XAM69A98ATNGHAALY [TI]

32 TOPS vision SoC for 1-12 cameras, Autonomous Mobile Robots, Machine Vision, Mobile DVR, AI-BOX | ALY | 1414 | -40 to 105;
XAM69A98ATNGHAALY
型号: XAM69A98ATNGHAALY
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

32 TOPS vision SoC for 1-12 cameras, Autonomous Mobile Robots, Machine Vision, Mobile DVR, AI-BOX | ALY | 1414 | -40 to 105

文件: 总302页 (文件大小:5847K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM69A  
ZHCSRW1 FEBRUARY 2023  
AM69Ax 处理器,器件修订版1.0  
OpenGL ES 3.1Vulkan 1.2  
– 三CSI2.0 4L 摄像头串行接RX (CSI-RX)  
以及两个具DPHY CSI2.0 4L TX (CSI-TX)  
1 特性  
处理器内核  
• 符MIPI CSI 1.3 + MIPI-DPHY 1.2  
• 支持高1.5Gbps 123 4 数据通道  
模式  
ECC 验证/校正RAM CRC 校验+  
ECC  
• 多达八64 Arm® Cortex®-A72 微处理器子系  
性能高2GHz  
– 每个四Cortex®-A72 集群具2MB L2 共享  
缓存  
– 每Cortex®-A72 内核具32KB L1 数据缓存  
48KB L1 指令缓存  
• 虚拟通道支持16 )  
• 能够通DMA 将流数据直接写DDR  
– 两个视频编码器/解码器模块  
• 多达四个深度学习加速器:  
– 每个加速器高8 万亿次每秒运(TOPS)  
– 总32 万亿次每秒运(32TOPS)  
• 双Arm® Cortex®-R5F MCU在具FFI 的通用  
计算分区中性能高1.0GHz  
• 支5.1 级高阶HEVC (H.265) 主配置文  
• 支5.2 H.264 基线//高配置文件  
• 每个模块支持高4K 超高清分辨(3840 ×  
2160)  
• 每个模块支4K60 H.264/H.265 编码/解码  
480MP/s)  
16KB L1 数据缓存、16KB L1 指令缓存64KB  
L2 TCM  
• 双Arm® Cortex®-R5F MCU性能高达  
1.0GHz支持器件管理  
32K L1 数据缓存、32K 指令缓存64K L2  
TCM所有存储器上都SECDED ECC  
• 最多两个具有图像信号处理(ISP) 和多个视觉辅  
助加速器的视觉处理加速(VPAC)  
存储器子系统:  
• 高8MB 的片L3 RAMECC 和一致性)  
ECC 错误保护  
– 共享一致性缓存  
– 支持内DMA 引擎  
4.8 亿像素/ISP  
• 多达四个具ECC 的外部存储器接(EMIF) 模块  
– 支持多16 位的输RAW 格式  
– 宽动态范(WDR)、镜头失真校(LDC)、视  
觉成像子系(VISS) 和多标(MSC) 支持  
– 输出颜色格式8 位、12 YUV 4:2:2、  
YUV 4:2:0RGBHSV/HSL  
– 支LPDDR4 存储器类型  
– 支持高4266MT/s 的速度  
– 多4 个具有内ECC 32 位总线速率高  
68GB/s  
• 通用存储器控制(GPMC)  
MAIN 域中512KB SRAMECC 保护  
• 符AEC-Q100 标准Q1 结尾的器件型号)  
GPU IMG BXS-64-4256KB 缓存高达  
800MHz50GFLOPS4GTexels/s  
多媒体:  
器件安全:  
– 显示子系统支持:  
• 安全启动提供安全运行时支持  
• 客户可编程的根密钥级别高RSA-4K 或  
ECC-512  
• 嵌入式硬件安全模块  
• 加密硬件加速–带ECC PKAAESSHA、  
RNGDES 3DES  
• 最4 台显示器  
• 最多两DSI 4L TX2.5K)  
• 一eDP 4L  
• 一DPI 24 RGB 并行接口  
OLDI/LVDS4 - 2 24 RGB  
并行接口  
• 定帧检测MISR 数据检查等安全功能  
3D 图形处理单元  
IMG BSX-64-4800MHz  
50GFLOPS4GTexel/s  
>500 百万像素/>8 GFLOP  
• 支持至2 个合成层  
• 支持高2048x1080 @60fps 的分辨率  
• 支ARGB32RGB565 YUV 格式  
• 支2D 图形  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
高速串行接口:  
• 集成以太网交换机支持最8 个外部端口  
音频接口:  
5 个多通道音频串行端(MCASP) 模块  
– 两个端口支5Gb10Gb USXGMII 5Gb  
XFI  
闪存接口:  
• 嵌入式多媒体卡接(eMMC5.1)  
• 一个安全数字® 3.0/安全数字输入输3.0 接口  
(SD3.0/SDIO3.0)  
– 所有端口均支1Gb2.5Gb SGMII  
– 所有端口均可支QSGMII。最多可启2 个  
QSGMII 并使用所8 个内部通道。1 个  
QSGMII 接口使4 个内部通道。  
• 多4 2L/2 4L PCI-Express® (PCIe) 3 代  
控制器  
• 具2 个通道的通用闪(UFS 2.1) 接口  
• 两个独立闪存接口配置为  
– 一OSPI HyperBus™ QSPI 闪存接口,  
以及  
– 一QSPI 闪存接口  
1 (2.5GT/s)2 (5.0GT/s) 3 代  
(8.0GT/s) 运行具有自动协商功能  
• 一USB 3.0 双重角色器(DRD) 子系统  
片上系(SoC) 架构:  
16nm FinFET 技术  
31mm × 31mm0.8mm 间距、1414 FCBGA  
(ALY)可实IPC 3 PCB 布线  
– 增强型超高速第一代端口  
– 支Type-C 开关  
– 可独立配置USB 主机、USB 外设USB  
DRD  
TPS6594-Q1 配套电源管IC (PMIC):  
• 等级高ASIL-D 的功能安全支持  
• 灵活的映射可支持不同的用例  
以太网  
• 两RGMII/RMII 接口  
汽车接口:  
20 个模块化控制器局域(MCAN) 模块具有完整  
CAN-FD 支持  
2 应用  
• 机器视觉摄像机和计算机  
• 智能购物车  
• 零售自动化  
• 智能农业  
• 视频监控  
• 交通监控  
• 自主移动机器(AMR)  
• 无人机  
• 工业运输  
• 工业人机界(HMI)  
• 工PC  
• 单板计算机  
• 患者监护和医疗设备  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
3 说明  
AM69A 可扩展处理器系列采用不断发展的 Jacinto7 架构面向智能视觉摄像头应用基于 TI 在视觉处理器市  
场上十多年所积累的广泛先进市场知识而构建。AM69x 系列专为工厂自动化、楼宇自动化和其他市场中广泛的成  
本敏感型高性能计算应用而构建。  
AM69A 以业界卓越的功耗/性能比为传统和深度学习算法提供高性能计算技术并且系统集成度高可为高级视觉  
摄像头应用实现可扩展性和更低的成本。关键内核包括用于常规计算的新款 Arm GPU 处理器、具有标量和矢  
量内核的下一代 DSP、专用深度学习和传统算法加速器、集成的下一代成像子系统 (ISP)、视频编解码器和隔离  
MCU 岛。所有这些都由工业级安全硬件加速器提供保护。  
通用计算内核和集成概述Arm® Cortex®-A72 的两个四核集群配置8 个内核有助于实现多操作系统应  
且对软件管理程序的需求非常低。最多两个双核4 个内核Arm® Cortex®-R5F 子系统能够管理低级的  
时序关键型处理任务使Arm® Cortex®-A72 内核不受应用的影响。TI 7 ISP 以现有出色ISP 为基础,  
能够灵活地处理更广泛的传感器套件支持更高的位深度并且具有面向分析应用的特性。集成的诊断和安全功  
能可支持高达 SIL-2 级别的运行同时集成的安全功能可保护数据免受现代攻击。CSI2.0 端口支持多传感器输  
入。  
主要高性能内核概述C7000DSP 下一代内核C7xTI 先进的 DSP EVE 内核整合到性能更高的  
单个内核中并增加了浮点矢量计算功能可实现对旧代码的向后兼容性同时简化软件编程。即使在 105°C 和  
125°C 的最坏情况结温下运行四个“MMA”深度学习加速器也可在业界超低功率范围内实现高达 32 万亿次每  
秒运算 (TOPS) [每内核 8TOPS] 的性能。专用的视觉硬件加速器可提供视觉预处理而不会影响系统性能。  
C7x/MMA 内核仅可用AM69A 级处理器中的深度学习功能。  
封装信息  
封装(1)  
器件型号  
封装尺寸  
XAM69Ax...ALY  
XJ784S4GAALY  
FCBGA (1414)  
FCBGA (1414)  
31 mm x 31 mm  
31 mm x 31 mm  
(1) 如需更多信息请参阅13机械、封装和可订购信息。  
3.1 Functional Block Diagram  
3-1 is functional block diagram for the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
AM69Ax  
Application Cores  
Deep Learning Accelerator (32 TOPS)  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
4x C7x DSP + 4x MMA  
2MB Shared L2 Cache with ECC  
Application Cores  
1MB Shared L2 Cache with ECC  
MCU Channels with FFI  
General Compute (MAIN Domain)  
Arm®  
Arm®  
Arm®  
Arm®  
Cortex®-A72  
Cortex®-A72  
Cortex®-A72  
Cortex®-A72  
Arm®  
Arm®  
Cortex®-R5F  
Cortex®-R5F  
2MB Shared L2 Cache with ECC  
64KB TCM  
512KB SRAM with ECC  
General Connectivity (MAIN)  
System Memory  
8MB MSMC  
1-port Gb (RGMII) Ethernet w/ 1588  
Up to 8-port Serial Ethernet w/ 1588  
PCIe Gen 3 (2x 4 Lane or 4x 2 Lane)  
Device Management (MCU Domain)  
GPMC  
SRAM with ECC  
Arm®  
Arm®  
Cortex®-R5F  
Cortex®-R5F  
4x 32-b LPDDR4  
with Inline ECC  
2x MMCSD  
1x USB3.0/2.0  
11x UART  
18x CAN-FD  
8x I2C  
8x SPI  
GPIO  
64KB TCM  
1MB SRAM with ECC  
Multimedia  
3x ePWM  
3x eCAP  
3x eQEP  
5x McASP  
2x H.264/H.265 Video Codec  
General Connectivity (MCU Domain)  
1-port Gb Ethernet w/ 1588  
3D GPU  
2x VPAC  
(BXS 4-64)  
1x OSPI  
GPIO  
2x I2C  
3x SPI  
1x UART  
2x CAN-FD  
2x ADC  
1x QSPI  
2x CSI2 TX  
3x CSI2 RX  
Display SS  
eDP + 2x DSI + 1x DPI  
Security  
HSM  
(Secure Boot)  
SMS  
System Services  
NAVSS/DMA  
Debug  
Firewall  
IPC  
SHA  
PKA  
AES  
MD5  
DRBG  
TRNG  
Device/Power  
Manager  
System Monitor  
Timers  
Secure Boot  
DCC  
ESM  
ECC  
3-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
4
Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
内容  
9 Applications, Implementation, and Layout............... 282  
10 Device Connection and Layout Fundamentals.......283  
10.1 Power Supply Decoupling and Bulk Capacitors....283  
10.2 External Oscillator.................................................283  
10.3 JTAG and EMU.....................................................283  
10.4 Reset.....................................................................283  
10.5 Unused Pins..........................................................283  
10.6 Hardware Design Guide for JacintoTM 7 Devices. 283  
11 Peripheral- and Interface-Specific Design  
Information.................................................................. 284  
11.1 LPDDR4 Board Design and Layout Guidelines.... 284  
11.2 OSPI and QSPI Board Design and Layout  
Guidelines................................................................. 284  
11.3 USB VBUS Design Guidelines..............................287  
11.4 System Power Supply Monitor Design  
Guidelines using VMON/POK................................... 288  
11.5 High Speed Differential Signal Routing Guidance 289  
11.6 Thermal Solution Guidance...................................290  
12 Device and Documentation Support........................291  
12.1 Device Nomenclature............................................291  
12.2 Tools and Software............................................... 294  
12.3 Documentation Support........................................ 294  
12.4 支持资源................................................................294  
12.5 Trademarks...........................................................294  
12.6 静电放电警告........................................................ 295  
12.7 术语表................................................................... 295  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 3  
3.1 Functional Block Diagram...........................................3  
4 Revision History.............................................................. 5  
5 Device Comparison.........................................................6  
6 Terminal Configuration and Functions..........................8  
6.1 Pin Diagrams.............................................................. 8  
6.2 Pin Attributes...............................................................8  
6.3 Signal Descriptions................................................... 85  
6.4 Pin Connectivity Requirements...............................130  
7 Specifications.............................................................. 136  
7.1 Absolute Maximum Ratings.................................... 136  
7.2 ESD Ratings........................................................... 138  
7.3 Power-On-Hour (POH) Limits................................. 138  
7.4 Recommended Operating Conditions.....................138  
7.5 运行性能点..............................................................140  
7.6 Electrical Characteristics.........................................141  
7.7 VPP Specifications for One-Time Programmable  
(OTP) eFuses............................................................147  
7.8 Thermal Resistance Characteristics....................... 149  
7.9 Temperature Sensor Characteristics.......................150  
7.10 Timing and Switching Characteristics................... 151  
8 Detailed Description....................................................269  
8.1 Overview.................................................................269  
8.2 Functional Block Diagram.......................................269  
8.3 Processor Subsystems........................................... 271  
8.4 Accelerators and Coprocessors..............................272  
8.5 Other Subsystems.................................................. 273  
Information.................................................................. 296  
13.1 Packaging Information.......................................... 296  
4 Revision History  
4-1. AM69Ax Revisions  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial external release.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
5 Device Comparison  
5-1 shows the features of the SoC.  
5-1. Device Comparison  
FEATURES(7)  
REFERENCE NAME  
AM69A9  
AM69A7  
PROCESSORS AND ACCELERATORS  
Speed Grades  
T
T
Arm Cortex-A72 Microprocessor Subsystem  
Arm A72  
Octal Core  
Octal Core  
Arm R5F  
Device Management  
Dual Core(10)  
Dual Core(10)  
Dual Core(10)  
Dual Core(10)  
Arm Cortex-R5F  
Arm R5F  
General Compute  
Security Management Subsystem  
Security Accelerators  
SMS  
SA  
Yes  
Yes  
Yes  
Yes  
Deep Learning Accelerator (32 TOPS)  
Graphics Accelerator IMG BXS-64-4  
Depth and Motion Processing Accelerators  
Vision Processing Accelerators  
Video Encoder/Decoder  
C7x DSP + MMA  
GPU  
Quad Core(11)  
Quad Core(11)  
Yes  
No  
DMPAC  
No  
Yes  
No  
Yes  
VPAC  
VENC/VDEC  
2 × Encode/Decode  
2 × Encode/Decode  
SAFETY AND SECURITY  
Safety Targeted  
Safety  
Security  
Q1  
No(1)  
No(1)  
Device Security  
Optional(2)  
Optional(3)  
Optional(2)  
Optional(3)  
AEC-Q100 Qualified  
PROGRAM AND DATA STORAGE  
On-Chip Shared Memory (RAM) in MAIN Domain  
On-Chip Shared Memory (RAM) in MCU Domain  
OCSRAM  
512KB SRAM  
1MB SRAM  
512KB SRAM  
1MB SRAM  
MCU_MSRAM  
8MB (On-Chip SRAM with 8MB (On-Chip SRAM with  
Multicore Shared Memory Controller  
MSMC  
ECC)  
ECC)  
Up to 8GB (32-bit data)  
with inline ECC  
Up to 8GB (32-bit data)  
with inline ECC  
DDRSS0  
DDRSS1  
DDRSS2  
DDRSS3  
Up to 8GB (32-bit data)  
with inline ECC  
Up to 8GB (32-bit data)  
with inline ECC  
LPDDR4 DDR Subsystem  
Up to 8GB (32-bit data)  
with inline ECC  
Up to 8GB (32-bit data)  
with inline ECC  
Up to 8GB (32-bit data)  
with inline ECC  
Up to 8GB (32-bit data)  
with inline ECC  
SECDED  
GPMC  
Yes  
Yes  
General-Purpose Memory Controller  
Up to 1GB with ECC  
Up to 1GB with ECC  
PERIPHERALS  
DSS  
DSI 4L TX  
eDP 4L  
DPI  
Yes  
2
Yes  
2
Display Subsystem  
1
1
1
1
Modular Controller Area Network Interface with Full  
CAN-FD Support  
MCAN  
20  
20  
General-Purpose I/O  
GPIO  
I2C  
155  
10  
1
155  
10  
1
Inter-Integrated Circuit Interface  
Improved Inter-Integrated Circuit Interface  
Analog-to-Digital Converter  
I3C  
ADC  
2
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
6
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
FEATURES(7)  
5-1. Device Comparison (continued)  
REFERENCE NAME  
CSI2.0 4L RX  
CSI2.0 4L TX  
MCSPI  
AM69A9  
AM69A7  
3
3
2
Capture Subsystem with Camera Serial Interface  
(CSI2)  
2
Multichannel Serial Peripheral Interface  
11  
11  
MCASP0  
MCASP1  
MCASP2  
MCASP3  
MCASP4  
MMCSD0  
MMCSD1  
UFS 2L  
16 Serializers  
5 Serializers  
5 Serializers  
3 Serializers  
5 Serializers  
eMMC (8-bits)  
SD/SDIO (4-bits)  
No  
16 Serializers  
5 Serializers  
5 Serializers  
3 Serializers  
5 Serializers  
eMMC (8-bits)  
SD/SDIO (4-bits)  
No  
Multichannel Audio Serial Port  
MultiMedia Card/ Secure Digital Interface  
Universal Flash Storage  
OSPI0  
8-bits(6)  
8-bits(6)  
Flash Subsystem (FSS)  
OSPI1(8)  
4-bits  
4-bits  
HyperBus  
PCIE  
Yes(6)  
Yes(6)  
4x PCI Express Port with Integrated PHY  
Hyperlink  
2x4L or 4x2L(4)  
No(9)  
2x4L or 4x2L(4)  
No(9)  
HYP  
MCU CPSW2G  
MAIN CPSW2G  
CPSW9G  
TIMER  
RMII or RGMII(5)  
RMII or RGMII(5)  
8 port SERDES(4)  
30  
RMII or RGMII(5)  
RMII or RGMII(5)  
8 port SERDES(4)  
30  
Ethernet Interfaces  
General-Purpose Timers  
Enhanced High Resolution Pulse-Width Modulator  
Module  
eHRPWM  
6
6
Enhanced Capture Module  
eCAP  
eQEP  
UART  
3
3
3
3
Enhanced Quadrature Encoder Pulse Module  
Universal Asynchronous Receiver and Transmitter  
12  
12  
Universal Serial Bus (USB3.1) SuperSpeed Dual-  
Role-Device (DRD) Ports with SS PHY  
USB0  
Yes(4)  
Yes(4)  
(1) Functional Safety is not supported on this device family, if interested in this feature, please see the TDA4VH device family.  
(2) Device security features including Secure Boot and Customer Programmable Keys are applicable to select part number variants as  
indicated by the Device Type (Y) identifier in the Table 10-1, Nomenclature Description table  
(3) AEC-Q100 qualification is applicable to select part number variants as indicated by the Automotive Designator (Q1) identifier in the  
Device Naming Convention table  
(4) DP, SGMII, USB3.0, and PCIE share total of 16 SerDes lanes.  
(5) AM69A CPSW supports up to 8 ports using the following instances and signals and modes of operation:  
PORT1 Signals: SGMII1, Modes: One of 5Gb, 10Gb USXGMII/XFI, 2.5 Gb SGMII/XAUI, 1Gb SGMII, 5Gb QSGMII  
PORT2 Signals: SGMII2, Modes: One of 5Gb, 10Gb USXGMII/XFI, 2.5 Gb SGMII/XAUI, 1Gb SGMII, 5Gb QSGMII  
PORTn (n=3 thru 8) Signals: SGMIIn, Modes: One of 2.5 Gb SGMII/XAUI, 1Gb SGMII, 5Gb QSGMII  
If QSGMII is used on any SGMII Port 1 thru 4, then SGMII1/2/3/4 cannot be used for Ethernet functionality since all 4 internal CPSW  
ports map to the selected QSGMII SERDES port.  
If QSGMII is used on any SGMII Port 5 thru 8, then SGMII5/6/7/8 cannot be used for Ethernet functionality since all 4 internal CPSW  
ports map to the selected QSGMII SERDES port.  
(6) Two simultaneous flash interfaces configured as OSPI0 and OSPI1, or HyperBus and OSPI1.  
(7) J784S4 is the base part number for the superset device. Software should constrain the features used to match the intended production  
device.  
(8) OSPI1 module only pins out 4 pins and is referred to as QSPI in some contexts.  
(9) Hyperlink is not supported on this SoC. System designs should not use the signals HYP_*, HYP0_*, HYP1_*.  
(10) MCU_R5FSS0 includes Dual-Core R5F that provides Device Management functionality, and is reserved for executing TI provided  
code.  
R5FSS1 is a Dual-Core R5F that provides Multimedia Control functionality, and is reserved for executing TI provided code.  
(11) The Deep Learning Accelerator C7x + MMA are reserved for executing TI provided code, and are not available for custom code.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
备注  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt  
is made to use "ball" only when referring to the physical package.  
For details on the pin diagram, see the Mechanical, Packaging, and Orderable Information section.  
6.2 Pin Attributes  
1. Ball Number: Ball numbers assigned to each terminal of the Ball Grid Array package.  
2. Ball Name: Ball name assigned to each terminal of the Ball Grid Array package (this name is typically taken  
from the primary MUXMODE 0 signal function).  
3. Signal Name: Signal name of all dedicated and pin multiplexed signal functions associated with a ball.  
备注  
The Pin Attributes table, defines the SoC pin multiplexed signal function implemented at the pin  
and does not define secondary multiplexing of signal functions implemented in device  
subsystems. Secondary multiplexing of signal functions are not described in this table. For more  
information on secondary multiplexed signal functions, see the respective peripheral chapter of  
the device TRM.  
4. Mux Mode: The MUXMODE value associated with each pin multiplexed signal function:  
MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal  
function is not necessarily the default pin multiplexed signal function.  
MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all  
MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin  
multiplexed signal functions within the Pin Attributes table. Only valid values of MUXMODE can be used.  
Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on the  
rising edge of PORz_OUT. These input signal functions are fixed to their respective pins and are not  
programmable via MUXMODE.  
An empty box or "-" means Not Applicable.  
备注  
The value found in the MUX MODE AFTER RESET column defines the default pin multiplexed  
signal function selected when MCU_PORz is deasserted.  
Configuring two pins to the same pin multiplexed signal function can yield unexpected results  
and is not supported. This can be prevented with proper software configuration.  
Configuring a pad to an undefined multiplexing mode results in undefined behavior and must  
be avoided.  
5. Signal Type: Signal type and direction:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output, with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output, with three-state output function  
OZ = Output with three-state output function  
A = Analog  
CAP = LDO capacitor  
PWR = Power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
8
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GND = Ground  
6. I/O VOLTAGE VALUE: This column describes the IO voltage value (the corresponding power supply).  
An empty box means Not Applicable.  
7. Ball State During Reset (RX/TX/PULL): State of the terminal while MCU_PORz is asserted, where RX  
defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of  
internal pull resistors:  
RX (Input buffer)  
Off: The input buffer is disabled.  
On: The input buffer is enabled.  
TX (Output buffer)  
Off: The output buffer is disabled.  
Low: The output buffer is enabled and drives VOL  
.
PULL (Internal pull resistors)  
Off: Internal pull resistors are turned off.  
Up: Internal pull-up resistor is turned on.  
Down: Internal pull-down resistor is turned on.  
NA: No internal pull resistor.  
An empty box, or "-" means Not Applicable.  
8. Ball State After Reset (RX/TX/PULL): State of the terminal after MCU_PORz is deasserted, where RX  
defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of  
internal pull resistors:  
RX (Input buffer)  
Off: The input buffer is disabled.  
On: The input buffer is enabled.  
TX (Output buffer)  
Off: The output buffer is disabled.  
SS: The subsystem selected with MUXMODE determines the output buffer state.  
PULL (Internal pull resistors)  
Off: Internal pull resistors are turned off.  
Up: Internal pull-up resistor is turned on.  
Down: Internal pull-down resistor is turned on.  
NA: No internal pull resistor.  
An empty box, NA, or "-" means Not Applicable.  
9. Mux Mode After Reset: The value found in this column defines the default pin multiplexed signal function  
after MCU_PORz is deasserted.  
An empty box, NA, or "-" means Not Applicable.  
10. PULL TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors  
can be enabled or disabled via software.  
PU: Internal pull-up Only  
PD: Internal pull-down Only  
PU/PD: Internal pull-up and pull-down  
An empty box, NA, or "-" means No internal pull.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
备注  
Configuring two pins to the same pin multiplexed signal function is not supported as this yields  
unexpected results. Issues can be easily prevented with the proper software configuration.  
When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pads  
behavior is undefined. This must be avoided.  
11. Power: The power supply of the associated I/O, when applicable.  
An empty box, NA, or "-" means Not Applicable.  
12. Hys: Indicates if the input buffer associated with this I/O has hysteresis:  
Yes: Hysteresis Support  
No: No Hysteresis Support  
An empty box, NA, or "-" means Not Applicable.  
For more information, see the hysteresis values in Electrical Characteristics section.  
13. Voltage Buffer Type: This column defines the buffer type associated with a terminal. This information can  
be used to determine the applicable Electrical Characteristics table.  
An empty box, NA, or "-" means Not Applicable.  
For electrical characteristics, refer to the appropriate buffer type table in Electrical Characteristics section.  
14. IO RET:Yes means WKUP and IO retention supported.  
15. Pad Configuration Register Name: This is the name of the device pad/pin configuration register.  
16. Pad Configuration Register Address: This is the memory address of the device pad/pin configuration  
register.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
10  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package)  
Ball State  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
Power [11]  
Num [1]  
RET [14]  
V29  
L27  
L25  
T29  
L26  
P29  
CAP_VDDS0  
CAP_VDDS0_MCU  
CAP_VDDS0  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP_VDDS0_MCU  
CAP_VDDS1_MCU  
CAP_VDDS2  
CAP_VDDS1_MCU  
CAP_VDDS2  
CAP_VDDS2_MCU  
CAP_VDDS5  
CAP_VDDS2_MCU  
CAP_VDDS5  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
AN30  
AN29  
AM28  
AP32  
AP31  
AL28  
AN32  
AN33  
AM31  
AU33  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI1_RXCLKN  
CSI1_RXCLKP  
CSI1_RXRCALIB  
CSI2_RXCLKN  
CSI2_RXCLKP  
CSI2_RXRCALIB  
CSI0_RXN0  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI1_RXCLKN  
CSI1_RXCLKP  
CSI1_RXRCALIB  
CSI2_RXCLKN  
CSI2_RXCLKP  
CSI2_RXRCALIB  
CSI0_RXN0  
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
A
I
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
I
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
A
I
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
I
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
A
I
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
AT32  
AV31  
AR30  
AU32  
AT31  
AV30  
AR29  
AT35  
AU36  
AR33  
AV34  
AT34  
CSI0_RXN1  
CSI0_RXN1  
CSI0_RXN2  
CSI0_RXN3  
CSI0_RXP0  
CSI0_RXP1  
CSI0_RXP2  
CSI0_RXP3  
CSI1_RXN0  
CSI1_RXN1  
CSI1_RXN2  
CSI1_RXN3  
CSI1_RXP0  
I
I
I
I
I
I
I
I
I
I
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
CSI0_RXN2  
CSI0_RXN3  
CSI0_RXP0  
CSI0_RXP1  
CSI0_RXP2  
CSI0_RXP3  
CSI1_RXN0  
CSI1_RXN1  
CSI1_RXN2  
CSI1_RXN3  
CSI1_RXP0  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
12  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
AU35  
AR32  
AV33  
AR36  
AT38  
AP35  
AV37  
AR35  
AT37  
AP34  
AV36  
CSI1_RXP1  
CSI1_RXP1  
CSI1_RXP2  
CSI1_RXP3  
CSI2_RXN0  
CSI2_RXN1  
CSI2_RXN2  
CSI2_RXN3  
CSI2_RXP0  
CSI2_RXP1  
CSI2_RXP2  
CSI2_RXP3  
I
I
I
I
I
I
I
I
I
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
CSI1_RXP2  
VDDA_0P8_C  
SIRX0_1 /  
VDDA_1P8_C  
SIRX0_1  
CSI1_RXP3  
CSI2_RXN0  
CSI2_RXN1  
CSI2_RXN2  
CSI2_RXN3  
CSI2_RXP0  
CSI2_RXP1  
CSI2_RXP2  
CSI2_RXP3  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDA_0P8_C  
SIRX2 /  
VDDA_1P8_C  
SIRX2  
VDDS_DDR /  
VDDS_DDR_  
C0  
AB2  
AC1  
DDR0_CKN  
DDR0_CKP  
DDR0_CKN  
DDR0_CKP  
IO  
IO  
1.1 V  
1.1 V  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C0  
AD5  
AC8  
A11  
B10  
G10  
G8  
DDR0_RESETn  
DDR0_RESETn  
DDR0_RET  
DDR1_CKN  
DDR1_CKP  
DDR1_RESETn  
DDR1_RET  
DDR2_CKN  
DDR2_CKP  
DDR2_RESETn  
DDR2_RET  
DDR3_CKN  
DDR3_CKP  
DDR3_RESETn  
DDR3_RET  
DDR0_CA0  
IO  
I
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_RET  
DDR1_CKN  
DDR1_CKP  
DDR1_RESETn  
DDR1_RET  
DDR2_CKN  
DDR2_CKP  
DDR2_RESETn  
DDR2_RET  
DDR3_CKN  
DDR3_CKP  
DDR3_RESETn  
DDR3_RET  
DDR0_CA0  
DDR0_CA1  
VDDS_DDR /  
VDDS_DDR_  
C1  
IO  
IO  
IO  
I
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C2  
K1  
IO  
IO  
IO  
I
VDDS_DDR /  
VDDS_DDR_  
C2  
L2  
VDDS_DDR /  
VDDS_DDR_  
C2  
J5  
VDDS_DDR /  
VDDS_DDR_  
C2  
L8  
VDDS_DDR /  
VDDS_DDR_  
C3  
B25  
A24  
C23  
G27  
AD2  
AC5  
IO  
IO  
IO  
I
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C0  
IO  
IO  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_CA1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
14  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C0  
AB4  
AC4  
AB3  
AC3  
AE8  
AB6  
AD3  
AD7  
AC7  
AB7  
AD6  
V3  
DDR0_CA2  
DDR0_CA2  
IO  
IO  
IO  
IO  
A
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_CA3  
DDR0_CA3  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_CA4  
DDR0_CA4  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_CA5  
DDR0_CA5  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_CAL0  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CSn0_0  
DDR0_CSn0_1  
DDR0_CSn1_0  
DDR0_CSn1_1  
DDR0_DM0  
DDR0_DM1  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
DDR0_CAL0  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CSn0_0  
DDR0_CSn0_1  
DDR0_CSn1_0  
DDR0_CSn1_1  
DDR0_DM0  
DDR0_DM1  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
VDDS_DDR /  
VDDS_DDR_  
C0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
AA4  
AG2  
AJ5  
U2  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C0  
U4  
W6  
W5  
V4  
DDR0_DQ1  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
V7  
VDDS_DDR /  
VDDS_DDR_  
C0  
U5  
VDDS_DDR /  
VDDS_DDR_  
C0  
V6  
VDDS_DDR /  
VDDS_DDR_  
C0  
Y2  
VDDS_DDR /  
VDDS_DDR_  
C0  
W3  
AA3  
W2  
AA6  
Y4  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
Y5  
VDDS_DDR /  
VDDS_DDR_  
C0  
AA7  
AF2  
VDDS_DDR /  
VDDS_DDR_  
C0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
16  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C0  
AE7  
AG3  
AF5  
AE6  
AF4  
AE3  
AE4  
AG5  
AH3  
AJ2  
AH4  
AJ4  
AH6  
AH7  
AG6  
V1  
DDR0_DQ17  
DDR0_DQ17  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0N  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_DQ18  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0N  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C0  
U1  
Y1  
DDR0_DQS0P  
DDR0_DQS0P  
DDR0_DQS1N  
DDR0_DQS1P  
DDR0_DQS2N  
DDR0_DQS2P  
DDR0_DQS3N  
DDR0_DQS3P  
DDR1_CA0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
A
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C0  
DDR0_DQS1N  
DDR0_DQS1P  
DDR0_DQS2N  
DDR0_DQS2P  
DDR0_DQS3N  
DDR0_DQS3P  
DDR1_CA0  
VDDS_DDR /  
VDDS_DDR_  
C0  
AA1  
AE1  
AF1  
AH1  
AJ1  
F12  
C12  
B12  
C11  
D12  
E10  
G14  
D11  
C10  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C0  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CA1  
DDR1_CA1  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CA2  
DDR1_CA2  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CA3  
DDR1_CA3  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CA4  
DDR1_CA4  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CA5  
DDR1_CA5  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CAL0  
DDR1_CKE0  
DDR1_CKE1  
DDR1_CAL0  
DDR1_CKE0  
DDR1_CKE1  
VDDS_DDR /  
VDDS_DDR_  
C1  
IO  
IO  
VDDS_DDR /  
VDDS_DDR_  
C1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
18  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C1  
E11  
G11  
F10  
G12  
E17  
C15  
D8  
DDR1_CSn0_0  
DDR1_CSn0_0  
DDR1_CSn0_1  
DDR1_CSn1_0  
DDR1_CSn1_1  
DDR1_DM0  
DDR1_DM1  
DDR1_DM2  
DDR1_DM3  
DDR1_DQ0  
DDR1_DQ1  
DDR1_DQ2  
DDR1_DQ3  
DDR1_DQ4  
DDR1_DQ5  
DDR1_DQ6  
DDR1_DQ7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CSn0_1  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_CSn1_0  
DDR1_CSn1_1  
DDR1_DM0  
DDR1_DM1  
DDR1_DM2  
DDR1_DM3  
DDR1_DQ0  
DDR1_DQ1  
DDR1_DQ2  
DDR1_DQ3  
DDR1_DQ4  
DDR1_DQ5  
DDR1_DQ6  
DDR1_DQ7  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
F16  
G16  
F15  
E15  
D16  
C16  
B17  
D17  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C1  
B15  
B14  
C13  
D13  
F13  
G13  
E14  
D14  
E8  
DDR1_DQ8  
DDR1_DQ8  
DDR1_DQ9  
DDR1_DQ10  
DDR1_DQ11  
DDR1_DQ12  
DDR1_DQ13  
DDR1_DQ14  
DDR1_DQ15  
DDR1_DQ16  
DDR1_DQ17  
DDR1_DQ18  
DDR1_DQ19  
DDR1_DQ20  
DDR1_DQ21  
DDR1_DQ22  
DDR1_DQ23  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_DQ9  
DDR1_DQ10  
DDR1_DQ11  
DDR1_DQ12  
DDR1_DQ13  
DDR1_DQ14  
DDR1_DQ15  
DDR1_DQ16  
DDR1_DQ17  
DDR1_DQ18  
DDR1_DQ19  
DDR1_DQ20  
DDR1_DQ21  
DDR1_DQ22  
DDR1_DQ23  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
G9  
VDDS_DDR /  
VDDS_DDR_  
C1  
F9  
VDDS_DDR /  
VDDS_DDR_  
C1  
D9  
VDDS_DDR /  
VDDS_DDR_  
C1  
C9  
VDDS_DDR /  
VDDS_DDR_  
C1  
B8  
VDDS_DDR /  
VDDS_DDR_  
C1  
B7  
VDDS_DDR /  
VDDS_DDR_  
C1  
C7  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
20  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C1  
B2  
B3  
DDR1_DQ24  
DDR1_DQ24  
DDR1_DQ25  
DDR1_DQ26  
DDR1_DQ27  
DDR1_DQ28  
DDR1_DQ29  
DDR1_DQ30  
DDR1_DQ31  
DDR1_DQS0N  
DDR1_DQS0P  
DDR1_DQS1N  
DDR1_DQS1P  
DDR1_DQS2N  
DDR1_DQS2P  
DDR1_DQS3N  
DDR1_DQS3P  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C1  
DDR1_DQ25  
VDDS_DDR /  
VDDS_DDR_  
C1  
B4  
DDR1_DQ26  
DDR1_DQ27  
DDR1_DQ28  
DDR1_DQ29  
DDR1_DQ30  
DDR1_DQ31  
DDR1_DQS0N  
DDR1_DQS0P  
DDR1_DQS1N  
DDR1_DQS1P  
DDR1_DQS2N  
DDR1_DQS2P  
DDR1_DQS3N  
DDR1_DQS3P  
VDDS_DDR /  
VDDS_DDR_  
C1  
B5  
VDDS_DDR /  
VDDS_DDR_  
C1  
A6  
VDDS_DDR /  
VDDS_DDR_  
C1  
C5  
C6  
C3  
A17  
A16  
A14  
A13  
A9  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
VDDS_DDR /  
VDDS_DDR_  
C1  
A8  
VDDS_DDR /  
VDDS_DDR_  
C1  
A4  
VDDS_DDR /  
VDDS_DDR_  
C1  
A3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C2  
K3  
L3  
K5  
L4  
K4  
L7  
U7  
L6  
J2  
DDR2_CA0  
DDR2_CA0  
IO  
IO  
IO  
IO  
IO  
IO  
A
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CA1  
DDR2_CA1  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CA2  
DDR2_CA2  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CA3  
DDR2_CA3  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CA4  
DDR2_CA4  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CA5  
DDR2_CA5  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_CAL0  
DDR2_CKE0  
DDR2_CKE1  
DDR2_CSn0_0  
DDR2_CSn0_1  
DDR2_CSn1_0  
DDR2_CSn1_1  
DDR2_DM0  
DDR2_DM1  
DDR2_DM2  
DDR2_CAL0  
DDR2_CKE0  
DDR2_CKE1  
DDR2_CSn0_0  
DDR2_CSn0_1  
DDR2_CSn1_0  
DDR2_CSn1_1  
DDR2_DM0  
DDR2_DM1  
DDR2_DM2  
VDDS_DDR /  
VDDS_DDR_  
C2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
J3  
VDDS_DDR /  
VDDS_DDR_  
C2  
J6  
VDDS_DDR /  
VDDS_DDR_  
C2  
J7  
VDDS_DDR /  
VDDS_DDR_  
C2  
K7  
T2  
M6  
G4  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
22  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C2  
D5  
T4  
R6  
R3  
R4  
P6  
P5  
T5  
R7  
N2  
N4  
P2  
P3  
M7  
N5  
M4  
DDR2_DM3  
DDR2_DM3  
DDR2_DQ0  
DDR2_DQ1  
DDR2_DQ2  
DDR2_DQ3  
DDR2_DQ4  
DDR2_DQ5  
DDR2_DQ6  
DDR2_DQ7  
DDR2_DQ8  
DDR2_DQ9  
DDR2_DQ10  
DDR2_DQ11  
DDR2_DQ12  
DDR2_DQ13  
DDR2_DQ14  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_DQ0  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_DQ1  
DDR2_DQ2  
DDR2_DQ3  
DDR2_DQ4  
DDR2_DQ5  
DDR2_DQ6  
DDR2_DQ7  
DDR2_DQ8  
DDR2_DQ9  
DDR2_DQ10  
DDR2_DQ11  
DDR2_DQ12  
DDR2_DQ13  
DDR2_DQ14  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C2  
M3  
F3  
G7  
H6  
H4  
G2  
H3  
G5  
F2  
E4  
D2  
F6  
F5  
E3  
E7  
E6  
DDR2_DQ15  
DDR2_DQ15  
DDR2_DQ16  
DDR2_DQ17  
DDR2_DQ18  
DDR2_DQ19  
DDR2_DQ20  
DDR2_DQ21  
DDR2_DQ22  
DDR2_DQ23  
DDR2_DQ24  
DDR2_DQ25  
DDR2_DQ26  
DDR2_DQ27  
DDR2_DQ28  
DDR2_DQ29  
DDR2_DQ30  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_DQ16  
DDR2_DQ17  
DDR2_DQ18  
DDR2_DQ19  
DDR2_DQ20  
DDR2_DQ21  
DDR2_DQ22  
DDR2_DQ23  
DDR2_DQ24  
DDR2_DQ25  
DDR2_DQ26  
DDR2_DQ27  
DDR2_DQ28  
DDR2_DQ29  
DDR2_DQ30  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
24  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C2  
D4  
R1  
DDR2_DQ31  
DDR2_DQ31  
DDR2_DQS0N  
DDR2_DQS0P  
DDR2_DQS1N  
DDR2_DQS1P  
DDR2_DQS2N  
DDR2_DQS2P  
DDR2_DQS3N  
DDR2_DQS3P  
DDR3_CA0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
A
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C2  
DDR2_DQS0N  
VDDS_DDR /  
VDDS_DDR_  
C2  
T1  
DDR2_DQS0P  
DDR2_DQS1N  
DDR2_DQS1P  
DDR2_DQS2N  
DDR2_DQS2P  
DDR2_DQS3N  
DDR2_DQS3P  
DDR3_CA0  
VDDS_DDR /  
VDDS_DDR_  
C2  
M1  
N1  
VDDS_DDR /  
VDDS_DDR_  
C2  
VDDS_DDR /  
VDDS_DDR_  
C2  
G1  
VDDS_DDR /  
VDDS_DDR_  
C2  
H1  
VDDS_DDR /  
VDDS_DDR_  
C2  
D1  
VDDS_DDR /  
VDDS_DDR_  
C2  
E1  
VDDS_DDR /  
VDDS_DDR_  
C3  
D25  
B23  
D24  
C24  
E23  
F23  
F18  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CA1  
DDR3_CA1  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CA2  
DDR3_CA2  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CA3  
DDR3_CA3  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CA4  
DDR3_CA4  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CA5  
DDR3_CA5  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CAL0  
DDR3_CAL0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C3  
C25  
G24  
G23  
G25  
F25  
E24  
E18  
D21  
C28  
E30  
D18  
B18  
C19  
D19  
F20  
E20  
DDR3_CKE0  
DDR3_CKE0  
DDR3_CKE1  
DDR3_CSn0_0  
DDR3_CSn0_1  
DDR3_CSn1_0  
DDR3_CSn1_1  
DDR3_DM0  
DDR3_DM1  
DDR3_DM2  
DDR3_DM3  
DDR3_DQ0  
DDR3_DQ1  
DDR3_DQ2  
DDR3_DQ3  
DDR3_DQ4  
