR2944 Single-Chip 76- and 81-GHz FMCW Radar Sensor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XA2C128

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C128-7CPG132I

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C128-7VQG100I

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C128-7VQG100Q

Programmable Logic Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C128-8CPG132Q

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C128-8VQG100Q

Flash PLD, 7.5ns, 128-Cell, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, LEAD FREE, VQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C256

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C256-7TQG10I

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C256-7TQG10Q

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C256-7TQG144I

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX

XA2C256-7TQG14I

CoolRunner-II Automotive CPLD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XILINX