DDR3_DQ5  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_CKE1  
DDR3_CSn0_0  
DDR3_CSn0_1  
DDR3_CSn1_0  
DDR3_CSn1_1  
DDR3_DM0  
DDR3_DM1  
DDR3_DM2  
DDR3_DM3  
DDR3_DQ0  
DDR3_DQ1  
DDR3_DQ2  
DDR3_DQ3  
DDR3_DQ4  
DDR3_DQ5  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
26  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C3  
G19  
F19  
E21  
G21  
F22  
D22  
C22  
B21  
B20  
C20  
B28  
B27  
C26  
D26  
F26  
G26  
DDR3_DQ6  
DDR3_DQ6  
DDR3_DQ7  
DDR3_DQ8  
DDR3_DQ9  
DDR3_DQ10  
DDR3_DQ11  
DDR3_DQ12  
DDR3_DQ13  
DDR3_DQ14  
DDR3_DQ15  
DDR3_DQ16  
DDR3_DQ17  
DDR3_DQ18  
DDR3_DQ19  
DDR3_DQ20  
DDR3_DQ21  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_DQ7  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_DQ8  
DDR3_DQ9  
DDR3_DQ10  
DDR3_DQ11  
DDR3_DQ12  
DDR3_DQ13  
DDR3_DQ14  
DDR3_DQ15  
DDR3_DQ16  
DDR3_DQ17  
DDR3_DQ18  
DDR3_DQ19  
DDR3_DQ20  
DDR3_DQ21  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C3  
E27  
D27  
F29  
G29  
F28  
E28  
D29  
C29  
B30  
D30  
A19  
A18  
A22  
A21  
A27  
A26  
DDR3_DQ22  
DDR3_DQ22  
DDR3_DQ23  
DDR3_DQ24  
DDR3_DQ25  
DDR3_DQ26  
DDR3_DQ27  
DDR3_DQ28  
DDR3_DQ29  
DDR3_DQ30  
DDR3_DQ31  
DDR3_DQS0N  
DDR3_DQS0P  
DDR3_DQS1N  
DDR3_DQS1P  
DDR3_DQS2N  
DDR3_DQS2P  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
1.1 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_DQ23  
DDR3_DQ24  
DDR3_DQ25  
DDR3_DQ26  
DDR3_DQ27  
DDR3_DQ28  
DDR3_DQ29  
DDR3_DQ30  
DDR3_DQ31  
DDR3_DQS0N  
DDR3_DQS0P  
DDR3_DQS1N  
DDR3_DQS1P  
DDR3_DQS2N  
DDR3_DQS2P  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
VDDS_DDR /  
VDDS_DDR_  
C3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
28  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDS_DDR /  
VDDS_DDR_  
C3  
A30  
A29  
DDR3_DQS3N  
DDR3_DQS3N  
IO  
1.1 V  
1.1 V  
DDR  
DDR  
VDDS_DDR /  
VDDS_DDR_  
C3  
DDR3_DQS3P  
DDR3_DQS3P  
DP0_AUXN  
IO  
IO  
VDDA_1P8_S  
ERDES2_4  
AP22  
AP23  
DP0_AUXN  
DP0_AUXP  
1.8 V  
1.8 V  
AUX-PHY  
AUX-PHY  
VDDA_1P8_S  
ERDES2_4  
DP0_AUXP  
IO  
O
CSI0_TXCLKN  
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
AP26  
AP25  
AM24  
AP29  
AP28  
AL22  
AU27  
DSI0_TXCLKN  
DSI0_TXCLKP  
DSI0_TXRCALIB  
DSI1_TXCLKN  
DSI1_TXCLKP  
DSI1_TXRCALIB  
DSI0_TXN0  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
DSI0_TXCLKN  
DSI0_TXCLKP  
CSI0_TXCLKP  
O
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
DSI0_TXRCALIB  
A
DSI1_TXCLKN  
CSI1_TXCLKN  
DSI1_TXCLKP  
CSI1_TXCLKP  
O
O
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
DSI1_TXRCALIB  
A
CSI0_TXN0  
DSI0_TXN0  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
CSI0_TXN1  
DSI0_TXN1  
DSI0_TXN2  
CSI0_TXN2  
DSI0_TXN3  
CSI0_TXN3  
CSI0_TXP0  
DSI0_TXP0  
CSI0_TXP1  
DSI0_TXP1  
DSI0_TXP2  
CSI0_TXP2  
DSI0_TXP3  
CSI0_TXP3  
CSI1_TXN0  
DSI1_TXN0  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
AT26  
AR27  
AN24  
AU26  
AT25  
AR26  
AN23  
AT29  
DSI0_TXN1  
1.8 V  
O
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
DSI0_TXN2  
DSI0_TXN3  
DSI0_TXP0  
DSI0_TXP1  
DSI0_TXP2  
DSI0_TXP3  
DSI1_TXN0  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
IO  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
30  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
CSI1_TXN1  
DSI1_TXN1  
CSI1_TXN2  
DSI1_TXN2  
CSI1_TXN3  
DSI1_TXN3  
DSI1_TXP0  
CSI1_TXP0  
CSI1_TXP1  
DSI1_TXP1  
DSI1_TXP2  
CSI1_TXP2  
CSI1_TXP3  
DSI1_TXP3  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
AN27  
AV28  
AU30  
AT28  
AN26  
AV27  
AU29  
DSI1_TXN1  
1.8 V  
O
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
DSI1_TXN2  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
DSI1_TXN3  
DSI1_TXP0  
DSI1_TXP1  
DSI1_TXP2  
DSI1_TXP3  
1.8 V  
O
IO  
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
O
VDDA_0P8_D  
SITX /  
VDDA_0P8_D  
SITX_C /  
VDDA_1P8_D  
SITX  
1.8 V  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
ECAP0_IN_APWM_OUT  
MCASP4_AXR2  
CPTS0_RFT_CLK  
HYP1_TXFLCLK  
MCAN12_TX  
0
1
IO  
IO  
I
2
3
I
4
O
O
IO  
VOUT0_DATA23  
GPMC0_AD5  
5
ECAP0_IN_APWM_OUT  
6
PADCFG:  
PADCONFIG_49  
0x0011C0C4  
AD36  
GPIO0_49  
7
IO  
IO  
O
O
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI6_D0  
8
SYNC0_OUT  
9
TRC_DATA1  
10  
11  
12  
13  
14  
UART2_CTSn  
CPTS0_HW1TSPUSH  
I2C1_SCL  
I
IOD  
I
UART3_RXD  
EMU0  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_75  
0x4301C12C  
F35  
H34  
EMU0  
0
IO  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
On / Off / Up  
On / Off / Up  
Off / Off / Off  
On / Off / Up  
On / Off / Up  
Off / SS / Off  
0
0
7
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
No  
EMU1  
EMU1  
0
15  
0
IO  
O
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_76  
0x4301C130  
MCU_OBSCLK0  
EXTINTn  
EXTINTn  
I2C OPEN  
DRAIN  
PADCFG:  
PADCONFIG_0  
0x0011C000  
AN35  
VDDSHV0  
GPIO0_0  
7
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
32  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
EXT_REFCLK1  
0
1
I
IO  
O
I
MCASP4_ACLKX  
VOUT0_DATA16  
HYP1_TXFLDAT  
MCAN1_RX  
2
3
4
I
EXT_REFCLK1  
GPMC0_AD6  
GPIO0_50  
6
IO  
PADCFG:  
PADCONFIG_50  
0x0011C0C8  
AJ32  
7
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SYNC1_OUT  
TRC_CLK  
9
10  
11  
12  
13  
14  
0
O
UART2_RTSn  
CPTS0_HW2TSPUSH  
I2C1_SDA  
O
I
IOD  
O
UART3_TXD  
MCAN17_TX  
VOUT0_DATA18  
GPMC0_A14  
GPIO0_11  
O
2
O
6
OZ  
IO  
IO  
O
GPIO0_11  
7
PADCFG:  
PADCONFIG_11  
0x0011C02C  
AL32  
SPI7_CS3  
8
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
TRC_DATA25  
GPMC0_CSn2  
UART7_RXD  
USB0_DRVVBUS  
MCAN12_RX  
VOUT0_DATA17  
HYP1_RXFLDAT  
VOUT0_DATA22  
GPMC0_AD4  
GPIO0_12  
10  
12  
13  
14  
0
O
I
O
I
2
O
3
O
5
O
GPIO0_12  
6
IO  
IO  
IO  
IO  
O
PADCFG:  
PADCONFIG_12  
0x0011C030  
AK37  
7
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI6_CLK  
8
EQEP1_I  
9
TRC_DATA2  
UART9_CTSn  
UART6_RXD  
I2C0_SCL  
10  
11  
12  
0
I
I
I2C0_SCL  
IOD  
I2C OPEN  
DRAIN  
PADCFG:  
PADCONFIG_56  
0x0011C0E0  
AN36  
1.8 V/3.3 V  
Off / Off / Off  
On / SS / Off  
7
VDDSHV0  
Yes  
No  
GPIO0_56  
7
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
I2C0_SDA  
I2C0_SDA  
GPIO0_57  
0
7
IOD  
I2C OPEN  
DRAIN  
PADCFG:  
PADCONFIG_57  
0x0011C0E4  
AP37  
1.8 V/3.3 V  
IO  
Off / Off / Off  
On / SS / Off  
7
VDDSHV0  
Yes  
No  
MCAN0_RX  
0
1
I
MCASP4_AXR1  
VOUT0_DATA3  
GPMC0_AD15  
GPIO0_26  
IO  
O
2
6
IO  
IO  
MCAN0_RX  
7
PADCFG:  
PADCONFIG_26  
0x0011C068  
AE38  
SPI5_CS0  
8
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EHRPWM0_A  
TRC_DATA16  
UART2_TXD  
UART6_RTSn  
SPI7_D0  
9
10  
11  
12  
13  
0
O
O
IO  
O
MCAN0_TX  
MCASP2_AXR2  
VOUT0_DATA4  
GPMC0_AD14  
GPIO0_25  
1
IO  
O
2
6
IO  
IO  
IO  
IO  
O
MCAN0_TX  
7
PADCFG:  
PADCONFIG_25  
0x0011C064  
AF38  
SPI5_CS1  
8
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EHRPWM0_B  
TRC_DATA11  
UART2_RXD  
UART6_CTSn  
I2C3_SCL  
9
10  
11  
12  
13  
0
I
I
IOD  
I
MCAN1_RX  
MCASP4_AXR3  
VOUT0_DATA1  
VOUT0_DATA19  
1
IO  
O
2
5
O
MCAN1_RX  
GPMC0_BE0n_CLE  
GPIO0_28  
6
O
PADCFG:  
PADCONFIG_28  
0x0011C070  
AH38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
IO  
IO  
I
SPI5_D0  
8
EHRPWM0_SYNCI  
TRC_DATA5  
9
10  
11  
O
UART3_RTSn  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
34  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN1_TX  
0
1
O
IO  
I
MCASP4_AFSX  
VOUT0_EXTPCLKIN  
HYP1_TXPMCLK  
DSS_FSYNC0  
GPMC0_AD7  
GPIO0_27  
2
3
O
MCAN1_TX  
4
O
PADCFG:  
PADCONFIG_27  
0x0011C06C  
AJ37  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
7
IO  
I
EHRPWM_TZn_IN5  
TRC_CTL  
9
10  
11  
0
O
O
I
UART6_TXD  
MCAN2_RX  
AUDIO_EXT_REFCLK1  
VOUT0_PCLK  
GPMC0_CSn1  
GPIO0_30  
1
IO  
O
O
IO  
2
6
MCAN2_RX  
7
PADCFG:  
PADCONFIG_30  
0x0011C078  
AH37  
SPI6_CS1  
8
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EHRPWM4_B  
TRC_DATA17  
UART3_TXD  
GPMC0_DIR  
I2C5_SDA  
9
10  
11  
12  
13  
0
O
O
IOD  
O
MCAN2_TX  
MCASP2_AXR3  
VOUT0_DATA0  
VOUT0_DATA18  
GPMC0_WAIT0  
GPIO0_29  
1
IO  
O
2
5
O
6
I
MCAN2_TX  
7
IO  
IO  
IO  
O
PADCFG:  
PADCONFIG_29  
0x0011C074  
AC33  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI6_D1  
8
EHRPWM1_B  
TRC_DATA3  
UART3_RXD  
GPMC0_DIR  
I2C5_SCL  
9
10  
11  
12  
13  
I
O
IOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN12_RX  
UART0_DCDn  
DSS_FSYNC1  
GPMC0_A23  
GPIO0_2  
0
1
I
I
3
O
MCAN12_RX  
6
OZ  
PADCFG:  
PADCONFIG_2  
0x0011C008  
AJ33  
AG36  
AH33  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
Yes  
Yes  
Yes  
7
TRC_CTL  
10  
11  
12  
0
O
I
UART5_RXD  
GPMC0_CSn3  
MCAN12_TX  
DSS_FSYNC0  
GPMC0_A24  
GPIO0_1  
O
O
O
OZ  
3
MCAN12_TX  
6
PADCFG:  
PADCONFIG_1  
0x0011C004  
7
IO  
O
1.8 V/3.3 V  
VDDSHV2  
TRC_CLK  
10  
11  
12  
0
UART5_TXD  
GPMC0_CLK  
MCAN13_RX  
UART0_DTRn  
DSS_FSYNC3  
GPMC0_A21  
GPIO0_4  
O
IO  
I
1
O
3
O
MCAN13_RX  
6
OZ  
IO  
IOD  
O
PADCFG:  
PADCONFIG_4  
0x0011C010  
1.8 V/3.3 V  
VDDSHV2  
7
I2C4_SDA  
8
TRC_DATA1  
UART6_TXD  
MCAN13_TX  
UART0_DSRn  
DSS_FSYNC2  
GPMC0_A22  
GPIO0_3  
10  
11  
0
O
O
1
I
3
O
MCAN13_TX  
6
OZ  
IO  
O
PADCFG:  
PADCONFIG_3  
0x0011C00C  
AF33  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
TRC_DATA0  
UART4_TXD  
GPMC0_WAIT2  
10  
11  
12  
O
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
36  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN14_RX  
VOUT0_DATA23  
GPMC0_A19  
GPIO0_6  
0
2
I
O
MCAN14_RX  
6
OZ  
PADCFG:  
PADCONFIG_6  
0x0011C018  
AK36  
7
IO  
IOD  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
I2C5_SDA  
8
TRC_DATA3  
UART9_TXD  
MCAN14_TX  
UART0_RIn  
GPMC0_A20  
GPIO0_5  
10  
11  
0
O
O
1
I
6
OZ  
IO  
IOD  
O
MCAN14_TX  
7
PADCFG:  
PADCONFIG_5  
0x0011C014  
AG33  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
I2C4_SCL  
8
TRC_DATA2  
UART6_RXD  
DP0_HPD  
10  
11  
13  
0
I
I
MCAN15_RX  
VOUT0_DATA21  
GPMC0_A17  
GPIO0_8  
I
2
O
MCAN15_RX  
6
OZ  
IO  
IO  
O
PADCFG:  
PADCONFIG_8  
0x0011C020  
AJ35  
AG34  
AE33  
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
Yes  
Yes  
Yes  
SPI0_CS2  
8
TRC_DATA22  
I2C1_SCL  
10  
12  
0
IOD  
O
MCAN15_TX  
VOUT0_DATA22  
GPMC0_A18  
GPIO0_7  
2
O
MCAN15_TX  
6
OZ  
IO  
IOD  
O
PADCFG:  
PADCONFIG_7  
0x0011C01C  
7
I2C5_SCL  
8
TRC_DATA21  
UART9_RXD  
MCAN16_RX  
VOUT0_DATA19  
GPMC0_A15  
GPIO0_10  
10  
11  
0
I
I
2
O
MCAN16_RX  
6
OZ  
IO  
IO  
O
PADCFG:  
PADCONFIG_10  
0x0011C028  
7
SPI0_CS3  
8
TRC_DATA24  
GPMC0_WAIT1  
10  
12  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN16_TX  
VOUT0_DATA20  
GPMC0_A16  
GPIO0_9  
0
2
O
O
MCAN16_TX  
6
OZ  
PADCFG:  
PADCONFIG_9  
0x0011C024  
AH34  
7
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI1_CS3  
8
TRC_DATA23  
I2C1_SDA  
10  
12  
0
IOD  
O
MCAN5_TX  
MCASP0_ACLKX  
VOUT0_DATA15  
HYP0_RXFLCLK  
GPMC0_AD0  
GPIO0_14  
1
IO  
O
2
MCASP0_ACLKX  
3
O
PADCFG:  
PADCONFIG_14  
0x0011C038  
AK35  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
IO  
IO  
I
7
EHRPWM_TZn_IN2  
UART8_RXD  
MCAN5_RX  
9
11  
0
I
I
MCASP0_AFSX  
VOUT0_DATA14  
HYP0_RXFLDAT  
GPMC0_AD1  
GPIO0_15  
1
IO  
O
2
MCASP0_AFSX  
3
O
PADCFG:  
PADCONFIG_15  
0x0011C03C  
AK38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
IO  
IO  
IO  
O
7
EHRPWM2_B  
UART8_TXD  
MCAN10_RX  
MCASP1_ACLKX  
DP0_HPD  
9
11  
0
I
1
IO  
I
3
PCIE0_CLKREQn  
GPMC0_A11  
RGMII1_RD0  
GPIO0_46  
4
IO  
OZ  
I
MCASP1_ACLKX  
5
PADCFG:  
PADCONFIG_46  
0x0011C0B8  
AC34  
6
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
IO  
IO  
O
EQEP0_S  
9
UART4_RTSn  
SPI3_CS3  
11  
12  
13  
IO  
O
UART9_RTSn  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
38  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN11_TX  
MCASP1_AFSX  
GPMC0_A12  
MDIO0_MDIO  
GPIO0_47  
0
1
O
IO  
5
OZ  
MCASP1_AFSX  
6
IO  
PADCFG:  
PADCONFIG_47  
0x0011C0BC  
AD33  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
SPI3_CS0  
8
IO  
IO  
I
EQEP0_I  
9
UART0_RXD  
MCAN8_RX  
11  
0
I
MCASP2_ACLKX  
VOUT0_DATA8  
HYP0_TXPMCLK  
VOUT0_DATA20  
GPMC0_AD10  
GPIO0_21  
1
IO  
O
O
O
IO  
2
3
5
MCASP2_ACLKX  
6
PADCFG:  
PADCONFIG_21  
0x0011C054  
AD37  
7
IO  
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI5_CS2  
8
EQEP2_S  
9
TRC_DATA4  
UART1_RXD  
SPI7_CS1  
10  
11  
13  
14  
0
I
IO  
O
SYNC3_OUT  
MCAN9_TX  
O
MCASP2_AFSX  
VOUT0_DATA7  
HYP0_TXPMDAT  
MDIO1_MDC  
GPMC0_AD11  
GPIO0_22  
1
IO  
O
2
3
O
4
O
MCASP2_AFSX  
6
IO  
IO  
IO  
O
PADCFG:  
PADCONFIG_22  
0x0011C058  
AE37  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
SPI5_CS3  
8
EHRPWM_SOCA  
TRC_DATA9  
UART1_TXD  
SPI7_CS2  
9
10  
11  
13  
O
O
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN6_TX  
0
1
O
IO  
O
I
MCASP0_AXR0  
VOUT0_DATA13  
HYP0_TXFLCLK  
GPMC0_AD2  
GPIO0_16  
2
3
6
IO  
MCASP0_AXR0  
7
IO  
PADCFG:  
PADCONFIG_16  
0x0011C040  
AF37  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI2_CS2  
8
EHRPWM2_A  
TRC_DATA14  
UART4_RXD  
SPI7_CLK  
9
IO  
O
I
10  
11  
13  
14  
0
IO  
I
UART8_CTSn  
MCAN6_RX  
I
MCASP0_AXR1  
VOUT0_DATA12  
HYP0_TXFLDAT  
OBSCLK1  
1
IO  
O
I
2
3
4
O
IO  
MCASP0_AXR1  
GPMC0_AD3  
GPIO0_17  
6
PADCFG:  
PADCONFIG_17  
0x0011C044  
AG37  
7
IO  
IO  
O
O
O
IO  
O
O
IO  
O
O
O
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI2_CS3  
8
EHRPWM0_SYNCO  
TRC_DATA12  
UART4_TXD  
9
10  
11  
13  
14  
0
SPI7_CS0  
UART8_RTSn  
MCAN7_TX  
MCASP0_AXR2  
VOUT0_DATA11  
HYP1_RXFLCLK  
GPMC0_ADVn_ALE  
GPIO0_18  
1
2
3
MCASP0_AXR2  
6
PADCFG:  
PADCONFIG_18  
0x0011C048  
AK33  
7
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EQEP2_A  
9
TRC_DATA10  
UART4_CTSn  
GPMC0_WPn  
UART9_CTSn  
10  
11  
12  
13  
O
I
O
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
40  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN3_TX  
0
1
O
IO  
O
MCASP0_AXR3  
VOUT0_DATA2  
GPMC0_BE1n  
GPIO0_31  
2
6
O
MCASP0_AXR3  
7
IO  
PADCFG:  
PADCONFIG_31  
0x0011C07C  
AJ38  
SPI5_CLK  
8
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EHRPWM_TZn_IN0  
TRC_DATA7  
9
10  
11  
12  
13  
0
O
UART3_CTSn  
SPI3_CS1  
I
IO  
IO  
I
SPI7_D1  
MCAN3_RX  
MCASP0_AXR4  
VOUT0_HSYNC  
HYP1_TXPMDAT  
VOUT0_VP0_HSYNC  
VOUT0_VP2_HSYNC  
GPMC0_OEn_REn  
GPIO0_32  
1
IO  
O
2
3
O
4
O
MCASP0_AXR4  
5
O
PADCFG:  
PADCONFIG_32  
0x0011C080  
AK34  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
O
7
IO  
IO  
IO  
O
SPI6_CS2  
8
EHRPWM5_B  
TRC_DATA18  
I2C4_SDA  
9
10  
13  
0
IOD  
O
MCAN4_TX  
MCASP0_AXR5  
VOUT0_DE  
1
IO  
O
2
MCASP1_ACLKR  
VOUT0_VP0_DE  
VOUT0_VP2_DE  
GPMC0_CSn0  
GPIO0_33  
3
IO  
O
4
MCASP0_AXR5  
5
O
PADCFG:  
PADCONFIG_33  
0x0011C084  
AG38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
O
7
IO  
IO  
IO  
O
SPI6_CS3  
8
EHRPWM5_A  
TRC_DATA19  
I2C4_SCL  
9
10  
13  
IOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN4_RX  
0
1
I
MCASP0_AXR6  
VOUT0_VSYNC  
MCASP1_AFSR  
IO  
O
IO  
O
O
2
3
VOUT0_VP0_VSYNC  
VOUT0_VP2_VSYNC  
GPMC0_CLKOUT  
GPIO0_34  
4
MCASP0_AXR6  
5
PADCFG:  
PADCONFIG_34  
0x0011C088  
AF36  
6
O
IO  
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
SPI3_CS2  
8
EHRPWM_TZn_IN4  
TRC_DATA20  
SPI5_D1  
9
10  
11  
12  
0
O
IO  
O
GPMC0_FCLK_MUX  
MCAN5_TX  
O
MCASP0_AXR7  
MCASP4_ACLKR  
GPMC0_A0  
1
IO  
IO  
OZ  
O
3
5
MCASP0_AXR7  
RGMII1_TD0  
6
PADCFG:  
PADCONFIG_35  
0x0011C08C  
AE35  
GPIO0_35  
7
IO  
OZ  
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
GPMC0_A14  
8
EHRPWM3_A  
UART4_RXD  
9
11  
12  
14  
0
GPMC0_CSn2  
USB0_DRVVBUS  
MCAN5_RX  
O
O
I
MCASP0_AXR8  
MCASP4_AFSR  
GPMC0_A1  
1
IO  
IO  
OZ  
O
3
MCASP0_AXR8  
5
PADCFG:  
PADCONFIG_36  
0x0011C090  
AC35  
RGMII1_TD1  
6
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
GPIO0_36  
7
IO  
I
RMII1_RXD0  
8
EHRPWM_TZn_IN3  
UART4_TXD  
9
I
11  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
42  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN6_TX  
0
1
O
IO  
IO  
OZ  
MCASP0_AXR9  
MCASP4_AXR4  
GPMC0_A2  
2
MCASP0_AXR9  
5
PADCFG:  
PADCONFIG_37  
0x0011C094  
AG35  
RGMII1_TD2  
GPIO0_37  
6
O
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
RMII1_RXD1  
8
EHRPWM3_SYNCO  
UART4_CTSn  
MCAN6_RX  
9
O
I
11  
0
I
MCASP0_AXR10  
GPMC0_A3  
1
IO  
OZ  
O
IO  
I
5
MCASP0_AXR10  
RGMII1_TD3  
GPIO0_38  
6
PADCFG:  
PADCONFIG_38  
0x0011C098  
AH36  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
RMII1_CRS_DV  
EHRPWM3_SYNCI  
UART4_RTSn  
MCAN7_TX  
8
9
I
11  
0
O
O
IO  
O
OZ  
O
IO  
I
MCASP0_AXR11  
DSS_FSYNC2  
GPMC0_A4  
1
4
5
MCASP0_AXR11  
RGMII1_TX_CTL  
GPIO0_39  
6
PADCFG:  
PADCONFIG_39  
0x0011C09C  
AF35  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
RMII1_RX_ER  
EHRPWM3_B  
SPI2_CS1  
8
9
IO  
IO  
I
10  
11  
UART5_RXD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN7_RX  
0
1
I
MCASP0_AXR12  
MCASP2_ACLKR  
DSS_FSYNC3  
GPMC0_A5  
IO  
IO  
O
3
4
MCASP0_AXR12  
5
OZ  
PADCFG:  
PADCONFIG_40  
0x0011C0A0  
AD34  
RGMII1_RD1  
GPIO0_40  
6
I
IO  
O
O
IO  
O
O
IO  
IO  
OZ  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
RMII1_TXD0  
EHRPWM_SOCB  
SPI2_CLK  
8
9
10  
11  
0
UART5_TXD  
MCAN8_TX  
MCASP0_AXR13  
MCASP2_AFSR  
GPMC0_A6  
1
3
5
MCASP0_AXR13  
RGMII1_RD2  
GPIO0_41  
6
PADCFG:  
PADCONFIG_41  
0x0011C0A4  
AJ36  
7
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
RMII_REF_CLK  
EHRPWM4_A  
SPI2_CS0  
8
9
IO  
IO  
I
10  
11  
13  
0
UART5_CTSn  
UART7_RXD  
MCAN8_RX  
I
I
MCASP0_AXR14  
MCASP2_AXR4  
MCASP0_ACLKR  
GPMC0_A7  
1
IO  
IO  
IO  
OZ  
I
2
3
5
MCASP0_AXR14  
RGMII1_RD3  
GPIO0_42  
6
PADCFG:  
PADCONFIG_42  
0x0011C0A8  
AF34  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
IO  
IO  
I
CLKOUT  
8
EQEP0_A  
9
SPI2_D0  
10  
11  
13  
IO  
O
O
UART5_RTSn  
UART7_TXD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
44  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN9_TX  
0
1
O
IO  
IO  
OZ  
I
MCASP0_AXR15  
MCASP0_AFSR  
GPMC0_A8  
3
5
MCASP0_AXR15  
RGMII1_RX_CTL  
GPIO0_43  
6
PADCFG:  
PADCONFIG_43  
0x0011C0AC  
AE34  
7
IO  
O
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
RMII1_TX_EN  
EQEP0_B  
8
9
SPI2_D1  
10  
11  
13  
0
IO  
I
UART8_RXD  
I2C1_SCL  
IOD  
I
MCAN11_RX  
MCASP1_AXR0  
GPMC0_A13  
MDIO0_MDC  
GPIO0_48  
1
IO  
OZ  
O
IO  
IO  
IO  
O
I
5
6
MCASP1_AXR0  
7
PADCFG:  
PADCONFIG_48  
0x0011C0C0  
AD38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI3_CLK  
8
EQEP1_S  
9
UART0_TXD  
GPMC0_WAIT3  
SYNC2_OUT  
MCAN7_RX  
MCASP1_AXR1  
VOUT0_DATA10  
HYP1_RXPMCLK  
GPMC0_AD8  
GPIO0_19  
11  
12  
14  
0
O
I
1
IO  
O
I
2
3
6
IO  
IO  
IO  
I
MCASP1_AXR1  
7
PADCFG:  
PADCONFIG_19  
0x0011C04C  
AC32  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI3_D0  
8
EHRPWM_TZn_IN1  
TRC_DATA8  
UART0_CTSn  
UART9_RXD  
I2C2_SCL  
9
10  
11  
12  
13  
O
I
I
IOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN8_TX  
0
1
O
IO  
O
I
MCASP1_AXR2  
VOUT0_DATA9  
2
HYP1_RXPMDAT  
VOUT0_DATA21  
GPMC0_AD9  
GPIO0_20  
3
5
O
IO  
MCASP1_AXR2  
6
PADCFG:  
PADCONFIG_20  
0x0011C050  
AC37  
7
IO  
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
SPI3_D1  
8
EQEP2_B  
9
TRC_DATA6  
UART0_RTSn  
UART9_TXD  
I2C2_SDA  
10  
11  
12  
13  
0
O
O
O
IOD  
I
MCAN9_RX  
MCASP1_AXR3  
PCIE2_CLKREQn  
GPMC0_A9  
RGMII1_RXC  
GPIO0_44  
1
IO  
IO  
OZ  
I
4
5
MCASP1_AXR3  
6
PADCFG:  
PADCONFIG_44  
0x0011C0B0  
AL33  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
IO  
O
RMII1_TXD1  
EQEP1_A  
8
9
I
UART8_TXD  
I2C1_SDA  
11  
13  
0
O
IOD  
O
MCAN10_TX  
MCASP1_AXR4  
PCIE3_CLKREQn  
GPMC0_A10  
RGMII1_TXC  
GPIO0_45  
1
IO  
IO  
OZ  
O
4
MCASP1_AXR4  
5
PADCFG:  
PADCONFIG_45  
0x0011C0B4  
AL34  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
6
7
IO  
I
EQEP1_B  
9
UART4_RXD  
11  
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
46  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCAN9_RX  
0
1
I
MCASP2_AXR0  
VOUT0_DATA6  
IO  
O
I
2
HYP0_RXPMCLK  
MDIO1_MDIO  
GPMC0_AD12  
GPIO0_23  
3
MCASP2_AXR0  
4
IO  
PADCFG:  
PADCONFIG_23  
0x0011C05C  
AC36  
6
IO  
IO  
IO  
O
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
7
EQEP2_I  
9
TRC_DATA15  
UART1_CTSn  
UART6_RXD  
10  
11  
12  
0
I
MCAN17_RX  
I
MCASP2_AXR1  
VOUT0_DATA5  
HYP0_RXPMDAT  
GPMC0_AD13  
GPIO0_24  
1
IO  
O
I
2
3
MCASP2_AXR1  
6
IO  
IO  
IO  
O
O
O
IOD  
A
PADCFG:  
PADCONFIG_24  
0x0011C060  
AE36  
7
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
Yes  
EHRPWM1_A  
TRC_DATA13  
UART1_RTSn  
UART6_TXD  
9
10  
11  
12  
13  
I2C3_SDA  
U35  
R35  
MCU_ADC0_REFN  
MCU_ADC0_REFP  
MCU_ADC1_REFN  
MCU_ADC1_REFP  
MCU_ADC0_AIN0  
MCU_ADC0_REFN  
MCU_ADC0_REFP  
MCU_ADC1_REFN  
MCU_ADC1_REFP  
MCU_ADC0_AIN0  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC1  
VDDA_ADC1  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
No  
No  
No  
No  
A
W35  
AA35  
A
A
0
7
0
7
0
7
A
PADCFG:  
WKUP_PADCONFIG_77  
0x4301C134  
P36  
V36  
T34  
1.8 V  
1.8 V  
1.8 V  
0
0
0
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
ADC12B  
ADC12B  
ADC12B  
No  
No  
No  
WKUP_GPIO0_71  
MCU_ADC0_AIN1  
WKUP_GPIO0_72  
MCU_ADC0_AIN2  
WKUP_GPIO0_73  
I
A
I
MCU_ADC0_AIN1  
PADCFG:  
WKUP_PADCONFIG_78  
0x4301C138  
MCU_ADC0_AIN2  
A
I
PADCFG:  
WKUP_PADCONFIG_79  
0x4301C13C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_ADC0_AIN3  
MCU_ADC0_AIN3  
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
A
PADCFG:  
WKUP_PADCONFIG_80  
0x4301C140  
T36  
P34  
R37  
R33  
V38  
Y38  
Y34  
V34  
W37  
AA37  
W33  
1.8 V  
0
0
0
0
0
0
0
0
0
0
0
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC0  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
VDDA_ADC1  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
ADC12B  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
WKUP_GPIO0_74  
MCU_ADC0_AIN4  
WKUP_GPIO0_75  
MCU_ADC0_AIN5  
WKUP_GPIO0_76  
MCU_ADC0_AIN6  
WKUP_GPIO0_77  
MCU_ADC0_AIN7  
WKUP_GPIO0_78  
MCU_ADC1_AIN0  
WKUP_GPIO0_79  
MCU_ADC1_AIN1  
WKUP_GPIO0_80  
MCU_ADC1_AIN2  
WKUP_GPIO0_81  
MCU_ADC1_AIN3  
WKUP_GPIO0_82  
MCU_ADC1_AIN4  
WKUP_GPIO0_83  
MCU_ADC1_AIN5  
WKUP_GPIO0_84  
I
MCU_ADC0_AIN4  
A
PADCFG:  
WKUP_PADCONFIG_81  
0x4301C144  
1.8 V  
I
MCU_ADC0_AIN5  
A
PADCFG:  
WKUP_PADCONFIG_82  
0x4301C148  
1.8 V  
I
MCU_ADC0_AIN6  
A
PADCFG:  
WKUP_PADCONFIG_83  
0x4301C14C  
1.8 V  
I
MCU_ADC0_AIN7  
A
PADCFG:  
WKUP_PADCONFIG_84  
0x4301C150  
1.8 V  
I
MCU_ADC1_AIN0  
A
PADCFG:  
WKUP_PADCONFIG_85  
0x4301C154  
1.8 V  
I
MCU_ADC1_AIN1  
A
PADCFG:  
WKUP_PADCONFIG_86  
0x4301C158  
1.8 V  
I
MCU_ADC1_AIN2  
A
PADCFG:  
WKUP_PADCONFIG_87  
0x4301C15C  
1.8 V  
I
MCU_ADC1_AIN3  
A
PADCFG:  
WKUP_PADCONFIG_88  
0x4301C160  
1.8 V  
I
MCU_ADC1_AIN4  
A
PADCFG:  
WKUP_PADCONFIG_89  
0x4301C164  
1.8 V  
I
MCU_ADC1_AIN5  
A
PADCFG:  
WKUP_PADCONFIG_90  
0x4301C168  
1.8 V  
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
48  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_ADC1_AIN6  
MCU_ADC1_AIN6  
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
A
PADCFG:  
WKUP_PADCONFIG_91  
0x4301C16C  
U33  
Y36  
M35  
G34  
F38  
K33  
A36  
B35  
E32  
C34  
D32  
1.8 V  
0
0
0
0
7
7
7
7
7
7
7
VDDA_ADC1  
VDDA_ADC1  
ADC12B  
ADC12B  
No  
No  
WKUP_GPIO0_85  
MCU_ADC1_AIN7  
WKUP_GPIO0_86  
MCU_I2C0_SCL  
I
MCU_ADC1_AIN7  
A
PADCFG:  
WKUP_PADCONFIG_92  
0x4301C170  
1.8 V  
I
MCU_I2C0_SCL  
IOD  
VDDSHV0_M  
CU  
I2C OPEN  
DRAIN  
PADCFG:  
WKUP_PADCONFIG_66  
0x4301C108  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
On / SS / Off  
On / SS / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
On / Off / Off  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
WKUP_GPIO0_65  
MCU_I2C0_SDA  
WKUP_GPIO0_87  
MCU_MCAN0_RX  
WKUP_GPIO0_61  
MCU_MCAN0_TX  
WKUP_GPIO0_60  
MCU_MDIO0_MDC  
WKUP_GPIO0_53  
MCU_MDIO0_MDIO  
WKUP_GPIO0_52  
MCU_I2C0_SDA  
IOD  
VDDSHV0_M  
CU  
I2C OPEN  
DRAIN  
PADCFG:  
WKUP_PADCONFIG_67  
0x4301C10C  
1.8 V/3.3 V  
IO  
MCU_MCAN0_RX  
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_47  
0x4301C0BC  
1.8 V/3.3 V  
IO  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
MCU_MCAN0_TX  
O
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_46  
0x4301C0B8  
1.8 V/3.3 V  
IO  
MCU_MDIO0_MDC  
O
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_39  
0x4301C09C  
1.8 V/3.3 V  
IO  
MCU_MDIO0_MDIO  
IO  
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_38  
0x4301C098  
1.8 V/3.3 V  
IO  
No  
MCU_OSPI0_CLK  
MCU_OSPI0_CLK  
0
1
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_0  
0x4301C000  
MCU_HYPERBUS0_CK  
O
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
No  
WKUP_GPIO0_16  
7
IO  
MCU_OSPI0_DQS  
MCU_OSPI0_DQS  
0
1
I
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_2  
0x4301C008  
MCU_HYPERBUS0_RWDS  
IO  
No  
WKUP_GPIO0_18  
7
IO  
MCU_OSPI0_LBCLKO  
MCU_OSPI0_LBCLKO  
0
1
IO  
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_1  
0x4301C004  
MCU_HYPERBUS0_CKn  
No  
WKUP_GPIO0_17  
7
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_OSPI1_CLK  
MCU_OSPI1_CLK  
0
7
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_16  
0x4301C040  
F32  
F31  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
WKUP_GPIO0_31  
MCU_OSPI1_DQS  
0
1
2
6
7
0
1
2
6
7
0
1
I
MCU_OSPI1_DQS  
MCU_OSPI0_CSn3  
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_18  
0x4301C048  
MCU_HYPERBUS0_INTn  
MCU_OSPI0_ECC_FAIL  
WKUP_GPIO0_33  
I
1.8 V/3.3 V  
I
IO  
IO  
O
I
MCU_OSPI1_LBCLKO  
MCU_OSPI0_CSn2  
MCU_OSPI1_LBCLKO  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_17  
0x4301C044  
C31  
MCU_HYPERBUS0_RESETOn  
MCU_OSPI0_RESET_OUT0  
WKUP_GPIO0_32  
1.8 V/3.3 V  
Off / Off / Off  
On / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
No  
O
IO  
O
O
MCU_OSPI0_CSn0  
MCU_OSPI0_CSn0  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_11  
0x4301C02C  
MCU_HYPERBUS0_CSn0  
A32  
A33  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
WKUP_GPIO0_27  
7
IO  
MCU_OSPI0_CSn1  
MCU_OSPI0_CSn1  
0
1
O
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_12  
0x4301C030  
MCU_HYPERBUS0_RESETn  
WKUP_GPIO0_28  
7
IO  
MCU_OSPI0_CSn2  
0
1
2
3
4
6
7
0
1
2
3
5
6
7
O
O
I
MCU_OSPI0_CSn2  
MCU_OSPI0_CSn2  
MCU_HYPERBUS0_RESETOn  
MCU_HYPERBUS0_WPn  
MCU_HYPERBUS0_CSn1  
MCU_OSPI0_RESET_OUT0  
WKUP_GPIO0_29  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_14  
0x4301C038  
B34  
O
O
O
IO  
O
O
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
No  
MCU_OSPI0_CSn3  
MCU_OSPI0_CSn3  
MCU_OSPI0_CSn3  
MCU_HYPERBUS0_INTn  
MCU_HYPERBUS0_WPn  
MCU_OSPI0_RESET_OUT1  
MCU_OSPI0_ECC_FAIL  
WKUP_GPIO0_30  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_15  
0x4301C03C  
C32  
O
O
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
No  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
50  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_OSPI0_D0  
0
1
7
IO  
IO  
MCU_OSPI0_D0  
MCU_HYPERBUS0_DQ0  
WKUP_GPIO0_19  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_3  
0x4301C00C  
B33  
B32  
1.8 V/3.3 V  
IO  
On / Off / Off  
On / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
BOOTS  
TRAP  
BOOTMODE00  
I
MCU_OSPI0_D1  
0
1
7
IO  
IO  
MCU_OSPI0_D1  
MCU_HYPERBUS0_DQ1  
WKUP_GPIO0_20  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_4  
0x4301C010  
1.8 V/3.3 V  
IO  
On / Off / Off  
On / Off / Off  
BOOTS  
TRAP  
BOOTMODE01  
I
MCU_OSPI0_D2  
MCU_OSPI0_D2  
0
1
IO  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_5  
0x4301C014  
MCU_HYPERBUS0_DQ2  
IO  
IO  
C33  
C35  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
WKUP_GPIO0_21  
7
MCU_OSPI0_D3  
MCU_OSPI0_D3  
0
1
IO  
IO  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_6  
0x4301C018  
MCU_HYPERBUS0_DQ3  
WKUP_GPIO0_22  
7
IO  
MCU_OSPI0_D4  
0
1
7
IO  
IO  
IO  
MCU_OSPI0_D4  
MCU_HYPERBUS0_DQ4  
WKUP_GPIO0_23  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_7  
0x4301C01C  
D33  
D34  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
BOOTS  
TRAP  
BOOTMODE02  
I
MCU_OSPI0_D5  
0
1
7
IO  
IO  
IO  
MCU_OSPI0_D5  
MCU_HYPERBUS0_DQ5  
WKUP_GPIO0_24  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_8  
0x4301C020  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
BOOTS  
TRAP  
BOOTMODE03  
I
MCU_OSPI0_D6  
MCU_OSPI0_D6  
0
1
IO  
IO  
VDDSHV1_M  
CU  
PADCFG:  
MCU_HYPERBUS0_DQ6  
E34  
E33  
G32  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
No  
No  
No  
WKUP_PADCONFIG_9  
0x4301C024  
WKUP_GPIO0_25  
7
IO  
MCU_OSPI0_D7  
MCU_OSPI0_D7  
0
1
IO  
IO  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_10  
0x4301C028  
MCU_HYPERBUS0_DQ7  
WKUP_GPIO0_26  
MCU_OSPI1_CSn0  
7
0
IO  
O
MCU_OSPI1_CSn0  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_23  
0x4301C05C  
WKUP_GPIO0_38  
7
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_OSPI1_CSn1  
0
1
2
3
4
5
6
7
0
O
O
MCU_HYPERBUS0_WPn  
MCU_TIMER_IO0  
IO  
MCU_OSPI1_CSn1  
MCU_HYPERBUS0_CSn1  
MCU_UART0_RTSn  
MCU_SPI0_CS2  
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_24  
0x4301C060  
G33  
1.8 V/3.3 V  
O
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
No  
IO  
O
MCU_OSPI0_RESET_OUT1  
WKUP_GPIO0_39  
IO  
IO  
MCU_OSPI1_D0  
MCU_OSPI1_D0  
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_19  
0x4301C04C  
E35  
D31  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
WKUP_GPIO0_34  
7
MCU_OSPI1_D1  
MCU_UART0_RXD  
MCU_SPI1_CS1  
WKUP_GPIO0_35  
MCU_OSPI1_D2  
MCU_UART0_TXD  
MCU_SPI1_CS2  
WKUP_GPIO0_36  
MCU_OSPI1_D3  
MCU_UART0_CTSn  
MCU_SPI0_CS1  
WKUP_GPIO0_37  
MCU_PORz  
0
4
5
7
0
4
5
7
0
4
5
7
IO  
MCU_OSPI1_D1  
I
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_20  
0x4301C050  
1.8 V/3.3 V  
IO  
IO  
IO  
MCU_OSPI1_D2  
O
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_21  
0x4301C054  
G31  
F33  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
IO  
IO  
MCU_OSPI1_D3  
I
VDDSHV1_M  
CU  
PADCFG:  
WKUP_PADCONFIG_22  
0x4301C058  
1.8 V/3.3 V  
IO  
IO  
K32  
F36  
MCU_PORz  
I
1.8 V  
VDDA_WKUP  
Yes  
Yes  
FS_RESET  
LVCMOS  
No  
No  
MCU_RESETSTATz  
MCU_RESETSTATz  
0
7
O
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_71  
0x4301C11C  
1.8 V/3.3 V  
Off / Low / Off  
On / NA / Up  
Off / Off / Off  
Off / Off / Off  
Off / SS / Off  
On / Off / Up  
Off / Off / Off  
Off / Off / Off  
0
0
7
7
PU/PD  
PU/PD  
PU/PD  
PU/PD  
WKUP_GPIO0_68  
MCU_RESETz  
IO  
I
MCU_RESETz  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_70  
0x4301C118  
G36  
B37  
C37  
0
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
No  
No  
No  
MCU_RGMII1_RXC  
MCU_RGMII1_RXC  
0
1
I
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_33  
0x4301C084  
MCU_RMII1_REF_CLK  
WKUP_GPIO0_47  
7
IO  
MCU_RGMII1_RX_CTL  
MCU_RGMII1_RX_CTL  
MCU_RMII1_RX_ER  
0
1
I
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_27  
0x4301C06C  
WKUP_GPIO0_41  
7
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
52  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_RGMII1_TXC  
MCU_RGMII1_TXC  
0
1
O
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_32  
0x4301C080  
MCU_RMII1_TX_EN  
WKUP_GPIO0_46  
O
E36  
C38  
A35  
B36  
C36  
D36  
D37  
D38  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
7
7
7
7
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
No  
No  
No  
No  
No  
No  
No  
No  
7
IO  
MCU_RGMII1_TX_CTL  
MCU_RGMII1_TX_CTL  
MCU_RMII1_CRS_DV  
0
1
O
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_26  
0x4301C068  
WKUP_GPIO0_40  
7
IO  
MCU_RGMII1_RD0  
MCU_RGMII1_RD0  
MCU_RMII1_RXD0  
0
1
I
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_37  
0x4301C094  
WKUP_GPIO0_51  
7
IO  
MCU_RGMII1_RD1  
MCU_RGMII1_RD1  
MCU_RMII1_RXD1  
0
1
I
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_36  
0x4301C090  
WKUP_GPIO0_50  
7
IO  
MCU_RGMII1_RD2  
MCU_RGMII1_RD2  
MCU_TIMER_IO5  
0
1
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_35  
0x4301C08C  
IO  
WKUP_GPIO0_62  
7
IO  
MCU_RGMII1_RD3  
MCU_RGMII1_RD3  
MCU_TIMER_IO4  
0
1
I
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_34  
0x4301C088  
IO  
WKUP_GPIO0_48  
7
IO  
MCU_RGMII1_TD0  
MCU_RGMII1_TD0  
MCU_RMII1_TXD0  
0
1
O
O
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_31  
0x4301C07C  
WKUP_GPIO0_45  
7
IO  
MCU_RGMII1_TD1  
MCU_RGMII1_TD1  
MCU_RMII1_TXD1  
0
1
O
O
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_30  
0x4301C078  
WKUP_GPIO0_44  
7
IO  
MCU_RGMII1_TD2  
MCU_TIMER_IO3  
0
1
3
7
0
1
3
7
O
IO  
I
MCU_RGMII1_TD2  
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_29  
0x4301C074  
E37  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
PU/PD  
Yes  
LVCMOS  
No  
MCU_ADC_EXT_TRIGGER1  
WKUP_GPIO0_43  
IO  
O
IO  
I
MCU_RGMII1_TD3  
MCU_TIMER_IO2  
MCU_RGMII1_TD3  
VDDSHV2_M  
CU  
PADCFG:  
WKUP_PADCONFIG_28  
0x4301C070  
E38  
N36  
1.8 V/3.3 V  
7
0
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
MCU_ADC_EXT_TRIGGER0  
WKUP_GPIO0_42  
IO  
MCU_SAFETY_ERRORn  
PADCFG:  
WKUP_PADCONFIG_69  
0x4301C114  
MCU_SAFETY_ERRORn  
0
IO  
1.8 V  
Off / Off / Down On / SS / Down  
PU/PD VDDA_WKUP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_SPI0_CLK  
0
7
IO  
MCU_SPI0_CLK  
WKUP_GPIO0_54  
IO  
VDDSHV0_M  
CU  
PADCFG:  
G38  
F37  
H36  
1.8 V/3.3 V  
On / Off / Off  
Off / Off / Off  
On / Off / Off  
On / Off / Off  
Off / Off / Off  
On / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
Yes  
Yes  
Yes  
WKUP_PADCONFIG_40  
0x4301C0A0  
BOOTS  
TRAP  
MCU_BOOTMODE00  
I
MCU_SPI0_CS0  
MCU_SPI0_CS0  
MCU_TIMER_IO1  
0
4
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_43  
0x4301C0AC  
IO  
IO  
1.8 V/3.3 V  
1.8 V/3.3 V  
WKUP_GPIO0_70  
7
MCU_SPI0_D0  
0
7
IO  
IO  
MCU_SPI0_D0  
WKUP_GPIO0_55  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_41  
0x4301C0A4  
BOOTS  
TRAP  
MCU_BOOTMODE01  
I
MCU_SPI0_D1  
0
4
7
IO  
IO  
IO  
MCU_SPI0_D1  
MCU_TIMER_IO0  
WKUP_GPIO0_69  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_42  
0x4301C0A8  
J38  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
BOOTS  
TRAP  
MCU_BOOTMODE02  
I
AJ7  
AK5  
AL8  
AK4  
MMC0_CALPAD  
MMC0_CLK  
MMC0_CMD  
MMC0_DS  
MMC0_CALPAD  
MMC0_CLK  
MMC0_CMD  
MMC0_DS  
A
O
1.8 V  
1.8 V  
1.8 V  
1.8 V  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
No  
No  
No  
No  
IO  
IO  
IO  
I
MMC1_CLK  
UART8_RXD  
TIMER_IO6  
0
1
3
IO  
IO  
I
EHRPWM2_B  
UART4_CTSn  
EHRPWM5_A  
GPIO0_64  
4
5
MMC1_CLK  
6
IO  
IO  
IO  
O
PADCFG:  
PADCONFIG_65  
0x0011C104  
AB38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
7
SPI1_CLK  
8
UART0_RTSn  
I2C6_SDA  
9
10  
11  
12  
IOD  
O
MCAN15_TX  
PCIE2_CLKREQn  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
54  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MMC1_CMD  
UART8_TXD  
TIMER_IO7  
EHRPWM2_A  
UART4_RTSn  
GPIO0_65  
0
1
IO  
O
3
IO  
IO  
4
MMC1_CMD  
5
O
PADCFG:  
PADCONFIG_66  
0x0011C108  
AB36  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
7
SPI1_D1  
8
IO  
IOD  
I
I2C6_SCL  
10  
11  
12  
MCAN15_RX  
PCIE3_CLKREQn  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC0_DAT7  
MMC1_DAT0  
UART7_RTSn  
ECAP1_IN_APWM_OUT  
TIMER_IO5  
IO  
AK9  
AL6  
AK8  
AK6  
AK7  
AL7  
AL5  
AK3  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC0_DAT7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
PU/PD VDDS_MMC0  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
eMMCPHY  
No  
No  
No  
No  
No  
No  
No  
No  
0
1
2
IO  
IO  
IO  
O
3
MMC1_DAT0  
EHRPWM1_A  
UART4_TXD  
GPIO0_63  
4
PADCFG:  
PADCONFIG_63  
0x0011C0FC  
AA33  
5
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
7
IO  
IO  
O
SPI1_D0  
8
UART5_RTSn  
I2C4_SCL  
9
10  
11  
IOD  
O
UART2_TXD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MMC1_DAT1  
UART7_CTSn  
0
1
IO  
I
ECAP0_IN_APWM_OUT  
TIMER_IO4  
2
IO  
IO  
IO  
3
EHRPWM1_B  
UART4_RXD  
EHRPWM4_A  
GPIO0_62  
4
MMC1_DAT1  
5
I
PADCFG:  
PADCONFIG_62  
0x0011C0F8  
AB34  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
6
7
IO  
IO  
I
SPI1_CS2  
8
UART5_CTSn  
I2C4_SDA  
9
10  
11  
0
IOD  
I
UART2_RXD  
MMC1_DAT2  
UART7_TXD  
TIMER_IO3  
IO  
O
1
3
IO  
IO  
MMC1_DAT2  
EHRPWM0_A  
GPIO0_61  
4
PADCFG:  
PADCONFIG_61  
0x0011C0F4  
AA32  
7
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
SPI1_CS1  
8
CPTS0_TS_SYNC  
I2C3_SDA  
9
10  
11  
0
IOD  
O
UART5_TXD  
MMC1_DAT3  
UART7_RXD  
PCIE1_CLKREQn  
TIMER_IO2  
IO  
I
1
2
IO  
IO  
IO  
IO  
IO  
IO  
I
3
MMC1_DAT3  
EHRPWM0_B  
EHRPWM3_A  
GPIO0_60  
4
PADCFG:  
PADCONFIG_60  
0x0011C0F0  
AC38  
6
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV5  
Yes  
SDIO  
No  
7
SPI1_CS0  
8
UART0_CTSn  
I2C3_SCL  
9
10  
11  
IOD  
I
UART5_RXD  
OSC1_XI  
P38  
N37  
OSC1_XI  
I
1.8 V  
1.8 V  
VDDA_OSC1  
VDDA_OSC1  
Yes  
Yes  
HFXOSC  
HFXOSC  
OSC1_XO  
OSC1_XO  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
56  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AP4  
AP5  
AN8  
AN9  
AN5  
AN6  
AP7  
PCIE_REFCLK0_N_OUT  
PCIE_REFCLK0_N_OUT  
PCIE_REFCLK0_P_OUT  
PCIE_REFCLK1_N_OUT  
PCIE_REFCLK1_P_OUT  
PCIE_REFCLK2_N_OUT  
PCIE_REFCLK2_P_OUT  
PCIE_REFCLK3_N_OUT  
O
O
O
O
O
O
O
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
PCIE_REFCLK0_P_OUT  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
PCIE_REFCLK1_N_OUT  
PCIE_REFCLK1_P_OUT  
PCIE_REFCLK2_N_OUT  
PCIE_REFCLK2_P_OUT  
PCIE_REFCLK3_N_OUT  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AP8  
L38  
PCIE_REFCLK3_P_OUT  
PCIE_REFCLK3_P_OUT  
O
1.8 V  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
PMIC_POWER_EN1  
PMIC_POWER_EN1  
0
5
O
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_68  
0x4301C110  
MCU_I3C0_SDAPULLEN  
OD  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
WKUP_GPIO0_88  
7
IO  
PMIC_WAKE0n  
MCASP4_AXR0  
DSS_FSYNC1  
MCAN17_RX  
GPMC0_WEn  
GPIO0_13  
0
1
O
IO  
O
I
4
5
PMIC_WAKE0n  
6
O
IO  
IO  
O
O
O
IO  
PADCFG:  
PADCONFIG_13  
0x0011C034  
AJ34  
7
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV2  
Yes  
LVCMOS  
No  
SPI6_CS0  
8
TRC_DATA0  
10  
11  
13  
14  
UART9_RTSn  
UART7_TXD  
AUDIO_EXT_REFCLK0  
PORz  
PADCFG:  
WKUP_PADCONFIG_94  
0x4301C178  
P33  
AL38  
F34  
PORz  
0
0
0
I
O
I
1.8 V  
0
0
0
VDDA_WKUP  
VDDSHV0  
Yes  
Yes  
Yes  
FS_RESET  
LVCMOS  
LVCMOS  
No  
No  
No  
RESETSTATz  
PADCFG:  
PADCONFIG_67  
0x0011C10C  
RESETSTATz  
RESET_REQz  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Low / Off  
On / Off / Up  
Off / SS / Off  
On / Off / Up  
PU/PD  
PU/PD  
RESET_REQz  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_93  
0x4301C174  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AU9  
SERDES0_REFCLK_N  
SERDES0_REFCLK_N  
IO  
1.8 V  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
58  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AU8  
AN11  
AV3  
SERDES0_REFCLK_P  
SERDES0_REFCLK_P  
IO  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
SERDES0_REXT  
SERDES0_REXT  
I
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
SERDES1_REFCLK_N  
SERDES1_REFCLK_P  
SERDES1_REXT  
SERDES1_REFCLK_N  
SERDES1_REFCLK_P  
SERDES1_REXT  
0
0
0
IO  
IO  
I
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AV4  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AL9  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
AV21  
AV22  
AL20  
SERDES2_REFCLK_N  
SERDES2_REFCLK_P  
SERDES2_REXT  
SERDES2_REFCLK_N  
SERDES2_REFCLK_P  
SERDES2_REXT  
IO  
IO  
IO  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
AV16  
AV15  
AM19  
SERDES4_REFCLK_N  
SERDES4_REFCLK_N  
IO  
IO  
IO  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SERDES4_REFCLK_P  
SERDES4_REXT  
SERDES4_REFCLK_P  
SERDES4_REXT  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
HYP_RXN0  
PCIE1_RXN0  
PCIE1_RXP0  
HYP_RXP0  
PCIE1_RXN1  
HYP_RXN1  
HYP_RXP1  
PCIE1_RXP1  
I
I
I
I
I
I
I
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AR8  
AR9  
SERDES0_RX0_N  
SERDES0_RX0_P  
SERDES0_RX1_N  
SERDES0_RX1_P  
SERDES0_RX2_N  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
1
4
1
4
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AT10  
AT11  
AR11  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
PCIE1_RXN2  
PCIE3_RXN0  
USB0_SSRX1N  
I
I
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
HYP_RXN2  
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
60  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
PCIE3_RXP0  
PCIE1_RXP2  
USB0_SSRX1P  
I
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AR12  
AU11  
AU12  
AT7  
SERDES0_RX2_P  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
I
I
VDDA_1P8_S  
ERDES0_1  
HYP_RXP2  
HYP_RXN3  
I
I
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
USB0_SSRX2N  
PCIE3_RXN1  
SERDES0_RX3_N  
VDDA_1P8_S  
ERDES0_1  
PCIE1_RXN3  
I
HYP_RXP3  
I
I
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
PCIE3_RXP1  
PCIE1_RXP3  
SERDES0_RX3_P  
SERDES0_TX0_N  
SERDES0_TX0_P  
SERDES0_TX1_N  
SERDES0_TX1_P  
VDDA_1P8_S  
ERDES0_1  
USB0_SSRX2P  
PCIE1_TXN0  
I
1
4
1
4
1
4
1
4
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
HYP_TXN0  
PCIE1_TXP0  
HYP_TXP0  
PCIE1_TXN1  
HYP_TXN1  
PCIE1_TXP1  
HYP_TXP1  
O
O
O
O
O
O
O
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AT8  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AP10  
AP11  
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
PCIE1_TXN2  
USB0_SSTX1N  
PCIE3_TXN0  
1
2
3
O
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AV9  
AV10  
AV12  
AV13  
AU5  
AU6  
AT4  
SERDES0_TX2_N  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
O
O
VDDA_1P8_S  
ERDES0_1  
HYP_TXN2  
4
PCIE1_TXP2  
USB0_SSTX1P  
PCIE3_TXP0  
1
2
3
O
O
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
SERDES0_TX2_P  
SERDES0_TX3_N  
SERDES0_TX3_P  
SERDES1_RX0_N  
SERDES1_RX0_P  
SERDES1_RX1_N  
VDDA_1P8_S  
ERDES0_1  
HYP_TXP2  
4
O
USB0_SSTX2N  
PCIE3_TXN1  
HYP_TXN3  
O
O
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
PCIE1_TXN3  
O
HYP_TXP3  
O
O
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
USB0_SSTX2P  
PCIE3_TXP1  
VDDA_1P8_S  
ERDES0_1  
PCIE1_TXP3  
PCIE0_RXN0  
O
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
SGMII3_RXN0  
PCIE0_RXP0  
SGMII3_RXP0  
SGMII4_RXN0  
PCIE0_RXN1  
I
I
I
I
I
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
VDDA_1P8_S  
ERDES0_1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
62  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
SGMII4_RXP0  
PCIE0_RXP1  
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AT5  
AU2  
AU3  
AT1  
AT2  
AV6  
AV7  
SERDES1_RX1_P  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
I
VDDA_1P8_S  
ERDES0_1  
PCIE2_RXN0  
PCIE0_RXN2  
I
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
I
SERDES1_RX2_N  
1.8 V  
SGMII1_RXN0  
I
I
VDDA_1P8_S  
ERDES0_1  
SGMII1_RXP0  
PCIE2_RXP0  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
I
SERDES1_RX2_P  
SERDES1_RX3_N  
SERDES1_RX3_P  
SERDES1_TX0_N  
SERDES1_TX0_P  
1.8 V  
PCIE0_RXP2  
I
I
VDDA_1P8_S  
ERDES0_1  
PCIE0_RXN3  
PCIE2_RXN1  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
I
1.8 V  
SGMII2_RXN0  
I
I
VDDA_1P8_S  
ERDES0_1  
PCIE0_RXP3  
SGMII2_RXP0  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
I
1.8 V  
PCIE2_RXP1  
SGMII3_TXN0  
I
VDDA_1P8_S  
ERDES0_1  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
1.8 V  
O
PCIE0_TXN0  
PCIE0_TXP0  
SGMII3_TXP0  
VDDA_1P8_S  
ERDES0_1  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
1.8 V  
O
VDDA_1P8_S  
ERDES0_1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
PCIE0_TXN1  
SGMII4_TXN0  
PCIE0_TXP1  
SGMII4_TXP0  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
AR5  
AR6  
AR2  
AR3  
AP1  
AP2  
SERDES1_TX1_N  
1.8 V  
O
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_1P8_S  
ERDES0_1  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
SERDES1_TX1_P  
SERDES1_TX2_N  
SERDES1_TX2_P  
SERDES1_TX3_N  
SERDES1_TX3_P  
1.8 V  
O
VDDA_1P8_S  
ERDES0_1  
PCIE0_TXN2  
SGMII1_TXN0  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
O
1.8 V  
PCIE2_TXN0  
O
O
VDDA_1P8_S  
ERDES0_1  
PCIE2_TXP0  
SGMII1_TXP0  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
O
1.8 V  
PCIE0_TXP2  
O
O
VDDA_1P8_S  
ERDES0_1  
PCIE2_TXN1  
PCIE0_TXN3  
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
O
1.8 V  
SGMII2_TXN0  
O
VDDA_1P8_S  
ERDES0_1  
SGMII2_TXP0  
PCIE0_TXP3  
O
VDDA_0P8_S  
ERDES0_1 /  
VDDA_0P8_S  
ERDES_C0_1  
/
O
1.8 V  
PCIE2_TXP1  
O
VDDA_1P8_S  
ERDES0_1  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
AU23  
AU24  
SERDES2_RX0_N  
SERDES2_RX0_P  
SGMII5_RXN0  
0
0
I
I
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
SGMII5_RXP0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
64  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
AT22  
AT23  
AU20  
AU21  
AT19  
AT20  
AV24  
AV25  
SERDES2_RX1_N  
SGMII6_RXN0  
SGMII6_RXP0  
0
0
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
SERDES2_RX1_P  
SGMII7_RXN0  
SGMII1_RXN0  
SGMII7_RXP0  
SGMII1_RXP0  
SGMII8_RXN0  
SGMII2_RXN0  
SGMII8_RXP0  
SGMII2_RXP0  
0
1
0
1
0
1
0
1
I
I
I
I
I
I
I
I
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
SERDES2_RX2_N  
SERDES2_RX2_P  
SERDES2_RX3_N  
SERDES2_RX3_P  
SERDES2_TX0_N  
SERDES2_TX0_P  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
SGMII5_TXN0  
SGMII5_TXP0  
0
0
O
O
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
AR23  
AR24  
AR20  
AR21  
AP19  
AP20  
AR14  
AR15  
SERDES2_TX1_N  
SGMII6_TXN0  
SGMII6_TXP0  
0
0
O
O
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
SERDES2_TX1_P  
SERDES2_TX2_N  
SERDES2_TX2_P  
SERDES2_TX3_N  
SERDES2_TX3_P  
SERDES4_RX0_N  
SERDES4_RX0_P  
SGMII7_TXN0  
SGMII1_TXN0  
SGMII7_TXP0  
SGMII1_TXP0  
SGMII8_TXN0  
SGMII2_TXN0  
SGMII2_TXP0  
SGMII8_TXP0  
HYP_RXN0  
0
1
O
O
O
O
O
O
O
O
I
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES2 /  
VDDA_0P8_S  
ERDES_C2 /  
VDDA_1P8_S  
ERDES2  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SGMII5_RXN0  
SGMII5_RXP0  
HYP_RXP0  
I
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
66  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
SGMII6_RXN0  
HYP_RXN1  
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
AU14  
AU15  
AR17  
AR18  
AU17  
AU18  
AP13  
AP14  
SERDES4_RX1_N  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
I
HYP_RXP1  
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SERDES4_RX1_P  
1.8 V  
SGMII6_RXP0  
I
USB0_SSRX1N  
HYP_RXN2  
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
I
SERDES4_RX2_N  
SERDES4_RX2_P  
SERDES4_RX3_N  
SERDES4_RX3_P  
SERDES4_TX0_N  
SERDES4_TX0_P  
1.8 V  
SGMII7_RXN0  
I
USB0_SSRX1P  
HYP_RXP2  
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
I
1.8 V  
SGMII7_RXP0  
I
I
HYP_RXN3  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
USB0_SSRX2N  
I
1.8 V  
SGMII8_RXN0  
I
HYP_RXP3  
I
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
USB0_SSRX2P  
I
1.8 V  
SGMII8_RXP0  
I
DP0_TXN0  
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SGMII5_TXN0  
O
1.8 V  
HYP_TXN0  
O
SGMII5_TXP0  
HYP_TXP0  
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
O
1.8 V  
DP0_TXP0  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
HYP_TXN1  
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SGMII6_TXN0  
O
AT13  
AT14  
AT16  
AT17  
AV18  
SERDES4_TX1_N  
1.8 V  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
4L_PHY  
DP0_TXN1  
O
O
HYP_TXP1  
DP0_TXP1  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
O
SERDES4_TX1_P  
SERDES4_TX2_N  
SERDES4_TX2_P  
SERDES4_TX3_N  
1.8 V  
SGMII6_TXP0  
O
DP0_TXN2  
O
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
HYP_TXN2  
1.8 V  
SGMII7_TXN0  
USB0_SSTX1N  
SGMII7_TXP0  
DP0_TXP2  
O
O
O
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
1.8 V  
HYP_TXP2  
O
USB0_SSTX1P  
SGMII8_TXN0  
USB0_SSTX2N  
DP0_TXN3  
O
O
O
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
1.8 V  
O
HYP_TXN3  
O
O
O
HYP_TXP3  
VDDA_0P8_S  
ERDES4 /  
VDDA_0P8_S  
ERDES_C4 /  
VDDA_1P8_S  
ERDES4  
SGMII8_TXP0  
USB0_SSTX2P  
DP0_TXP3  
AV19  
SERDES4_TX3_P  
1.8 V  
4L_PHY  
O
O
SOC_SAFETY_ERRORn  
PADCFG:  
PADCONFIG_68  
0x0011C110  
AM34  
SOC_SAFETY_ERRORn  
0
IO  
1.8 V/3.3 V Off / Off / Down On / SS / Down  
0
7
PU/PD  
PU/PD  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
No  
No  
SPI0_CLK  
0
1
IO  
I
UART1_CTSn  
I2C2_SCL  
SPI0_CLK  
2
IOD  
IO  
IO  
IO  
O
PADCFG:  
PADCONFIG_53  
0x0011C0D4  
AN38  
MCASP3_AXR0  
EHRPWM2_A  
GPIO0_53  
3
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
LVCMOS  
5
7
UART8_TXD  
11  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
68  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
SPI0_CS0  
0
3
IO  
IO  
IO  
MCASP3_ACLKX  
MCASP3_ACLKR  
EHRPWM0_A  
GPIO0_51  
SPI0_CS0  
4
PADCFG:  
PADCONFIG_51  
0x0011C0CC  
AM37  
5
IO  
IO  
O
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
7
MCAN14_TX  
DP0_HPD  
9
12  
0
I
SPI0_CS1  
IO  
O
CPTS0_TS_COMP  
UART0_RTSn  
MCASP3_AFSX  
MCASP3_AFSR  
EHRPWM1_A  
GPIO0_52  
1
2
O
SPI0_CS1  
3
IO  
IO  
IO  
IO  
I
PADCFG:  
PADCONFIG_52  
0x0011C0D0  
AP38  
4
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
5
7
MCAN14_RX  
UART8_RXD  
SPI0_D0  
9
11  
0
I
IO  
O
UART1_RTSn  
I2C2_SDA  
1
SPI0_D0  
2
IOD  
IO  
IO  
IO  
I
PADCFG:  
PADCONFIG_54  
0x0011C0D8  
AM35  
MCASP3_AXR1  
EHRPWM3_A  
GPIO0_54  
3
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
5
7
UART2_RXD  
SPI0_D1  
11  
0
IO  
IO  
IO  
IO  
O
SPI0_D1  
MCASP3_AXR2  
EHRPWM4_A  
GPIO0_55  
3
PADCFG:  
PADCONFIG_55  
0x0011C0DC  
AM36  
5
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
7
UART2_TXD  
11  
TCK  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_73  
0x4301C124  
G35  
TCK  
TDI  
0
0
I
I
1.8 V/3.3 V  
1.8 V/3.3 V  
On / NA / Up  
On / Off / Up  
On / Off / Up  
On / Off / Up  
0
0
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
TDI  
PADCFG:  
PADCONFIG_69  
0x0011C114  
AL37  
VDDSHV0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
TDO  
PADCFG:  
PADCONFIG_70  
0x0011C118  
AL35  
TDO  
0
OZ  
1.8 V/3.3 V  
Off / Off / Up  
Off / SS / Up  
0
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
TIMER_IO0  
0
1
IO  
IO  
O
ECAP1_IN_APWM_OUT  
SYSCLKOUT0  
UART3_RXD  
PCIE1_CLKREQn  
GPIO0_58  
2
TIMER_IO0  
5
I
PADCFG:  
PADCONFIG_58  
0x0011C0E8  
AR38  
6
IO  
IO  
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
7
MMC1_SDCD  
MCAN13_TX  
I2C6_SDA  
8
9
O
13  
0
IOD  
IO  
IO  
O
TIMER_IO1  
ECAP2_IN_APWM_OUT  
OBSCLK0  
1
2
UART3_TXD  
USB0_DRVVBUS  
GPIO0_59  
5
O
TIMER_IO1  
6
O
PADCFG:  
PADCONFIG_59  
0x0011C0EC  
AN37  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
VDDSHV0  
Yes  
LVCMOS  
No  
7
IO  
I
MMC1_SDWP  
MCAN13_RX  
I2C6_SCL  
8
9
I
13  
15  
IOD  
O
OBSCLK0  
TMS  
PADCFG:  
PADCONFIG_71  
0x0011C11C  
AL36  
G37  
TMS  
0
0
I
I
1.8 V/3.3 V  
On / Off / Up  
On / Off / Up  
0
0
PU/PD  
PU/PD  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
TRSTn  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_74  
0x4301C128  
TRSTn  
1.8 V/3.3 V On / NA / Down On / Off / Down  
UFS0_REF_CLK  
UFS0_REF_CLK  
UFS0_RSTn  
0
16  
0
I
I
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
AM7  
AM8  
UFS0_REF_CLK  
UFS0_RSTn  
1.2 V  
1.2 V  
M-PHY  
M-PHY  
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
UFS0_RSTn  
16  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
70  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
UFS0_RX_DN0  
UFS0_RX_DN0  
UFS0_RX_DN1  
UFS0_RX_DN1  
UFS0_RX_DP0  
UFS0_RX_DP0  
UFS0_RX_DP1  
UFS0_RX_DP1  
UFS0_TX_DN0  
UFS0_TX_DN0  
UFS0_TX_DN1  
UFS0_TX_DN1  
UFS0_TX_DP0  
UFS0_TX_DP0  
UFS0_TX_DP1  
UFS0_TX_DP1  
0
16  
0
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
AM4  
AM1  
AM5  
AM2  
AL2  
UFS0_RX_DN0  
1.8 V  
M-PHY  
M-PHY  
M-PHY  
M-PHY  
M-PHY  
M-PHY  
M-PHY  
M-PHY  
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
UFS0_RX_DN1  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
UFS0_RX_DP0  
UFS0_RX_DP1  
UFS0_TX_DN0  
UFS0_TX_DN1  
UFS0_TX_DP0  
UFS0_TX_DP1  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
AN2  
AL3  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
1.8 V  
16  
0
I
I
VDDA_1p8_U  
FS /  
VDDA_0P8_U  
FS  
AN3  
1.8 V  
16  
I
VDDA_0P8_U  
SB /  
VDDA_1P8_U  
SB /  
VDDA_3P3_U  
SB  
AP16  
AP17  
AN17  
USB0_DM  
USB0_DP  
USB0_ID  
USB0_DM  
USB0_DP  
USB0_ID  
IO  
IO  
A
3.3 V  
3.3 V  
3.3 V  
USB2PHY  
USB2PHY  
USB2PHY  
VDDA_0P8_U  
SB /  
VDDA_1P8_U  
SB /  
VDDA_3P3_U  
SB  
VDDA_0P8_U  
SB /  
VDDA_1P8_U  
SB /  
VDDA_3P3_U  
SB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
VDDA_0P8_U  
SB /  
VDDA_1P8_U  
SB /  
VDDA_3P3_U  
SB  
AN18  
AN15  
USB0_RCALIB  
USB0_RCALIB  
A
3.3 V  
5.0 V  
USB2PHY  
VDDA_0P8_U  
SB /  
VDDA_1P8_U  
SB /  
USB0_VBUS  
USB0_VBUS  
A
DDR  
VDDA_3P3_U  
SB  
AB27,  
AC24, AF15,  
AF18, AF21, VDDAR_CORE  
VDDAR_CORE  
PWR  
AG11,  
AG28, T25  
AB13,  
AC16,  
AC18,  
AC20,  
AE12, M21, VDDAR_CPU  
N23, T15,  
U20, W14,  
W21, Y11,  
Y19  
VDDAR_CPU  
VDDAR_MCU  
PWR  
M27, N24 VDDAR_MCU  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AJ24  
AJ25  
AH11  
AK20  
AJ28  
VDDA_0P8_DSITX  
VDDA_0P8_DSITX_C  
VDDA_0P8_UFS  
VDDA_0P8_DSITX  
VDDA_0P8_DSITX_C  
VDDA_0P8_UFS  
VDDA_0P8_USB  
VDDA_0P8_USB  
VDDA_0P8_CSIRX2  
VDDA_0P8_CSIRX2  
VDDA_0P8_CSIRX0_1  
VDDA_0P8_DLL_MMC0  
VDDA_0P8_PLL_DDR0  
VDDA_0P8_PLL_DDR1  
VDDA_0P8_PLL_DDR2  
VDDA_0P8_PLL_DDR3  
VDDA_0P8_SERDES2  
VDDA_0P8_SERDES4  
AJ26, AK26 VDDA_0P8_CSIRX0_1  
AE9  
U11  
M14  
N11  
M18  
VDDA_0P8_DLL_MMC0  
VDDA_0P8_PLL_DDR0  
VDDA_0P8_PLL_DDR1  
VDDA_0P8_PLL_DDR2  
VDDA_0P8_PLL_DDR3  
AJ20, AJ21 VDDA_0P8_SERDES2  
AJ17, AJ18 VDDA_0P8_SERDES4  
AJ12, AJ15,  
VDDA_0P8_SERDES0_1  
AK13, AK14  
VDDA_0P8_SERDES0_1  
PWR  
AG21, AH20 VDDA_0P8_SERDES_C2  
AG17, AH18 VDDA_0P8_SERDES_C4  
VDDA_0P8_SERDES_C2  
VDDA_0P8_SERDES_C4  
PWR  
PWR  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
72  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
AH12,  
AH13,  
VDDA_0P8_SERDES_C0_1  
VDDA_0P8_SERDES_C0_1  
PWR  
AH15, AH16  
AH24, AH25 VDDA_1P8_DSITX  
VDDA_1P8_DSITX  
VDDA_1P8_UFS  
VDDA_1P8_USB  
VDDA_1P8_CSIRX2  
VDDA_1P8_CSIRX0_1  
VDDA_1P8_SERDES2  
VDDA_1P8_SERDES4  
VDDA_1P8_SERDES0_1  
VDDA_1P8_SERDES2_4  
VDDA_3P3_USB  
VDDA_ADC0  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AJ10  
AK21  
VDDA_1P8_UFS  
VDDA_1P8_USB  
AH29, AJ29 VDDA_1P8_CSIRX2  
AH27, AH28 VDDA_1P8_CSIRX0_1  
AH21  
AH17  
VDDA_1P8_SERDES2  
VDDA_1P8_SERDES4  
AJ13, AJ14 VDDA_1P8_SERDES0_1  
AJ23  
AJ19  
M31  
VDDA_1P8_SERDES2_4  
VDDA_3P3_USB  
VDDA_ADC0  
N30  
VDDA_ADC1  
VDDA_ADC1  
M28  
VDDA_MCU_PLLGRP0  
VDDA_MCU_TEMP  
VDDA_OSC1  
VDDA_MCU_PLLGRP0  
VDDA_MCU_TEMP  
VDDA_OSC1  
M26  
N29  
AA27  
Y28  
VDDA_PLLGRP0  
VDDA_PLLGRP1  
VDDA_PLLGRP2  
VDDA_PLLGRP5  
VDDA_PLLGRP6  
VDDA_PLLGRP7  
VDDA_PLLGRP8  
VDDA_PLLGRP9  
VDDA_PLLGRP10  
VDDA_PLLGRP12  
VDDA_PLLGRP13  
VDDA_POR_WKUP  
VDDA_TEMP0  
VDDA_PLLGRP0  
VDDA_PLLGRP1  
VDDA_PLLGRP2  
VDDA_PLLGRP5  
VDDA_PLLGRP6  
VDDA_PLLGRP7  
VDDA_PLLGRP8  
VDDA_PLLGRP9  
VDDA_PLLGRP10  
VDDA_PLLGRP12  
VDDA_PLLGRP13  
VDDA_POR_WKUP  
VDDA_TEMP0  
AG13  
V14  
R21  
P12  
P15  
Y26  
AG23  
AA23  
AB26  
N28  
Y27  
M12  
VDDA_TEMP1  
VDDA_TEMP1  
W23  
AE13  
AD18  
K31, L32  
VDDA_TEMP2  
VDDA_TEMP2  
VDDA_TEMP3  
VDDA_TEMP3  
VDDA_TEMP4  
VDDA_TEMP4  
VDDA_WKUP  
VDDA_WKUP  
V30, V32,  
W31  
VDDSHV0  
VDDSHV0  
PWR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
H29, J28,  
K29  
VDDSHV0_MCU  
VDDSHV0_MCU  
VDDSHV1_MCU  
VDDSHV2  
PWR  
PWR  
PWR  
PWR  
PWR  
H25, J24,  
K25  
VDDSHV1_MCU  
VDDSHV2  
T30, T32,  
U31  
H27, J26,  
K27  
VDDSHV2_MCU  
VDDSHV5  
VDDSHV2_MCU  
VDDSHV5  
P31, R30,  
R31  
A31, AK1,  
B1, H11,  
H13, H15,  
H17, H19,  
H9, J10,  
J12, J14,  
J16, J18, J8,  
K11, K13,  
K15, K17,  
K19, K9,  
VDDS_DDR  
VDDS_DDR  
PWR  
L10, L12,  
L14, L16,  
L18, M9,  
N10, N8, P9,  
R10, R8, T9,  
U10, U8  
T10  
L15  
M10  
L17  
VDDS_DDR_C0  
VDDS_DDR_C1  
VDDS_DDR_C2  
VDDS_DDR_C3  
VDDS_DDR_C0  
VDDS_DDR_C1  
VDDS_DDR_C2  
VDDS_DDR_C3  
PWR  
PWR  
PWR  
PWR  
AF9, AG10,  
AG8, AH9  
VDDS_MMC0  
VDDS_MMC0  
PWR  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
74  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
AA24, AA26,  
AA28, AA30,  
AB25, AB29,  
AB31,  
AC26,  
AC28,  
AC30,  
AD25,  
AD27,  
AD29,  
AD31,  
AE24, AE26,  
AE28, AE30,  
AE32, AF13,  
AF17, AF19,  
AF23, AF25,  
AF27, AF29,  
AF31,  
AG12,  
AG14,  
AG16,  
AG18,  
AG20,  
AG22,  
AG24,  
VDD_CORE  
VDD_CORE  
PWR  
AG26,  
AG30,  
AG32,  
AH31, AJ30,  
M11, M13,  
M15, M17,  
M19, N12,  
N16, N18,  
P11, P17,  
P19, R12,  
R14, R16,  
R18, R24,  
R26, R28,  
T11, T13,  
T27, U12,  
U24, U26,  
U28, V25,  
V27, W24,  
W26, W28,  
W30, W32,  
Y25, Y29,  
Y31  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
AA10, AA12,  
AA14, AA20,  
AA22, AA8,  
AB11, AB19,  
AB21, AB23,  
AB9, AC10,  
AC12,  
AC14,  
AC22,  
AD11,  
AD13,  
AD15,  
AD17,  
AD19,  
AD21,  
AD23, AD9,  
AE10, AE14,  
AE16, AE18,  
AE20, AE22, VDD_CPU  
AF11, H21,  
H23, J20,  
J22, K21,  
K23, L20,  
L22, N20,  
N22, P21,  
R20, R22,  
T17, T19,  
T21, T23,  
U14, U22,  
V11, V13,  
V19, V21,  
V23, V9,  
VDD_CPU  
PWR  
W10, W12,  
W20, W22,  
W8, Y13,  
Y21, Y23,  
Y9  
L24, M23,  
M25, N26,  
VDD_MCU  
P23, P25,  
VDD_MCU  
PWR  
P27  
L28  
U29  
K28  
N27  
J30  
VDD_MCU_WAKE1  
VDD_MCU_WAKE1  
VDD_WAKE0  
PWR  
PWR  
VDD_WAKE0  
VMON1_ER_VSYS  
VMON2_IR_VCPU  
VMON3_IR_VEXT1P8  
VMON4_IR_VEXT1P8  
VMON5_IR_VEXT3P3  
VPP_CORE  
VMON1_ER_VSYS  
VMON2_IR_VCPU  
VMON3_IR_VEXT1P8  
VMON4_IR_VEXT1P8  
VMON5_IR_VEXT3P3  
VPP_CORE  
P28  
R29  
AA31  
L29  
VPP_MCU  
VPP_MCU  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
76  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
A1, A10,  
A12, A15,  
A2, A20,  
A23, A25,  
A28, A34,  
A37, A5, A7,  
AA11, AA13,  
AA19, AA2,  
AA21, AA25,  
AA29, AA34,  
AA36, AA38,  
AA5, AA9,  
AB1, AB10,  
AB12, AB14,  
AB20, AB22,  
AB24, AB28,  
AB30, AB32,  
AB33, AB35,  
AB37, AB5,  
AB8, AC11,  
AC13,  
AC15,  
AC17,  
AC19, AC2,  
AC21,  
AC23,  
AC25,  
AC27,  
AC29,  
AC31, AC6,  
VSS  
VSS  
GND  
AC9, AD1,  
AD10,  
AD12,  
AD14,  
AD16,  
AD20,  
AD22,  
AD24,  
AD26,  
AD28,  
AD30,  
AD32,  
AD35, AD4,  
AD8, AE11,  
AE15, AE17,  
AE19, AE2,  
AE21, AE23,  
AE25, AE27,  
AE29, AE31,  
AE5, AF10,  
AF12, AF14,  
AF16, AF20,  
AF22, AF24,  
AF26, AF28,  
AF3, AF30,  
AF32, AF6,  
AF8, AG1,  
AG15,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
AG19,  
AG25,  
AG27,  
AG29,  
AG31, AG4,  
AG7, AG9,  
AH10,  
AH14,  
AH19, AH2,  
AH22,  
AH23,  
AH26,  
AH30,  
AH32,  
AH35, AH5,  
AH8, AJ11,  
AJ16, AJ22,  
AJ27, AJ3,  
AJ31, AJ6,  
AJ8, AJ9,  
AK10, AK11,  
AK12, AK15,  
AK16, AK17,  
AK18, AK19,  
AK22, AK23,  
AK24, AK25,  
AK27, AK28,  
AK30, AK32,  
AL1, AL10,  
AL12, AL13,  
AL14, AL15,  
AL16, AL17,  
AL18, AL19,  
AL21, AL26,  
AL29, AL31,  
AL4, AM11,  
AM13,  
AM15,  
AM18,  
AM20,  
AM23,  
AM25,  
AM27, AM3,  
AM30,  
AM32,  
AM38, AM6,  
AN1, AN10,  
AN12,  
AN14,  
AN16,  
AN19,  
AN22,  
AN25,  
AN28,  
AN31,  
AN34, AN4,  
AN7, AP12,  
AP15, AP18,  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
78  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
AP21, AP24,  
AP27, AP3,  
AP30, AP33,  
AP36, AP6,  
AP9, AR1,  
AR10,  
AR13,  
AR16,  
AR19,  
AR22,  
AR25,  
AR28,  
AR31,  
AR34,  
AR37, AR4,  
AR7, AT12,  
AT15, AT18,  
AT21, AT24,  
AT27, AT3,  
AT30, AT33,  
AT36, AT6,  
AT9, AU1,  
AU10,  
AU13,  
AU16,  
AU19,  
AU22,  
AU25,  
AU28,  
AU31,  
AU34,  
AU37,  
AU38, AU4,  
AU7, AV1,  
AV11, AV14,  
AV17, AV2,  
AV20, AV23,  
AV26, AV29,  
AV32, AV35,  
AV5, AV8,  
B11, B13,  
B16, B19,  
B22, B24,  
B26, B29,  
B31, B38,  
B6, B9, C14,  
C17, C18,  
C2, C21,  
C27, C30,  
C4, C8,  
D10, D15,  
D20, D23,  
D28, D3,  
D35, D6,  
D7, E12,  
E13, E16,  
E19, E2,  
E22, E25,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
E26, E29,  
E31, E5, E9,  
F1, F11,  
F14, F17,  
F21, F24,  
F27, F30,  
F4, F7, F8,  
G15, G18,  
G20, G28,  
G3, G6,  
H10, H16,  
H18, H2,  
H20, H22,  
H24, H26,  
H28, H30,  
H31, H5,  
H7, H8, J1,  
J11, J13,  
J15, J17,  
J19, J21,  
J23, J25,  
J27, J29,  
J32, J4, J9,  
K10, K12,  
K14, K16,  
K18, K2,  
K20, K22,  
K24, K26,  
K6, K8, L1,  
L11, L13,  
L19, L21,  
L23, L31,  
L5, L9, M16,  
M2, M20,  
M22, M24,  
M29, M30,  
M32, M5,  
M8, N15,  
N17, N19,  
N21, N25,  
N3, N31,  
N32, N38,  
N6, N9, P1,  
P10, P16,  
P18, P20,  
P22, P24,  
P26, P30,  
P32, P35,  
P37, P4, P7,  
P8, R11,  
R13, R15,  
R17, R19,  
R2, R23,  
R25, R27,  
R32, R34,  
R36, R38,  
R5, R9, T12,  
T14, T16,  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
80  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
T18, T20,  
T22, T24,  
T26, T28,  
T3, T31,  
T33, T35,  
T37, T6, T8,  
U13, U19,  
U21, U23,  
U25, U27,  
U3, U30,  
U32, U34,  
U36, U38,  
U6, U9, V10,  
V12, V2,  
V20, V22,  
V24, V26,  
V28, V31,  
V33, V35,  
V37, V5, V8,  
W1, W11,  
W13, W19,  
W25, W27,  
W29, W34,  
W36, W38,  
W4, W7,  
W9, Y10,  
Y12, Y14,  
Y20, Y22,  
Y24, Y3,  
Y30, Y32,  
Y33, Y35,  
Y37, Y6, Y8  
MCU_SPI1_CLK  
MCU_SPI1_CLK  
0
1
7
IO  
IO  
WKUP_GPIO0_0  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_48  
0x4301C0C0  
H38  
J34  
J35  
1.8 V/3.3 V  
IO  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
Yes  
Yes  
Yes  
WKUP_GPIO0_0  
BOOTS  
TRAP  
MCU_BOOTMODE03  
I
MCU_SPI1_D0  
MCU_SPI1_D0  
WKUP_GPIO0_1  
0
1
7
IO  
IO  
WKUP_GPIO0_1  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_49  
0x4301C0C4  
1.8 V/3.3 V  
IO  
BOOTS  
TRAP  
MCU_BOOTMODE04  
I
MCU_SPI1_D1  
MCU_SPI1_D1  
WKUP_GPIO0_2  
0
1
7
IO  
IO  
WKUP_GPIO0_2  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_50  
0x4301C0C8  
1.8 V/3.3 V  
IO  
BOOTS  
TRAP  
MCU_BOOTMODE05  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
WKUP_GPIO0_3  
MCU_SPI1_CS0  
MCU_SPI1_CS0  
0
1
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_51  
0x4301C0CC  
IO  
IO  
J36  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
Yes  
Yes  
WKUP_GPIO0_3  
7
MCU_MCAN1_TX  
MCU_MCAN1_TX  
MCU_SPI0_CS3  
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
4
7
0
1
2
3
4
7
O
O
WKUP_GPIO0_4  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_52  
0x4301C0D0  
H35  
IO  
I
MCU_ADC_EXT_TRIGGER0  
WKUP_GPIO0_4  
IO  
I
MCU_MCAN1_RX  
MCU_MCAN1_RX  
MCU_SPI1_CS3  
WKUP_GPIO0_5  
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_53  
0x4301C0D4  
K36  
L37  
L36  
IO  
I
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
Yes  
Yes  
Yes  
MCU_ADC_EXT_TRIGGER1  
WKUP_GPIO0_5  
IO  
I
WKUP_UART0_CTSn  
WKUP_UART0_CTSn  
MCU_CPTS0_HW1TSPUSH  
MCU_I2C1_SCL  
WKUP_GPIO0_6  
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_54  
0x4301C0D8  
I
IOD  
IO  
O
WKUP_GPIO0_6  
WKUP_UART0_RTSn  
WKUP_UART0_RTSn  
MCU_CPTS0_HW2TSPUSH  
MCU_I2C1_SDA  
WKUP_GPIO0_7  
O
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_55  
0x4301C0DC  
I
IOD  
IO  
IOD  
IOD  
O
WKUP_GPIO0_7  
MCU_I2C1_SCL  
MCU_I2C1_SCL  
WKUP_GPIO0_8  
MCU_CPTS0_TS_SYNC  
MCU_I3C0_SCL  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_56  
0x4301C0E0  
L35  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
IO  
IO  
IO  
IOD  
IOD  
O
MCU_TIMER_IO6  
WKUP_GPIO0_8  
MCU_I2C1_SDA  
MCU_I2C1_SDA  
WKUP_GPIO0_9  
MCU_CPTS0_TS_COMP  
MCU_I3C0_SDA  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_57  
0x4301C0E4  
L34  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
IO  
IO  
IO  
MCU_TIMER_IO7  
WKUP_GPIO0_9  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
82  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
MCU_EXT_REFCLK0  
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
0
1
7
I
I
MCU_EXT_REFCLK0  
MCU_UART0_TXD  
MCU_ADC_EXT_TRIGGER0  
MCU_CPTS0_RFT_CLK  
MCU_SYSCLKOUT0  
WKUP_GPIO0_10  
WKUP_GPIO0_10  
O
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_58  
0x4301C0E8  
L33  
I
I
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
O
IO  
O
MCU_OBSCLK0  
MCU_OBSCLK0  
O
MCU_UART0_RXD  
MCU_ADC_EXT_TRIGGER1  
MCU_TIMER_IO1  
I
WKUP_GPIO0_11  
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_59  
0x4301C0EC  
M38  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
IO  
OD  
OZ  
IO  
O
MCU_I3C0_SDAPULLEN  
MCU_CLKOUT0  
WKUP_GPIO0_11  
MCU_UART0_TXD  
MCU_SPI0_CS1  
WKUP_GPIO0_12  
IO  
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_60  
0x4301C0F0  
J37  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
Yes  
Yes  
WKUP_GPIO0_12  
BOOTS  
TRAP  
MCU_BOOTMODE08  
I
MCU_UART0_RXD  
MCU_SPI1_CS1  
WKUP_GPIO0_13  
0
1
7
I
WKUP_GPIO0_13  
IO  
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_61  
0x4301C0F4  
K38  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
BOOTS  
TRAP  
MCU_BOOTMODE09  
I
MCU_UART0_CTSn  
MCU_SPI0_CS2  
0
1
4
7
I
IO  
IO  
IO  
WKUP_GPIO0_14  
MCU_TIMER_IO8  
WKUP_GPIO0_14  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_62  
0x4301C0F8  
H37  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
BOOTS  
TRAP  
MCU_BOOTMODE06  
I
MCU_UART0_RTSn  
MCU_SPI1_CS2  
0
1
4
7
O
IO  
IO  
IO  
WKUP_GPIO0_15  
MCU_TIMER_IO9  
WKUP_GPIO0_15  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_63  
0x4301C0FC  
K37  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
7
PU/PD  
Yes  
LVCMOS  
Yes  
BOOTS  
TRAP  
MCU_BOOTMODE07  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Attributes (ALY Package) (continued)  
Ball State  
DURING  
Reset  
(RX/TX/PULL)  
[7]  
Ball State  
AFTER  
Reset  
(RX/TX/PULL)  
[8]  
Ball  
Name [2]  
PADCFG Register [15]  
PADCFG Address [16]  
Mux  
Mode  
AFTER  
Reset [9]  
Mux  
Mode  
[4]  
Pull  
Type  
[10]  
Voltage  
Buffer  
Type [13]  
Ball  
Num [1]  
Signal  
Name [3]  
Signal  
Type [5] Voltage [6]  
I/O  
Hys  
[12]  
IO  
RET [14]  
Power [11]  
PMIC_WAKE1n  
0
1
2
7
4
7
O
WKUP_GPIO0_49  
MCU_EXT_REFCLK0  
MCU_CPTS0_RFT_CLK  
WKUP_GPIO0_49  
I
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_100  
0x4301C190  
M33  
M37  
1.8 V/3.3 V  
I
Off / Off / Off  
On / Off / Off  
Off / Off / Off  
On / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
No  
No  
IO  
IO  
MCU_TIMER_IO6  
WKUP_GPIO0_56  
WKUP_GPIO0_56  
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_72  
0x4301C120  
1.8 V/3.3 V  
BOOTS  
TRAP  
BOOTMODE04  
I
MCU_TIMER_IO7  
WKUP_GPIO0_57  
4
7
IO  
WKUP_GPIO0_57  
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_95  
0x4301C17C  
M36  
N34  
M34  
1.8 V/3.3 V  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
PU/PD  
PU/PD  
PU/PD  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
No  
Yes  
Yes  
BOOTS  
TRAP  
BOOTMODE05  
I
WKUP_GPIO0_66  
WKUP_GPIO0_66  
7
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_96  
0x4301C180  
1.8 V/3.3 V  
I
BOOTS  
TRAP  
BOOTMODE06  
WKUP_LF_CLKIN  
WKUP_GPIO0_67  
1
7
I
WKUP_GPIO0_67  
IO  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_97  
0x4301C184  
1.8 V/3.3 V  
BOOTS  
TRAP  
BOOTMODE07  
I
WKUP_I2C0_SCL  
WKUP_I2C0_SCL  
0
7
0
7
IOD  
VDDSHV0_M  
CU  
I2C OPEN  
DRAIN  
PADCFG:  
WKUP_PADCONFIG_64  
0x4301C100  
N33  
N35  
1.8 V/3.3 V  
IO  
Off / Off / Off  
Off / Off / Off  
On / SS / Off  
On / SS / Off  
0
0
Yes  
Yes  
Yes  
Yes  
WKUP_GPIO0_63  
WKUP_I2C0_SDA  
WKUP_GPIO0_64  
WKUP_I2C0_SDA  
IOD  
VDDSHV0_M  
CU  
I2C OPEN  
DRAIN  
PADCFG:  
WKUP_PADCONFIG_65  
0x4301C104  
1.8 V/3.3 V  
IO  
T38  
U37  
WKUP_OSC0_XI  
WKUP_OSC0_XO  
WKUP_UART0_RXD  
WKUP_OSC0_XI  
WKUP_OSC0_XO  
WKUP_UART0_RXD  
I
O
I
1.8 V  
1.8 V  
VDDA_WKUP  
VDDA_WKUP  
Yes  
Yes  
HFXOSC  
HFXOSC  
No  
No  
0
7
0
7
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_44  
0x4301C0B0  
K35  
K34  
1.8 V/3.3 V  
1.8 V/3.3 V  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
PU/PD  
PU/PD  
Yes  
Yes  
LVCMOS  
LVCMOS  
Yes  
Yes  
WKUP_GPIO0_58  
WKUP_UART0_TXD  
WKUP_GPIO0_59  
IO  
O
WKUP_UART0_TXD  
VDDSHV0_M  
CU  
PADCFG:  
WKUP_PADCONFIG_45  
0x4301C0B4  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
84  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3 Signal Descriptions  
1. SIGNAL NAME: The name of the signal passing through the pin.  
备注  
Signal names and descriptions provided in each Signal Descriptions table, represent the pin  
multiplexed signal function which is implemented at the pin and selected via PADCONFIG  
registers. Device subsystems may provide secondary multiplexing of signal functions, which are  
not described in these tables. For more information on secondary multiplexed signal functions,  
see the respective peripheral chapter of the device TRM.  
2. PIN TYPE: Signal direction and type:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output with three-state output function  
OZ = Output with three-state output function  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor  
3. DESCRIPTION: Description of the signal  
4. BALL: Ball number(s) associated with signal  
For more information on the IO cell configurations, see the Pad Configuration Registers section in Device  
Configuration chapter of the device TRM.  
6.3.1 ADC  
6.3.1.1 MCU Domain  
6-2. MCU_ADC Signal Descriptions  
SIGNAL NAME [1]  
MCU_ADC_EXT_TRIGGER0  
MCU_ADC_EXT_TRIGGER1  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
E38, H35, L33  
E37, K36, M38  
I
I
ADC Trigger Input  
ADC Trigger Input  
6-3. MCU_ADC0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_ADC0_REFN  
MCU_ADC0_REFP  
MCU_ADC0_AIN0  
MCU_ADC0_AIN1  
MCU_ADC0_AIN2  
MCU_ADC0_AIN3  
MCU_ADC0_AIN4  
MCU_ADC0_AIN5  
MCU_ADC0_AIN6  
MCU_ADC0_AIN7  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
U35  
A
A
A
A
A
A
A
A
A
A
ADC Reference (Negative)  
ADC Reference (Positive)  
ADC Input 0  
R35  
P36  
ADC Input 1  
V36  
ADC Input 2  
T34  
ADC Input 3  
T36  
ADC Input 4  
P34  
ADC Input 5  
R37  
ADC Input 6  
R33  
ADC Input 7  
V38  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-4. MCU_ADC1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_ADC1_REFN  
MCU_ADC1_REFP  
MCU_ADC1_AIN0  
MCU_ADC1_AIN1  
MCU_ADC1_AIN2  
MCU_ADC1_AIN3  
MCU_ADC1_AIN4  
MCU_ADC1_AIN5  
MCU_ADC1_AIN6  
MCU_ADC1_AIN7  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
A
A
A
A
A
A
A
A
A
A
ADC Reference (Negative)  
W35  
AA35  
Y38  
ADC Reference (Positive)  
ADC Input 0  
ADC Input 1  
Y34  
ADC Input 2  
V34  
ADC Input 3  
W37  
AA37  
W33  
U33  
ADC Input 4  
ADC Input 5  
ADC Input 6  
ADC Input 7  
Y36  
6.3.2 DDRSS  
6.3.2.1 MAIN Domain  
6-5. DDRSS0 Signal Descriptions  
SIGNAL NAME [1]  
DDR0_CKN  
DDR0_CKP  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Differential Clock (negative)  
DDRSS Differential Clock (positive)  
DDRSS Reset  
ALY PIN [4]  
AB2  
AC1  
AD5  
AC8  
AD2  
AC5  
AB4  
AC4  
AB3  
AC3  
AE8  
AB6  
AD3  
AD7  
AC7  
AB7  
AD6  
V3  
IO  
IO  
IO  
I
DDR0_RESETn  
DDR0_RET  
DDR Retention Enable  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
IO Pad Calibration Resistor  
DDRSS Clock Enable  
DDRSS Clock Enable  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Data Mask  
DDR0_CA0  
IO  
IO  
IO  
IO  
IO  
IO  
A
DDR0_CA1  
DDR0_CA2  
DDR0_CA3  
DDR0_CA4  
DDR0_CA5  
DDR0_CAL0 (1)  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CSn0_0  
DDR0_CSn0_1  
DDR0_CSn1_0  
DDR0_CSn1_1  
DDR0_DM0  
DDR0_DM1  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data Mask  
AA4  
AG2  
AJ5  
U2  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
DDR0_DQ1  
DDRSS Data  
U4  
DDR0_DQ2  
DDRSS Data  
W6  
DDR0_DQ3  
DDRSS Data  
W5  
DDR0_DQ4  
DDRSS Data  
V4  
DDR0_DQ5  
DDRSS Data  
V7  
DDR0_DQ6  
DDRSS Data  
U5  
DDR0_DQ7  
DDRSS Data  
V6  
DDR0_DQ8  
DDRSS Data  
Y2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
86  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-5. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
W3  
DDR0_DQ9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
DDR0_DQ17  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0N  
DDR0_DQS0P  
DDR0_DQS1N  
DDR0_DQS1P  
DDR0_DQS2N  
DDR0_DQS2P  
DDR0_DQS3N  
DDR0_DQS3P  
AA3  
W2  
AA6  
Y4  
Y5  
AA7  
AF2  
AE7  
AG3  
AF5  
AE6  
AF4  
AE3  
AE4  
AG5  
AH3  
AJ2  
AH4  
AJ4  
AH6  
AH7  
AG6  
V1  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
U1  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
Y1  
AA1  
AE1  
AF1  
AH1  
AJ1  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
(1) An external 240 ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-6. DDRSS1 Signal Descriptions  
SIGNAL NAME [1]  
DDR1_CKN  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Differential Clock (negative)  
DDRSS Differential Clock (positive)  
DDRSS Reset  
ALY PIN [4]  
A11  
IO  
IO  
IO  
I
DDR1_CKP  
DDR1_RESETn  
DDR1_RET  
DDR1_CA0  
DDR1_CA1  
DDR1_CA2  
DDR1_CA3  
DDR1_CA4  
DDR1_CA5  
B10  
G10  
G8  
DDR Retention Enable  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
F12  
C12  
B12  
C11  
D12  
E10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-6. DDRSS1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DDR1_CAL0 (1)  
DDR1_CKE0  
DDR1_CKE1  
DDR1_CSn0_0  
DDR1_CSn0_1  
DDR1_CSn1_0  
DDR1_CSn1_1  
DDR1_DM0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
A
IO Pad Calibration Resistor  
G14  
D11  
C10  
E11  
G11  
F10  
G12  
E17  
C15  
D8  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Clock Enable  
DDRSS Clock Enable  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
DDR1_DM1  
DDR1_DM2  
DDR1_DM3  
C1  
DDR1_DQ0  
F16  
G16  
F15  
E15  
D16  
C16  
B17  
D17  
B15  
B14  
C13  
D13  
F13  
G13  
E14  
D14  
E8  
DDR1_DQ1  
DDRSS Data  
DDR1_DQ2  
DDRSS Data  
DDR1_DQ3  
DDRSS Data  
DDR1_DQ4  
DDRSS Data  
DDR1_DQ5  
DDRSS Data  
DDR1_DQ6  
DDRSS Data  
DDR1_DQ7  
DDRSS Data  
DDR1_DQ8  
DDRSS Data  
DDR1_DQ9  
DDRSS Data  
DDR1_DQ10  
DDR1_DQ11  
DDR1_DQ12  
DDR1_DQ13  
DDR1_DQ14  
DDR1_DQ15  
DDR1_DQ16  
DDR1_DQ17  
DDR1_DQ18  
DDR1_DQ19  
DDR1_DQ20  
DDR1_DQ21  
DDR1_DQ22  
DDR1_DQ23  
DDR1_DQ24  
DDR1_DQ25  
DDR1_DQ26  
DDR1_DQ27  
DDR1_DQ28  
DDR1_DQ29  
DDR1_DQ30  
DDR1_DQ31  
DDR1_DQS0N  
DDR1_DQS0P  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
G9  
DDRSS Data  
F9  
DDRSS Data  
D9  
DDRSS Data  
C9  
DDRSS Data  
B8  
DDRSS Data  
B7  
DDRSS Data  
C7  
DDRSS Data  
B2  
DDRSS Data  
B3  
DDRSS Data  
B4  
DDRSS Data  
B5  
DDRSS Data  
A6  
DDRSS Data  
C5  
DDRSS Data  
C6  
DDRSS Data  
C3  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
A17  
A16  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
88  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-6. DDRSS1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
ALY PIN [4]  
DDR1_DQS1N  
DDR1_DQS1P  
DDR1_DQS2N  
DDR1_DQS2P  
DDR1_DQS3N  
DDR1_DQS3P  
IO  
IO  
IO  
IO  
IO  
IO  
A14  
A13  
A9  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
A8  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
A4  
A3  
(1) An external 240 ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-7. DDRSS2 Signal Descriptions  
SIGNAL NAME [1]  
DDR2_CKN  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Differential Clock (negative)  
DDRSS Differential Clock (positive)  
DDRSS Reset  
ALY PIN [4]  
K1  
L2  
IO  
IO  
IO  
I
DDR2_CKP  
DDR2_RESETn  
DDR2_RET  
DDR2_CA0  
DDR2_CA1  
DDR2_CA2  
DDR2_CA3  
DDR2_CA4  
DDR2_CA5  
DDR2_CAL0 (1)  
DDR2_CKE0  
DDR2_CKE1  
DDR2_CSn0_0  
DDR2_CSn0_1  
DDR2_CSn1_0  
DDR2_CSn1_1  
DDR2_DM0  
DDR2_DM1  
DDR2_DM2  
DDR2_DM3  
DDR2_DQ0  
DDR2_DQ1  
DDR2_DQ2  
DDR2_DQ3  
DDR2_DQ4  
DDR2_DQ5  
DDR2_DQ6  
DDR2_DQ7  
DDR2_DQ8  
DDR2_DQ9  
DDR2_DQ10  
DDR2_DQ11  
DDR2_DQ12  
DDR2_DQ13  
J5  
DDR Retention Enable  
DDRS Command Address  
DDRS Command Address  
DDRS Command Address  
DDRS Command Address  
DDRS Command Address  
DDRS Command Address  
DDRSS IO Pad Calibration Resistor  
DDR Clock Enable  
DDR Clock Enable  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Chip Select  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
L8  
IO  
IO  
IO  
IO  
IO  
IO  
A
K3  
L3  
K5  
L4  
K4  
L7  
U7  
L6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
J2  
J3  
J6  
J7  
K7  
T2  
M6  
G4  
D5  
T4  
DDRSS Data  
R6  
R3  
R4  
P6  
P5  
T5  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
R7  
N2  
N4  
P2  
P3  
M7  
N5  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-7. DDRSS2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
DDR2_DQ14  
DDR2_DQ15  
DDR2_DQ16  
DDR2_DQ17  
DDR2_DQ18  
DDR2_DQ19  
DDR2_DQ20  
DDR2_DQ21  
DDR2_DQ22  
DDR2_DQ23  
DDR2_DQ24  
DDR2_DQ25  
DDR2_DQ26  
DDR2_DQ27  
DDR2_DQ28  
DDR2_DQ29  
DDR2_DQ30  
DDR2_DQ31  
DDR2_DQS0N  
DDR2_DQS0P  
DDR2_DQS1N  
DDR2_DQS1P  
DDR2_DQS2N  
DDR2_DQS2P  
DDR2_DQS3N  
DDR2_DQS3P  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
M4  
M3  
F3  
G7  
H6  
H4  
G2  
H3  
G5  
F2  
E4  
D2  
F6  
F5  
E3  
E7  
E6  
D4  
R1  
T1  
M1  
N1  
G1  
H1  
D1  
E1  
DDRS Complimentary Data Strobe  
DDRS Data Strobe  
DDRS Complimentary Data Strobe  
DDRS Data Strobe  
DDRS Complimentary Data Strobe  
DDRS Data Strobe  
DDRS Complimentary Data Strobe  
DDRS Data Strobe  
(1) An external 240 ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-8. DDRSS3 Signal Descriptions  
SIGNAL NAME [1]  
DDR3_CKN  
PIN TYPE [2]  
DESCRIPTION [3]  
DDRSS Differential Clock (negative)  
DDRSS Differential Clock (positive)  
DDRSS Reset  
ALY PIN [4]  
B25  
IO  
IO  
IO  
I
DDR3_CKP  
DDR3_RESETn  
DDR3_RET  
A24  
C23  
DDR Retention Enable  
G27  
D25  
DDR3_CA0  
IO  
IO  
IO  
IO  
IO  
IO  
A
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS Command Address  
DDRSS IO Pad Calibration Resistor  
DDRSS Clock Enable  
DDR3_CA1  
B23  
DDR3_CA2  
D24  
DDR3_CA3  
C24  
DDR3_CA4  
E23  
DDR3_CA5  
F23  
DDR3_CAL0 (1)  
DDR3_CKE0  
DDR3_CKE1  
DDR3_CSn0_0  
DDR3_CSn0_1  
F18  
IO  
IO  
IO  
IO  
C25  
DDRSS Clock Enable  
G24  
G23  
G25  
DDRSS Chip Select  
DDRSS Chip Select  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
90  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-8. DDRSS3 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
F25  
E24  
E18  
D21  
C28  
E30  
D18  
B18  
C19  
D19  
F20  
E20  
G19  
F19  
E21  
G21  
F22  
D22  
C22  
B21  
B20  
C20  
B28  
B27  
C26  
D26  
F26  
G26  
E27  
D27  
F29  
G29  
F28  
E28  
D29  
C29  
B30  
D30  
A19  
A18  
A22  
A21  
A27  
A26  
A30  
DDR3_CSn1_0  
DDR3_CSn1_1  
DDR3_DM0  
DDR3_DM1  
DDR3_DM2  
DDR3_DM3  
DDR3_DQ0  
IO  
DDRSS Chip Select  
IO  
DDRSS Chip Select  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
IO  
IO  
IO  
IO  
IO  
DDR3_DQ1  
IO  
DDRSS Data  
DDR3_DQ2  
IO  
DDRSS Data  
DDR3_DQ3  
IO  
DDRSS Data  
DDR3_DQ4  
IO  
DDRSS Data  
DDR3_DQ5  
IO  
DDRSS Data  
DDR3_DQ6  
IO  
DDRSS Data  
DDR3_DQ7  
IO  
DDRSS Data  
DDR3_DQ8  
IO  
DDRSS Data  
DDR3_DQ9  
IO  
DDRSS Data  
DDR3_DQ10  
DDR3_DQ11  
DDR3_DQ12  
DDR3_DQ13  
DDR3_DQ14  
DDR3_DQ15  
DDR3_DQ16  
DDR3_DQ17  
DDR3_DQ18  
DDR3_DQ19  
DDR3_DQ20  
DDR3_DQ21  
DDR3_DQ22  
DDR3_DQ23  
DDR3_DQ24  
DDR3_DQ25  
DDR3_DQ26  
DDR3_DQ27  
DDR3_DQ28  
DDR3_DQ29  
DDR3_DQ30  
DDR3_DQ31  
DDR3_DQS0N  
DDR3_DQS0P  
DDR3_DQS1N  
DDR3_DQS1P  
DDR3_DQS2N  
DDR3_DQS2P  
DDR3_DQS3N  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Data  
IO  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
DDRSS Complimentary Data Strobe  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-8. DDRSS3 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
A29  
DDR3_DQS3P  
IO  
DDRSS Data Strobe  
(1) An external 240 ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6.3.3 GPIO  
6.3.3.1 MAIN Domain  
6-9. GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
GPIO0_0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AN35  
AG36  
AJ33  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
GPIO0_1  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
GPIO0_2  
GPIO0_3  
AF33  
AH33  
AG33  
AK36  
AG34  
AJ35  
GPIO0_4  
GPIO0_5  
GPIO0_6  
GPIO0_7  
GPIO0_8  
GPIO0_9  
AH34  
AE33  
AL32  
AK37  
AJ34  
GPIO0_10  
GPIO0_11  
GPIO0_12  
GPIO0_13  
GPIO0_14  
GPIO0_15  
GPIO0_16  
GPIO0_17  
GPIO0_18  
GPIO0_19  
GPIO0_20  
GPIO0_21  
GPIO0_22  
GPIO0_23  
GPIO0_24  
GPIO0_25  
GPIO0_26  
GPIO0_27  
GPIO0_28  
GPIO0_29  
GPIO0_30  
GPIO0_31  
GPIO0_32  
GPIO0_33  
GPIO0_34  
GPIO0_35  
GPIO0_36  
GPIO0_37  
AK35  
AK38  
AF37  
AG37  
AK33  
AC32  
AC37  
AD37  
AE37  
AC36  
AE36  
AF38  
AE38  
AJ37  
AH38  
AC33  
AH37  
AJ38  
AK34  
AG38  
AF36  
AE35  
AC35  
AG35  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
92  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-9. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AH36  
AF35  
AD34  
AJ36  
GPIO0_38  
GPIO0_39  
GPIO0_40  
GPIO0_41  
GPIO0_42  
GPIO0_43  
GPIO0_44  
GPIO0_45  
GPIO0_46  
GPIO0_47  
GPIO0_48  
GPIO0_49  
GPIO0_50  
GPIO0_51  
GPIO0_52  
GPIO0_53  
GPIO0_54  
GPIO0_55  
GPIO0_56  
GPIO0_57  
GPIO0_58  
GPIO0_59  
GPIO0_60  
GPIO0_61  
GPIO0_62  
GPIO0_63  
GPIO0_64  
GPIO0_65  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
AF34  
AE34  
AL33  
AL34  
AC34  
AD33  
AD38  
AD36  
AJ32  
AM37  
AP38  
AN38  
AM35  
AM36  
AN36  
AP37  
AR38  
AN37  
AC38  
AA32  
AB34  
AA33  
AB38  
AB36  
6.3.3.2 WKUP Domain  
6-10. WKUP_GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_GPIO0_0  
WKUP_GPIO0_1  
WKUP_GPIO0_2  
WKUP_GPIO0_3  
WKUP_GPIO0_4  
WKUP_GPIO0_5  
WKUP_GPIO0_6  
WKUP_GPIO0_7  
WKUP_GPIO0_8  
WKUP_GPIO0_9  
WKUP_GPIO0_10  
WKUP_GPIO0_11  
WKUP_GPIO0_12  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
H38  
J34  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
J35  
J36  
H35  
K36  
L37  
L36  
L35  
L34  
L33  
M38  
J37  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-10. WKUP_GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
WKUP_GPIO0_13  
WKUP_GPIO0_14  
WKUP_GPIO0_15  
WKUP_GPIO0_16  
WKUP_GPIO0_17  
WKUP_GPIO0_18  
WKUP_GPIO0_19  
WKUP_GPIO0_20  
WKUP_GPIO0_21  
WKUP_GPIO0_22  
WKUP_GPIO0_23  
WKUP_GPIO0_24  
WKUP_GPIO0_25  
WKUP_GPIO0_26  
WKUP_GPIO0_27  
WKUP_GPIO0_28  
WKUP_GPIO0_29  
WKUP_GPIO0_30  
WKUP_GPIO0_31  
WKUP_GPIO0_32  
WKUP_GPIO0_33  
WKUP_GPIO0_34  
WKUP_GPIO0_35  
WKUP_GPIO0_36  
WKUP_GPIO0_37  
WKUP_GPIO0_38  
WKUP_GPIO0_39  
WKUP_GPIO0_40  
WKUP_GPIO0_41  
WKUP_GPIO0_42  
WKUP_GPIO0_43  
WKUP_GPIO0_44  
WKUP_GPIO0_45  
WKUP_GPIO0_46  
WKUP_GPIO0_47  
WKUP_GPIO0_48  
WKUP_GPIO0_49  
WKUP_GPIO0_50  
WKUP_GPIO0_51  
WKUP_GPIO0_52  
WKUP_GPIO0_53  
WKUP_GPIO0_54  
WKUP_GPIO0_55  
WKUP_GPIO0_56  
WKUP_GPIO0_57  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IO  
General Purpose Input/Output  
K38  
H37  
K37  
E32  
D32  
C34  
B33  
B32  
C33  
C35  
D33  
D34  
E34  
E33  
A32  
A33  
B34  
C32  
F32  
C31  
F31  
E35  
D31  
G31  
F33  
G32  
G33  
C38  
C37  
E38  
E37  
D38  
D37  
E36  
B37  
D36  
M33  
B36  
A35  
B35  
A36  
G38  
H36  
M37  
M36  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
94  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-10. WKUP_GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
K35  
K34  
K33  
F38  
WKUP_GPIO0_58  
WKUP_GPIO0_59  
WKUP_GPIO0_60  
WKUP_GPIO0_61  
WKUP_GPIO0_62  
WKUP_GPIO0_63  
WKUP_GPIO0_64  
WKUP_GPIO0_65  
WKUP_GPIO0_66  
WKUP_GPIO0_67  
WKUP_GPIO0_68  
WKUP_GPIO0_69  
WKUP_GPIO0_70  
WKUP_GPIO0_71  
WKUP_GPIO0_72  
WKUP_GPIO0_73  
WKUP_GPIO0_74  
WKUP_GPIO0_75  
WKUP_GPIO0_76  
WKUP_GPIO0_77  
WKUP_GPIO0_78  
WKUP_GPIO0_79  
WKUP_GPIO0_80  
WKUP_GPIO0_81  
WKUP_GPIO0_82  
WKUP_GPIO0_83  
WKUP_GPIO0_84  
WKUP_GPIO0_85  
WKUP_GPIO0_86  
WKUP_GPIO0_87  
WKUP_GPIO0_88  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
C36  
N33  
N35  
M35  
N34  
M34  
F36  
J38  
F37  
P36  
V36  
T34  
I
I
I
T36  
I
P34  
R37  
R33  
V38  
Y38  
Y34  
V34  
W37  
AA37  
W33  
U33  
Y36  
G34  
L38  
I
I
I
I
I
I
I
I
I
I
I
IO  
IO  
6.3.4 I2C  
6.3.4.1 MAIN Domain  
6-11. I2C0 Signal Descriptions  
SIGNAL NAME [1]  
I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AN36  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C0_SDA  
AP37  
6-12. I2C1 Signal Descriptions  
SIGNAL NAME [1]  
I2C1_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IOD  
IOD  
I2C Clock  
I2C Data  
AD36, AE34, AJ35  
AH34, AJ32, AL33  
I2C1_SDA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-13. I2C2 Signal Descriptions  
SIGNAL NAME [1]  
I2C2_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IOD  
IOD  
I2C Clock  
I2C Data  
AC32, AN38  
AC37, AM35  
I2C2_SDA  
6-14. I2C3 Signal Descriptions  
SIGNAL NAME [1]  
I2C3_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AC38, AF38  
AA32, AE36  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C3_SDA  
6-15. I2C4 Signal Descriptions  
SIGNAL NAME [1]  
I2C4_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IOD  
IOD  
I2C Clock  
I2C Data  
AA33, AG33, AG38  
AB34, AH33, AK34  
I2C4_SDA  
6-16. I2C5 Signal Descriptions  
SIGNAL NAME [1]  
I2C5_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AC33, AG34  
AH37, AK36  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C5_SDA  
6-17. I2C6 Signal Descriptions  
SIGNAL NAME [1]  
I2C6_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AB36, AN37  
AB38, AR38  
IOD  
IOD  
I2C Clock  
I2C Data  
I2C6_SDA  
6.3.4.2 MCU Domain  
6-18. MCU_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
M35  
IOD  
IOD  
I2C Clock  
I2C Data  
MCU_I2C0_SDA  
G34  
6-19. MCU_I2C1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_I2C1_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
L35, L37  
IOD  
IOD  
I2C Clock  
I2C Data  
MCU_I2C1_SDA  
L34, L36  
6.3.4.3 WKUP Domain  
6-20. WKUP_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
N33  
IOD  
I2C Clock  
I2C Data  
WKUP_I2C0_SDA  
IOD  
N35  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
96  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3.5 I3C  
6.3.5.1 MCU Domain  
6-21. MCU_I3C0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_I3C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
L35  
IO  
IO  
I3C Clock  
I3C Data  
MCU_I3C0_SDA  
L34  
MCU_I3C0_SDAPULLEN  
OD  
I3C Data Pull Enable  
L38, M38  
6.3.6 MCAN  
6.3.6.1 MAIN Domain  
6-22. MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AE38  
I
MCAN0_TX  
O
AF38  
6-23. MCAN1 Signal Descriptions  
SIGNAL NAME [1]  
MCAN1_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AH38, AJ32  
AJ37  
I
MCAN1_TX  
O
6-24. MCAN2 Signal Descriptions  
SIGNAL NAME [1]  
MCAN2_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AH37  
I
MCAN2_TX  
O
AC33  
6-25. MCAN3 Signal Descriptions  
SIGNAL NAME [1]  
MCAN3_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AK34  
I
MCAN3_TX  
O
AJ38  
6-26. MCAN4 Signal Descriptions  
SIGNAL NAME [1]  
MCAN4_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AF36  
I
MCAN4_TX  
O
AG38  
6-27. MCAN5 Signal Descriptions  
SIGNAL NAME [1]  
MCAN5_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AC35, AK38  
AE35, AK35  
I
MCAN5_TX  
O
6-28. MCAN6 Signal Descriptions  
SIGNAL NAME [1]  
MCAN6_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AG37, AH36  
AF37, AG35  
I
MCAN Receive Data  
MCAN6_TX  
O
MCAN Transmit Data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-29. MCAN7 Signal Descriptions  
SIGNAL NAME [1]  
MCAN7_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
I
AC32, AD34  
AF35, AK33  
MCAN7_TX  
O
6-30. MCAN8 Signal Descriptions  
SIGNAL NAME [1]  
MCAN8_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AD37, AF34  
AC37, AJ36  
I
MCAN8_TX  
O
6-31. MCAN9 Signal Descriptions  
SIGNAL NAME [1]  
MCAN9_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AC36, AL33  
AE34, AE37  
I
MCAN9_TX  
O
6-32. MCAN10 Signal Descriptions  
SIGNAL NAME [1]  
MCAN10_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AC34  
I
MCAN10_TX  
O
AL34  
6-33. MCAN11 Signal Descriptions  
SIGNAL NAME [1]  
MCAN11_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AD38  
I
MCAN11_TX  
O
AD33  
6-34. MCAN12 Signal Descriptions  
SIGNAL NAME [1]  
MCAN12_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AJ33, AK37  
AD36, AG36  
I
MCAN12_TX  
O
6-35. MCAN13 Signal Descriptions  
SIGNAL NAME [1]  
MCAN13_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AH33, AN37  
AF33, AR38  
I
MCAN13_TX  
O
6-36. MCAN14 Signal Descriptions  
SIGNAL NAME [1]  
MCAN14_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AK36, AP38  
AG33, AM37  
I
MCAN14_TX  
O
6-37. MCAN15 Signal Descriptions  
SIGNAL NAME [1]  
MCAN15_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AB36, AJ35  
AB38, AG34  
I
MCAN Receive Data  
MCAN15_TX  
O
MCAN Transmit Data  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
98  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-38. MCAN16 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AE33  
MCAN16_RX  
MCAN16_TX  
I
O
AH34  
6-39. MCAN17 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
AE36, AJ34  
AL32  
MCAN17_RX  
MCAN17_TX  
I
O
6.3.6.2 MCU Domain  
6-40. MCU_MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
F38  
I
MCU_MCAN0_TX  
O
K33  
6-41. MCU_MCAN1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN1_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
ALY PIN [4]  
K36  
I
MCU_MCAN1_TX  
O
H35  
6.3.7 MCSPI  
6.3.7.1 MAIN Domain  
6-42. MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
SPI0_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AN38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI0_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AM37  
AP38  
SPI0_CS1  
SPI0_CS2  
AJ35  
SPI0_CS3  
AE33  
SPI0_D0  
AM35  
AM36  
SPI0_D1  
SPI Data 1  
6-43. MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
SPI1_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AB38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI1_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AC38  
SPI1_CS1  
AA32  
SPI1_CS2  
AB34  
SPI1_CS3  
AH34  
SPI1_D0  
AA33  
SPI1_D1  
SPI Data 1  
AB36  
6-44. MCSPI2 Signal Descriptions  
SIGNAL NAME [1]  
SPI2_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AD34  
IO  
IO  
SPI Clock  
SPI2_CS0  
SPI Chip Select 0  
AJ36  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-44. MCSPI2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
SPI2_CS1  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IO  
IO  
IO  
IO  
IO  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AF35  
AF37  
AG37  
AF34  
AE34  
SPI2_CS2  
SPI2_CS3  
SPI2_D0  
SPI2_D1  
SPI Data 1  
6-45. MCSPI3 Signal Descriptions  
SIGNAL NAME [1]  
SPI3_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AD38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI3_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AD33  
SPI3_CS1  
AJ38  
SPI3_CS2  
AF36  
SPI3_CS3  
AC34  
SPI3_D0  
AC32  
SPI3_D1  
SPI Data 1  
AC37  
6-46. MCSPI5 Signal Descriptions  
SIGNAL NAME [1]  
SPI5_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AJ38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI5_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AE38  
SPI5_CS1  
AF38  
SPI5_CS2  
AD37  
SPI5_CS3  
AE37  
SPI5_D0  
AH38  
SPI5_D1  
SPI Data 1  
AF36  
6-47. MCSPI6 Signal Descriptions  
SIGNAL NAME [1]  
SPI6_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AK37  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI6_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AJ34  
SPI6_CS1  
AH37  
SPI6_CS2  
AK34  
SPI6_CS3  
AG38  
SPI6_D0  
AD36  
SPI6_D1  
SPI Data 1  
AC33  
6-48. MCSPI7 Signal Descriptions  
SIGNAL NAME [1]  
SPI7_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AF37  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI7_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
AG37  
SPI7_CS1  
AD37  
SPI7_CS2  
AE37  
SPI7_CS3  
AL32  
SPI7_D0  
AE38  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
100 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-48. MCSPI7 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
SPI7_D1  
IO  
SPI Data 1  
AJ38  
6.3.7.2 MCU Domain  
6-49. MCU_MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI0_CLK  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
MCU_SPI0_CS2  
MCU_SPI0_CS3  
MCU_SPI0_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
G38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
F37  
F33, J37  
G33, H37  
H35  
H36  
MCU_SPI0_D1  
SPI Data 1  
J38  
6-50. MCU_MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI1_CLK  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
MCU_SPI1_CS2  
MCU_SPI1_CS3  
MCU_SPI1_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
H38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
J36  
D31, K38  
G31, K37  
K36  
J34  
MCU_SPI1_D1  
SPI Data 1  
J35  
6.3.8 UART  
6.3.8.1 MAIN Domain  
6-51. UART0 Signal Descriptions  
SIGNAL NAME [1]  
UART0_CTSn  
UART0_DCDn  
UART0_DSRn  
UART0_DTRn  
UART0_RIn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Data Carrier Detect (active low)  
UART Data Set Ready (active low)  
UART Data Terminal Ready (active low)  
UART Ring Indicator  
ALY PIN [4]  
AC32, AC38  
AJ33  
I
I
I
AF33  
O
I
AH33  
AG33  
UART0_RTSn  
UART0_RXD  
O
I
UART Request to Send (active low)  
UART Receive Data  
AB38, AC37, AP38  
AD33  
UART0_TXD  
O
UART Transmit Data  
AD38  
6-52. UART1 Signal Descriptions  
SIGNAL NAME [1]  
UART1_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AC36, AN38  
AE36, AM35  
AD37  
I
UART1_RTSn  
O
I
UART1_RXD  
UART1_TXD  
O
UART Transmit Data  
AE37  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-53. UART2 Signal Descriptions  
SIGNAL NAME [1]  
UART2_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
I
AD36  
UART2_RTSn  
O
I
AJ32  
UART2_RXD  
AB34, AF38, AM35  
AA33, AE38, AM36  
UART2_TXD  
O
UART Transmit Data  
6-54. UART3 Signal Descriptions  
SIGNAL NAME [1]  
UART3_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AJ38  
I
UART3_RTSn  
O
I
AH38  
UART3_RXD  
AC33, AD36, AR38  
AH37, AJ32, AN37  
UART3_TXD  
O
UART Transmit Data  
6-55. UART4 Signal Descriptions  
SIGNAL NAME [1]  
UART4_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
I
AB38, AG35, AK33  
UART4_RTSn  
O
I
AB36, AC34, AH36  
UART4_RXD  
AB34, AE35, AF37, AL34  
AA33, AC35, AF33, AG37  
UART4_TXD  
O
UART Transmit Data  
6-56. UART5 Signal Descriptions  
SIGNAL NAME [1]  
UART5_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AB34, AJ36  
I
UART5_RTSn  
O
I
AA33, AF34  
UART5_RXD  
AC38, AF35, AJ33  
AA32, AD34, AG36  
UART5_TXD  
O
UART Transmit Data  
6-57. UART6 Signal Descriptions  
SIGNAL NAME [1]  
UART6_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AF38  
I
UART6_RTSn  
O
I
AE38  
UART6_RXD  
AC36, AG33, AK37  
AE36, AH33, AJ37  
UART6_TXD  
O
UART Transmit Data  
6-58. UART7 Signal Descriptions  
SIGNAL NAME [1]  
UART7_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AB34  
I
UART7_RTSn  
O
I
AA33  
UART7_RXD  
AC38, AJ36, AL32  
AA32, AF34, AJ34  
UART7_TXD  
O
UART Transmit Data  
6-59. UART8 Signal Descriptions  
SIGNAL NAME [1]  
UART8_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AF37  
I
O
I
UART8_RTSn  
AG37  
UART8_RXD  
AB38, AE34, AK35, AP38  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
102 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-59. UART8 Signal Descriptions (continued)  
SIGNAL NAME [1]  
UART8_TXD  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
O
UART Transmit Data  
AB36, AK38, AL33, AN38  
6-60. UART9 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
AK33, AK37  
AC34, AJ34  
AC32, AG34  
AC37, AK36  
UART9_CTSn  
UART9_RTSn  
UART9_RXD  
UART9_TXD  
I
O
I
O
UART Transmit Data  
6.3.8.2 MCU Domain  
6-61. MCU_UART0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_UART0_CTSn  
MCU_UART0_RTSn  
MCU_UART0_RXD  
MCU_UART0_TXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
F33, H37  
I
O
I
G33, K37  
D31, K38, M38  
G31, J37, L33  
O
UART Transmit Data  
6.3.8.3 WKUP Domain  
6-62. WKUP_UART0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_UART0_CTSn  
WKUP_UART0_RTSn  
WKUP_UART0_RXD  
WKUP_UART0_TXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
ALY PIN [4]  
L37  
I
O
I
L36  
K35  
O
UART Transmit Data  
K34  
6.3.9 MDIO  
6.3.9.1 MAIN Domain  
6-63. MDIO0 Signal Descriptions  
SIGNAL NAME [1]  
MDIO0_MDC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AD38  
O
MDIO Clock  
MDIO Data  
MDIO0_MDIO  
IO  
AD33  
6-64. MDIO1 Signal Descriptions  
SIGNAL NAME [1]  
MDIO1_MDC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AE37  
O
MDIO Clock  
MDIO Data  
MDIO1_MDIO  
IO  
AC36  
6.3.9.2 MCU Domain  
6-65. MCU_MDIO0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MDIO0_MDC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
A36  
O
MDIO Clock  
MDIO Data  
MCU_MDIO0_MDIO  
IO  
B35  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3.10 UFS  
6.3.10.1 MAIN Domain  
6-66. UFS0 Signal Descriptions  
SIGNAL NAME [1]  
UFS0_REF_CLK  
UFS0_RSTn  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
I
I
I
I
I
I
I
I
I
I
UFS Reference Clock  
AM7  
AM8  
AM4  
AM1  
AM5  
AM2  
AL2  
UFS Reset  
UFS0_RX_DN0  
UFS0_RX_DN1  
UFS0_RX_DP0  
UFS0_RX_DP1  
UFS0_TX_DN0  
UFS0_TX_DN1  
UFS0_TX_DP0  
UFS0_TX_DP1  
UFS Receive Data (negative)  
UFS Receive Data (negative)  
UFS Receive Data (positive)  
UFS Receive Data (positive)  
UFS Transmit Data (negative)  
UFS Transmit Data (negative)  
UFS Transmit Data (positive)  
UFS Transmit Data (positive)  
AN2  
AL3  
AN3  
6.3.11 CPSW2G  
6.3.11.1 MAIN Domain  
6-67. CPSW2G0 Signal Descriptions  
SIGNAL NAME [1]  
CLKOUT  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AF34  
AL33  
AE34  
AL34  
AF35  
AC34  
AD34  
AJ36  
IO  
I
RMII Clock Output  
RGMII1_RXC  
RGMII1_RX_CTL  
RGMII1_TXC  
RGMII1_TX_CTL  
RGMII1_RD0  
RGMII1_RD1  
RGMII1_RD2  
RGMII1_RD3  
RGMII1_TD0  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RMII1_CRS_DV  
RMII1_RX_ER  
RMII1_TX_EN  
RMII1_RXD0  
RMII1_RXD1  
RMII1_TXD0  
RGMII Receive Clock  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
RMII Carrier Sense / Data Valid  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Receive Data 0  
RMII Receive Data 1  
RMII Transmit Data 0  
RMII Transmit Data 1  
RMII Reference Clock  
I
O
O
I
I
I
I
AF34  
AE35  
AC35  
AG35  
AH36  
AH36  
AF35  
AE34  
AC35  
AG35  
AD34  
AL33  
AJ36  
O
O
O
O
I
I
O
I
I
O
O
I
RMII1_TXD1  
RMII_REF_CLK  
6.3.11.2 MCU Domain  
6-68. MCU_CPSW2G0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_RGMII1_RXC  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
B37  
I
I
RGMII Receive Clock  
MCU_RGMII1_RX_CTL  
RGMII Receive Control  
C37  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
104 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-68. MCU_CPSW2G0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
E36  
MCU_RGMII1_TXC  
MCU_RGMII1_TX_CTL  
MCU_RGMII1_RD0  
MCU_RGMII1_RD1  
MCU_RGMII1_RD2  
MCU_RGMII1_RD3  
MCU_RGMII1_TD0  
MCU_RGMII1_TD1  
MCU_RGMII1_TD2  
MCU_RGMII1_TD3  
MCU_RMII1_CRS_DV  
MCU_RMII1_REF_CLK  
MCU_RMII1_RX_ER  
MCU_RMII1_TX_EN  
MCU_RMII1_RXD0  
MCU_RMII1_RXD1  
MCU_RMII1_TXD0  
MCU_RMII1_TXD1  
O
O
I
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Receive Data 0  
C38  
A35  
I
B36  
I
C36  
D36  
D37  
D38  
E37  
I
O
O
O
O
I
E38  
C38  
B37  
I
I
C37  
E36  
O
I
A35  
I
RMII Receive Data 1  
B36  
O
O
RMII Transmit Data 0  
RMII Transmit Data 1  
D37  
D38  
6.3.12 SGMII  
6.3.12.1 MAIN Domain  
6-69. CPSW9X0 Signal Descriptions  
SIGNAL NAME [1]  
SGMII1_RXN0  
SGMII1_RXP0  
SGMII1_TXN0  
SGMII1_TXP0  
SGMII2_RXN0  
SGMII2_RXP0  
SGMII2_TXN0  
SGMII2_TXP0  
SGMII3_RXN0  
SGMII3_RXP0  
SGMII3_TXN0  
SGMII3_TXP0  
SGMII4_RXN0  
SGMII4_RXP0  
SGMII4_TXN0  
SGMII4_TXP0  
SGMII5_RXN0  
SGMII5_RXP0  
SGMII5_TXN0  
SGMII5_TXP0  
SGMII6_RXN0  
SGMII6_RXP0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AU2, AU20  
AU21, AU3  
AR2, AR20  
AR21, AR3  
AT1, AT19  
AT2, AT20  
AP1, AP19  
AP2, AP20  
AU5  
I
I
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
O
O
I
I
O
O
I
I
AU6  
O
O
I
AV6  
AV7  
AT4  
I
AT5  
O
O
I
AR5  
AR6  
AR14, AU23  
AR15, AU24  
AP13, AV24  
AP14, AV25  
AT22, AU14  
AT23, AU15  
I
O
O
I
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-69. CPSW9X0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
SGMII6_TXN0  
SGMII6_TXP0  
SGMII7_RXN0  
SGMII7_RXP0  
SGMII7_TXN0  
SGMII7_TXP0  
SGMII8_RXN0  
SGMII8_RXP0  
SGMII8_TXN0  
SGMII8_TXP0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
O
O
I
SGMII Transmit (negative)  
AR23, AT13  
AR24, AT14  
AR17, AU20  
AR18, AU21  
AR20, AT16  
AR21, AT17  
AT19, AU17  
AT20, AU18  
AP19, AV18  
AP20, AV19  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
SGMII Receive (negative)  
SGMIi Receive (positive)  
SGMII Transmit (negative)  
SGMII Transmit (positive)  
I
O
O
I
I
O
O
6.3.13 ECAP  
6.3.13.1 MAIN Domain  
6-70. ECAP0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP0_IN_APWM_OUT  
IO  
AB34, AD36  
6-71. ECAP1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP1_IN_APWM_OUT  
IO  
AA33, AR38  
6-72. ECAP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
ECAP2_IN_APWM_OUT  
IO  
AN37  
6.3.14 EQEP  
6.3.14.1 MAIN Domain  
6-73. EQEP0 Signal Descriptions  
SIGNAL NAME [1]  
EQEP0_A  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AF34  
I
EQEP Quadrature Input A  
EQEP0_B  
I
EQEP Quadrature Input B  
EQEP Index  
AE34  
EQEP0_I  
IO  
IO  
AD33  
EQEP0_S  
EQEP Strobe  
AC34  
6-74. EQEP1 Signal Descriptions  
SIGNAL NAME [1]  
EQEP1_A  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AL33  
I
EQEP Quadrature Input A  
EQEP1_B  
I
EQEP Quadrature Input B  
EQEP Index  
AL34  
EQEP1_I  
IO  
IO  
AK37  
EQEP1_S  
EQEP Strobe  
AD38  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
106 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-75. EQEP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AK33  
EQEP2_A  
EQEP2_B  
EQEP2_I  
EQEP2_S  
I
EQEP Quadrature Input A  
I
EQEP Quadrature Input B  
EQEP Index  
AC37  
IO  
IO  
AC36  
EQEP Strobe  
AD37  
6.3.15 EPWM  
6.3.15.1 MAIN Domain  
6-76. EPWM Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM_SOCA  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AE37  
O
O
I
EHRPWM Start of Conversion A  
EHRPWM_SOCB  
EHRPWM Start of Conversion B  
AD34  
AJ38  
EHRPWM_TZn_IN0  
EHRPWM_TZn_IN1  
EHRPWM_TZn_IN2  
EHRPWM_TZn_IN3  
EHRPWM_TZn_IN4  
EHRPWM_TZn_IN5  
EHRPWM Trip Zone Input 0 (active low)  
EHRPWM Trip Zone Input 1 (active low)  
EHRPWM Trip Zone Input 2 (active low)  
EHRPWM Trip Zone Input 3 (active low)  
EHRPWM Trip Zone Input 4 (active low)  
EHRPWM Trip Zone Input 5 (active low)  
I
AC32  
AK35  
I
I
AC35  
AF36  
I
I
AJ37  
6-77. EPWM0 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM0_A  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AA32, AE38, AM37  
AC38, AF38  
AH38  
IO  
IO  
I
EHRPWM Output A  
EHRPWM0_B  
EHRPWM Output B  
EHRPWM0_SYNCI  
EHRPWM0_SYNCO  
Sync Input to EHRPWM module from an external pin  
Sync Output to EHRPWM module to an external pin  
O
AG37  
6-78. EPWM1 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM1_A  
PIN TYPE [2]  
DESCRIPTION [3]  
EHRPWM Output A  
EHRPWM Output B  
ALY PIN [4]  
AA33, AE36, AP38  
AB34, AC33  
IO  
IO  
EHRPWM1_B  
6-79. EPWM2 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM2_A  
PIN TYPE [2]  
DESCRIPTION [3]  
EHRPWM Output A  
EHRPWM Output B  
ALY PIN [4]  
AB36, AF37, AN38  
AB38, AK38  
IO  
IO  
EHRPWM2_B  
6-80. EPWM3 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM3_A  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AC38, AE35, AM35  
AF35  
IO  
IO  
I
EHRPWM Output A  
EHRPWM3_B  
EHRPWM Output B  
EHRPWM3_SYNCI  
EHRPWM3_SYNCO  
Sync Input to EHRPWM module from an external pin  
Sync Output to EHRPWM module to an external pin  
AH36  
O
AG35  
6-81. EPWM4 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
EHRPWM4_A  
IO  
EHRPWM Output A  
AB34, AJ36, AM36  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-81. EPWM4 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
EHRPWM4_B  
IO  
EHRPWM Output B  
AH37  
6-82. EPWM5 Signal Descriptions  
SIGNAL NAME [1]  
EHRPWM5_A  
PIN TYPE [2]  
DESCRIPTION [3]  
EHRPWM Output A  
EHRPWM Output B  
ALY PIN [4]  
AB38, AG38  
AK34  
IO  
IO  
EHRPWM5_B  
6.3.16 USB  
6.3.16.1 MAIN Domain  
6-83. USB0 Signal Descriptions  
SIGNAL NAME [1]  
USB0_DM  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AP16  
IO  
IO  
O
A
A
A
I
USB 2.0 Differential Data (negative)  
USB0_DP  
USB 2.0 Differential Data (positive)  
AP17  
USB0_DRVVBUS  
USB0_ID  
USB VBUS Control Output (active high)  
AE35, AL32, AN37  
AN17  
USB 2.0 Dual-Role Device Role Select  
USB0_RCALIB (1)  
USB0_VBUS (2)  
USB0_SSRX1N  
USB0_SSRX1P  
USB0_SSRX2N  
USB0_SSRX2P  
USB0_SSTX1N  
USB0_SSTX1P  
USB0_SSTX2N  
USB0_SSTX2P  
Pin to connect to calibration resistor  
AN18  
USB Level-shifted VBUS Detector  
AN15  
SERDES_USB Differential Receive Data (negative)  
SERDES_USB Differential Receive Data (positive)  
SERDES_USB Differential Receive Data (negative)  
SERDES_USB Differential Receive Data (positive)  
SERDES_USB Differential Transmit Data (negative)  
SERDES_USB Differential Transmit Data (positive)  
SERDES_USB Differential Transmit Data (negative)  
SERDES_USB Differential Transmit Data (positive)  
AR11, AR17  
AR12, AR18  
AU11, AU17  
AU12, AU18  
AT16, AV9  
AT17, AV10  
AV12, AV18  
AV13, AV19  
I
I
I
O
O
O
O
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see USB VBUS Design  
Guidelines.  
6.3.17 Display Port  
6.3.17.1 MAIN Domain  
6-84. DP0 Signal Descriptions  
SIGNAL NAME [1]  
DP0_AUXN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AP22  
IO  
IO  
I
Display Port Differential Auxiliary Data (negative)  
Display Port Differential Auxiliary Data (positive)  
Display Port Hot Plug Detection  
DP0_AUXP  
DP0_HPD  
DP0_TXN0  
DP0_TXN1  
DP0_TXN2  
DP0_TXN3  
DP0_TXP0  
DP0_TXP1  
DP0_TXP2  
DP0_TXP3  
AP23  
AC34, AG33, AM37  
AP13  
O
O
O
O
O
O
O
O
Display Port Differential Transmit (negative)  
Display Port Differential Transmit (negative)  
Display Port Differential Transmit (negative)  
Display Port Differential Transmit (negative)  
Display Port Differential Transmit (positive)  
Display Port Differential Transmit (positive)  
Display Port Differential Transmit (positive)  
Display Port Differential Transmit (positive)  
AT13  
AT16  
AV18  
AP14  
AT14  
AT17  
AV19  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
108 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3.18 Hyperlink  
6.3.18.1 MAIN Domain  
6-85. Hyperlink Signal Descriptions  
SIGNAL NAME [1]  
HYP_RXN0  
HYP_RXN1  
HYP_RXN2  
HYP_RXN3  
HYP_RXP0  
HYP_RXP1  
HYP_RXP2  
HYP_RXP3  
HYP_TXN0  
HYP_TXN1  
HYP_TXN2  
HYP_TXN3  
HYP_TXP0  
HYP_TXP1  
HYP_TXP2  
HYP_TXP3  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AR14, AR8  
AT10, AU14  
AR11, AR17  
AU11, AU17  
AR15, AR9  
AT11, AU15  
AR12, AR18  
AU12, AU18  
AP13, AT7  
AP10, AT13  
AT16, AV9  
I
I
Hyperlink RX (negative)  
Hyperlink RX (negative)  
Hyperlink RX (negative)  
Hyperlink RX (negative)  
Hyperlink RX (positive)  
Hyperlink RX (positive)  
Hyperlink RX (positive)  
Hyperlink RX (positive)  
Hyperlink TX0 (negative)  
Hyperlink TX0 (negative)  
Hyperlink TX0 (negative)  
Hyperlink TX0 (negative)  
Hyperlink TX0 (positive)  
Hyperlink TX0 (positive)  
Hyperlink TX0 (positive)  
Hyperlink TX0 (positive)  
I
I
I
I
I
I
O
O
O
O
O
O
O
O
AV12, AV18  
AP14, AT8  
AP11, AT14  
AT17, AV10  
AV13, AV19  
6-86. Hyperlink0 Signal Descriptions  
SIGNAL NAME [1]  
HYP0_RXFLCLK  
HYP0_RXFLDAT  
HYP0_RXPMCLK  
HYP0_RXPMDAT  
HYP0_TXFLCLK  
HYP0_TXFLDAT  
HYP0_TXPMCLK  
HYP0_TXPMDAT  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AK35  
O
O
I
Hyperlink Flow Management Receive Clock  
Hyperlink Flow Management Receive Data  
Hyperlink Power Management Receive Clock  
Hyperlink Power Management Receive Data  
Hyperlink Flow Management Transmit Clock  
Hyperlink Flow Management Transmit Data  
Hyperlink Power Management Transmit Clock  
Hyperlink Power Management Transmit Data  
AK38  
AC36  
I
AE36  
I
AF37  
I
AG37  
AD37  
O
O
AE37  
6-87. Hyperlink1 Signal Descriptions  
SIGNAL NAME [1]  
HYP1_RXFLCLK  
HYP1_RXFLDAT  
HYP1_RXPMCLK  
HYP1_RXPMDAT  
HYP1_TXFLCLK  
HYP1_TXFLDAT  
HYP1_TXPMCLK  
HYP1_TXPMDAT  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AK33  
O
O
I
Hyperlink Flow Management Receive Clock  
Hyperlink Flow Management Receive Data  
Hyperlink Power Management Receive Clock  
Hyperlink Power Management Receive Data  
Hyperlink Flow Management Transmit Clock  
Hyperlink Flow Management Transmit Data  
Hyperlink Power Management Transmit Clock  
Hyperlink Power Management Transmit Data  
AK37  
AC32  
AC37  
AD36  
AJ32  
I
I
I
O
O
AJ37  
AK34  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3.19 PCIE  
6.3.19.1 MAIN Domain  
6-88. PCIE Signal Descriptions  
SIGNAL NAME [1]  
PCIE0_CLKREQn  
PCIE1_CLKREQn  
PCIE2_CLKREQn  
PCIE3_CLKREQn  
PCIE0_RXN0  
PCIE0_RXN1  
PCIE0_RXN2  
PCIE0_RXN3  
PCIE0_RXP0  
PCIE0_RXP1  
PCIE0_RXP2  
PCIE0_RXP3  
PCIE0_TXN0  
PCIE0_TXN1  
PCIE0_TXN2  
PCIE0_TXN3  
PCIE0_TXP0  
PCIE0_TXP1  
PCIE0_TXP2  
PCIE0_TXP3  
PCIE1_RXN0  
PCIE1_RXN1  
PCIE1_RXN2  
PCIE1_RXN3  
PCIE1_RXP0  
PCIE1_RXP1  
PCIE1_RXP2  
PCIE1_RXP3  
PCIE1_TXN0  
PCIE1_TXN1  
PCIE1_TXN2  
PCIE1_TXN3  
PCIE1_TXP0  
PCIE1_TXP1  
PCIE1_TXP2  
PCIE1_TXP3  
PCIE2_RXN0  
PCIE2_RXN1  
PCIE2_RXP0  
PCIE2_RXP1  
PCIE2_TXN0  
PCIE2_TXN1  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IO  
IO  
IO  
IO  
I
PCIE Clock Request Signal  
AC34  
AC38, AR38  
AB38, AL33  
AB36, AL34  
AU5  
PCIE Clock Request Signal  
PCIE Clock Request Signal  
PCIE Clock Request Signal  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
I
AT4  
I
AU2  
I
AT1  
I
AU6  
I
AT5  
I
AU3  
I
AT2  
O
O
O
O
O
O
O
O
I
AV6  
AR5  
AR2  
AP1  
AV7  
AR6  
AR3  
AP2  
AR8  
I
AT10  
AR11  
AU11  
AR9  
I
I
I
I
AT11  
AR12  
AU12  
AT7  
I
I
O
O
O
O
O
O
O
O
I
AP10  
AV9  
AV12  
AT8  
AP11  
AV10  
AV13  
AU2  
I
AT1  
I
AU3  
I
AT2  
O
O
AR2  
AP1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
110  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-88. PCIE Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AR3  
PCIE2_TXP0  
O
O
I
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (negative)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Receive Data (positive)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (negative)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Differential Transmit Data (positive)  
SERDES_PCIE Reference Clock Negative  
PCIE2_TXP1  
AP2  
PCIE3_RXN0  
AR11  
AU11  
AR12  
AU12  
AV9  
PCIE3_RXN1  
I
PCIE3_RXP0  
I
PCIE3_RXP1  
I
PCIE3_TXN0  
O
O
O
O
O
O
O
O
O
O
O
O
PCIE3_TXN1  
AV12  
AV10  
AV13  
AP4  
PCIE3_TXP0  
PCIE3_TXP1  
PCIE_REFCLK0_N_OUT  
PCIE_REFCLK0_P_OUT  
PCIE_REFCLK1_N_OUT  
PCIE_REFCLK1_P_OUT  
PCIE_REFCLK2_N_OUT  
PCIE_REFCLK2_P_OUT  
PCIE_REFCLK3_N_OUT  
PCIE_REFCLK3_P_OUT  
SERDES_PCIE Reference Clock Positive  
AP5  
SERDES_PCIE Reference Clock Out Negative  
SERDES_PCIE Reference Clock Out Positive  
SERDES_PCIE Reference Clock Out Negative  
SERDES_PCIE Reference Clock Out Positive  
SERDES_PCIE Reference Clock Out Negative  
SERDES_PCIE Reference Clock Out Positive  
AN8  
AN9  
AN5  
AN6  
AP7  
AP8  
6.3.20 SERDES  
6.3.20.1 MAIN Domain  
6-89. SERDES0 Signal Descriptions  
SIGNAL NAME [1]  
SERDES0_REFCLK_N  
SERDES0_REFCLK_P  
SERDES0_REXT (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
Serdes Reference Clock Input/Output (negative)  
Serdes Reference Clock Input/Output (positive)  
External Calibration Resistor  
ALY PIN [4]  
AU9  
IO  
IO  
I
AU8  
AN11  
(1) An external 3.01 k±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-90. SERDES1 Signal Descriptions  
SIGNAL NAME [1]  
SERDES1_REFCLK_N  
SERDES1_REFCLK_P  
SERDES1_REXT (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
Serdes Reference Clock Input/Output (negative)  
Serdes Reference Clock Input/Output (positive)  
External Calibration Resistor  
ALY PIN [4]  
AV3  
IO  
IO  
I
AV4  
AL9  
(1) An external 3.01 k±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-91. SERDES2 Signal Descriptions  
SIGNAL NAME [1]  
SERDES2_REFCLK_N  
SERDES2_REFCLK_P  
SERDES2_REXT (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
Serdes Reference Clock Input/Output (negative)  
Serdes Reference Clock Input/Output (positive)  
External Calibration Resistor  
ALY PIN [4]  
AV21  
IO  
IO  
IO  
AV22  
AL20  
(1) An external 3.01 k±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-92. SERDES4 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
SERDES4_REFCLK_N  
IO  
Serdes Reference Clock Input/Output (negative)  
AV16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-92. SERDES4 Signal Descriptions (continued)  
SIGNAL NAME [1]  
SERDES4_REFCLK_P  
SERDES4_REXT (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
Serdes Reference Clock Input/Output (positive)  
External Calibration Resistor  
ALY PIN [4]  
IO  
IO  
AV15  
AM19  
(1) An external 3.01 k±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6.3.21 DSI  
6.3.21.1 MAIN Domain  
6-93. DSI0 Signal Descriptions  
SIGNAL NAME [1]  
CSI0_TXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
CSI Differential Transmit Clock Output (negative)  
CSI Differential Transmit Clock Output (positive)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
DSI Transmit clock (negative)  
ALY PIN [4]  
AP26  
AP25  
AU27  
AT26  
O
O
O
O
O
O
O
O
O
O
O
O
A
CSI0_TXCLKP  
CSI0_TXN0  
CSI0_TXN1  
CSI0_TXN2  
CSI0_TXN3  
CSI0_TXP0  
CSI0_TXP1  
CSI0_TXP2  
CSI0_TXP3  
DSI0_TXCLKN  
DSI0_TXCLKP  
DSI0_TXRCALIB (1)  
DSI0_TXN0  
DSI0_TXN1  
DSI0_TXN2  
DSI0_TXN3  
DSI0_TXP0  
DSI0_TXP1  
DSI0_TXP2  
DSI0_TXP3  
AR27  
AN24  
AU26  
AT25  
AR26  
AN23  
AP26  
AP25  
AM24  
AU27  
AT26  
DSI Transmit clock (positive)  
DSI Transmit Calibration Resistor  
DSI Transmit (negative)  
IO  
O
O
O
IO  
O
O
O
DSI Transmit (negative)  
DSI Transmit (negative)  
AR27  
AN24  
AU26  
AT25  
DSI Transmit (negative)  
DSI Transmit (positive)  
DSI Transmit (positive)  
DSI Transmit (positive)  
AR26  
AN23  
DSI Transmit (positive)  
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused.  
6-94. DSI1 Signal Descriptions  
SIGNAL NAME [1]  
CSI1_TXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AP29  
AP28  
AT29  
O
O
O
O
O
O
O
O
O
O
O
O
CSI Differential Transmit Clock Output (negative)  
CSI Differential Transmit Clock Output (positive)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (negative)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
CSI Differential Transmit Output (positive)  
DSI Transmit clock (negative)  
CSI1_TXCLKP  
CSI1_TXN0  
CSI1_TXN1  
CSI1_TXN2  
CSI1_TXN3  
CSI1_TXP0  
CSI1_TXP1  
CSI1_TXP2  
CSI1_TXP3  
DSI1_TXCLKN  
DSI1_TXCLKP  
AN27  
AV28  
AU30  
AT28  
AN26  
AV27  
AU29  
AP29  
AP28  
DSI Transmit clock (positive)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
112  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-94. DSI1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
DSI Transmit Calibration Resistor  
DSI Transmit (negative)  
DSI Transmit (negative)  
DSI Transmit (negative)  
DSI Transmit (negative)  
DSI Transmit (positive)  
ALY PIN [4]  
AL22  
DSI1_TXRCALIB (1)  
DSI1_TXN0  
DSI1_TXN1  
DSI1_TXN2  
DSI1_TXN3  
DSI1_TXP0  
DSI1_TXP1  
DSI1_TXP2  
DSI1_TXP3  
A
IO  
O
O
O
IO  
O
O
O
AT29  
AN27  
AV28  
AU30  
AT28  
DSI Transmit (positive)  
AN26  
AV27  
DSI Transmit (positive)  
DSI Transmit (positive)  
AU29  
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused.  
6.3.22 CSI  
6.3.22.1 MAIN Domain  
6-95. CSI0 Signal Descriptions  
SIGNAL NAME [1]  
CSI0_RXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AN30  
I
I
CSI Differential Receive Clock Input (negative)  
CSI Differential Receive Clock Input (positive)  
CSI0_RXCLKP  
AN29  
CSI Pin connected to external resistor for on-chip  
resistor calibration  
CSI0_RXRCALIB (1)  
A
AM28  
CSI0_RXN0  
CSI0_RXN1  
CSI0_RXN2  
CSI0_RXN3  
CSI0_RXP0  
CSI0_RXP1  
CSI0_RXP2  
CSI0_RXP3  
I
I
I
I
I
I
I
I
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
AU33  
AT32  
AV31  
AR30  
AU32  
AT31  
AV30  
AR29  
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused.  
6-96. CSI1 Signal Descriptions  
SIGNAL NAME [1]  
CSI1_RXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AP32  
I
I
CSI Differential Receive Clock Input (negative)  
CSI Differential Receive Clock Input (positive)  
CSI1_RXCLKP  
AP31  
CSI pin connected to external resistor for on-chip  
resistor calibration  
CSI1_RXRCALIB (1)  
A
AL28  
CSI1_RXN0  
CSI1_RXN1  
CSI1_RXN2  
CSI1_RXN3  
CSI1_RXP0  
CSI1_RXP1  
CSI1_RXP2  
CSI1_RXP3  
I
I
I
I
I
I
I
I
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
AT35  
AU36  
AR33  
AV34  
AT34  
AU35  
AR32  
AV33  
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-97. CSI2 Signal Descriptions  
SIGNAL NAME [1]  
CSI2_RXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
I
I
CSI Differential Receive Clock Input (negative)  
CSI Differential Receive Clock Input (positive)  
AN32  
AN33  
CSI2_RXCLKP  
CSI Pin connected to external resistor for on-chip  
resistor calibration  
CSI2_RXRCALIB (1)  
A
AM31  
CSI2_RXN0  
CSI2_RXN1  
CSI2_RXN2  
CSI2_RXN3  
CSI2_RXP0  
CSI2_RXP1  
CSI2_RXP2  
CSI2_RXP3  
I
I
I
I
I
I
I
I
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
AR36  
AT38  
AP35  
AV37  
AR35  
AT37  
AP34  
AV36  
(1) An external 500 ±1% resistor must be connected between this pin and VSS, even when the pin is unused.  
6.3.23 MCASP  
6.3.23.1 MAIN Domain  
6-98. MCASP0 Signal Descriptions  
SIGNAL NAME [1]  
MCASP0_ACLKR  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AF34  
AK35  
AE34  
AK38  
AF37  
AG37  
AK33  
AJ38  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP0_ACLKX  
MCASP0_AFSR  
MCASP0_AFSX  
MCASP0_AXR0  
MCASP0_AXR1  
MCASP0_AXR2  
MCASP0_AXR3  
MCASP0_AXR4  
MCASP0_AXR5  
MCASP0_AXR6  
MCASP0_AXR7  
MCASP0_AXR8  
MCASP0_AXR9  
MCASP0_AXR10  
MCASP0_AXR11  
MCASP0_AXR12  
MCASP0_AXR13  
MCASP0_AXR14  
MCASP0_AXR15  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
AK34  
AG38  
AF36  
AE35  
AC35  
AG35  
AH36  
AF35  
AD34  
AJ36  
AF34  
AE34  
6-99. MCASP1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AG38  
MCASP1_ACLKR  
MCASP1_ACLKX  
MCASP1_AFSR  
MCASP1_AFSX  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
AC34  
AF36  
AD33  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
114  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-99. MCASP1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
ALY PIN [4]  
AD38  
MCASP1_AXR0  
MCASP1_AXR1  
MCASP1_AXR2  
MCASP1_AXR3  
MCASP1_AXR4  
IO  
IO  
IO  
IO  
IO  
AC32  
AC37  
AL33  
AL34  
6-100. MCASP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AD34  
AD37  
AJ36  
MCASP2_ACLKR  
MCASP2_ACLKX  
MCASP2_AFSR  
MCASP2_AFSX  
MCASP2_AXR0  
MCASP2_AXR1  
MCASP2_AXR2  
MCASP2_AXR3  
MCASP2_AXR4  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
AE37  
AC36  
AE36  
AF38  
AC33  
AF34  
6-101. MCASP3 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AM37  
MCASP3_ACLKR  
MCASP3_ACLKX  
MCASP3_AFSR  
MCASP3_AFSX  
MCASP3_AXR0  
MCASP3_AXR1  
MCASP3_AXR2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
AM37  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
AP38  
AP38  
AN38  
AM35  
AM36  
6-102. MCASP4 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AE35  
MCASP4_ACLKR  
MCASP4_ACLKX  
MCASP4_AFSR  
MCASP4_AFSX  
MCASP4_AXR0  
MCASP4_AXR1  
MCASP4_AXR2  
MCASP4_AXR3  
MCASP4_AXR4  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
AJ32  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASPI Serial Data (Input/Output)  
AC35  
AJ37  
AJ34  
AE38  
AD36  
AH38  
AG35  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6.3.24 DMTIMER  
6.3.24.1 MAIN Domain  
6-103. DMTIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
TIMER_IO0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AR38  
AN37  
AC38  
AA32  
AB34  
AA33  
AB38  
AB36  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
TIMER_IO1  
TIMER_IO2  
TIMER_IO3  
TIMER_IO4  
TIMER_IO5  
TIMER_IO6  
TIMER_IO7  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
Timer Inputs and Outputs (Can be used with any MAIN  
domain timer instance)  
6.3.24.2 MCU Domain  
6-104. MCU_DMTIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
MCU_TIMER_IO0  
IO  
G33, J38  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
MCU_TIMER_IO1  
MCU_TIMER_IO2  
MCU_TIMER_IO3  
MCU_TIMER_IO4  
MCU_TIMER_IO5  
MCU_TIMER_IO6  
MCU_TIMER_IO7  
MCU_TIMER_IO8  
MCU_TIMER_IO9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
F37, M38  
E38  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
E37  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
D36  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
C36  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
L35, M37  
L34, M36  
H37  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
Timer Inputs and Outputs (Can be used with any MCU  
domain timer instance.)  
K37  
6.3.25 CPTS  
6.3.25.1 MAIN Domain  
6-105. CPTS0 Signal Descriptions  
SIGNAL NAME [1]  
CPTS0_RFT_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AD36  
I
CPTS Reference Clock  
CPTS0_TS_COMP  
CPTS0_TS_SYNC  
O
O
CPTS Time Stamp Counter Compare  
CPTS Time Stamp Counter Bit  
AP38  
AA32  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
116  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-105. CPTS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
CPTS Hardware Time Stamp Push 1  
CPTS Hardware Time Stamp Push 2  
ALY PIN [4]  
AD36  
CPTS0_HW1TSPUSH  
CPTS0_HW2TSPUSH  
I
I
AJ32  
6.3.25.2 MCU Domain  
6-106. MCU_CPTS0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_CPTS0_RFT_CLK  
MCU_CPTS0_TS_COMP  
MCU_CPTS0_TS_SYNC  
MCU_CPTS0_HW1TSPUSH  
MCU_CPTS0_HW2TSPUSH  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
L33, M33  
L34  
I
O
O
I
CPTS Reference Clock  
CPTS Time Stamp Counter Compare  
CPTS Time Stamp Counter Bit  
L35  
CPTS Hardware Time Stamp Push 1  
CPTS Hardware Time Stamp Push 2  
L37  
I
L36  
6.3.26 DSS  
6.3.26.1 MAIN Domain  
6-107. DSS0 Signal Descriptions  
SIGNAL NAME [1]  
DSS_FSYNC0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AG36, AJ37  
AJ33, AJ34  
AF33, AF35  
AD34, AH33  
AG38  
O
O
O
O
O
I
Video Output Frame Sync  
DSS_FSYNC1  
Video Output Frame Sync  
Video Output Frame Sync  
Video Output Frame Sync  
Video Output Data Enable  
Video Output External Pixel Clock Input  
Video Output Horizontal Sync  
Video Output Pixel Clock Output  
Video Output Vertical Sync  
Video Output Data 0  
DSS_FSYNC2  
DSS_FSYNC3  
VOUT0_DE  
VOUT0_EXTPCLKIN  
VOUT0_HSYNC  
VOUT0_PCLK  
AJ37  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AK34  
AH37  
VOUT0_VSYNC  
VOUT0_DATA0  
VOUT0_DATA1  
VOUT0_DATA2  
VOUT0_DATA3  
VOUT0_DATA4  
VOUT0_DATA5  
VOUT0_DATA6  
VOUT0_DATA7  
VOUT0_DATA8  
VOUT0_DATA9  
VOUT0_DATA10  
VOUT0_DATA11  
VOUT0_DATA12  
VOUT0_DATA13  
VOUT0_DATA14  
VOUT0_DATA15  
VOUT0_DATA16  
VOUT0_DATA17  
VOUT0_DATA18  
VOUT0_DATA19  
AF36  
AC33  
Video Output Data 1  
AH38  
Video Output Data 2  
AJ38  
Video Output Data 3  
AE38  
Video Output Data 4  
AF38  
Video Output Data 5  
AE36  
Video Output Data 6  
AC36  
Video Output Data 7  
AE37  
Video Output Data 8  
AD37  
Video Output Data 9  
AC37  
Video Output Data 10  
Video Output Data 11  
Video Output Data 12  
Video Output Data 13  
Video Output Data 14  
Video Output Data 15  
Video Output Data 16  
Video Output Data 17  
Video Output Data 18  
Video Output Data 19  
AC32  
AK33  
AG37  
AF37  
AK38  
AK35  
AJ32  
AK37  
AC33, AL32  
AE33, AH38  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-107. DSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
VOUT0_DATA20  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
O
O
O
O
O
O
O
O
O
O
Video Output Data 20  
AD37, AH34  
AC37, AJ35  
AG34, AK37  
AD36, AK36  
AG38  
VOUT0_DATA21  
Video Output Data 21  
VOUT0_DATA22  
Video Output Data 22  
VOUT0_DATA23  
Video Output Data 23  
VOUT0_VP0_DE  
Alternative Output Data Enable  
Alternative Output Horizontal Sync  
Alternative Output Vertical Sync  
Alternative Output Data Enable  
Alternative Output Horizontal Sync  
Alternative Output Vertical Sync  
VOUT0_VP0_HSYNC  
VOUT0_VP0_VSYNC  
VOUT0_VP2_DE  
AK34  
AF36  
AG38  
VOUT0_VP2_HSYNC  
VOUT0_VP2_VSYNC  
AK34  
AF36  
6.3.27 GPMC  
6.3.27.1 MAIN Domain  
6-108. GPMC0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
GPMC Address Valid (active low) or Address Latch  
Enable  
GPMC0_ADVn_ALE  
O
AK33  
GPMC0_CLK  
IO  
O
GPMC clock  
AG36  
AF36  
GPMC0_CLKOUT  
GPMC0_DIR  
GPMC clock generated for external synchronization  
GPMC Data Bus Signal Direction Control  
O
AC33, AH37  
GPMC Output Enable (active low) or Read Enable  
(active low)  
GPMC0_OEn_REn  
O
AK34  
GPMC0_WEn  
GPMC0_WPn  
O
O
GPMC Write Enable (active low)  
AJ34  
AK33  
GPMC Flash Write Protect (active low)  
GPMC Address 0 Output. Only used to effectively  
address 8-bit data non-multiplexed memories  
GPMC0_A0  
GPMC0_A1  
GPMC0_A2  
GPMC0_A3  
GPMC0_A4  
GPMC0_A5  
GPMC0_A6  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
GPMC0_A10  
GPMC0_A11  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
AE35  
AC35  
AG35  
AH36  
AF35  
AD34  
AJ36  
AF34  
AE34  
AL33  
AL34  
AC34  
GPMC Address 1 Output in A/D non-multiplexed mode  
and Address 17 in A/D multiplexed mode  
GPMC Address 2 Output in A/D non-multiplexed mode  
and Address 18 in A/D multiplexed mode  
GPMC Address 3 Output in A/D non-multiplexed mode  
and Address 19 in A/D multiplexed mode  
GPMC Address 4 Output in A/D non-multiplexed mode  
and Address 20 in A/D multiplexed mode  
GPMC Address 5 Output in A/D non-multiplexed mode  
and Address 21 in A/D multiplexed mode  
GPMC Address 6 Output in A/D non-multiplexed mode  
and Address 22 in A/D multiplexed mode  
GPMC Address 7 Output in A/D non-multiplexed mode  
and Address 23 in A/D multiplexed mode  
GPMC Address 8 Output in A/D non-multiplexed mode  
and Address 24 in A/D multiplexed mode  
GPMC Address 9 Output in A/D non-multiplexed mode  
and Address 25 in A/D multiplexed mode  
GPMC Address 10 Output in A/D non-multiplexed  
mode and Address 26 in A/D multiplexed mode  
GPMC Address 11 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
118  
Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-108. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
GPMC Address 12 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC0_A12  
GPMC0_A13  
GPMC0_A14  
GPMC0_A15  
GPMC0_A16  
GPMC0_A17  
GPMC0_A18  
GPMC0_A19  
GPMC0_A20  
GPMC0_A21  
GPMC0_A22  
GPMC0_A23  
GPMC0_A24  
OZ  
AD33  
GPMC Address 13 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
AD38  
AE35, AL32  
AE33  
GPMC Address 14 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC Address 15 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC Address 16 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AH34  
GPMC Address 17 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AJ35  
GPMC Address 18 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AG34  
GPMC Address 19 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AK36  
GPMC Address 20 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AG33  
GPMC Address 21 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AH33  
GPMC Address 22 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AF33  
GPMC Address 23 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AJ33  
GPMC Address 24 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
AG36  
GPMC Data 0 Input/Output in A/D non-multiplexed  
mode and additionally Address 1 Output in A/D  
multiplexed mode  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AK35  
AK38  
AF37  
AG37  
AK37  
AD36  
AJ32  
AJ37  
AC32  
GPMC Data 1 Input/Output in A/D non-multiplexed  
mode and additionally Address 2 Output in A/D  
multiplexed mode  
GPMC Data 2 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 3 Input/Output in A/D non-multiplexed  
mode and additionally Address 4 Output in A/D  
multiplexed mode  
GPMC Data 4 Input/Output in A/D non-multiplexed  
mode and additionally Address 5 Output in A/D  
multiplexed mode  
GPMC Data 5 Input/Output in A/D non-multiplexed  
mode and additionally Address 6 Output in A/D  
multiplexed mode  
GPMC Data 6 Input/Output in A/D non-multiplexed  
mode and additionally Address 7 Output in A/D  
multiplexed mode  
GPMC Data 7 Input/Output in A/D non-multiplexed  
mode and additionally Address 8 Output in A/D  
multiplexed mode  
GPMC Data 8 Input/Output in A/D non-multiplexed  
mode and additionally Address 9 Output in A/D  
multiplexed mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-108. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
GPMC Data 9 Input/Output in A/D non-multiplexed  
mode and additionally Address 10 Output in A/D  
multiplexed mode  
GPMC0_AD9  
IO  
AC37  
AD37  
AE37  
AC36  
AE36  
AF38  
GPMC Data 10 Input/Output in A/D non-multiplexed  
mode and additionally Address 11 Output in A/D  
multiplexed mode  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
IO  
IO  
IO  
IO  
IO  
GPMC Data 11 Input/Output in A/D non-multiplexed  
mode and additionally Address 12 Output in A/D  
multiplexed mode  
GPMC Data 12 Input/Output in A/D non-multiplexed  
mode and additionally Address 13 Output in A/D  
multiplexed mode  
GPMC Data 13 Input/Output in A/D non-multiplexed  
mode and additionally Address 14 Output in A/D  
multiplexed mode  
GPMC Data 14 Input/Output in A/D non-multiplexed  
mode and additionally Address 15 Output in A/D  
multiplexed mode  
GPMC Data 15 Input/Output in A/D non-multiplexed  
mode and additionally Address 16 Output in A/D  
multiplexed mode  
GPMC0_AD15  
IO  
O
AE38  
AH38  
GPMC Lower-Byte Enable (active low) or Command  
Latch Enable  
GPMC0_BE0n_CLE  
GPMC0_BE1n  
GPMC0_CSn0  
GPMC0_CSn1  
GPMC0_CSn2  
GPMC0_CSn3  
GPMC0_WAIT0  
GPMC0_WAIT1  
GPMC0_WAIT2  
GPMC0_WAIT3  
O
O
O
O
O
I
GPMC Upper-Byte Enable (active low)  
GPMC Chip Select 0 (active low)  
GPMC Chip Select 1 (active low)  
GPMC Chip Select 2 (active low)  
GPMC Chip Select 3 (active low)  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
AJ38  
AG38  
AH37  
AE35, AL32  
AJ33  
AC33  
I
AE33  
I
AF33  
I
AD38  
6.3.28 MMC  
6.3.28.1 MAIN Domain  
6-109. MMC0 Signal Descriptions  
SIGNAL NAME [1]  
MMC0_CALPAD (1)  
MMC0_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
MMC/SD/SDIO Calibration Resistor  
MMC/SD/SDIO Clock  
MMC/SD/SDIO Command  
MMC Data Strobe  
ALY PIN [4]  
AJ7  
A
O
AK5  
MMC0_CMD  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AL8  
MMC0_DS  
AK4  
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
MMC0_DAT3  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC/SD/SDIO Data  
AK9  
MMC/SD/SDIO Data  
AL6  
MMC/SD/SDIO Data  
AK8  
MMC/SD/SDIO Data  
AK6  
MMC/SD/SDIO Data  
AK7  
MMC/SD/SDIO Data  
AL7  
MMC/SD/SDIO Data  
AL5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
120 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-109. MMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
MMC0_DAT7  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
IO  
MMC/SD/SDIO Data  
AK3  
(1) An external 10 k±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6-110. MMC1 Signal Descriptions  
SIGNAL NAME [1]  
MMC1_CLK (2)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AB38  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC1_CMD  
MMC1_SDCD (1)  
MMC1_SDWP  
MMC1_DAT0  
MMC1_DAT1  
MMC1_DAT2  
MMC1_DAT3  
MMC/SD/SDIO Command  
SD Card Detect  
AB36  
AR38  
I
SD Write Protect  
AN37  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
AA33  
AB34  
AA32  
AC38  
(1) For ROM boot from MMC1 interface to work properly, the MMC1_SDCD pin should be pulled low externally with a resistor to indicate  
an SD Card/Memory device is present.  
(2) For MMC1_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG171 register should be set to 0x1 because  
of retiming purposes.  
6.3.29 OSPI  
6.3.29.1 MCU Domain  
6-111. MCU_OSPI0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_OSPI0_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
E32  
O
I
OSPI Clock  
MCU_OSPI0_DQS  
MCU_OSPI0_ECC_FAIL  
MCU_OSPI0_LBCLKO  
MCU_OSPI0_CSn0  
MCU_OSPI0_CSn1  
MCU_OSPI0_CSn2  
MCU_OSPI0_CSn3  
MCU_OSPI0_D0  
OSPI Data Strobe (DQS) or Loopback Clock Input  
OSPI ECC Status  
C34  
I
C32, F31  
D32  
IO  
O
OSPI Loopback Clock Output  
OSPI Chip Select 0 (active low)  
OSPI Chip Select 1 (active low)  
OSPI Chip Select 2 (active low)  
OSPI Chip Select 3 (active low)  
OSPI Data 0  
A32  
O
A33  
O
B34, C31  
C32, F31  
B33  
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
MCU_OSPI0_D1  
OSPI Data 1  
B32  
MCU_OSPI0_D2  
OSPI Data 2  
C33  
MCU_OSPI0_D3  
OSPI Data 3  
C35  
MCU_OSPI0_D4  
OSPI Data 4  
D33  
MCU_OSPI0_D5  
OSPI Data 5  
D34  
MCU_OSPI0_D6  
OSPI Data 6  
E34  
MCU_OSPI0_D7  
OSPI Data 7  
E33  
MCU_OSPI0_RESET_OUT0  
MCU_OSPI0_RESET_OUT1  
OSPI Reset  
B34, C31  
C32, G33  
O
OSPI Reset  
6-112. MCU_OSPI1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_OSPI1_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
F32  
O
I
OSPI Clock  
MCU_OSPI1_DQS  
OSPI Data Strobe (DQS) or Loopback Clock Input  
OSPI Loopback Clock Output  
F31  
MCU_OSPI1_LBCLKO  
IO  
C31  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-112. MCU_OSPI1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
MCU_OSPI1_CSn0  
MCU_OSPI1_CSn1  
MCU_OSPI1_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
O
O
OSPI Chip Select 0 (active low)  
G32  
G33  
E35  
D31  
G31  
F33  
OSPI Chip Select 1 (active low)  
OSPI Data 0  
IO  
IO  
IO  
IO  
MCU_OSPI1_D1  
OSPI Data 1  
MCU_OSPI1_D2  
OSPI Data 2  
MCU_OSPI1_D3  
OSPI Data 3  
6.3.30 Hyperbus  
6.3.30.1 MCU Domain  
6-113. MCU_HYPERBUS0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_HYPERBUS0_CK  
MCU_HYPERBUS0_CKn  
MCU_HYPERBUS0_INTn  
MCU_HYPERBUS0_RESETn  
PIN TYPE [2]  
DESCRIPTION [3]  
Hyperbus Differential Clock (positive)  
Hyperbus Differential Clock (negative)  
Hyperbus Interrupt (active low)  
ALY PIN [4]  
E32  
O
O
I
D32  
C32, F31  
A33  
O
Hyperbus Reset (active low) Output  
Hyperbus Reset Status Indicator (active low) from  
Hyperbus Memory  
MCU_HYPERBUS0_RESETOn  
I
B34, C31  
MCU_HYPERBUS0_RWDS  
MCU_HYPERBUS0_WPn  
MCU_HYPERBUS0_CSn0  
MCU_HYPERBUS0_CSn1  
MCU_HYPERBUS0_DQ0  
MCU_HYPERBUS0_DQ1  
MCU_HYPERBUS0_DQ2  
MCU_HYPERBUS0_DQ3  
MCU_HYPERBUS0_DQ4  
MCU_HYPERBUS0_DQ5  
MCU_HYPERBUS0_DQ6  
MCU_HYPERBUS0_DQ7  
IO  
O
Hyperbus Read-Write Data Strobe  
Hyperbus Write Protect (Not in use)  
Hyperbus Chip Select 0  
Hyperbus Chip Select 1  
Hyperbus Data 0  
C34  
B34, C32, G33  
A32  
O
O
B34, G33  
B33  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Hyperbus Data 1  
B32  
Hyperbus Data 2  
C33  
Hyperbus Data 3  
C35  
Hyperbus Data 4  
D33  
Hyperbus Data 5  
D34  
Hyperbus Data 6  
E34  
Hyperbus Data 7  
E33  
6.3.31 Emulation and Debug  
6.3.31.1 MAIN Domain  
6-114. JTAG Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
F35  
EMU0  
EMU1  
TCK  
IO  
Emulation Control 0  
IO  
Emulation Control 1  
JTAG Test Clock Input  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG Test Mode Select Input  
JTAG Reset  
H34  
I
G35  
TDI  
I
AL37  
AL35  
AL36  
G37  
TDO  
OZ  
TMS  
I
I
TRSTn  
6-115. Trace Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
TRC_CLK  
O
Trace Clock  
AG36, AJ32  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
122 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-115. Trace Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AJ33, AJ37  
AF33, AJ34  
AD36, AH33  
AG33, AK37  
AC33, AK36  
AD37  
TRC_CTL  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Trace Control  
Trace Data 0  
Trace Data 1  
Trace Data 2  
Trace Data 3  
Trace Data 4  
Trace Data 5  
Trace Data 6  
Trace Data 7  
Trace Data 8  
Trace Data 9  
Trace Data 10  
Trace Data 11  
Trace Data 12  
Trace Data 13  
Trace Data 14  
Trace Data 15  
Trace Data 16  
Trace Data 17  
Trace Data 18  
Trace Data 19  
Trace Data 20  
Trace Data 21  
Trace Data 22  
Trace Data 23  
Trace Data 24  
Trace Data 25  
TRC_DATA0  
TRC_DATA1  
TRC_DATA2  
TRC_DATA3  
TRC_DATA4  
TRC_DATA5  
TRC_DATA6  
TRC_DATA7  
TRC_DATA8  
TRC_DATA9  
TRC_DATA10  
TRC_DATA11  
TRC_DATA12  
TRC_DATA13  
TRC_DATA14  
TRC_DATA15  
TRC_DATA16  
TRC_DATA17  
TRC_DATA18  
TRC_DATA19  
TRC_DATA20  
TRC_DATA21  
TRC_DATA22  
TRC_DATA23  
TRC_DATA24  
TRC_DATA25  
AH38  
AC37  
AJ38  
AC32  
AE37  
AK33  
AF38  
AG37  
AE36  
AF37  
AC36  
AE38  
AH37  
AK34  
AG38  
AF36  
AG34  
AJ35  
AH34  
AE33  
AL32  
6.3.32 System and Miscellaneous  
6.3.32.1 Boot Mode configuration  
6-116. Sysboot Signal Descriptions  
SIGNAL NAME [1]  
BOOTMODE00  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
B33  
I
I
I
I
I
I
I
I
I
I
I
I
I
Bootmode Pin 0  
BOOTMODE01  
Bootmode Pin 1  
B32  
BOOTMODE02  
Bootmode Pin 2  
D33  
BOOTMODE03  
Bootmode Pin 3  
D34  
BOOTMODE04  
Bootmode Pin 4  
M37  
M36  
N34  
BOOTMODE05  
Bootmode Pin 5  
BOOTMODE06  
Bootmode Pin 6  
BOOTMODE07  
Bootmode Pin 7  
M34  
G38  
H36  
MCU_BOOTMODE00  
MCU_BOOTMODE01  
MCU_BOOTMODE02  
MCU_BOOTMODE03  
MCU_BOOTMODE04  
MCU Bootmode Pin 0  
MCU Bootmode Pin 1  
MCU Bootmode Pin 2  
MCU Bootmode Pin 3  
MCU Bootmode Pin 4  
J38  
H38  
J34  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-116. Sysboot Signal Descriptions (continued)  
SIGNAL NAME [1]  
MCU_BOOTMODE05  
MCU_BOOTMODE06  
MCU_BOOTMODE07  
MCU_BOOTMODE08  
MCU_BOOTMODE09  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
I
I
I
I
I
MCU Bootmode Pin 5  
J35  
H37  
K37  
J37  
K38  
MCU Bootmode Pin 6  
MCU Bootmode Pin 7  
MCU Bootmode Pin 8  
MCU Bootmode Pin 9  
6.3.32.2 Clock  
6-117. Clock0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_LF_CLKIN  
PIN TYPE [2]  
DESCRIPTION [3]  
Low Frequency (32.768 KHz) Oscillator Input  
High Frequency Oscillator Input  
ALY PIN [4]  
M34  
I
I
WKUP_OSC0_XI  
T38  
WKUP_OSC0_XO  
O
High Frequency Oscillator Output  
U37  
6-118. Clock1 Signal Descriptions  
SIGNAL NAME [1]  
OSC1_XI  
PIN TYPE [2]  
DESCRIPTION [3]  
High Frequency Oscillator Input  
High Frequency Oscillator Output  
ALY PIN [4]  
P38  
I
OSC1_XO  
O
N37  
6.3.32.3 System  
6-119. MCU System Signal Descriptions  
SIGNAL NAME [1]  
MCU_CLKOUT0  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
M38  
Reference clock output for Ethernet PHYs (50MHz or  
25MHz)  
OZ  
I
MCU_EXT_REFCLK0  
MCU_OBSCLK0  
External system clock input  
L33, M33  
H34, M38  
Observation clock output for test and debug purposes  
only  
O
MCU_PORz  
I
O
I
MCU Domain Cold Reset  
K32  
F36  
G36  
N36  
MCU_RESETSTATz  
MCU_RESETz  
MCU Domain Warm Reset status output  
MCU Domain Warm Reset  
MCU_SAFETY_ERRORn  
IO  
Error signal output from MCU Domain ESM  
MCU Domain system clock output for test and debug  
purposes only  
MCU_SYSCLKOUT0  
O
L33  
6-120. System Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
External clock routed to ATL or McASP as one of the  
selectable input clock sources, or as a output clock  
output for ATL or McASP  
AUDIO_EXT_REFCLK0  
IO  
AJ34  
External clock routed to ATL or McASP as one of the  
selectable input clock sources, or as a output clock  
output for ATL or McASP  
AUDIO_EXT_REFCLK1  
EXTINTn  
IO  
I
AH37  
AN35  
External Interrupt  
External clock input to Main Domain, routed to Timer  
clock muxes as one of the selectable input clock  
sources for Timer/WDT modules, or as reference clock  
to MAIN_PLL2 (PER1 PLL)  
EXT_REFCLK1  
I
AJ32  
AF36  
GPMC functional clock output selected through a mux  
logic  
GPMC0_FCLK_MUX  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
124 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-120. System Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Observation clock output for test and debug purposes  
only  
OBSCLK0  
OBSCLK1  
O
AN37  
Observation clock output for test and debug purposes  
only  
O
AG37  
PMIC_POWER_EN1  
PMIC_WAKE0n  
PMIC_WAKE1n  
PORz  
O
O
O
I
Power enable output for MAIN Domain supplies  
PMIC WakeUp  
L38  
AJ34  
M33  
PMIC WakeUp  
SoC PORz Reset Signal  
P33  
RESETSTATz  
RESET_REQz  
SOC_SAFETY_ERRORn  
SYNC0_OUT  
O
I
Main Domain Warm Reset status output  
Main Domain external Warm Reset request input  
Error signal output from Main Domain ESM  
CPTS Time Stamp Generator Bit 0  
CPTS Time Stamp Generator Bit 1  
CPTS Time Stamp Generator Bit 2  
CPTS Time Stamp Generator Bit 3  
AL38  
F34  
IO  
O
O
O
O
AM34  
AD36  
AJ32  
AD38  
AD37  
SYNC1_OUT  
SYNC2_OUT  
SYNC3_OUT  
SYSCLK0 output from Main PLL controller (divided by  
6) for test and debug purposes only  
SYSCLKOUT0  
O
AR38  
6.3.32.4 EFUSE  
6-121. EFUSE Signal Descriptions  
SIGNAL NAME [1]  
VPP_CORE  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AA31  
Programming Voltage for MAIN Domain Efuses  
Programming Voltage for MCU Domain Efuses  
VPP_MCU  
L29  
6.3.32.5 VMON  
6-122. VMON Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
Voltage Monitor, fixed 0.45V (+/-3%) threshold. Use  
with external precision voltage divider to monitor a  
higher voltage rail such as the PMIC input supply.  
VMON1_ER_VSYS  
K28  
VMON2_IR_VCPU  
Must be externally connected directly to VDD_CPU  
N27  
J30  
General purpose voltage monitor for external supplies,  
1.8V threshold. With internal resistor divider.  
VMON3_IR_VEXT1P8  
General purpose voltage monitor for external supplies,  
1.8V threshold. With internal resistor divider.  
VMON4_IR_VEXT1P8  
VMON5_IR_VEXT3P3  
P28  
R29  
General purpose voltage monitor for external supplies,  
3.3V threshold. With internal resistor divider.  
6.3.33 Power  
6-123. Power Supply Signal Descriptions  
SIGNAL NAME [1]  
CAP_VDDS0 (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
V29  
CAP  
External Capacitor Connection  
CAP_VDDS0_MCU (1)  
CAP_VDDS1_MCU (1)  
CAP_VDDS2 (1)  
CAP  
External Capacitor Connection  
External Capacitor Connection  
External Capacitor Connection  
External Capacitor Connection  
External Capacitor Connection  
L27  
CAP  
L25  
CAP  
T29  
CAP_VDDS2_MCU (1)  
CAP_VDDS5 (1)  
CAP  
L26  
CAP  
P29  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-123. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AB27, AC24, AF15, AF18,  
AF21, AG11, AG28, T25  
VDDAR_CORE  
PWR  
Core RAM Supply  
AB13, AC16, AC18, AC20,  
AE12, M21, N23, T15,  
U20, W14, W21, Y11, Y19  
VDDAR_CPU  
PWR  
CPU RAM Supply  
MCU RAM Supply  
VDDAR_MCU  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
M27, N24  
VDDA_0P8_DSITX  
VDDA_0P8_DSITX_C  
VDDA_0P8_UFS  
Analog Supply for DSITX  
DSITX Clock Supply  
AJ24  
AJ25  
UFS 0.8V Supply  
AH11  
VDDA_0P8_USB  
USB 0.8V Supply  
AK20  
VDDA_0P8_CSIRX2  
VDDA_0P8_CSIRX0_1  
VDDA_0P8_DLL_MMC0  
VDDA_0P8_PLL_DDR0  
VDDA_0P8_PLL_DDR1  
VDDA_0P8_PLL_DDR2  
VDDA_0P8_PLL_DDR3  
VDDA_0P8_SERDES2  
VDDA_0P8_SERDES4  
VDDA_0P8_SERDES0_1  
VDDA_0P8_SERDES_C2  
VDDA_0P8_SERDES_C4  
VDDA_0P8_SERDES_C0_1  
VDDA_1P8_DSITX  
VDDA_1P8_UFS  
Analog Supply for CSIRX  
Analog Supply for CSIRX  
MMC DLL Analog Supply  
DDR de-skew PLL Analog Supply  
DDR de-skew PLL Analog Supply  
DDR de-skew PLL Analog Supply  
DDR de-skew PLL Analog Supply  
SERDES 0.8V Supply  
AJ28  
AJ26, AK26  
AE9  
U11  
M14  
N11  
M18  
AJ20, AJ21  
SERDES 0.8V Supply  
AJ17, AJ18  
SERDES 0.8V Supply  
AJ12, AJ15, AK13, AK14  
SERDES 0.8V Clock Supply  
SERDES 0.8V Clock Supply  
SERDES 0.8V Clock Supply  
Analog Supply for DSITX  
UFS 1.8V Supply  
AG21, AH20  
AG17, AH18  
AH12, AH13, AH15, AH16  
AH24, AH25  
AJ10  
VDDA_1P8_USB  
USB 1.8V Supply  
AK21  
AH29, AJ29  
AH27, AH28  
AH21  
AH17  
AJ13, AJ14  
AJ23  
VDDA_1P8_CSIRX2  
VDDA_1P8_CSIRX0_1  
VDDA_1P8_SERDES2  
VDDA_1P8_SERDES4  
VDDA_1P8_SERDES0_1  
VDDA_1P8_SERDES2_4  
VDDA_3P3_USB  
Analog Supply for CSIRX  
Analog Supply for CSIRX  
SERDES 1.8V Supply  
SERDES 1.8V Supply  
SERDES 1.8V Supply  
SERDES 1.8V Supply  
USB 3.3V Supply  
AJ19  
VDDA_ADC0  
ADC0 Analog Supply  
M31  
VDDA_ADC1  
ADC1 Analog Supply  
N30  
VDDA_MCU_PLLGRP0  
VDDA_MCU_TEMP  
VDDA_OSC1  
Analog Supply for MCU PLL Group 0  
Analog Supply for MCU temperature sensor  
HFOSC1 Supply  
M28  
M26  
N29  
VDDA_PLLGRP0  
Analog Supply for MAIN PLL Group 0  
Analog Supply for MAIN PLL Group 1  
Analog Supply for MAIN PLL Group 2  
Analog Supply for MAIN PLL Group 5  
Analog Supply for MAIN PLL Group 6  
Analog Supply for MAIN PLL Group 7  
Analog Supply for MAIN PLL Group 8  
Analog Supply for MAIN PLL Group 9  
AA27  
Y28  
VDDA_PLLGRP1  
VDDA_PLLGRP2  
AG13  
V14  
VDDA_PLLGRP5  
VDDA_PLLGRP6  
R21  
VDDA_PLLGRP7  
P12  
VDDA_PLLGRP8  
P15  
VDDA_PLLGRP9  
Y26  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
126 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-123. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
DESCRIPTION [3]  
Analog Supply for MAIN PLL Group 10  
Analog Supply for MAIN PLL Group 12  
Analog Supply for MAIN PLL Group 13  
WKUP domain Analog Supply  
Analog Supply for temperature sensor 0  
Analog Supply for temperature sensor 1  
Analog Supply for temperature sensor 2  
Analog Supply for temperature sensor 3  
Analog Supply for temperature sensor 4  
Oscillator Supply for WKUP domain  
IO Power Supply  
ALY PIN [4]  
AG23  
VDDA_PLLGRP10  
VDDA_PLLGRP12  
VDDA_PLLGRP13  
VDDA_POR_WKUP  
VDDA_TEMP0  
VDDA_TEMP1  
VDDA_TEMP2  
VDDA_TEMP3  
VDDA_TEMP4  
VDDA_WKUP  
VDDSHV0  
AA23  
AB26  
N28  
Y27  
M12  
W23  
AE13  
AD18  
K31, L32  
V30, V32, W31  
H29, J28, K29  
H25, J24, K25  
T30, T32, U31  
H27, J26, K27  
P31, R30, R31  
VDDSHV0_MCU  
VDDSHV1_MCU  
VDDSHV2  
IO Power Supply  
IO Power Supply  
IO Power Supply  
VDDSHV2_MCU  
VDDSHV5  
IO Power Supply  
IO Power Supply  
A31, AK1, B1, H11, H13,  
H15, H17, H19, H9, J10,  
J12, J14, J16, J18, J8,  
K11, K13, K15, K17, K19,  
K9, L10, L12, L14, L16,  
L18, M9, N10, N8, P9,  
R10, R8, T9, U10, U8  
VDDS_DDR  
PWR  
DDR PHY IO Supply  
VDDS_DDR_C0  
VDDS_DDR_C1  
VDDS_DDR_C2  
VDDS_DDR_C3  
VDDS_MMC0  
PWR  
PWR  
PWR  
PWR  
PWR  
IO Power Supply for DDR Clock  
IO Power Supply for DDR Clock  
IO Power Supply for DDR Clock  
IO Power Supply for DDR Clock  
MMC0 PHY IO Supply  
T10  
L15  
M10  
L17  
AF9, AG10, AG8, AH9  
AA24, AA26, AA28, AA30,  
AB25, AB29, AB31, AC26,  
AC28, AC30, AD25,  
AD27, AD29, AD31, AE24,  
AE26, AE28, AE30, AE32,  
AF13, AF17, AF19, AF23,  
AF25, AF27, AF29, AF31,  
AG12, AG14, AG16,  
AG18, AG20, AG22,  
VDD_CORE  
PWR  
MAIN domain core Supply  
AG24, AG26, AG30,  
AG32, AH31, AJ30, M11,  
M13, M15, M17, M19,  
N12, N16, N18, P11, P17,  
P19, R12, R14, R16, R18,  
R24, R26, R28, T11, T13,  
T27, U12, U24, U26, U28,  
V25, V27, W24, W26,  
W28, W30, W32, Y25,  
Y29, Y31  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-123. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
AA10, AA12, AA14, AA20,  
AA22, AA8, AB11, AB19,  
AB21, AB23, AB9, AC10,  
AC12, AC14, AC22, AD11,  
AD13, AD15, AD17,  
AD19, AD21, AD23, AD9,  
AE10, AE14, AE16, AE18,  
AE20, AE22, AF11, H21,  
H23, J20, J22, K21, K23,  
L20, L22, N20, N22, P21,  
R20, R22, T17, T19, T21,  
T23, U14, U22, V11, V13,  
V19, V21, V23, V9, W10,  
W12, W20, W22, W8,  
VDD_CPU  
PWR  
CPU core Supply  
Y13, Y21, Y23, Y9  
L24, M23, M25, N26, P23,  
P25, P27  
VDD_MCU  
PWR  
MCU core Supply  
VDD_MCU_WAKE1  
VDD_WAKE0  
PWR  
PWR  
Core Supply for MCU daisy chain  
L28  
U29  
Core Supply for MAIN domain daisy chain  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
128 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-123. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
A1, A10, A12, A15, A2,  
A20, A23, A25, A28, A34,  
A37, A5, A7, AA11, AA13,  
AA19, AA2, AA21, AA25,  
AA29, AA34, AA36, AA38,  
AA5, AA9, AB1, AB10,  
AB12, AB14, AB20, AB22,  
AB24, AB28, AB30, AB32,  
AB33, AB35, AB37, AB5,  
AB8, AC11, AC13, AC15,  
AC17, AC19, AC2, AC21,  
AC23, AC25, AC27,  
AC29, AC31, AC6, AC9,  
AD1, AD10, AD12, AD14,  
AD16, AD20, AD22,  
AD24, AD26, AD28,  
AD30, AD32, AD35, AD4,  
AD8, AE11, AE15, AE17,  
AE19, AE2, AE21, AE23,  
AE25, AE27, AE29, AE31,  
AE5, AF10, AF12, AF14,  
AF16, AF20, AF22, AF24,  
AF26, AF28, AF3, AF30,  
AF32, AF6, AF8, AG1,  
AG15, AG19, AG25,  
AG27, AG29, AG31, AG4,  
AG7, AG9, AH10, AH14,  
AH19, AH2, AH22, AH23,  
AH26, AH30, AH32,  
AH35, AH5, AH8, AJ11,  
AJ16, AJ22, AJ27, AJ3,  
AJ31, AJ6, AJ8, AJ9,  
VSS  
GND  
Ground  
AK10, AK11, AK12, AK15,  
AK16, AK17, AK18, AK19,  
AK22, AK23, AK24, AK25,  
AK27, AK28, AK30, AK32,  
AL1, AL10, AL12, AL13,  
AL14, AL15, AL16, AL17,  
AL18, AL19, AL21, AL26,  
AL29, AL31, AL4, AM11,  
AM13, AM15, AM18,  
AM20, AM23, AM25,  
AM27, AM3, AM30, AM32,  
AM38, AM6, AN1, AN10,  
AN12, AN14, AN16,  
AN19, AN22, AN25,  
AN28, AN31, AN34, AN4,  
AN7, AP12, AP15, AP18,  
AP21, AP24, AP27, AP3,  
AP30, AP33, AP36, AP6,  
AP9, AR1, AR10, AR13,  
AR16, AR19, AR22,  
AR25, AR28, AR31,  
AR34, AR37, AR4, AR7,  
AT12, AT15, AT18, AT21,  
AT24, AT27, AT3, AT30,  
AT33, AT36, AT6, AT9,  
AU1, AU10, AU13, AU16,  
AU19, AU22, AU25,  
AU28, AU31, AU34,  
AU37, AU38, AU4, AU7,  
AV1, AV11, AV14, AV17,  
AV2, AV20, AV23, AV26,  
AV29, AV32, AV35, AV5,  
AV8, B11, B13, B16, B19,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-123. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
ALY PIN [4]  
B22, B24, B26, B29, B31,  
B38, B6, B9, C14, C17,  
C18, C2, C21, C27, C30,  
C4, C8, D10, D15, D20,  
D23, D28, D3, D35, D6,  
D7, E12, E13, E16, E19,  
E2, E22, E25, E26, E29,  
E31, E5, E9, F1, F11, F14,  
F17, F21, F24, F27, F30,  
F4, F7, F8, G15, G18,  
G20, G28, G3, G6, H10,  
H16, H18, H2, H20, H22,  
H24, H26, H28, H30, H31,  
H5, H7, H8, J1, J11, J13,  
J15, J17, J19, J21, J23,  
J25, J27, J29, J32, J4, J9,  
K10, K12, K14, K16, K18,  
K2, K20, K22, K24, K26,  
K6, K8, L1, L11, L13, L19,  
L21, L23, L31, L5, L9,  
M16, M2, M20, M22, M24,  
M29, M30, M32, M5, M8,  
N15, N17, N19, N21, N25,  
N3, N31, N32, N38, N6,  
N9, P1, P10, P16, P18,  
P20, P22, P24, P26, P30,  
P32, P35, P37, P4, P7,  
P8, R11, R13, R15, R17,  
R19, R2, R23, R25, R27,  
R32, R34, R36, R38, R5,  
R9, T12, T14, T16, T18,  
T20, T22, T24, T26, T28,  
T3, T31, T33, T35, T37,  
T6, T8, U13, U19, U21,  
U23, U25, U27, U3, U30,  
U32, U34, U36, U38, U6,  
U9, V10, V12, V2, V20,  
V22, V24, V26, V28, V31,  
V33, V35, V37, V5, V8,  
W1, W11, W13, W19,  
W25, W27, W29, W34,  
W36, W38, W4, W7, W9,  
Y10, Y12, Y14, Y20, Y22,  
Y24, Y3, Y30, Y32, Y33,  
Y35, Y37, Y6, Y8  
(1) This pin must always be connected via a 1-μF ±10% capacitor to VSS.  
6.4 Pin Connectivity Requirements  
This section describes connectivity requirements for package balls that have specific connectivity requirements  
and unused package balls.  
备注  
All power balls must be supplied with the voltages specified in the Recommended Operating  
Conditions section, unless otherwise specified in Signal Descriptions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
130 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
备注  
For additional clarification, "leave unconnected" or "no connect" (NC) means no signal traces can be  
connected to these device ball number.  
6-124 shows the connectivity requirements for specific signals by ball name and ball number.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-124. Connectivity Requirements (AHP)  
BALL  
NUMBER  
BALL NAME  
CONNECTION REQUIREMENT  
P38  
T38  
G37  
P36  
V36  
T34  
T36  
P34  
R37  
R33  
V38  
Y38  
Y34  
V34  
W37  
AA37  
W33  
U33  
Y36  
U1  
OSC1_XI  
WKUP_OSC0_XI  
TRSTN  
MCU_ADC0_AIN0  
MCU_ADC0_AIN1  
MCU_ADC0_AIN2  
MCU_ADC0_AIN3  
MCU_ADC0_AIN4  
MCU_ADC0_AIN5  
MCU_ADC0_AIN6  
MCU_ADC0_AIN7  
MCU_ADC1_AIN0  
MCU_ADC1_AIN1  
MCU_ADC1_AIN2  
MCU_ADC1_AIN3  
MCU_ADC1_AIN4  
MCU_ADC1_AIN5  
MCU_ADC1_AIN6  
MCU_ADC1_AIN7  
DDR0_DQS0P  
AA1  
AF1  
AJ1  
A16  
A13  
A8  
DDR0_DQS1P  
DDR0_DQS2P  
Each of these balls must be connected to VSS through a separate external pull  
resistor to ensure these balls are held to a valid logic low-level, if unused.  
DDR0_DQS3P  
DDR1_DQS0P  
DDR1_DQS1P  
DDR1_DQS2P  
A3  
DDR1_DQS3P  
T1  
DDR2_DQS0P  
N1  
DDR2_DQS1P  
H1  
DDR2_DQS2P  
E1  
DDR2_DQS3P  
A18  
A21  
A26  
A29  
AC8  
G8  
DDR3_DQS0P  
DDR3_DQS1P  
DDR3_DQS2P  
DDR3_DQS3P  
DDR0_RET  
DDR1_RET  
L8  
DDR2_RET  
G27  
K28  
N27  
J30  
P28  
R29  
DDR3_RET  
VMON1_ER_VSYS  
VMON2_IR_VCPU  
VMON3_IR_VEXT1P8  
VMON4_IR_VEXT1P8  
VMON5_IR_VEXT3P3  
Copyright © 2023 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-124. Connectivity Requirements (AHP) (continued)  
BALL  
NUMBER  
BALL NAME  
SERDES0_REXT  
CONNECTION REQUIREMENT  
AN11  
AL9  
SERDES1_REXT  
SERDES2_REXT  
SERDES4_REXT  
CSI0_RXRCALIB  
CSI1_RXRCALIB  
CSI2_RXRCALIB  
DDR0_CAL0  
AL20  
AM19  
AM28  
AL28  
AM31  
AE8  
Each of these balls must be connected to VSS through appropriate external pull  
resistor to ensure these balls are held to a valid logic low level, if unused. Refer to  
Signal Descriptions footnote for appropriate value of pull-resistor for each signal.  
G14  
DDR1_CAL0  
U7  
DDR2_CAL0  
F18  
DDR3_CAL0  
AM24  
AL22  
AN18  
DSI0_TXRCALIB  
DSI1_TXRCALIB  
USB0_RCALIB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
6-124. Connectivity Requirements (AHP) (continued)  
BALL  
NUMBER  
BALL NAME  
CONNECTION REQUIREMENT  
G36  
K32  
P33  
F34  
G35  
AL36  
G34  
M35  
N33  
N35  
AN36  
AP37  
AN35  
AL37  
AL35  
F35  
H34  
V1  
MCU_RESETZ  
MCU_PORZ  
PORZ  
RESET_REQZ  
TCK  
TMS  
MCU_I2C0_SDA  
MCU_I2C0_SCL  
WKUP_I2C0_SCL  
WKUP_I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
EXTINTN  
TDI  
TDO  
EMU0  
Each of these balls must be connected to the corresponding power supply  
through a separate external pull resistor to ensure these balls are held to a valid  
logic high level, if unused.  
EMU1  
DDR0_DQS0N  
DDR0_DQS1N  
DDR0_DQS2N  
DDR0_DQS3N  
DDR1_DQS0N  
DDR1_DQS1N  
DDR1_DQS2N  
DDR1_DQS3N  
DDR2_DQS0N  
DDR2_DQS1N  
DDR2_DQS2N  
DDR2_DQS3N  
DDR3_DQS0N  
DDR3_DQS1N  
DDR3_DQS2N  
DDR3_DQS3N  
MCU_ADC0_REFP  
MCU_ADC1_REFP  
MCU_ADC0_REFN  
MCU_ADC1_REFN  
VPP_MCU  
Y1  
AE1  
AH1  
A17  
A14  
A9  
A4  
R1  
M1  
G1  
D1  
A19  
A22  
A27  
A30  
R35  
AA35  
U35  
W35  
L29  
If the MCU_ADCn interface is not used, these signals should be connected to the  
same power supply as the VDDA_ADCn supply input.  
If the MCU_ADCn interface is not used, these signals should be connected to  
VSS.  
AA31  
AJ7  
VPP_CORE  
Each of these balls must be left unconnected, if unused.  
MMC0_CALPAD  
6-125 shows the specific connection requirements for the RESERVED ball numbers on the device.  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
备注  
For additional clarification, "left unconnected" or "no connect" (NC) means no signal traces can be  
connected to these device ball numbers.  
6-125. Reserved Balls Specific Connection Requirements (AHP)  
BALL NUMBERS  
CONNECTION REQUIREMENTS  
RESERVED.  
These balls must be left unconnected.  
AF7 / AK2 / AK29 / AK31 / AL11 / AL23 / AL24 / AL25 / AL27 / AL30 / AM10 /  
AM12 / AM14 / AM16 / AM17 / AM21 / AM22 / AM26 / AM29 / AM33 / AM9 /  
AN13 / AN20 / AN21 / G17 / G22 / G30 / H12 / H14 / H32 / H33 / J31 / J33 / K30 /  
L30 / N7 / T7 / Y7  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating freeair temperature range (unless otherwise noted)(1) (2)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
VDD_*(3)  
Core supplies  
1.05  
1.05  
1.05  
2.2  
VDDAR_*(3)  
RAM supplies  
V
VDDA_0P8_*(3)  
VDDA_1P8_*(3)  
VDDA_3P3_USB  
VDDA_*(3)  
Analog supplies for 0.8V domains  
Analog supplies for 1.8 V PHY domains  
Analog supply for 3.3V USB domain  
Analog supply for 1.8V PLL and other domains  
DDR inteface power supplies  
MMC0 IO supply  
V
V
3.8  
V
2.2  
V
VDDS_DDR_*(3)  
VDDS_MMC0  
VDDSHV*(3)  
1.2  
V
2.2  
V
Dual Voltage LVCMOS IO supplies 1.8 V  
3.3 V  
2.2  
V
3.8  
VPP_CORE VPP MCU  
Supply voltage range for EFUSE domains  
Voltage range for USB VBUS comparator input  
1.89  
3.6  
V
V
V
USB0_VBUS(9)  
I2C0_SCL,  
I2C0_SDA,  
WKUP_I2C0_SC  
L,  
3.8  
Steady State Max. Voltage at all failsafe IO pins  
WKUP_I2C0_SD  
A,  
MCU_I2C0_SCL,  
MCU_I2C0_SDA,  
EXTINTn  
MCU_PORz,  
PORz  
3.8  
2.2  
V
V
0.3  
0.3  
Steady State Max. Voltage at all other IO pins(4)  
VMON1_ER_VSY  
S(8)  
,
VMON3_IR_VEX  
T1P8,  
VMON4_IR_VEX  
T1P8  
VMON2_IR_VCP  
U
1.05  
3.8  
V
V
0.3  
0.3  
0.3  
VMON5_IR_VEX  
T3P3  
All other IO pins  
IO supply voltage + 0.3  
0.2 × VDD(7)  
V
V
Transient Overshoot and Undershoot specification at IO pin  
20% of IO supply  
voltage for up to  
20% of signal  
period  
7-1 (see IO  
Transient Voltage  
Ranges)  
Latchup Performance, Class II (125°C)(5)  
ITest  
100  
100  
mA  
V
NA  
1.5 × VDD(7)  
OverVoltage  
(OV) Test  
(6)  
TSTG  
Storage  
+150  
°C  
55  
temperature  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
136 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to their associated VSS or VSSA_x, unless otherwise noted.  
(3) VDD_* includes: VDD_CORE, VDD_CPU, VDD_MCU, VDD_MCU_WAKE1, VDD_WAKE0  
VDDAR_* includes: VDDAR_CORE, VDDAR_CPU, VDDAR_MCU  
VDDA_0P8_* includes: VDDA_0P8_CSIRX0_1, VDDA_0P8_CSIRX2, VDDA_0P8_DLL_MMC0, VDDA_0P8_DSITX,  
VDDA_0P8_DSITX_C, VDDA_0P8_PLL_DDR0, VDDA_0P8_PLL_DDR1, VDDA_0P8_PLL_DDR2, VDDA_0P8_PLL_DDR3,  
VDDA_0P8_SERDES_C0_1, VDDA_0P8_SERDES_C2, VDDA_0P8_SERDES_C4, VDDA_0P8_SERDES0_1,  
VDDA_0P8_SERDES2, VDDA_0P8_SERDES4, VDDA_0P8_UFS, VDDA_0P8_USB  
VDDA_1P8_* includes: VDDA_1P8_CSIRX0_1, VDDA_1P8_CSIRX2, VDDA_1P8_DSITX, VDDA_1P8_SERDES0_1,  
VDDA_1P8_SERDES2, VDDA_1P8_SERDES2_4, VDDA_1P8_SERDES4, VDDA_1P8_UFS, VDDA_1P8_USB  
VDDA_* includes: VDDA_ADC0, VDDA_ADC1, VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_OSC1, VDDA_PLLGRP0,  
VDDA_PLLGRP1, VDDA_PLLGRP10, VDDA_PLLGRP12, VDDA_PLLGRP13, VDDA_PLLGRP2, VDDA_PLLGRP5,  
VDDA_PLLGRP6, VDDA_PLLGRP7, VDDA_PLLGRP8, VDDA_PLLGRP9, VDDA_POR_WKUP, VDDA_TEMP0, VDDA_TEMP1,  
VDDA_TEMP2, VDDA_TEMP3, VDDA_TEMP4, VDDA_WKUP  
VDDS_DDR_* includes: VDDS_DDR, VDDS_DDR_C0, VDDS_DDR_C1, VDDS_DDR_C2, VDDS_DDR_C3  
VDDSHV* includes: VDDSHV0, VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2, VDDSHV2_MCU, VDDSHV5  
(4) This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For  
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be  
0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources  
used to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage  
range, including power supply rampup and rampdown sequences.  
(5) For current pulse injection:  
Pins stressed per JEDEC JESD78E (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times  
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.  
For overvoltage performance:  
Supplies stressed per JEDEC JESD78E (Class II) and passed specified voltage injection.  
(6) For tape and reel the storage temperature range is [10°C; +50°C] with a maximum relative humidity of 70%. TI recommends  
returning to ambient room temperature before usage.  
(7) VDD is the voltage on the corresponding power-supply pin(s) for the IO.  
(8) The VMON_ER_VSYS pin provides a way to monitor the system power supply. For more information, see System Power Supply  
Monitor Design Guidelines using VMON/POK.  
(9) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see the USB VBUS Design  
Guidelines.  
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply  
voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO  
power supplies are turned off. The I2C0_SCL, I2C0_SDA, I2C1_SCL, I2C1_SDA, DDR_FS_RESETn, and NMIn  
are the only failsafe IO terminals. All other IO terminals are not failsafe and the voltage applied to them  
should be limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Absolute  
Maximum Ratings.  
Overshoot = 20% of nominal  
IO supply voltage  
Tovershoot  
Tperiod  
Tundershoot  
Undershoot = 20% of nominal  
IO supply voltage  
A. Tovershoot + Tundershoot < 20% of Tperiod  
7-1. IO Transient Voltage Ranges  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±1000  
±250  
All pins  
V(ESD)  
Electrostatic discharge  
V
Corner pins (A1,  
AJ29)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Power-On-Hour (POH) Limits  
IP(1) (2) (3) VOLTAGE DOMAIN  
VOLTAGE (V)  
(MAX)  
FREQUENCY  
(MHz) (MAX)  
Tj(°C)  
POH  
All  
All  
All  
100%  
100%  
100%  
All  
All  
All  
All Supported OPPs  
All Supported OPPs  
All Supported OPPs  
Automotive -40°C to 125°C(4)  
Extended -40°C to 105°C  
Commercial 0°C to 90°C  
20000  
100000  
100000  
(1) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided  
under TIs standard terms and conditions for TI semiconductor products.  
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted  
temperatures  
(3) POH is a functional of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH to  
achieve the same reliability performance. For assessment of alternate use cases, contact your local TI representative.  
(4) Automotive profile is defined as 20000 power on hours with junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C,  
10%@125°C.  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN(1)  
0.76  
NOM  
0.8  
MAX(1)  
0.84  
UNIT  
VDD_CORE  
Boot/Active voltage for MAIN domain core supply  
Boot/Active voltage for MCUSS core supply  
V
V
V
VDD_MCU  
VDD_CPU  
0.76  
0.8  
0.89  
Boot voltage for CPU core supply, applied at cold  
power up event  
0.76  
0.8  
0.84  
Active voltage for CPU core supply, after AVS mode  
enabled in software  
AVS(3) AVS(3)+5%  
V
AVS(3)–  
5%  
VDD_CPU AVS Range  
VDDAR_*(5)  
AVS valid voltage range for VDD_CPU  
RAM supplis  
0.6  
0.81  
0.76  
1.71  
3.14  
1.71  
1.06  
1.71  
1.71  
3.14  
0
0.9  
V
V
0.85  
0.8  
0.89  
0.84  
1.89  
3.46  
1.89  
1.15  
1.89  
1.89  
3.46  
3.46  
VDDA_0P8_*(5)  
VDDA_1P8_*(5)  
VDDA_3P3_USB(5)  
VDDA_*(5)  
Analog supplies for 0.8V domains  
Analog supplies for 1.8V PHY domains  
Analog supply for 3.3V USB domain  
Analog supply for 1.8V PLL and other domains  
DDR inteface power supply  
V
1.8  
V
3.3  
V
1.8  
V
VDDS_DDR_*(5)  
VDDS_MMC0  
VDDSHV*(5)  
1.1  
V
MMC0 IO supply  
1.8  
V
Dual Voltage LVCMOS IO  
supplies  
1.8-V operation  
3.3-V operation  
1.8  
V
3.3  
V
USB0_VBUS  
USB0_ID  
VSS  
Voltage range for USB VBUS comparator input  
Voltage range for the USB ID input  
Ground  
See (4)  
See (2)  
0
V
V
V
TJ  
Operating junction temperature  
range  
Automotive  
Extended  
125  
105  
90  
°C  
°C  
°C  
40  
-40  
0
Commercial  
(1) The voltage at the device ball must never be below the MIN voltage or above the MAX voltage for any amount of time. This  
requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, and so forth.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
138 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
(2) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the  
voltage to determine if the terminal is connected to VSS with a resistance less than 10 Ωor greater than 100 kΩ. The terminal should  
be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any  
external voltage source.  
(3) The AVS Voltages are device-dependent, voltage domain-dependent, and OPP-dependent. They must be read from the  
VTM_DEVINFO_VDn. For information about VTM_DEVINFO_VDn Registers address, please refer to Voltage and Thermal Manager  
section in the device TRM. The power supply should be adjustable over the ranges shown in the VDD_CPU AVS Range entry.  
(4) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see USB VBUS Design  
Guidelines.  
(5) VDD_* includes: VDD_CORE, VDD_CPU, VDD_MCU, VDD_MCU_WAKE1, VDD_WAKE0  
VDDAR_* includes: VDDAR_CORE, VDDAR_CPU, VDDAR_MCU  
VDDA_0P8_* includes: VDDA_0P8_CSIRX0_1, VDDA_0P8_CSIRX2, VDDA_0P8_DLL_MMC0, VDDA_0P8_DSITX,  
VDDA_0P8_DSITX_C, VDDA_0P8_PLL_DDR0, VDDA_0P8_PLL_DDR1, VDDA_0P8_PLL_DDR2, VDDA_0P8_PLL_DDR3,  
VDDA_0P8_SERDES_C0_1, VDDA_0P8_SERDES_C2, VDDA_0P8_SERDES_C4, VDDA_0P8_SERDES0_1,  
VDDA_0P8_SERDES2, VDDA_0P8_SERDES4, VDDA_0P8_UFS, VDDA_0P8_USB  
VDDA_1P8_* includes: VDDA_1P8_CSIRX0_1, VDDA_1P8_CSIRX2, VDDA_1P8_DSITX, VDDA_1P8_SERDES0_1,  
VDDA_1P8_SERDES2, VDDA_1P8_SERDES2_4, VDDA_1P8_SERDES4, VDDA_1P8_UFS, VDDA_1P8_USB  
VDDA_* includes: VDDA_ADC0, VDDA_ADC1, VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_OSC1, VDDA_PLLGRP0,  
VDDA_PLLGRP1, VDDA_PLLGRP10, VDDA_PLLGRP12, VDDA_PLLGRP13, VDDA_PLLGRP2, VDDA_PLLGRP5,  
VDDA_PLLGRP6, VDDA_PLLGRP7, VDDA_PLLGRP8, VDDA_PLLGRP9, VDDA_POR_WKUP, VDDA_TEMP0, VDDA_TEMP1,  
VDDA_TEMP2, VDDA_TEMP3, VDDA_TEMP4, VDDA_WKUP  
VDDS_DDR_* includes: VDDS_DDR, VDDS_DDR_C0, VDDS_DDR_C1, VDDS_DDR_C2, VDDS_DDR_C3  
VDDSHV* includes: VDDSHV0, VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2, VDDSHV2_MCU, VDDSHV5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.5 运行性能点  
本节介绍了器件的运行条件。本节还包含处理器时钟和器件内核时钟的每个运行性能(OPP) 的说明。  
7-1 描述了器件每个速度等级支持的最大频率。  
7-1. 速度等级最大频率  
最大频(MHz)  
器件  
MCU_  
R5SS0  
A72SS0  
C71SS0  
R5FSS0/1  
GPU  
CBASS0  
VPAC  
VENCDEC  
DMSC  
LPDDR4  
550960MP/s  
AM69Ax...T  
2000  
1000  
1000  
1000  
800  
500  
720  
333  
4266MT/s(1)  
480MP/s)  
(2)  
(1) DDR 频率将根据系统中使用的特定存储器类型供应商以及根PCB 实现进行限制。TI 强烈建议所有设计的每个细节布线、  
间距、过孔/背钻、PCB 材料等都严格遵TI LPDDR4 EVM PCB 布局以便完全实现指定的时钟频率。有关详细信息请参阅  
Jacinto 7 LPDDR 电路板设计和布局布线指南  
(2) 请参阅器件比表以确定具体器件型号1 VENCDEC (480MP/s) 2 VENCDEC (960MP/s)。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
140 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.6 Electrical Characteristics  
备注  
The interfaces or signals described in 7.6.1 through 7.6.8 correspond to the interfaces or signals  
available in multiplexing mode 0 (Primary Function).  
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical  
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC  
electrical characteristics are specified for the different multiplexing modes (Functions).  
7.6.1 I2C, Open-Drain, Fail-Safe (I2C OD FS) Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.8-V MODE  
VIL  
Input low-level threshold  
0.3 ×  
V
V
VDDSHV(1)  
VILSS  
VIH  
VIHSS  
VHYS  
Input low-level threshold steady state  
Input high-level threshold  
0.3 ×  
VDDSHV(1)  
0.7 ×  
V
VDDSHV(1)  
Input high-level threshold steady state  
Input Hysteresis Voltage  
0.7 ×  
V
VDDSHV(1)  
0.1 ×  
mV  
VDDSHV(1)  
IIN  
Input Leakage Current  
Output low-level voltage  
VI = 1.8 V or 0 V  
±10  
µA  
V
VOL  
0.2 ×  
VDDSHV(1)  
IOL  
Low Level Output Current  
VOL(MAX)  
6
mA  
3.3-V MODE  
VIL  
Input low-level threshold  
0.3 ×  
V
V
VDDSHV(1)  
VILSS  
VIH  
VIHSS  
VHYS  
Input low-level threshold steady state  
Input high-level threshold  
0.25 ×  
VDDSHV(1)  
0.7 ×  
V
VDDSHV(1)  
Input high-level threshold steady state  
Input Hysteresis Voltage  
0.7 ×  
V
VDDSHV(1)  
0.05 ×  
mV  
VDDSHV(1)  
IIN  
Input Leakage Current  
Output low-level voltage  
Low Level Output Current  
VI = 3.3 V or 0 V  
VOL(MAX)  
±10  
0.4  
µA  
V
VOL  
IOL  
6
mA  
(1) VDDSHV stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see the  
Pin Attributes, POWER column.  
7.6.2 Fail-Safe Reset (FS Reset) Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
Input low-level threshold  
0.3 ×  
V
VDDSHV(1)  
VILSS  
Input low-level threshold steady state  
0.3 ×  
V
VDDSHV(1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
Input high-level threshold  
0.7 ×  
V
VDDSHV(1)  
VIHSS  
Input high-level threshold steady state  
0.7 ×  
V
VDDSHV(1)  
VHYS  
IIN  
Input Hysteresis Voltage  
Input Leakage Current  
200  
mV  
µA  
VI = 1.8 V or 0 V  
±10  
(1) VDDSHV stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see the  
Pin Attributes, POWER column.  
7.6.3 HFOSC/LFOSC Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HIGH FREQUENCY OSCILLATOR  
VIH  
Input high-level threshold  
Input low-level threshold  
Input Hysteresis Voltage  
0.65 ×  
V
V
VDDSHV(1)  
VIL  
0.35 ×  
VDDSHV(1)  
VHYS  
49  
mV  
LOW FREQUENCY OSCILLATOR  
VIH  
Input high-level threshold  
Input low-level threshold  
Input Hysteresis Voltage  
0.65 ×  
V
V
VDDA_WKUP  
(1)  
VIL  
0.35 ×  
VDDA_WKUP  
(1)  
VHYS  
Active Mode  
85  
mV  
mV  
Bypass Mode  
324  
(1) VDDSHV stands for corresponding power supply. For WKUP_OSC0, the corresponding power supply is VDDA_WKUP. For OSC1_XI,  
the corresponding power supply is VDDS_OSC1.  
7.6.4 eMMCPHY Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VIL  
Input low-level threshold  
0.35 ×  
V
VDDSHV(1)  
VILSS  
VIH  
Input low-level threshold steady state  
Input high-level threshold  
0.20  
V
V
0.65 ×  
VDDSHV(1)  
VIHSS  
IIN  
Input high-level threshold steady state  
Input Leakage Current  
1.4  
V
µA  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
VO = 1.8 V or 0 V  
±10  
±10  
25  
IOZ  
Tri-state Output Leakage Current  
Pull-up Resistor  
RPU  
RPD  
VOL  
VOH  
15  
15  
20  
20  
Pull-down Resistor  
25  
Output low-level voltage  
Output high-level voltage  
0.30  
VDDSHV -  
0.30(1)  
V
IOL  
IOH  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MAX)  
2
2
mA  
mA  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
142 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
SRI  
Input Slew Rate  
5E +8  
V/s  
(1) VDDSHV stands for corresponding power supply (vddshv8). For more information on the power supply name and the corresponding  
ball, see the Pin Attributes, POWER column..  
7.6.5 SDIO Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
1.8-V MODE  
VIL  
Input low-level threshold  
Input low-level threshold steady state  
Input high-level threshold  
Input high-level threshold steady state  
Input Hysteresis Voltage  
Input Leakage Current  
0.58  
0.58  
V
V
VILSS  
VIH  
1.27  
1.7  
V
VIHSS  
VHYS  
IIN  
V
150  
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
60  
RPU  
Pull-up Resistor  
40  
40  
50  
50  
RPD  
Pull-down Resistor  
60  
VOL  
Output low-level voltage  
Output high-level voltage  
0.45  
VOH  
VDDSHV-  
0.45(1)  
V
IOL  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MAX)  
4
4
mA  
mA  
IOH  
3.3-V Mode  
VIL  
Input low-level threshold  
0.25 ×  
V
V
V
V
VDDSHV(1)  
VILSS  
VIH  
Input low-level threshold steady state  
Input high-level threshold  
0.15 ×  
VDDSHV(1)  
0.625 ×  
VDDSHV(1)  
VIHSS  
Input high-level threshold steady state  
0.625 ×  
VDDSHV(1)  
VHYS  
IIN  
Input Hysteresis Voltage  
Input Leakage Current  
Pull-up Resistor  
150  
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
60  
RPU  
RPD  
VOL  
40  
40  
50  
50  
Pull-down Resistor  
60  
Output low-level voltage  
0.125 ×  
VDDSHV(1)  
VOH  
Output high-level voltage  
0.75 ×  
V
VDDSHV(1)  
IOL  
IOH  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MAX)  
6
mA  
mA  
10  
(1) VDDSHV stands for corresponding power supply (vddshv8). For more information on the power supply name and the corresponding  
ball, see the Pin Attributes , POWER column.  
7.6.6 CSI2/DSI D-PHY Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Low-Power Receiver (LP-RX)  
VIH Input high-level threshold  
MIN  
NOM  
MAX  
UNIT  
740  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
25  
NOM  
MAX  
UNIT  
mV  
VIL  
Input low-level threshold  
Hysteresis  
550  
VHYS  
mV  
Ultra-Low Power Receiver (ULP-RX)  
VITH  
Input high-level threshold  
Input low-level threshold  
Hysteresis  
740  
25  
mV  
mV  
mV  
VITL-ULPM  
VHYS  
300  
High Speed Receiver (HS-RX)  
VIDTH  
Differential input high-level threshold  
40  
mV  
mV  
mV  
mV  
mV  
mV  
VIDTL  
Differential input low-level threshold  
Maximum differential input voltage  
Single-ended input low-level threshold  
Single-ended input high-level threshold  
Common-mode voltage  
-40  
-40  
70  
VIDMAX  
VILHS  
270  
VIHHS  
460  
330  
VCMRXDC  
7.6.7 ADC12B Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog Input  
VMCU_ADC Full-scale Input Range  
VSS  
-1  
VDDA_ADC0/  
1
V
0/1_AIN[7:0]  
DNL  
INL  
Differential Non-Linearity  
Integral Non-Linearity  
0.5  
±1  
±2  
4
LSB  
LSB  
LSB  
±4  
LSBGAIN- Gain Error  
ERROR  
LSBOFFSE Offset Error  
±2  
LSB  
T-ERROR  
CIN  
Input Sampling Capacitance  
5.5  
70  
pF  
dB  
SNR  
Signal-to-Noise Ratio  
Input Signal: 200  
kHz sine wave at  
-0.5 dB Full Scale  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Input Signal: 200  
kHz sine wave at  
-0.5 dB Full Scale  
73  
76  
69  
dB  
dB  
dB  
Ω
SFDR  
Input Signal: 200  
kHz sine wave at  
-0.5 dB Full Scale  
SNR(PLUS) Signal-to-Noise Plus Distortion  
Input Signal: 200  
kHz sine wave at  
-0.5 dB Full Scale  
RMCU_ADC Input Impedance of MCU_ADC0/1_AIN[7:0] f = input frequency  
[1/((65.97 ×  
10-12) ×  
0/1_AIN[0:7]  
fSMPL_CLK)]  
IIN  
Input Leakage  
MCU_ADC0/1_AIN[7  
:0] = VSS  
-10  
24  
μA  
μA  
MCU_ADC0/1_AIN[7  
:0] = VDDA_ADC0/1  
Sampling Dynamics  
FSMPL_CLK SMPL_CLK Frequency  
60  
MHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
144 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tC  
Conversion Time  
13  
ADC0/1  
SMPL_CL  
K Cycles  
tACQ  
Acquisition time  
2
257 ADC0/1  
SMPL_CL  
K Cycles  
TR  
Sampling Rate  
ADC0/1 SMPL_CLK  
= 60 MHz  
4
MSPS  
CCISO  
Channel to Channel Isolation  
100  
dB  
General Purpose Input Mode(1)  
VIL  
Input low-level threshold  
0.35 ×  
VDDA_ADC0/  
1
V
V
V
V
VILSS  
Input high-level threshold steady state  
Input high-level threshold  
0.35 ×  
VDDA_ADC0/  
1
VIH  
0.65 ×  
VDDA_ADC0/  
1
VIHSS  
Input high-level threshold steady state  
0.65 ×  
VDDA_ADC0/  
1
VHYS  
IIN  
Input Hysteresis Voltage  
Input Leakage Current  
200  
mV  
µA  
VI = 1.8 V or 0 V  
6
(1) MCU_ADC0/1 can be configured to operate in General Purpose Input mode, where all MCU_ADC0/1_AIN[7:0] inputs are globally  
enabled to operate as digital inputs via the ADC0/1_CTRL register (gpi_mode_en = 1).  
7.6.8 LVCMOS Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8-V MODE  
VIL  
Input Low Voltage  
0.35 × VDD(1)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.3 × VDD(1)  
0.65 × VDD(1)  
0.85 × VDD(1)  
150  
V
VIHSS  
VHYS  
IIN  
Input High Voltage Steady State  
Input Hysteresis Voltage  
Input Leakage Current.  
Pull-up Resistor  
V
mV  
µA  
kΩ  
kΩ  
V
VI = 1.8 V or 0 V  
±10  
30  
RPU  
RPD  
VOL  
VOH  
IOL  
15  
15  
22  
22  
Pull-down Resistor  
30  
Output Low Voltage  
0.45  
Output High Voltage  
VDD(1) - 0.45  
V
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
3
3
mA  
mA  
IOH  
3.3-V MODE  
VIL  
Input Low Voltage  
0.8  
0.6  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
2.0  
2.0  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MAX UNIT  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
IIN  
Input Leakage Current.  
VI = 3.3 V or 0 V  
±10  
30  
µA  
kΩ  
kΩ  
V
RPU  
RPD  
VOL  
VOH  
IOL  
Pull-up Resistor  
15  
15  
22  
22  
Pull-down Resistor  
30  
Output Low Voltage  
Output High Voltage  
Low Level Output Current  
High Level Output Current  
0.4  
2.4  
5
V
VOL(MAX)  
VOH(MIN)  
mA  
mA  
IOH  
6
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see the Pin  
Attributes, POWER column.  
7.6.9 USB2PHY Electrical Characteristics  
备注  
USB0 and USB1 Electrical Characteristics are compliant with Universal Serial Bus Revision 2.0  
Specification dated April 27, 2000 including ECNs and Errata as applicable.  
7.6.10 SerDes 2-L-PHY/4-L-PHY Electrical Characteristics  
备注  
The PCIe interfaces are compliant with the electrical parameters specified in PCI Express® Base  
Specification Revision 4.0, September 27, 2017.  
This Device imposes an additional limit on SERDES REFCLK when used in Input mode with internal  
termination enabled, as described by parameter VREFCLK_TERM in 7-2, 4-L-PHY SERDES REFCLK  
Electrical Characteristics. Internal termination is enabled by default and must be disabled before  
applying a reference clock signal that exceeds the limits defined by VREFCLK_TERM. External  
termination should always be enabled on the source side.  
7-2. 4-L-PHY SERDES REFCLK Electrical Characteristics  
Only applies when internal termination is enabled. Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VREFCLK_TER Single ended voltage threshold at the reference clock  
400  
mV  
pin when internal termination is enabled  
M
RTERM  
Internal termination  
40  
50  
62.5  
Ω
备注  
The SerDes USB interfaces are compliant with the USB3.1 SuperSpeed Transmitter and Receiver  
Normative Electrical Parameters as defined in the Universal Serial Bus 3.1 Specification, Revision  
1.0 , July 26, 2013.  
备注  
The SGMII interfaces electrical characteristics are compliant with 1000BASE-KX per IEEE802.3  
Clause 70.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
146 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
备注  
The SGMII 2.5G / XAUI interfaces electrical characteristics are compliant with IEEE802.3 Clause 47.  
备注  
The QSGMII interface electrical characteristics are compliant with QSGMII Specification revision 1.2.  
备注  
The UFS interface electrical characteristics are compliant with MIPI M-PHY Specification v3.1,  
February 17, 2014.  
备注  
The DP interface electrical characteristics are compliant with the VESA DisplayPort (DP) Standard v  
1.4 February 23, 2016.  
备注  
The eDP interface electrical characteristics are compliant with the VESA Embedded DisplayPort  
(eDP) Standard v1.4b October 23, 2015.  
7.6.13 DDR0 Electrical Characteristics  
备注  
The DDR interface is compatible with JESD209-4B standard compliant LPDDR4 SDRAM devices.  
7.7 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses and is applicable only  
for High-Security Devices.  
7.7.1 Recommended Operating Conditions for OTP eFuse Programming  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD_CORE  
Supply voltage range for the core domain  
during OTP operation; OPP NOM (BOOT)  
See Recommended Operating Conditions  
See Recommended Operating Conditions  
N/A(2)  
V
VDD_MCU  
Supply voltage range for the core domain  
during OTP operation; OPP NOM (BOOT)  
V
V
V
VPP_CORE  
Supply voltage range for the eFuse ROM  
domain during normal operation  
Supply voltage range for the eFuse ROM  
domain during OTP programming(1)  
1.71  
1.8  
1.89  
VPP_MCU  
Supply voltage range for the eFuse ROM  
domain during normal operation  
N/A(2)  
Supply voltage range for the eFuse ROM  
domain during OTP programming(1)  
1.71  
1.8  
1.89  
(1) Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70018-Q1 from the TLV707x  
family meet the supply voltage range needed for VPP_CORE and VPP_MCU.  
(2) N/A stands for Not Applicable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.7.2 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP_CORE and VPP_MCU power supplies must be disabled when not programming OTP registers.  
The VPP_CORE and VPP_MCU power supplies must be ramped up after the proper device power-up  
sequence (for more details, see Power Supply Sequencing).  
7.7.3 Programming Sequence  
Programming sequence for OTP eFuses:  
Power on the board per the power-up sequencing. No voltage should be applied on the VPP_CORE and  
VPP_MCU terminals during power up and normal operation.  
Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP  
software package).  
Apply the voltage on the VPP_CORE and VPP_MCU terminals according to the specification in 7.7.1.  
Run the software that programs the OTP registers.  
After validating the content of the OTP registers, remove the voltage from the VPP_CORE and VPP_MCU  
terminals.  
7.7.4 Impact to Your Hardware Warranty  
You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You  
acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a failure  
may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI device  
specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR ANY TI  
DEVICES THAT HAVE BEEN eFUSED.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
148 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.8 Thermal Resistance Characteristics  
This section provides the thermal resistance characteristics used on this device.  
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below  
the TJ value identified in Recommended Operating Conditions.  
7.8.1 Thermal Resistance Characteristics for ALY Package  
It is recommended to perform thermal simulations at the system level with the worst case device power consumption.  
ALY PACKAGE  
NO.  
PARAMETER  
DESCRIPTION  
AIR FLOW  
(m/s)(2)  
°C/W(1) (3)  
T1  
0.11  
1.6  
8.3  
4.7  
3.9  
0.1  
0.1  
0.1  
1.3  
1.1  
1.0  
N/A  
N/A  
0
Junction-to-case  
Junction-to-board  
Junction-to-free air  
RΘJC  
T2  
RΘJB  
T3  
T4  
1
RΘJA  
Junction-to-moving air  
T5  
2
T7  
0
T8  
Junction-to-package top  
1
ΨJT  
T9  
2
T11  
T12  
T13  
0
Junction-to-board  
1
ΨJB  
2
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Packages  
(2) m/s = meters per second.  
(3) °C/W = degrees Celsius per watt.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.9 Temperature Sensor Characteristics  
This section summarizes the Voltage and Temperature Module (VTM) on die temperature sensor characteristics.  
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below  
the TJ value identified in the Recommended Operating Conditions.  
7-3. VTM Die Temperature sensor Characteristics  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
40 to 110 ℃  
110 to 125 ℃  
5
5  
2  
Tacc  
VTM temperature sensor accuracy  
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
150 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10 Timing and Switching Characteristics  
备注  
The timings presented in this section are valid when the DRV_STR (Drive Strength) control in the  
associated PADCONFIG registers are set to the default 0h Nominal (recommended)value.  
7.10.1 Timing Parameters and Information  
The timing parameter symbols used in Timing and Switching Characteristics are created in accordance with  
JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been  
abbreviated in 7-4:  
7-4. Timing Parameters Subscripts  
SYMBOL  
PARAMETER  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don't care level  
Fall time  
X
F
H
High  
L
Low  
R
Rise time  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.2 Power Supply Sequencing  
This section describes power supply sequencing required to ensure proper device operation. The device can be  
operated using either an isolated or combined MCU & Main power distribution network (PDN). Two different  
primary power sequences are recommended based upon isolated and combined MCU & Main PDNs. In  
addition, the device can be operated in either MCU Only or DDR Retention or GPIO Retentioon low power  
modes. Two different desired device power supply sequences for entry and exit of low power modes are shown.  
The power supply names used in this section are specific to this device and align to names given in the Signal  
Descriptions section. Common power supply names may be used across different devices within the Jacinto 7TM  
processor family. These common supply names will have very similar if not identical functions across devices.  
All power sequencing timing diagrams shown will use the following terminology:  
Primary = Essential power sequences of all voltage domains between off and full active states.  
VOPR MIN = Minimum operational voltage level that ensures functionality as specified in Recommended  
Operating Conditions  
Ramp-up = start of a voltage supply transition time from off condition to Vopr min.  
Ramp-down = start of a voltage supply transition time from Vopr to off condition  
Supply_n= multiple instances of similar power supplies (i.e. VDDSHVn = VDDSHV0, VDDSHV1,  
VDDSHV2 VDDSHV6)  
Supply_xxx= multiple instances of similar power supplies used for different signal types (i.e.  
VDDA_1P8_xxx = VDDA_1P8_DSITX, VDDA_1P8_USB, VDDA_0P8_DSITX, VDDA_0P8_USB, etc.)  
Time stamps = T#markers with descriptions and approximate elapsed times for general reference.  
Specific timing transitions are dependent upon PDN design (see PDN User Guide for details).  
7.10.2.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate of supplies to be less than 100 mV/us, as shown in 7-2. For instance, a 1.8V supply  
should have a ramp time > 18 μs to ensure the slew rate < 100mV/us.  
7-2 describes the Power Supply Slew Rate Requirement in the device.  
Supply value  
t
Slew Rate = ∆V / ∆T  
Max Slew Rate < 100 mV / µs or 0.1 V / 1E(-6)s = 1E(+5) V / s  
∆Tmin > ∆V / Max Slew Rate or 1.8 V / 1E(+5) V / s  
∆Tmin > 18 µs  
SPRSP08_ELCH_06  
7-2. Power Supply Slew and Slew Rate  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
152 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.2.2 Combined MCU and Main Domains Power- Up Sequencing  
7.10.2.2 describes the primary power-up sequencing when similar MCU and Main voltage domains are  
combined into common power rails. Combining MCU and Main voltage domains simplifies PDN design by  
reducing total number of power rails and sources while making MCU and Main processor sub-systems  
operational dependent on common power rails.  
T0  
T1  
T2  
T3  
T4  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,  
VDDSHV0, VDDSHV2, VDDSHV5(D) (B), VDDA_3P3_USB(E)  
)
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,  
VDDSHV0, VDDSHV2, VDDSHV5(D) (C),VDDS_MMC0  
)
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP, VDDA_OSC1,  
VDDA_PLLGRP8, VDDA_PLLGRP6,VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP0, VDDA_TEMP1)(F)  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(G)  
VDD_CPU  
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0(H)  
VDD_MCU(I), VDD_MCU_WAKE1, VDD_CORE,  
VDD_WAKE0, VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB,  
VDDAR_CORE, VDDAR_CPU, VDDAR_MCU(I)  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C,  
OSC1_XI, OSC1_XO  
(optional)  
WKUP_OSC0_XI, WKUP_OSC0_XO  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0](J)  
MCU_PORz(J)(K)  
Valid Configuration  
PORz(J)(K)  
J7VCL_ELCH_01  
A. Time stamp markers:  
T0 3.3V voltages start ramp-up to VOPR MIN. (0 ms)  
T1 1.8-V voltages start ramp-up to VOPR MIN. (2 ms)  
T2 Low voltage core supplies start ramp-up to VOPR MIN. (3 ms)  
T3 Low voltage RAM array voltages start ramp-up to VOPR MIN. (4 ms)  
T4 OSC1 is stable and PORz/MCU_PORz are de-asserted to release processor from reset. (13 ms)  
B. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to support 3.3V digital interfaces. A  
few supplies could have varying start times between T0 to T1 due to PDN designs using different power resources with varying turn-on  
& ramp-up time delays.  
C. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8 V to support 1.8-V digital interfaces.  
When eMMC memories are used, Main 1.8-V supplies could have a ramp-up aligned to T3 due to PDN designs grouping supplies with  
VDD_MMC0.  
D. VDDSHV5 supports MMC1 signaling for SD memory cards. If compliant high-speed SD card operation is needed, then an independent,  
dual voltage (3.3 V/1.8 V) power source and rail are required. The start of ramp-up to 3.3 V will be same as other 3.3-V domains as  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
shown. If SD card is not needed or standard data rates with fixed 3.3 V operation is acceptable, then domain can be grouped with digital  
IO 3.3-V power rail. If a SD card is capable of operating with fixed 1.8 V, then domain can be grouped with digital IO 1.8-V power rail.  
E. VDDA_3P3_USB is 3.3-V analog domain used for USB 2.0 differential interface signaling. A low noise, analog supply is recommended  
to provide best signal integrity for USB data eye mask compliance. The start of ramp-up to 3.3 V will be same as other 3.3-V domains  
as shown. If USB interface is not needed or data bit errors can be tolerated, then domain can be grouped with 3.3-V digital IO power rail  
either directly or through a supply filter.  
F. VDDA_1P8_<clk/pll/ana> are 1.8-V analog domains supporting clock oscillator, PLL and analog circuitry needing a low noise supply for  
optimal performance. It is not recommended to combine digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency  
switching noise could negatively impact jitter performance of clock, PLL and DLL signals. Combining analog VDDA_1p8_<phy>  
domains should be avoided but if grouped, then in-line ferrite bead supply filtering is required.  
G. VDDA_1P8_<phy> are 1.8-V analog domains supporting multiple serial PHY interfaces. A low noise, analog supply is recommended to  
provide best signal integrity, interface performance and spec compliance. If any of these interfaces are not needed, data bit errors or  
non-compliant operation can be tolerated, then domains can be grouped with digital IO 1.8-V power rail either directly or through an in-  
line supply filter is allowed.  
H. VDDA_0P8_<dll/pll> are 0.8-V analog domains supporting PLL and DLL circuitry needing a low noise supply for optimal performance. It  
is not recommended to combine these domains with any other 0.8-V domains since high frequency switching noise could negatively  
impact jitter performance of PLL and DLL signals.  
I.  
VDD_MCU is a digital voltage domain with a wide range enabling it to be grouped and ramped-up with either 0.8-V VDD_CORE or  
0.85-V RAM array (VDDAR_xxx) domains.  
J. Minimum set-up and hold times shown with respect to MCU_PORz and PORz asserting high to latch MCU_BOOTMODEn (referenced  
to MCU_VDDSHV0) and BOOTMODEn (reference to VDDSHV2) settings into registers during power up sequence.  
K. Minimum elapsed time from crystal oscillator circuitry being energized (VDDA_OSC1 at T1) until stable clock frequency is reached  
depends upon on crystal oscillator, capacitor parameters and PCB parasitic values. A conservative 10 ms elapsed time defined by (T4  
T1) time stamps is shown. This could be reduced depending upon customers clock circuit (that is, crystal oscillator or clock  
generator) and PCB designs.  
7-3. Combined MCU and Main Domains, Primary Power-Up Sequence  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
154 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.2.3 Combined MCU and Main Domains Power- Down Sequencing  
7-4 describes the device power-down sequencing.  
T0  
T1  
T2  
T3  
T4  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,  
VDDSHV0, VDDSHV2, VDDSHV5(D) (B), VDDA_3P3_USB(E)  
)
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,  
VDDSHV0, VDDSHV2, VDDSHV5(D) (C),VDDS_MMC0  
)
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP, VDDA_OSC1,  
VDDA_PLLGRP8, VDDA_PLLGRP6,VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP0, VDDA_TEMP1)(F)  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(G)  
VDD_CPU  
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0(H)  
VDD_MCU(I), VDD_MCU_WAKE1, VDD_CORE,  
VDD_WAKE0, VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB,  
VDDAR_CORE, VDDAR_CPU, VDDAR_MCU(I)  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
TΔ1  
OSC1_XI, OSC1_XO  
(optional)  
WKUP_OSC0_XI, WKUP_OSC0_XO  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0]  
MCU_PORz(J)  
Valid Configuration  
PORz(J)  
J7VCL_ELCH_02  
A. Time stamp markers:  
T0 MCU_PORz & PORz assert low to put all processor resources in safe state. (0 ms)  
T1 Main DDR, SRAM Core, and SRAM CPU power supplies start ramp-down. (0.5 ms)  
T2 Low voltage core supplies start supply ramp-down. (2.5 ms)  
T3 - 1.8-V voltages start supply ramp-down. (3.0 ms)  
T4 3.3V voltages start supply ramp-down. (3.5 ms)  
B. Any MCU or Main dual voltage IO domains (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3 V to support 3.3-V digital interfaces.  
C. Any MCU or Main dual voltage IO domains (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8 V to support 1.8-V digital interfaces.  
D. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3 V/1.8 V) power rail is required for compliant, high-speed  
SD card operations. If SD card is not needed or standard data rates with fixed 3.3-V operation is acceptable, then domain can be  
grouped with digital IO 3.3-V power rail. If a SD card is capable of operating with fixed 1.8 V, then domain can be grouped with digital IO  
1.8-V power rail.  
E. VDDA_3P3_USB is 3.3-V analog domain used for USB 2.0 differential interface signaling. A low noise, analog supply is recommended  
to provide best signal integrity for USB data eye mask compliance. If USB interface is not needed or data bit errors can be tolerated,  
then domain can be grouped with 3.3-V digital IO power rail either directly or through a supply filter.  
F. VDDA_1P8_<clk/pll/ana> are 1.8V analog domains supporting clock oscillator, PLL and analog circuitry needing a low noise supply for  
optimal performance. It is not recommended to combine digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
switching noise could negatively impact jitter performance of clock, PLL and DLL signals. Combining analog VDDA_1p8_<phy>  
domains should be avoided but if grouped, then in-line ferrite bead supply filtering is required .  
G. VDDA_1P8_<phy> are 1.8-V analog domains supporting multiple serial PHY interfaces. A low noise, analog supply is recommended to  
provide best signal integrity, interface performance and spec compliance. If any of these interfaces are not needed, data bit errors or  
non-compliant operation can be tolerated, then domains can be grouped with digital IO 1.8-V power rail either directly or through an in-  
line supply filter is allowed.  
H. VDDA_0P8_<dll/pll> are 0.8-V analog domains supporting PLL and DLL circuitry needing a low noise supply for optimal performance. It  
is not recommended to combine these domains with any other 0.8-V domains since high frequency switching noise could negatively  
impact jitter performance of PLL and DLL signals.  
I.  
VDD_MCU is a digital voltage domain with a wide range enabling it to be grouped and ramped-up with either 0.8-V VDD_CORE or  
0.85-V RAM array (VDDAR_xxx) domains.  
J. MCU_PORz and PORz must be asserted low for TΔ1 = 200 us MIN to ensure SoC resources enter into safe state before any voltage  
begins to ramp down.  
7-4. Combined MCU and Main Domains, Primary Power-Down Sequence  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
156 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.2.4 Isolated MCU and Main Domains Power- Up Sequencing  
Isolated MCU and Main voltage domains enable an SoCs MCU and Main processor sub-systems to operate  
independently. There are 2 reasons an SoCs PDN design may need to support independent MCU and Main  
processor functionality. First is to provide flexibility to enable SoC low power modes that can significant reduce  
SoC power dissipation when processor operations are not needed. Second is to enable robustness to gain  
freedom from interference (FFI) of a single fault impacting both MCU and Main processor sub-systems which is  
especially beneficial if using the SoCs MCU as the system safety monitoring processor. The number of  
additional PDN power rails needed is dependent upon number of different MCU IO signaling voltage levels. If  
only 1.8V IO signaling is used, then only 2 additional power rails could be required. If both 1.8 and 3.3V IO  
signaling is desired, then 4 additional power rails could be needed.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
T1  
T2  
T3  
T4  
T0  
Note 1  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(C)  
Note 1  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(E), VDDSHV6)(C),VDDA_3P3_USB(F)  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(D)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(E), VDDSHV6)(D), VDDS_MMC0  
(VDDA_MCU_PLLGRP0,  
VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP)(G)  
VDDA_OSC1, VDDA_PLLGRP8,  
VDDA_PLLGRP6, VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP1, VDDA_TEMP0,  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(H)  
VDD_MCU(J),VDD_MCU_WAKE1, VDDAR_MCU  
VDD_CPU  
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0(I)  
VDD_CORE, VDD_WAKE0, VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB  
VDDAR_CORE, VDDAR_CPU  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
OSC1_XI, OSC1_XO  
(optional)  
WKUP_OSC0_XI, WKUP_OSC0_XO  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0](K)  
MCU_PORz(K)(L)  
Valid Configuration  
PORz(K)(L)  
J7VCL_ELCH_03  
A. T1Time stamp markers:  
T0 All 3.3-V voltages start supply ramp-up to VOPR MIN. (0 ms)  
T1 All 1.8-V voltages start supply ramp-up to VOPR MIN. (2 ms)  
T2 All core voltages start supply ramp-up to VOPR MIN. (3 ms)  
T3 All RAM array voltages start supply ramp-up to VOPR MIN. (4 ms)  
T4 OSC1 is stable and PORz/MCU_PORz are de-asserted to release processor from reset. (13 ms)  
B. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3 V to support 3.3-V digital interfaces.  
A few supplies could have varying start times between T0 to T1 due to PDN designs using different power resources with varying turn-  
on & ramp-up time delays.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
158 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
C. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8 V to support 1.8-V digital interfaces.  
When eMMC memories are used, Main 1.8-V supplies could have delayed start times that aligns to T3 due to PDN designs grouping  
supplies with VDD_MMC0.  
D. VDDSHV5 supports MMC1 signaling for SD memory cards. If compliant UHS-I SD card operation is needed, then an independent, dual  
voltage (3.3 V/1.8 V) power source and rail are required. The start of ramp-up to 3.3 V will be same as other 3.3-V domains as shown. If  
SD card is not needed or standard data rates with fixed 3.3-V operation is acceptable, then supply can be grouped with digital IO 3.3-V  
power rail. If a SD card is capable of operating with fixed 1.8 V, then supply can be grouped with digital IO 1.8-V power rail.  
E. VDDA_3P3_USB is 3.3-V analog supply used for USB 2.0 differential interface signaling. A low noise, analog supply is recommended  
to provide best signal integrity for USB data eye mask compliance. The start of ramp-up to 3.3 V will be same as other 3.3-V domains  
as shown. If USB interface is not needed or data bit errors can be tolerated, then supply can be grouped with 3.3-V digital IO power rail  
either directly or through a supply filter.  
F. VDDA_1P8_<clk/pll/ana> are 1.8-V analog domains supporting clock oscillator, PLL and analog circuitry needing a low noise supply for  
optimal performance. It is not recommended to combine digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency  
switching noise could negatively impact jitter performance of clock, PLL and DLL signals. Combining analog VDDA_1p8_<phy>  
domains should be avoided but if grouped, then in-line ferrite bead supply filtering is required.  
G. VDDA_1P8_<phy> are 1.8-V analog domains supporting multiple serial PHY interfaces. A low noise, analog supply is recommended to  
provide best signal integrity, interface performance and spec compliance. If any of these interfaces are not needed, data bit errors or  
non-compliant operation can be tolerated, then domains can be grouped with digital IO 1.8-V power rail either directly or through an in-  
line supply filter is allowed.  
H. VDDA_0P8_<dll/pll> are 0.8-V analog domains supporting PLL and DLL circuitry needing a low noise supply for optimal performance. It  
is not recommended to combine these domains with any other 0.8-V domains since high frequency switching noise could negatively  
impact jitter performance of PLL and DLL signals.  
I.  
VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility, enabling it to be grouped  
and ramped-up with either 0.8-V VDD_CORE at time stamp T2 or 0.85-V RAM array domains (VDDAR_xxx) at time stamp T3.  
J. Minimum set-up and hold times shown with respect to MCU_PORz and PORz asserting high to latch MCU_BOOTMODEn (referenced  
to MCU_VDDSHV0) and BOOTMODEn (reference to VDDSHV2) settings into registers during power up sequence.  
K. Minimum elapsed time from crystal oscillator circuitry being energized (VDDA_OSC1 at T1) until stable clock frequency is reached  
depends upon on crystal oscillator, capacitor parameters and PCB parasitic values. A conservative 10 ms elapsed time defined by (T4  
T1) time stamps is shown. This could be reduced depending upon customers clock circuit (that is, crystal oscillator or clock  
generator) and PCB designs.  
7-5. Isolated MCU and Main Domains, Primary Power-Up Sequence  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.2.5 Isolated MCU and Main Domains Power- Down Sequencing  
7-6 describes the device power-down sequencing.  
T4  
T0  
T1  
T2  
T3  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(B)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(D), VDDSHV6)(B),VDDA_3P3_USB(E)  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(C)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(D), VDDSHV6)(C), VDDS_MMC0  
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP,  
VDDA_ADC_MCU, VDDA_POR_WKUP, VDDA_WKUP)(F)  
VDDA_OSC1, VDDA_PLLGRP8,  
VDDA_PLLGRP6, VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP01, VDDA_TEMP0,  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(G)  
VDD_MCU(8) VDD_MCU_WAKE1, VDDAR_MCU  
VDD_CPU  
(VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0)(H)  
VDD_CORE, VDD_WAKE0, VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB  
VDDAR_CORE, VDDAR_CPU  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
TΔ1  
OSC1_XI, OSC1_XO  
(optional)  
WKUP_OSC0_XI, WKUP_OSC0_XO  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0]  
MCU_PORz(J)  
Valid Configuration  
PORz(J)  
J7VCL_ELCH_04  
A. Time stamp markers:  
T0 MCU_PORz and PORz assert low to put all processor resources in safe state. (0 ms)  
T1 Main DDR, SRAM Core, and SRAM CPU power domains start ramp-down. (0.5 ms)  
T2 All core voltages start supply ramp-down. (2.5 ms)  
T3 All 1.8V voltages start supply ramp-down. (3.0 ms)  
T4 All 3.3V voltages start supply ramp-down. (3.5 ms)  
B. Any MCU or Main dual voltage IO domains (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3 V to support 3.3-V digital interfaces.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
160 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
C. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8 V to support 1.8-V digital interfaces.  
When eMMC memories are used, Main 1.8-V supplies could have a ramp-down aligned to T1 due to PDN designs grouping supplies  
with VDD_MMC0.  
D. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3 V/1.8 V) power rail is required for compliant, high-speed  
SD card operations. If compliant high-speed SD card operation is needed, then an independent, dual voltage (3.3 V/1.8 V) power  
source and rail are required. The start of ramp-down from 3.3 V/1.8 V will be same as other 3.3-V domains as shown. If SD card is not  
needed or standard data rates with fixed 3.3-V operation is acceptable, then domain can be grouped with digital IO 3.3-V power rail. If a  
SD card is capable of operating with fixed 1.8 V, then domain can be grouped with digital IO 1.8-V power rail.  
E. VDDA_3P3_USB is 3.3-V analog domain used for USB 2.0 differential interface signaling. A low noise, analog supply is recommended  
to provide best signal integrity for USB data eye mask compliance. The start of ramp-down from 3.3 V will be same as other 3.3-V  
domains as shown. If USB interface is not needed or data bit errors can be tolerated, then domain can be grouped with 3.3-V digital IO  
power rail either directly or through a supply filter.  
F. VDDA_1P8_<clk/pll/ana> are 1.8-V analog domains supporting clock oscillator, PLL and analog circuitry needing a low noise supply for  
optimal performance. It is not recommended to combine digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency  
switching noise could negatively impact jitter performance of clock, PLL and DLL signals. Combining analog VDDA_1p8_<phy>  
domains should be avoided but if grouped, then in-line ferrite bead supply filtering is required.  
G. VDDA_1P8_<phy> are 1.8-V analog domains supporting multiple serial PHY interfaces. A low noise, analog supply is recommended to  
provide best signal integrity, interface performance and spec compliance. If any of these interfaces are not needed, data bit errors or  
non-compliant operation can be tolerated, then domains can be grouped with digital IO 1.8-V power rail either directly or through an in-  
line supply filter is allowed.  
H. VDDA_0P8_<dll/pll> are 0.8-V analog domains supporting PLL and DLL circuitry needing a low noise supply for optimal performance. It  
is not recommended to combine these domains with any other 0.8-V domains since high frequency switching noise could negatively  
impact jitter performance of PLL and DLL signals.  
I.  
VDD_MCU is a digital voltage domain with a wide range enabling it to be grouped and ramped-up with either 0.8-V VDD_CORE or  
0.85V RAM array (VDDAR_xxx) domains.  
J. MCU_PORz and PORz must be asserted low for TΔ1 = 200 us MIN to ensure SoC resources enter into safe state before any voltage  
begins to ramp down.  
7-6. Isolated MCU and Main Domains, Primary Power- Down Sequencing  
7.10.2.6 Independent MCU and Main Domains, Entry and Exit of MCU Only Sequencing  
Entry into MCU Only state is accomplished by executing a power down sequence except for the 4 MCU domains  
that remain energized. Exit from MCU Only state is accomplished by executing a power up sequence with the 4  
MCU domains remaining energized throughout the seque.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Entry into MCU only  
Active  
MCU only  
Exit from MCU only  
Active  
T0  
T1  
T2  
T3  
T4  
T0  
T1  
T2  
T3  
T4  
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU(2)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(4), VDDSHV6)(2),VDDA_3P3_USB(5)  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(3)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5, VDDSHV6)(3) VDDS_MMC0  
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP)(6)  
(VDDA_OSC1, VDDA_PLLGRP8,  
VDDA_PLLGRP6, VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP1, VDDA_TEMP0)(7)  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(7)  
VDD_MCU(9), VDD_MCU_WAKE1, VDDAR_MCU  
VDD_CPU  
(VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0)(8)  
VDD_CORE, VDD_WAKE0, VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB  
VDDAR_CORE, VDDAR_CPU  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
TΔ1  
OSC1_XI, OSC1_XO  
WKUP_OSC0_XI, WKUP_OSC0_XO  
(optional)  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0](10)  
MCU_PORz(10)(11)  
Valid Configuration  
PORz(10)(11)  
J7VCL_ELCH_05  
7-7. Independent MCU and Main Domains, Entry and Exit of MCU Only Sequencing  
7.10.2.7 Independent MCU and Main Domains, Entry and Exit of DDR Retention State  
Entry into DDR Retention state is accomplished by executing a power down sequence except for the 4 DDR  
domains that remain energized. Exit from DDR Retention state is accomplished by executing a power up  
sequence with the 3 DDR domains remaining energized throughout the sequence.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
162 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Entry into MCU only  
Active  
DDR Retention  
Exit from MCU only  
Active  
T0  
T1  
T2  
T3  
T4  
T0  
T1  
T2  
T3  
T4  
Note1  
Note1  
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU(2)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV5(4), VDDSHV6)(2), VDDA_3P3_USB(5)  
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)(3)  
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,  
VDDSHV4, VDDSHV54,VDDSHV6)(3), VDDS_MMC0  
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP)(6)  
VDDA_OSC1, VDDA_PLLGRP8,  
VDDA_PLLGRP6, VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP0, VDDA_TEMP1,  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(7)  
VDD_MCU(9), VDD_MCU_WAKE1, VDDAR_MCU  
VDD_CPU  
(VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0)(9)  
VDD_CORE, VDD_WAKE0VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB  
VDDAR_CORE, VDDAR_CPU  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
TΔ1  
OSC1_XI, OSC1_XO  
WKUP_OSC0_XI, WKUP_OSC0_XO  
(optional)  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0](10)  
MCU_PORz(10)(11)  
Valid Configuration  
PORz(10)(11)  
J7VCL_ELCH_06  
7-8. Independent MCU and Main Domains, Entry and Exit of DDR Retention State  
7.10.2.8 Independent MCU and Main Domains, Entry and Exit of GPIO Retention Sequencing  
Entry into GPIO Retention state is accomplished by executing a power down sequence except for the 2 or 4  
wake domains that remain energized. Exit from GPIO Retention state is accomplished by executing a power up  
sequence with the 2 or 4 wake DDR domains remaining energized throughout the sequence.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Entry into MCU only  
Active  
DDR Retention  
Exit from MCU only  
Active  
T0  
T1  
T2  
T3  
T4  
T0  
T1  
T2  
T3  
T4  
Note1  
Note1  
( VDDSHV1_MCU, VDDSHV2_MCU)(2)  
(VDDSHV0, VDDSHV1, VDDSHV3,  
VDDSHV4, VDDSHV5(4), VDDSHV6)(2), VDDA_3P3_USB(5)  
(VDDSHV1_MCU, VDDSHV2_MCU)(3)  
(VDDSHV0, VDDSHV1, VDDSHV3,  
VDDSHV4, VDDSHV54,VDDSHV6)(3), VDDS_MMC0  
VDDSHV0_MCU, VDDSHV2  
(VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC_MCU,  
VDDA_POR_WKUP, VDDA_WKUP)(6)  
VDDA_OSC1, VDDA_PLLGRP8,  
VDDA_PLLGRP6, VDDA_PLLGRP4,  
VDDA_PLLGRP0, VDDA_TEMP0, VDDA_TEMP1,  
(VDDA_1P8_SERDES, VDDA_1P8_USB)(7)  
VDD_MCU(9), VDD_MCU_WAKE1, VDDAR_MCU  
VDD_CPU  
(VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0)(9)  
VDD_CORE, VDD_WAKE0VDDA_0P8_SERDES,  
VDDA_0P8_SERDES_C, VDDA_0P8_USB  
VDDSHV0_MCU, VDDSHV2(8)  
VDDAR_CORE, VDDAR_CPU  
VDDS_DDR_BIAS, VDDS_DDR, VDDS_DDR_C  
TΔ1  
OSC1_XI, OSC1_XO  
WKUP_OSC0_XI, WKUP_OSC0_XO  
(optional)  
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO  
(optional)  
MCU_BOOTMODE[9:0], BOOTMODE[7:0](10)  
MCU_PORz(10)(11)  
Valid Configuration  
PORz(10)(11)  
J7VCL_ELCH_07  
7-9. Independent MCU and Main Domains, Entry and Exit of GPIO Retention Sequencing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
164 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.3 System Timing  
For more details about features and additional description information on the subsystem multiplexing signals,  
see the corresponding sections within Signal Descriptions and Detailed Description.  
7-5. System Timing Conditions  
PARAMETER  
MIN  
0.5  
3
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
2
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30  
7.10.3.1 Reset Timing  
The tables and figures provided in this section define the timing requirements and switching characteristics for  
reset related signals.  
7-6. MCU_PORz Timing Requirements  
see 7-10  
NO.  
MIN  
TYP  
MAX UNIT  
Hold time, MCU_PORz active (low) at Power-up  
after all MCU DOMAIN supplies valid (using  
external crystal)  
N +  
RST1  
9500000  
ns  
1200(2)  
th(MCUD_SUPPLIES_VALID - MCU_PORz)  
Hold time, MCU_PORz active (low) at Power-up  
after all MCU DOMAIN supplies(1) valid and  
external clock stable (using external LVCMOS  
oscillator)  
RST2  
1200  
1200  
ns  
ns  
Pulse Width minimum, MCU_PORz low after  
Power-up (without removal of Power or system  
reference clock MCU_OSC0_XI/XO)  
RST3 tw(MCU_PORzL)  
(1) For the definition of the MCU DOMAIN supplies, see the 7.10.2.2, Combined MCU and Main Domains Poewr-Up Sequencing.  
(2) N = oscillator start-up time  
RST1  
RST2  
RST3  
MCU_PORz  
MCU DOMAIN  
SUPPLIES VALID  
MCU_OSC0_XI,  
MCU_OSC0_XO  
7-10. MCU_PORz Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-7. PORz Timing Requirements  
see 7-11  
NO.  
MIN  
1200  
1200  
MAX UNIT  
Hold time, PORz active (low) at Power-up after all MAIN  
DOMAIN supplies(1) valid  
RST4 th(MAIND_SUPPLIES_VALID - PORz)  
RST5 tw(PORzL)  
ns  
ns  
Pulse Width minimum, PORz low after Power-up  
(1) For the definition of the MAIN DOMAIN supplies, see the 7.10.2.2, Combined MCU and Main Domains Poewr-Up Sequencing.  
RST4  
RST5  
PORz  
MAIN DOMAIN  
SUPPLIES VALID  
7-11. PORz Timing Requirements  
7-8. MCU_PORz initiates; MCU_PORz_OUT, PORz_OUT, MCU_RESETSTATz, and RESETSTATz  
Switching Characteristics  
see 7-12  
NO.  
PARAMETER  
MODE  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
MCU_PORz_OUT active (low)  
RST6 td(MCU_PORzL-MCU_PORz_OUTL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
MCU_PORz_OUT inactive (high)  
RST7 td(MCU_PORzH-MCU_PORz_OUTH)  
RST8 td(MCU_PORzL-PORz_OUTL)  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, MCU_PORz active (low) to  
PORz_OUT active (low)  
0
1500  
Delay time, MCU_PORz inactive (high) to  
PORz_OUT inactive (high)  
RST9 td(MCU_PORzH-PORz_OUTH)  
RST10 td(MCU_PORzL-MCU_RESETSTATzL)  
RST11 td(MCU_PORzH-MCU_RESETSTATzH)  
RST12 td(MCU_PORzL-RESETSTATzL)  
RST13 td(MCU_PORzH-RESETSTATzH)  
Delay time, MCU_PORz active (low) to  
MCU_RESETSTATz active (low)  
0
Delay time, MCU_PORz inactive (high) to  
MCU_RESETSTATz inactive (high)  
POST  
bypass  
12000*S(1)  
0
Delay time, MCU_PORz active (low) to  
RESETSTATz active (low)  
Delay time, MCU_PORz inactive (high) to  
RESETSTATz inactive (high)  
14500*S(1)  
Pulse width minimum, MCU_PORz_OUT  
active (low)  
RST14 tw(MCU_PORz_OUTL)  
RST15 tw(PORz_OUTL)  
RST16 tw(MCU_RESETSTATzL)  
RST17 tw(RESETSTATzL)  
1200  
2550  
ns  
ns  
ns  
ns  
Pulse Width Minimum PORz_OUT low  
Pulse Width Minimum MCU_RESETSTATz  
low  
3900*S(1)  
2650*S(1)  
Pulse Width Minimum RESETSTATz low  
(1) S = MCU_OSC0_XI/XO clock period.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
166 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
RST12  
RST6  
RST13  
RST7  
MCU_PORz  
RST14  
MCU_PORz_OUT  
RST10  
RST11  
RST16  
MCU_RESETSTATz  
RST8  
RST9  
RST15  
PORz_OUT  
RST17  
RESETSTATz  
7-12. MCU_PORz initiates; MCU_PORz_OUT, PORz_OUT, MCU_RESETSTATz, and RESETSTATz  
Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MAX UNIT  
7-9. PORz Initiates; PORz_OUT and RESETSTATz Switching Characteristics  
see 7-13  
NO.  
PARAMETER  
MODE  
MIN  
software control of  
POR_RST_ISO_DONE_Z  
T(1)  
Delay time, PORz active (low) toPORz_OUT  
active (low)  
RST18 td(PORzL-PORz_OUTL)  
CTRLMMR_WKUP_POR_RST  
_CTRL[0].POR_RST_ISO_  
DONE_Z = 0  
0
ns  
ns  
Delay time, PORz active (high) toPORz_OUT  
active (high)  
RST19 td(PORzH-PORz_OUTH)  
1300  
T(1)  
td(PORzL-  
RST20  
Delay time, PORz active (low) to RESETSTATz  
active (low)  
CTRLMMR_WKUP_POR_RST  
_CTRL[0].POR_RST_ISO_  
DONE_Z = 0  
RESETSTATzL)  
0
ns  
ns  
td(PORzH-  
RST21  
Delay time, PORz active (high) to RESETSTATz  
active (high)  
14500*S  
(2)  
RESETSTATzH)  
(1) T = Reset Isolation Time (Software Dependent).  
(2) S = MCU_OSC0_XI/XO clock period.  
RST18  
RST19  
PORz  
PORz_OUT  
RST20  
RST21  
RESETSTATz  
7-13. PORz initiates; PORz_OUT and RESETSTATz Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
168 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-10. MCU_RESETz Timing Requirements  
see 7-14  
NO.  
MIN  
MAX UNIT  
(1)  
RST22 tw(MCU_RESETzL)  
Pulse Width minimum, MCU_RESETz active (low)  
1200  
ns  
(1) Timing for MCU_RESETz is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
7-11. MCU_RESETz initiates; MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see 7-14  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_RESETz active (low) to  
MCU_RESETSTATz active (low)  
RST23 td(MCU_RESETzL-MCU_RESETSTATzL)  
800  
ns  
Delay time, MCU_RESETz inactive (high) to  
MCU_RESETSTATz inactive (high)  
RST24 td(MCU_RESETzH-MCU_RESETSTATzH)  
RST25 td(MCU_RESETzL-RESETSTATzL)  
RST26 td(MCU_RESETzH-RESETSTATzH)  
(1) S = MCU_OSC0_XI/XO clock period.  
3900*S(1)  
800  
ns  
ns  
ns  
Delay time, MCU_RESETz active (low) to RESETSTATz  
active (low)  
Delay time, MCU_RESETz inactive (high) to  
RESETSTATz inactive (high)  
3900*S(1)  
RST23  
RST24  
MCU_RESETz  
RST22  
MCU_RESETSTATz  
RESETSTATz  
RST25  
RST26  
7-14. MCU_RESETz initiates; MCU_RESETSTATz, and RESETSTATz Timing Requirements and  
Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-12. RESET_REQz Timing Requirements  
see 7-15  
NO.  
MIN  
MAX UNIT  
(1)  
RST27 tw(RESET_REQzL)  
Pulse Width minimum, RESET_REQz active (low)  
1200  
ns  
(1) Timing for RESET_REQz is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
7-13. RESET_REQz initiates; RESETSTATz Switching Characteristics  
see 7-15  
NO.  
PARAMETER  
MODE  
MIN  
MAX UNIT  
software control of  
SOC_WARMRST_ISO_DONE  
_Z  
T(1)  
Delay time, RESET_REQz active (low)  
to RESETSTATz active (low)  
RST28 td(RESET_REQzL-RESETSTATzL)  
CTRLMMR_WKUP_MAIN_WA  
RM  
740  
ns  
ns  
_RST_CTRL[0].SOC_  
WARMRST_ISO_DONE_Z = 0  
Delay time, RESET_REQz inactive  
(high) to RESETSTATz inactive (high)  
2650*S  
RST29 td(RESET_REQzH-RESETSTATzH)  
(2)  
(1) T = Reset Isolation Time (Software Dependent).  
(2) S = MCU_OSC0_XI/XO clock period.  
RST27  
RST28  
RESET_REQz  
RST29  
RESETSTATz  
7-15. RESET_REQz initiates; RESETSTATz Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
170 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-14. EMUx Timing Requirements  
see 7-16  
NO.  
MIN  
3*S(1)  
10  
MAX UNIT  
RST30 tsu(EMUx-MCU_PORz)  
RST31 th(MCU_PORz - EMUx)  
Setup time, EMU[1:0] before MCU_PORz inactive (high)  
Hold time, EMU[1:0] after MCU_PORz inactive (high)  
ns  
ns  
(1) S = MCU_OSC0_XI/XO clock period.  
RST30  
MCU_PORz  
EMU[1:0]  
RST31  
7-16. EMUx Timing Requirements  
7-15. MCU_BOOTMODE Timing Requirements  
see 7-17  
NO.  
MIN  
MAX UNIT  
Setup time, MCU_BOOTMODE[09:00] before  
MCU_PORz_OUT high  
RST32 tsu(MCU_BOOTMODE-MCU_PORz_OUT)  
RST33 th(MCU_PORz_OUT - MCU_BOOTMODE)  
(1) S = MCU_OSC0_XI/XO clock period.  
3*S(1)  
ns  
Hold time, MCU_BOOTMODE[09:00] after MCU_  
PORz_OUT high  
0
ns  
RST32  
MCU_PORz_OUT  
MCU_BOOTMODE[09:00]  
RST33  
7-17. MCU_BOOTMODE Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-16. BOOTMODE Timing Requirements  
see 7-18  
NO.  
MIN  
3*S(1)  
0
MAX UNIT  
RST34 tsu(BOOTMODE-PORz_OUT)  
RST35 th(PORz_OUT - BOOTMODE)  
Setup time, BOOTMODE[7:0] before PORz_OUT high  
Hold time, BOOTMODE[7:0] after PORz_OUT high  
ns  
ns  
(1) S = MCU_OSC0_XI/XO clock period.  
RST34  
PORz_OUT  
BOOTMODE[7:0]  
RST35  
7-18. BOOTMODE Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
172 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.3.2 Safety Signal Timing  
Tables and figures provided in this section define switching characteristics for MCU_SAFETY_ERRORn and  
SOC_SAFETY_ERRORn.  
7-17. MCU_SAFETY_ERRORn Switching Characteristics  
see 7-19  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Pulse width minimum, MCU_SAFETY_ERRORn active  
(PWM mode disabled)  
SFTY1 tw(MCU_SAFETY_ERRORn)  
P*R(1) (2)  
ns  
Delay time, ERROR CONDITION to  
SFTY2 td (ERROR_CONDITION-MCU_SAFETY_ERRORnL) MCU_SAFETY_ERRORn  
active  
50*P(1)  
ns  
(1) P = ESM functional clock (MCU_SYSCLK0 /6).  
(2) R = Error Pin Counter Pre-Load Register count value.  
Internal Error Condition  
(Active High)  
SFTY1  
SFTY2  
MCU_SAFETY_ERRORn  
(PWM Mode Disabled)  
7-19. MCU_SAFETY_ERRORn Switching Characteristics  
7-18. SOC_SAFETY_ERRORn Switching Characteristics  
see 7-20  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Pulse width minimum,SOC_SAFETY_ERRORn active  
(PWM mode disabled)  
SFTY3 tw(SOC_SAFETY_ERRORn)  
P*R(1) (2)  
ns  
Delay time, ERROR CONDITION to  
SFTY4 td (ERROR_CONDITION-SOC_SAFETY_ERRORnL) SOC_SAFETY_ERRORn  
active  
50*P(1)  
ns  
Internal Error Condition  
(Active High)  
SFTY3  
SFTY4  
SOC_SAFETY_ERRORn  
(PWM Mode Disabled)  
7-20. SOC_SAFETY_ERRORn Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.3.3 Clock Timing  
Tables and figures provided in this section define timing requirements and switching characteristics for clock  
signals.  
7-19. Clock Timng Requiements  
see 7-21  
NO.  
MIN  
10  
MAX UNIT  
CLK1 tc(EXT_REFCLK1)  
CLK2 tw(EXT_REFCLK1H)  
CLK3 tw(EXT_REFCLK1L)  
Cycle time minimum, EXT_REFCLK1  
ns  
Pulse Duration minimum, EXT_REFCLK1 high  
Pulse Duration minimum, EXT_REFCLK1 low  
E*0.45(1)  
E*0.45(1)  
E*0.55(1)  
E*0.55(1)  
ns  
ns  
(1) E = EXT_REFCLK1 cycle time.  
7-21. Clock Timing Requirements  
7-20. Clock Switching Characteristics  
see 7-22  
NO.  
PARAMETER  
MIN  
8
MAX UNIT  
CLK4 tc(SYSCLKOUT0)  
CLK5 tw(SYSCLKOUT0H)  
CLK6 tw(SYSCLKOUT0L)  
CLK7 tc(OBSCLK0)  
Cycle time minimum,SYSCLKOUT0  
Pulse Duration minimum, SYSCLKOUT0 high  
Pulse Duration minimum, SYSCLKOUT0 low  
Cycle time minimum, OBSCLK0  
ns  
A*0.4(1)  
A*0.4(1)  
5
A*0.6(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A*0.6(1)  
CLK8 tw(OBSCLK0H)  
CLK9 tw(OBSCLK0L)  
CLK10 tc(CLKOUT0)  
Pulse Duration minimum, OBSCLK0 high  
Pulse Duration minimum,OBSCLK0 low  
Cycle time minimum, CLKOUT0  
B*0.4(2)  
B*0.4(2)  
20  
B*0.6(2)  
B*0.6(2)  
CLK11 tw(CLKOUT0H)  
CLK12 tw(CLKOUT0L)  
Pulse Duration minimum, CLKOUT0 high  
Pulse Duration minimum,CLKOUT0 low  
C*0.4(3)  
C*0.4(3)  
C*0.6(3)  
C*0.6(3)  
(1) A = SYSCLKOUT0 cycle time.  
(2) B = OBSCLK0 cycle time.  
(3) C = CLKOUT0 cycle time.  
7-22. Clock Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
174 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.4 Clock Specifications  
7.10.4.1 Input and Output Clocks / Oscillators  
Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as  
follows:  
High frequency oscillators inputs  
OSC1_XO/OSC1_XI external main crystal interface pins connected to internal oscillator which sources  
reference clock. Provides reference clock to PLLs within MCU domain and MAIN domain. This high-  
frequency oscillator is used to provide audio clock frequencies to MCASPs.  
WKUP_OSC0_XO/WKUP_OSC0_XI external main crystal interface pins connected to internal  
oscillator which sources reference clock. Provides reference clock to PLLs within WKUP and MAIN  
domain.  
Low frequency digital input  
WKUP_LF_CLKIN - Low Frequency 32k digital clock input, optionally sourced from an external PMIC or  
other clock source. This SoC does not support a LFOSC crystal input.  
General purpose clock inputs  
MCU_EXT_REFCLK0 - optional external System clock input (MCU domain).  
EXT_REFCLK1 optional external System clock input (MAIN domain).  
Peripheral clocks - refer to the Signal Descriptions for peripheral specific clocks  
For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the  
device TRM.  
7.10.4.1.1 WKUP_OSC0 Internal Oscillator Clock Source  
7-23 shows the recommended crystal circuit. All discrete components used to implement the oscillator circuit  
should be placed as close as possible to the WKUP_OSC0_XI and WKUP_OSC0_XO pins.  
Device  
WKUP_OSC0_XO  
WKUP_OSC0_XI  
Rd  
(Optional)  
Crystal  
(Optional)  
Rbias  
Cf2  
Cf1  
PCB Ground  
J7ES_WKUP_OSC_INT_02  
7-23. WKUP_OSC0 Crystal Implementation  
The crystal must be in the fundamental mode of operation and parallel resonant. 7-21 summarizes the  
required electrical constraints.  
7-21. WKUP_OSC0 Crystal Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
MHz  
Fxtal  
Crystal Parallel Resonance Frequency  
19.2, 20, 24, 25, 26, 27  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MAX UNIT  
7-21. WKUP_OSC0 Crystal Electrical Characteristics (continued)  
PARAMETER  
MIN  
TYP  
Fxtal  
Crystal Frequency Stability and Tolerance  
Ethernet RGMII and RMII  
not used  
ppm  
±100  
Ethernet RGMII and RMII  
using derived clock  
±50  
CL1+PCBXI  
CL2+PCBXO  
CL  
Capacitance of CL1 + CPCBXI  
Capacitance of CL2 + CPCBXO  
Crystal Load Capacitance  
12  
12  
6
24  
24  
12  
pF  
pF  
pF  
pF  
Cshunt  
Crystal Circuit Shunt Capacitance  
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
ESRxtal = 30 Ω  
ESRxtal = 40 Ω  
ESRxtal = 50 Ω  
7
5
5
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
pF  
pF  
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
19.2 MHz, 20 MHz, 24 MHz  
19.2 MHz, 20 MHz  
25 MHz  
pF  
pF  
pF  
pF  
5
5
ESRxtal = 60 Ω  
ESRxtal = 80 Ω  
3
19.2 MHz, 20 MHz  
3
ESRxtal = 100 Ω  
ESRxtal  
Crystal Effective Series Resistance  
100  
Ω
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based  
on the worst case environment and expected life expectancy of the system.  
7-22 details the switching characteristics of the oscillator and the requirements of the input clock.  
7-22. WKUP_OSC0 Switching Characteristics Crystal Mode  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CXI  
XI Capacitance  
1.55  
pF  
pF  
fF  
CXO  
CXIXO  
ts  
XO Capacitance  
1.35  
XI to XO Mutual Capacitance  
Maximum Start-up Time  
0.9  
9.5(1)  
ms  
(1) TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The  
vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device  
for optimum startup and operation over temperature/voltage extremes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
176 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
VDD_WKUP (min.)  
VSS  
VDD_WKUP  
VDDA_WKUP (min.)  
VDDA_WKUP  
WKUP_OSC0_XO  
tsX  
VSS  
Time  
J7ES_WKUP_OSC_STARTUP_04  
7-24. WKUP_OSC0 Start-up Time  
7.10.4.1.1.1 Load Capacitance  
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined  
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1,  
CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to  
WKUP_OSC0_XI and WKUP_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the  
PCB designer should be able to extract parasitic capacitance for each signal trace. The WKUP_OSC0 circuits  
and device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic  
capacitance values are defined in 7-22.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
WKUP_OSC0_XI  
CL1  
CPCBXI  
CXI  
CL2  
CPCBXO  
CXO  
WKUP_OSC0_XO  
J7ES_WKUP_OSC_CC_05  
7-25. Load Capacitance  
Load capacitors, CL1 and CL2 in 7-23, should be chosen such that the below equation is satisfied. CL in the  
equation is the load specified by the crystal manufacturer.  
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]  
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the  
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to  
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO = 0.5  
pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) -  
(CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.4.1.1.2 Shunt Capacitance  
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for  
WKUP_OSC0 operating conditions defined in 7-21. Shunt capacitance, Cshunt, of the crystal circuit is a  
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal  
circuit components to WKUP_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB  
designer should be able to extract mutual parasitic capacitance between these signal traces. The device  
package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined  
in 7-22.  
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is  
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can  
also be minimized by placing a ground trace between these signals when the layout requires them to be routed  
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as  
possible when selecting a crystal.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
WKUP_OSC0_XI  
CPCBXIXO  
CXIXO  
CO  
WKUP_OSC0_XO  
J7ES_WKUP_OSC_SC_06  
7-26. Shunt Capacitance  
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt  
capacitance specified by the crystal manufacturer.  
C
shunt CO + CPCBXIXO + CXIXO  
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 ,  
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.  
7.10.4.1.2 WKUP_OSC0 LVCMOS Digital Clock Source  
7-27 shows the recommended oscillator connections when WKUP_OSC0_XI is connected to a 1.8-V  
LVCMOS square-wave digital clock source.  
备注  
A DC steady-state condition is not allowed on WKUP_OSC0_XI when the oscillator is powered up.  
This is not allowed because WKUP_OSC0_XI is internally AC coupled to a comparator that may enter  
a unknown state when DC is applied to the input. Therefore, application software should power down  
WKUP_OSC0 any time WKUP_OSC0_XI is not toggling between logic states.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
178 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Device  
WKUP_OSC0_XO  
WKUP_OSC0_XI  
PCB Ground  
J7ES_WKUP_OSC_EXT_CLK_05  
7-27. 1.8-V LVCMOS-Compatible Clock Input  
7.10.4.1.3 Auxiliary OSC1 Internal Oscillator Clock Source  
7-28 shows the recommended crystal circuit. All discrete components used to implement the oscillator circuit  
should be placed as close as possible to the OSC1_XI and OSC1_XO pins.  
Device  
OSC1_XO  
OSC1_XI  
Rd  
(Optional)  
Crystal  
(Optional)  
Rbias  
Cf2  
Cf1  
PCB Ground  
J7ES_AUX_OSC_INT_07  
7-28. OSC1 Crystal Implementation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
The crystal must be in the fundamental mode of operation and parallel resonant. 7-23 summarizes the  
required electrical constraints.  
7-23. OSC1 Crystal Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Fxtal  
Fxtal  
Crystal Parallel Resonance Frequency  
19.2  
27  
MHz  
ppm  
Crystal Frequency Stability and Tolerance  
Ethernet RGMII and RMII  
not used  
±100  
Ethernet RGMII and RMII  
using derived clock  
±50  
CL1+PCBXI  
CL2+PCBXO  
CL  
Capacitance of CL1 + CPCBXI  
Capacitance of CL2 + CPCBXO  
Crystal Load Capacitance  
12  
12  
6
24  
24  
12  
7
pF  
pF  
pF  
pF  
Cshunt  
Crystal Circuit Shunt Capacitance  
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
ESRxtal = 30 Ω  
ESRxtal = 40 Ω  
ESRxtal = 50 Ω  
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
5
5
pF  
pF  
19.2 MHz, 20 MHz,  
24 MHz, 25 MHz, 26 MHz,  
27 MHz  
19.2 MHz, 20 MHz, 24 MHz  
19.2 MHz, 20 MHz  
25 MHz  
5
5
pF  
pF  
pF  
pF  
ESRxtal = 60 Ω  
ESRxtal = 80 Ω  
3
19.2 MHz, 20 MHz  
3
ESRxtal = 100 Ω  
ESRxtal  
Crystal Effective Series Resistance  
100  
Ω
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based  
on the worst case environment and expected life expectancy of the system.  
7-24 details the switching characteristics of the oscillator and the requirements of the input clock.  
7-24. OSC1 Switching Characteristics Crystal Mode  
PARAMETER  
MIN  
TYP  
MAX  
1.55  
1.35  
0.9  
UNIT  
pF  
CXI  
XI Capacitance  
XO Capacitance  
CXO  
CXIXO  
ts  
pF  
XI to XO Mutual Capacitance  
Maximum Start-up Time  
fF  
9.5(1)  
ms  
(1) TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The  
vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device  
for optimum startup and operation over temperature/voltage extremes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
180 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
VDD_CORE (min.)  
VSS  
VDD_CORE  
VDDS_OSC1  
VDDS_OSC1 (min.)  
OSC1_XO  
tsX  
VSS  
Time  
J7ES_AUX_OSC_STARTUP_08  
7-29. OSC1 Start-up Time  
7.10.4.1.3.1 Load Capacitance  
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined  
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1,  
CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to OSC1_XI  
and OSC1_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the PCB designer should be  
able to extract parasitic capacitance for each signal trace. The OSC1 circuits and device package have  
combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic capacitance values are  
defined in 7-24.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
OSC1_XI  
CL1  
CPCBXI  
CXI  
CL2  
CPCBXO  
CXO  
OSC1_XO  
J7ES_AUX_OSC_CC_05  
7-30. Load Capacitance  
Load capacitors, CL1 and CL2 in 7-28, should be chosen such that the below equation is satisfied. CL in the  
equation is the load specified by the crystal manufacturer.  
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]  
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the  
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to  
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO = 0.5  
pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) -  
(CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.4.1.3.2 Shunt Capacitance  
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for OSC1  
operating conditions defined in 7-23. Shunt capacitance, Cshunt, of the crystal circuit is a combination of  
crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal circuit  
components to OSC1 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB designer  
should be able to extract mutual parasitic capacitance between these signal traces. The device package also  
has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined in 7-24.  
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is  
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can  
also be minimized by placing a ground trace between these signals when the layout requires them to be routed  
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as  
possible when selecting a crystal.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
OSC1_XI  
CPCBXIXO  
CXIXO  
CO  
OSC1_XO  
J7ES_AUX_OSC_SC_06  
7-31. Shunt Capacitance  
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt  
capacitance specified by the crystal manufacturer.  
C
shunt CO + CPCBXIXO + CXIXO  
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 ,  
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.  
7.10.4.1.4 Auxiliary OSC1 LVCMOS Digital Clock Source  
7-32 shows the recommended oscillator connections when OSC1 is connected to a 1.8-V LVCMOS square-  
wave digital clock source.  
备注  
A DC steady-state condition is not allowed on OSC1_XI when the oscillator is powered up. This is not  
allowed because OSC1_XI is internally AC coupled to a comparator that may enter a unknown state  
when DC is applied to the input. Therefore, application software should power down OSC1 any time  
OSC1_XI is not toggling between logic states.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
182 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Device  
OSC1_XO  
OSC1_XI  
PCB Ground  
J7ES_AUX_OSC_EXT_09  
7-32. 1.8-V LVCMOS-Compatible Clock Input  
7.10.4.1.5 Auxiliary OSC1 Not Used  
7-33 shows the recommended oscillator connections when OSC1 is not used. OSC1_XI must be connected  
to VSS through an external pull resistor (Rpd) to ensure this input is held to a valid low level when unused since  
the internal pull-down resistor is disabled by default.  
Device  
OSC1_XO  
OSC1_XI  
Rpd  
NC  
PCB Ground  
J7ES_AUX_OSC_NOT_USED_11  
7-33. OSC1 Not Used  
7.10.4.2 Output Clocks  
The device provides several system clock outputs. Summary of these output clocks are as follows:  
MCU_CLKOUT0  
Reference clock output for Ethernet PHYs (50 MHz or 25 MHz)  
MCU_SYSCLKOUT0  
MCU_SYSCLK0 is divided by 4 and then sent out of the device as a LVCMOS clock signal  
(MCU_SYSCLKOUT0). This signal can be used to test if the main chip clock is functioning or not. This  
signal should not be used as a clock source for external devices on a board.  
MCU_OBSCLK0  
On the clock output MCU_OBSCLK0, oscillators and PLLs clocks can be observed for tests and debug.  
This signal should not be used as a clock source for external devices on a board.  
SYSCLKOUT0  
SYSCLK0 is divided by 4 and then sent out of the device as a LVCMOS clock signal (SYSCLKOUT0).  
This signal can be used to test if the main chip clock is functioning or not. This signal should not be used  
as a clock source for external devices on a board.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
CLKOUT  
Reference clock output for Ethernet PHYs (50 MHz)  
OBSCLK[1:0]  
On the clock output OBSCLK0/1, oscillators and PLLs clocks can be observed for tests and debug.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
184 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.4.3 PLLs  
Power is supplied to the Phase-Locked Loop circuitries (PLLs) by internal regulators that derive power from the  
off-chip power-supply.  
There are total of three PLLs in the device in WKUP and MCU domains:  
MCU_PLL0 (MCU R5FSS PLL) with WKUP_PLLCTRL0  
MCU_PLL1 (MCU PERIPHERAL PLL)  
MCU_PLL2 (MCU CPSW PLL)  
There are total of twenty PLLs in the device in MAIN domain:  
PLL0 (MAIN PLL) with PLLCTRL0  
PLL1 (PER0 PLL)  
PLL2 (PER1 PLL)  
PLL3 (CPSW9G PLL)  
PLL4 (AUDIO0 PLL)  
PLL5 (VIDEO PLL)  
PLL6 (GPU PLL)  
PLL7 (C7x PLL)  
PLL8 (ARM0 PLL)  
PLL12 (DDR PLL)  
PLL13 (C66 PLL)  
PLL14 (R5F PLL)  
PLL15 (AUDIO1 PLL)  
PLL16 (DSS PLL0)  
PLL17 (DSS PLL1)  
PLL18 (DSS PLL2)  
PLL19 (DSS PLL3)  
PLL23 (DSS PLL7)  
PLL24 (MLB PLL)  
PLL25 (VISION PLL)  
备注  
For more information, see:  
Device Configuration / Clocking / PLLs section in the device TRM.  
Peripherals / Display Subsystem Overview section in the device TRM.  
备注  
The input reference clock (OSC1_XI/OSC1_XO) is specified and the lock time is ensured by the PLL  
controller, as documented in the Device Configuration chapter in the device TRM.  
7.10.4.4 Module and Peripheral Clocks Frequencies  
7.10.5, Peripherals section documents the maximum frequency associated with the peripheral clocks of the  
device.  
For more details on the clocking structure of each module, reference Device Configurations chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5 Peripherals  
7.10.5.1 ATL  
The device contains ATL module that can be used for asynchronous sample rate conversion of audio. The ATL  
calculates the error between two time bases, such as audio syncs, and optionally generates an averaged clock  
using cycle stealing via software.  
备注  
For more information about ATL, see Audio Tracking Logic (ATL) section in Peripherals chapter in the  
device TRM.  
7-25 represents ATL timing conditions.  
7-25. ATL Timing Conditions  
PARAMETER  
MODE  
MIN  
0.5  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
External reference CLK  
Internal reference CLK  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
7.10.5.1.1, 7.10.5.1.2, 7.10.5.1.3, and 7.10.5.1.4 present timing requirements and switching  
characteristics for ATL.  
7.10.5.1.1 ATL_PCLK Timing Requirements  
NO.  
PARAMETER  
MODE  
MIN  
MAX UNIT  
External reference  
CLK  
D1 tc(pclk)  
Cycle time, ATL_PCLK  
5
ns  
External reference  
CLK  
D2 tw(pclkL)  
Pulse Duration, ATL_PCLK low  
Pulse Duration, ATL_PCLK high  
0.45 × M(1) + 2.5  
0.45 × M(1) + 2.5  
ns  
ns  
External reference  
CLK  
D3 tw(pclkH)  
(1) M = ATL_CLK[x] period  
7.10.5.1.2 ATL_AWS[x] Timing Requirements  
NO.  
MODE  
MIN  
MAX UNIT  
External reference  
CLK  
D4 tc(aws)  
D5 tw(awsL)  
D6 tw(awsH)  
Cycle Time, ATL_AWS[x](3)  
2 × M(1)  
ns  
External reference  
CLK  
Pulse Duration, ATL_AWS[x](3) low  
Pulse Duration, ATL_AWS[x](3) high  
0.45 × A(2) + 2.5  
0.45 × A(2) + 2.5  
ns  
ns  
External reference  
CLK  
(1) M = ATL_CLK[x] period  
(2) A = ATL_AWS[x] period  
(3) x = 0 to 3  
7.10.5.1.3 ATL_BWS[x] Timing Requirements  
NO.  
MODE  
MIN  
MAX UNIT  
External reference  
clock  
D7 tc(bws)  
Cycle Time, ATL_BWS[x](3)  
2 × M(1)  
ns  
External reference  
clock  
D8 tw(bwsL)  
Pulse Duration, ATL_BWS[x] low(3)  
0.45 × B(2) + 2.5  
ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
186 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
NO.  
MODE  
MIN  
MAX UNIT  
External reference  
clock  
D9 tw(bwsH)  
Pulse Duration, ATL_BWS[x] high(3)  
0.45 × B(2) + 2.5  
ns  
(1) M = ATL_CLK[x] period  
(2) B = ATL_BWS[x] period  
(3) x = 0 to 3  
7.10.5.1.4 ATCLK[x] Switching Characteristics  
NO.  
PARAMETER  
MODE  
MIN  
MAX UNIT  
Internal reference  
CLK  
D10 tc(atclk)  
Cycle time, ATCLK[x](3)  
20  
ns  
Internal reference  
CLK  
D11 tw(atclkL)  
D12 tw(atclkH)  
Pulse Duration, ATCLK[x] low(3)  
Pulse Duration, ATCLK[x] high(3)  
0.45 × P(2) - M(1) - 0.3  
0.45 × P(2) - M(1) - 0.3  
ns  
ns  
Internal reference  
CLK  
(1) M = ATL_CLK[x] period  
(2) P = ATCLK[x] period  
(3) x = 0 to 3  
D10  
D12  
ATCLK[x]  
D11  
atl_01  
7-34. ATCLK[x] Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.2 CPSW2G  
For more details about features and additional description information on the device Gigabit Ethernet MAC, see  
the corresponding sections within Signal Descriptions and Detailed Description.  
7.10.5.2.1 CPSW2G MDIO Interface Timings  
7-26 represents CPSW2G timing conditions.  
7-26. CPSW2G MDIO Timing Conditions  
PARAMETER  
INPUT CONDITIONS  
SRI  
DESCRIPTION  
MIN  
0.9  
10  
MAX  
3.6  
UNIT  
V/ns  
pF  
Input signal slew rate  
OUTPUT CONDITIONS  
CL Output load capacitance  
470  
7-27, 7-28, and 7-35 present timing requirements for MDIO.  
7-27. CPSW2G MDIO Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
ns  
MDIO1 tsu(mdioV-mdcH)  
MDIO2 th(mdcH-mdioV)  
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high  
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high  
90  
0
ns  
7-28. CPSW2G MDIO Switching Characteristics  
NO.  
PARAMETER  
MIN  
400  
MAX  
UNIT  
ns  
MDIO3 tc(mdc)  
MDIO4 tw(mdcH)  
MDIO5 tw(mdcL)  
MDIO7 td(mdcL-mdioV)  
Cycle time, MDIO[x]_MDC  
Pulse Duration, MDIO[x]_MDC high  
160  
ns  
Pulse Duration, MDIO[x]_MDC low  
160  
ns  
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid  
150  
ns  
150  
MDIO3  
MDIO4  
MDIO5  
MDIO[x]_MDC  
MDIO1  
MDIO2  
MDIO[x]_MDIO  
(input)  
MDIO7  
MDIO[x]_MDIO  
(output)  
CPSW2G_MDIO_TIMING_01  
7-35. CPSW2G MDIO Timing Requirements and Switching Characteristics  
备注  
x = 0 in MCU domain  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
188 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.2.2 CPSW2G RMII Timings  
7-29, 7.10.5.2.2.1, 7.10.5.2.2.2, and 7.10.5.2.2.3 present timing conditions, requirements, and  
switching characteristics for CPSW2G RMII.  
7-29. CPSW2G RMII Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
SRI Input signal slew rate  
VDD(1) = 1.8 V  
VDD(1) = 3.3 V  
0.108  
0.4  
0.54  
1.2  
V/ns  
V/ns  
OUTPUT CONDITIONS  
CL Output load capacitance  
3
25  
pF  
(1) VDD stands for corresponding power supply. For more information on the power supply name and  
the corresponding ball(s), see POWER column of the Pin Attributes  
7.10.5.2.2.1 CPSW2G RMII[x]_REF_CLK Timing Requirements RMII Mode  
see 7-36  
NO.  
MIN  
MAX  
20  
UNIT  
ns  
RMII1  
RMII2  
RMII3  
tc(ref_clk)  
Cycle time, RMII[x]_REF_CLK  
19.999  
tw(ref_clkH)  
tw(ref_clkL)  
Pulse Duration, RMII[x]_REF_CLK high  
Pulse Duration, RMII[x]_REF_CLK low  
7
7
13  
ns  
13  
ns  
RMII1  
RMII2  
RMII[x]_REF_CLK  
RMII3  
A. x = 1 in MCU domain.  
7-36. CPSW2G RMII[x]_REFCLK Timing Requirements RMII Mode  
7.10.5.2.2.2 CPSW2G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements RMII Mode  
NO.  
MIN  
MAX  
UNIT  
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK rising  
edge  
tsu(rxdV-ref_clkH)  
tsu(crs_dvV-ref_clkH)  
tsu(rx_erV-ref_clkH)  
th(ref_clkH-rxdV)  
4
ns  
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK rising  
edge  
RMII4  
4
4
2
ns  
ns  
ns  
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK rising  
edge  
Hold time, RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK rising  
edge  
RMII5  
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK rising  
edge  
th(ref_clkH-crs_dvV)  
th(ref_clkH-rx_erV)  
2
2
ns  
ns  
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK rising edge  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
RMII4  
RMII5  
RMII[x]_REF_CLK  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RX_ER  
7-37. CPSW2G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements RMII Mode  
7.10.5.2.2.3, and 7-38 present switching characteristics for CPSW2G RMII Transmit.  
7.10.5.2.2.3 CPSW2G RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics RMII Mode  
see 7-38  
NO.  
PARAMETER  
MIN  
MAX UNIT  
td(ref_clkH-txdV)  
Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TXD[1:0] valid  
2
10  
10  
ns  
ns  
RMII6  
td(ref_clkH-tx_enV) Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TX_EN valid  
2
RMII6  
RMII[x]_REF_CLK  
RMII[x]_TXD[1:0], RMII[x]_TX_EN  
7-38. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics RMII Mode  
7.10.5.2.3 CPSW2G RGMII Timings  
7.10.5.2.3.1, 7.10.5.2.3.2, and 7-40 present timing requirements for receive RGMII operation.  
For more information, see Gigabit Ethernet MAC (MCU_CPSW0) section in Peripherals chapter in the device  
TRM.  
7-30. CPSW2G RGMII Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
VDD(1) = 1.8 V  
VDD(1) = 3.3 V  
1.44  
2.64  
5
5
V/ns  
V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
20  
pF  
PCB CONNECTIVITY REQUIREMENTS  
RGMII[x]_RXC,  
RGMII[x]_RD[3:0],  
RGMII[x]_RX_CTL  
50  
50  
ps  
ps  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
Delay)  
RGMII[x]_TXC,  
RGMII[x]_TD[3:0],  
RGMII[x]_TX_CTL  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
190 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.2.3.1 RGMII[x]_RXC Timing Requirements RGMII Mode  
see 7-39  
NO.  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RGMII1 tc(rxc)  
RGMII2 tw(rxcH)  
RGMII3 tw(rxcL)  
Cycle time, RGMII[x]_RXC  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
Pulse duration, RGMII[x]_RXC high  
Pulse duration, RGMII[x]_RXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
100Mbps  
1000Mbps  
3.6  
4.4  
7.10.5.2.3.2 CPSW2G Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL RGMII Mode  
see 7-39  
NO.  
MODE  
MIN  
MAX UNIT  
10Mbps  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC  
transition  
tsu(rdV-rxcV)  
tsu(rx_ctlV-rxcV)  
th(rxcV-rdV)  
100Mbps  
1000Mbps  
10Mbps  
1
1
RGMII4  
1
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC  
transition  
100Mbps  
1000Mbps  
10Mbps  
1
1
1
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC  
transition  
100Mbps  
1000Mbps  
10Mbps  
1
1
RGMII5  
1
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC  
transition  
th(rxcV-rx_ctlV)  
100Mbps  
1000Mbps  
1
1
RGMII1  
RGMII2  
RGMII3  
RGMII[x]_RXC(A)  
RGMII4  
RGMII5  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RX_CTL(B)  
1st Half-byte  
RXDV  
2nd Half-byte  
RXERR  
A. RGMII_RXC must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. RGMII_RXD[3:0] carries data bits 3-0 on the rising edge of  
RGMII_RXC and data bits 7-4 on the falling edge of RGMII_RXC. Similarly, RGMII_RXCTL carries RXDV on rising edge of RGMII_RXC  
and RXERR on falling edge of RGMII_RXC.  
7-39. CPSW2G Receive Interface Timing, RGMII Operation  
7.10.5.2.3.3, 7.10.5.2.3.4 present switching characteristics for transmit - RGMII for 10 Mbps, 100 Mbps,  
and 1000 Mbps.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MAX UNIT  
7.10.5.2.3.3 CPSW2G RGMII[x]_TXC Switching Characteristics RGMII Mode  
NO.  
PARAMETER  
MODE  
10Mbps  
MIN  
360  
36  
tc(txc)  
Cycle time, RGMII[x]_TXC  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RGMII6  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
tw(txcH)  
Pulse duration, RGMII[x]_TXC high  
Pulse duration, RGMII[x]_TXC low  
RGMII7  
RGMII8  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
tw(txcL)  
100Mbps  
1000Mbps  
3.6  
4.4  
7.10.5.2.3.4 RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics RGMII Mode  
see 7-40  
NO.  
PARAMETER  
MODE  
MIN  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
MAX UNIT  
10Mbps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC  
transition  
tosu(tdV-txcV)  
tosu(tx_ctlV-txcV)  
toh(tdV-txcV)  
100Mbps  
1000Mbps  
10Mbps  
RGMII9  
Output setup time, RGMII[x]_TX_CTL valid to RGMII[x]_TXC  
transition  
100Mbps  
1000Mbps  
10Mbps  
Output hold time, RGMII[x]_TD[3:0] valid after RGMII[x]_TXC  
transition  
100Mbps  
1000Mbps  
10Mbps  
RGMII10  
Output hold time, RGMII[x]_TX_CTL valid after  
RGMII[x]_TXC transition  
toh(tx_ctlV-txcV)  
100Mbps  
1000Mbps  
RGMII6  
RGMII7  
RGMII8  
RGMII[x]_TXC(A)  
RGMII9  
RGMII[x]_TD[3:0](B)  
RGMII[x]_TX_CTL(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
RGMII10  
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.  
B. Data and control information is received using both edges of the clocks. RGMII_TD[3:0] carries data bits 3-0 on the rising edge of  
RGMII_TXC and data bits 7-4 on the falling edge of RGMII_TXC. Similarly, RGMII_TX_CTL carries TXDV on rising edge of RGMII_TXC  
and RTXERR on falling edge of RGMII_TXC.  
7-40. CPSW2G Transmit Interface Timing RGMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
192 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.3 CSI-2  
备注  
For more information, see the Camera Streaming Interface Receiver (CSI_RX_IF) chapter in the  
device TRM.  
The CSI_RX_IF deals with the processing of the pixel data coming from an external image sensor and data from  
memory. It is a key component for the following multimedia applications: camera viewfinder, video record, and  
still image capture.  
The CSI_RX_IF has a primary serial interface (CSI-2 port) compliant with the MIPI D-PHY RX specification v1.2  
and the MIPI CSI-2 specification v1.3, with 4 differential data lanes plus 1 differential clock lane in synchronous  
mode, double data rate. Refer to the specification for timing details.  
2.5 Gbps (1.25 GHz) for each lane.  
7.10.5.4 DDRSS  
For more details about features and additional description information on the device LPDDR4 Memory  
Interfaces, see the corresponding sections within Signal Descriptions and Detailed Description.  
The device has dedicated interface to LPDDR4. It supports JEDEC JESD209-4B standard compliant LPDDR4  
SDRAM devices with the following features:  
32-bit data path to external SDRAM memory  
Memory device capacity: Up to 8GB address space available over two chip selects (4GB per rank)  
No support for byte mode LPDDR4 memories, or memories with more than 17 row address bits  
7-31 and 7-41 present switching characteristics for DDRSS.  
7-31. Switching Characteristics for DDRSS  
NO.  
PARAMETER  
DDR TYPE  
MIN  
MAX UNIT  
3.003 ns  
0.468List  
item.  
1
tc(DDR_CKP/DDR_CKN)  
Cycle time, DDR0_CKP and DDR0_CKN  
LPDDR4  
1. Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and  
by PCB implementation. TI strongly recommends all designs to follow the TI LPDDR4 EVM PCB layout  
exactly in every detail (routing, spacing, vias/backdrill, PCB material, etc.) in order to achieve the full  
specified clock frequency. Refer to the Jacinto 7 DDR Board Design and Layout Guidelines for details.  
1
DDR0_CKP  
DDR0_CKN  
7-41. DDRSS Memory Interface Clock Timing  
For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM.  
7.10.5.5 DSS  
For more details about features and additional description information on the device Display Subsystem Video  
Output Ports, see the corresponding sections within Signal Descriptions and Detailed Description.  
7-32 represents DPI timing conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-32. DPI Timing Conditions  
PARAMETER  
MIN  
1.44  
1.5  
MAX  
26.4  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
Propagation delay mismatch  
across all traces  
ps  
td(Trace Mismatch Delay)  
100  
7-33, 7-34, 7-42 and 7-43 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
7-33. DPI Video Output Switching Characteristics  
NO.(2)  
D1  
PARAMETER  
MIN  
6.06  
MAX UNIT  
tc(pclk)  
Cycle time, VOUT(x)_PCLK  
ns  
ns  
ns  
D2  
tw(pclkL)  
Pulse duration, VOUT(x)_PCLK low  
Pulse duration, VOUT(x)_PCLK high  
0.475×P(1)  
0.475×P(1)  
-0.68  
D3  
tw(pclkH)  
td(pclkV-dataV)  
D4  
Delay time, VOUT(x)_PCLK transition to VOUT(x)_DATA[23:0]  
transition  
1.78  
1.78  
ns  
D5  
td(pclkV-ctrlL)  
Delay time, VOUT(x)_PCLK transition to control signals  
-0.68  
ns  
VOUT(x)_VSYNC, VOUT(x)_HSYNC, VOUT(x)_DE falling edge  
(1) P = output VOUT(x)_PCLK period in ns.  
(2) x in VOUT(x) = 1 or 2  
D2  
D3  
D1  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_PCLK  
VOUT(x)_PCLK  
D5  
VOUT(x)_VSYNC  
D5  
VOUT(x)_HSYNC  
D4  
VOUT(x)_DATA[23:0]  
VOUT(x)_DE  
data_1 data_2  
D5  
data_n  
DPI_TIMING_01  
A. The configuration of assertion of the data can be programmed on the falling or rising edge of the pixel clock.  
B. The polarity and the pulse width of VOUT(x)_HSYNC and VOUT(x)_VSYNC are programmable, refer to Display Subsystem (DSS)  
section in Peripherals chapter in the device TRM.  
C. The VOUT(x)_PCLK frequency can be configured, refer to Display Subsystem section in Peripherals chapter in the device TRM.  
D. x in VOUT(x) = 1 or 2.  
7-42. DPI Video Output  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
194 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
NO.(2)  
7-34. DPI External Pixel Clock Timing Requirements  
MIN  
6.06  
0.45×P(1)  
0.45×P(1)  
MAX  
UNIT  
ns  
D6  
D7  
D8  
tc(extpclkin)  
tw(extpclkinL)  
tw(extpclkinH)  
Cycle time, VOUT(x)_EXTPCLKIN  
Pulse duration, VOUT(x)_EXTPCLKIN low  
Pulse duration, VOUT(x)_EXTPCLKIN high  
ns  
ns  
(1) P = output VOUT(x)_PCLK period in ns.  
(2) x in VOUT(x) = 1 or 2  
D7  
D8  
D6  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_EXTPCLKIN  
VOUT(x)_EXTPCLKIN  
DPI_TIMING_02  
7-43. DPI External Pixel Clock Input  
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter in the device  
TRM.  
7.10.5.6 eCAP  
The supported features by the device ECAP are:  
32-bit time base counter  
4-event time-stamp registers (each 32 bits)  
Independent edge polarity selection for up to four sequenced time-stamp capture events  
Interrupt capabilities on any of the four capture events  
Input capture signal pre-scaling (from 1 to 16)  
Support of different capture modes (single shot capture, continuous mode capture, absolute timestamp  
capture or difference mode time-stamp capture)  
7-35 represents ECAP timing conditions.  
7-35. ECAP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.6.1 and 7.10.5.6.2 present timing and switching characteristics for eCAP (see 7-44 and 7-45).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.6.1 Timing Requirements for eCAP  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CAP (asynchronous)  
MIN  
MAX  
UNIT  
CAP1 tw(cap)  
2 + 2P(1)  
ns  
(1) P = sysclk  
CAP1  
CAP  
EPERIPHERALS_TIMNG_01  
7-44. eCAP Input Timings  
7.10.5.6.2 Switching Characteristics for eCAP  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
2 + 2P(1)  
CAP2 tw(apwm)  
Pulse duration, APWM  
ns  
(1) P = sysclk  
CAP2  
APWM  
EPERIPHERALS_TIMNG_02  
7-45. eCAP Output Timings  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
7.10.5.7 EPWM  
The supported features by the device EPWM are:  
Dedicated 16-bit time-base counter with period and frequency control  
Two independent PWM outputs which can be used in different configurations (with single-edge operation,  
with dual-edge symmetric operation or one independent PWM output with dual-edge asymmetric operation)  
Asynchronous override control of PWM signals during fault conditions  
Programmable phase-control support for lag or lead operation relative to other EPWM modules  
Dead-band generation with independent rising and falling edge delay control  
Programmable trip zone allocation of both latched and un-latched fault conditions  
Events enabling to trigger both CPU interrupts and start of ADC conversions  
7-36 represents EPWM timing conditions.  
7-36. EPWM Timing Conditions  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
1
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.7.2, 7.10.5.7.1 and present timing and switching characteristics for eHRPWM (see 7-47, 7-48,  
7-49, and 7-46).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
196 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.7.1 Timing Requirements for eHRPWM  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_SYNCI  
MIN  
2 + 2P(1)  
2 + 3P(1)  
MAX  
UNIT  
ns  
PWM6 tw(synci)  
PWM7 tw(tz)  
Pulse duration, EHRPWM_TZn_IN low  
ns  
(1) P = sysclk  
PWM6  
EHRPWM_SYNCI  
PWM7  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMNG_07  
7-46. ePWM_SYNCI and ePWM_TZn_IN Output Timings  
For more information, see Camera Subsystem section in Peripherals chapter in the device TRM.  
7.10.5.7.2 Switching Characteristics for eHRPWM  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
P-3(1)  
P-3(1)  
MAX  
UNIT  
PWM1 tw(pwm)  
Pulse duration, EHRPWM_A/B, high or low  
ns  
ns  
ns  
ns  
PWM2 tw(syncout)  
PWM3 td(tzL-pwmV)  
PWM4 td(tzL-pwmZ)  
Pulse duration, EHRPWM_SYNCO  
Delay time, EHRPWM_TZn_IN falling edge to EHRPWM_A/B valid  
Delay time, EHRPWM_TZn_IN falling edge to EHRPWM_A/B Hi-Z  
11  
11  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_SOCA/B  
MIN  
MAX  
UNIT  
PWM5 tw(soc)  
P-3(1)  
ns  
(1) P = sysclk  
PWM1  
EHRPWM_A/B  
PWM1  
PWM2  
EHRPWM_SYNCO  
PWM5  
EHRPWM_SOCA/B  
EPERIPHERALS_TIMNG_04  
7-47. EPWM_A/B_out, ePWM_SYNCO, and ePWM_SOCA/B Input Timings  
PWM3  
EPWM_A/B  
EPQM_TZn_IN  
EPERIPHERALS_TIMING_05  
7-48. EPWM_A/B and ePWM_TZn_IN Forced High/Low Input Timings  
PWM4  
EPWM_A/B  
EPQM_TZn_IN  
EPERIPHERALS_TIMING_06  
7-49. EPWM_A/B and ePWM_TZn_IN HiZ Input Timings  
7.10.5.8 eQEP  
The supported features by the device eQEP are:  
Input Synchronization  
Three Stage/Six Stage Digital Noise Filter  
Quadrature Decoder Unit  
Position Counter and Control unit for position measurement  
Quadrature Edge Capture unit for low speed measurement  
Unit Time base for speed/frequency measurement  
Watchdog Timer for detecting stalls  
7-37 represents EQEP timing conditions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
198 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-37. EQEP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
7.10.5.8.1 and 7.10.5.8.2 present timing requirements and switching characteristics for eQEP (see 图  
7-50).  
7.10.5.8.1 Timing Requirements for eQEP  
NO.  
MIN  
2 + 2P(1)  
2 + 2P(1)  
2 + 2P(1)  
2 + 2P(1)  
2 + 2P(1)  
MAX UNIT  
QEP1  
QEP2  
QEP3  
QEP4  
QEP5  
tw(qep)  
Pulse duration, QEP_A/B  
Pulse duration, QEP_I high  
Pulse duration, QEP_I low  
Pulse duration, QEP_S high  
Pulse duration, QEP_S low  
ns  
ns  
ns  
ns  
ns  
tw(qepiH)  
tw(qepiL)  
tw(qepsH)  
tw(qepsL)  
(1) P = sysclk  
QEP1  
QEP_A/B  
QEP2  
QEP_I  
QEP3  
QEP4  
QEP_S  
QEP5  
EPERIPHERALS_TIMNG_03  
7-50. eQEP Input Timings  
7.10.5.8.2 Switching Characteristics for eQEP  
NO.  
PARAMETER  
Delay time, external clock to counter increment  
MIN  
MAX UNIT  
QEP6  
td(QEP-CNTR)  
24  
ns  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
7.10.5.9 GPIO  
The device has ten instances of GPIO modules. The GPIO modules are integrated in three groups.  
Group one: WKUP_GPIO0 and WKUP_GPIO1  
Group two: GPIO0, GPIO2, GPIO4, and GPIO6  
Group three: GPIO1, GPIO3, GPIO5, and GPIO7  
Within each group, exactly one module is selected to control the corresponding I/O pins and pin interrupts.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
The GPIO pins are grouped into banks (16 pins per bank), which means that each GPIO module provides up to  
144 dedicated general-purpose pins with input and output capabilities; thus, the general-purpose interface  
supports up to 432 (3 instances × (9 banks × 16 pins)) pins. Since WKUP_GPIOu_[84:143] (u = 0, 1),  
GPIOn_[128:143] (n = 0, 2, 4, 6), and GPIOm_[36:143] (m = 1, 3, 5 ,7) are reserved in this device, general  
purpose interface supports up to 248 I/O pins.  
For more details about features and additional description information on the device General-Purpose Interface,  
see the corresponding sections within Signal Descriptions and Detailed Description.  
备注  
The general-purpose input/output i (i = 0 to 1) is also referred to as GPIOi.  
7-38, 7.10.5.9.1, and 7.10.5.9.2 present timing conditions, requirements, and switching characteristics  
for GPIO.  
7-38. GPIO Timing Conditions  
PARAMETER  
BUFFER TYPE  
MIN  
MAX UNIT  
INPUT CONDITIONS  
LVCMOS  
0.2  
0.2  
6.6 V/ns  
0.8 V/ns  
SRI  
Input slew rate  
I2C OD FS  
OUTPUT CONDITIONS  
LVCMOS  
3
3
10  
pF  
pF  
CL  
Output load capacitance  
I2C OD FS  
100  
7.10.5.9.1 GPIO Timing Requirements  
NO.  
BUFFER TYPE  
MIN  
MAX UNIT  
1.8 V  
3.3 V  
2P + 2.6(1)  
2P + 3.4(1)  
ns  
ns  
GPIO1 tw(gpio_in)  
Pulse width, GPIOn_x  
(1) P = functional clock period in ns.  
7.10.5.9.2 GPIO Switching Characteristics  
NO.  
PARAMETER  
BUFFER TYPE  
LVCMOS  
MIN  
MAX UNIT  
3.6 + 0.975P(1)  
GPIO3 tw(GPIO_OUT)  
GPIO4 tw(GPIO_OUT)  
GPIO5 tw(GPIO_OUT)  
Minimum Output Pulse Width  
Minimum Output Pulse Width Low  
Minimum Output Pulse Width High  
ns  
ns  
ns  
I2C Open Drain  
I2C Open Drain  
160  
60  
(1) P = functional clock period in ns.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
7.10.5.10 GPMC  
For more details about features and additional description information on the device General-Purpose Memory  
Controller, see the corresponding sections within Signal Descriptions and Detailed Description.  
7-39 represents GPMC timing conditions.  
备注  
The IO timings provided in this section are applicable for all combinations of signals for GPMC0.  
However, the timings are only valid for GPMC0 if signals within a single IOSET are used. The IOSETs  
are defined in the GPMC0_IOSET, GPMC0_IOSET table.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
200 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-39. GPMC Timing Conditions  
PARAMETER  
Input Conditions  
SRI  
DESCRIPTION  
MIN  
MAX  
UNIT  
V/ns  
pF  
Input slew rate  
1.65  
5
4
Output Conditions  
CL  
Output load capacitance  
20  
PCB Connectivity Requirements  
td(Trace Delay)  
Propagation delay of each trace 133 MHz  
140  
140  
360  
ps  
Synchronous Mode  
All other modes  
720  
200  
td(Trace Mismatch Delay)  
Propagation mismatch across all traces  
ps  
7.10.5.10.1 GPMC and NOR Flash Synchronous Mode  
7.10.5.10.1.1 and 7.10.5.10.1.2 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see 7-51 through 7-55).  
7.10.5.10.1.1 GPMC and NOR Flash Timing Requirements Synchronous Mode  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION(2)  
MODE(3)  
UNIT  
100 MHz(4)  
133 MHz(4)  
F12 tsu(dV-clkH)  
F13 th(clkH-dV)  
F21 tsu(waitV-clkH)  
F22 th(clkH-waitV)  
Setup time, input data  
GPMC_AD[15:0] valid before  
output clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.81  
1.11  
ns  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.06  
1.78  
1.78  
1.81  
1.06  
1.78  
1.78  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold time, input data  
GPMC_AD[15:0] valid after  
output clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2.28  
1.11  
2.28  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Setup time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j] valid before  
output clock GPMC_CLK high(1)  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Hold time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j] valid after output  
clock GPMC_CLK high(1)  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
(1) In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
(2) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see General-  
Purpose Memory Controller (GPMC) section in the device TRM.  
(3) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h:  
GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4)  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND,  
TIMEOUTSTARTVALUE, WRDATAONADMUXBUS)  
(4) For 100 MHz:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = MAIN_PLL2_HSDIV1_CLKOUT / 3  
For 133 MHz:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT  
7.10.5.10.1.2 GPMC and NOR Flash Switching Characteristics Synchronous Mode  
MIN  
MAX  
MIN  
MAX  
UNI  
T
NO.(2) PARAMETER  
DESCRIPTION  
MODE(19)  
100 MHz(20)  
133 MHz(20)  
F0 tc(clk)  
Period, output clock GPMC_CLK(18)  
div_by_1_mode;  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
10  
7.52  
ns  
ns  
ns  
ns  
F1 tw(clkH)  
Typical pulse duration, output clock  
GPMC_CLK high  
div_by_1_mode  
0.475*P  
0.475*P  
; GPMC_FCLK_MUX; (15)- 0.3  
TIMEPARAGRANULA  
RITY_X1  
(15)- 0.3  
F1 tw(clkL)  
Typical pulse duration, output clock  
GPMC_CLK low  
div_by_1_mode  
0.475*P  
0.475*P  
(15)- 0.3  
; GPMC_FCLK_MUX; (15)- 0.3  
TIMEPARAGRANULA  
RITY_X1  
F2 td(clkH-csnV)  
Delay time, output clock GPMC_CLK rising  
edge to output chip select GPMC_CSn[i]  
transition(14)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
F(6)- 2.2 F+3.75 F(6)- 2.2  
F(6)  
3.75  
+
no extra_delay  
F3 td(clkH-CSn[i]V)  
Delay time, output clock GPMC_CLK rising  
edge to output chip select GPMC_CSn[i]  
invalid(14)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
E(5)- 2.2  
E(5)  
3.75  
+
E(5)- 2.2  
E(5)  
3.75  
+
ns  
no extra_delay  
F4 td(aV-clk)  
Delay time, output address GPMC_A[27:1]  
div_by_1_mode  
B(2)-2.3 B(2)+4.5 B(2)-2.3 B(2)+4.5 ns  
valid to output clock GPMC_CLK first edge ; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
F5 td(clkH-aIV)  
Delay time, output clock GPMC_CLK rising  
edge to output address GPMC_A[27:1]  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
4.5  
4.5 ns  
2.3  
2.3  
F6 td(be[x]nV-clk)  
Delay time, output lower byte enable and  
div_by_1_mode  
B(2)-2.3 B(2)+1.9 B(2)-2.3 B(2)+1.9 ns  
command latch enable GPMC_BE0n_CLE, ; GPMC_FCLK_MUX;  
output upper byte enable GPMC_BE1n  
valid to output clock GPMC_CLK first edge  
TIMEPARAGRANULA  
RITY_X1  
F7 td(clkH-be[x]nIV) Delay time, output clock GPMC_CLK rising  
edge to output lower byte enable and  
div_by_1_mode  
; GPMC_FCLK_MUX;  
D(4)-2.3 D(4)+1.9 D(4)-2.3 D(4)+1.9 ns  
command latch enable GPMC_BE0n_CLE, TIMEPARAGRANULA  
output upper byte enable GPMC_BE1n  
RITY_X1  
invalid(11)  
F7 td(clkL-be[x]nIV)  
Delay time, GPMC_CLK falling edge to  
GPMC_BE0n_CLE, GPMC_BE1n  
invalid(12)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
D(4)-2.3 D(4)+1.9 D(4)-2.3 D(4)+1.9 ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
202 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MIN  
MAX  
MIN  
MAX  
UNI  
T
NO.(2) PARAMETER  
DESCRIPTION  
MODE(19)  
100 MHz(20)  
133 MHz(20)  
F7 td(clkL-be[x]nIV). Delay time, GPMC_CLK falling edge to  
GPMC_BE0n_CLE, GPMC_BE1n  
invalid(13)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
D(4)-2.3 D(4)+1.9 D(4)-2.3 D(4)+1.9 ns  
F8 td(clkH-advn)  
F9 td(clkH-advnIV)  
F10 td(clkH-oen)  
F11 td(clkH-oenIV)  
F14 td(clkH-wen)  
Delay time, output clock GPMC_CLK rising  
edge to output address valid and address  
latch enable GPMC_ADVn_ALE transition TIMEPARAGRANULA  
div_by_1_mode  
; GPMC_FCLK_MUX;  
G(7)-2.3 G(7)+4.5 G(7)-2.3 G(7)+4.5 ns  
RITY_X1  
no extra_delay  
Delay time, output clock GPMC_CLK rising  
edge to output address valid and address  
latch enable GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
D(4)-2.3 D(4)+4.5 D(4)-2.3 D(4)+4.5 ns  
H(8)-2.3 H(8)+3.5 H(8)-2.3 H(8)+3.5 ns  
E(8)-2.3 E(8)+3.5 E(8)-2.3 E(8)+ 3.5 ns  
I(9)- 2.3 I(9)+4.5 I(9)- 2.3 I(9)+4.5 ns  
no extra_delay  
Delay time, output clock GPMC_CLK rising  
edge to output enable GPMC_OEn_REn  
transition  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
no extra_delay  
Delay time, output clock GPMC_CLK rising  
edge to output enable GPMC_OEn_REn  
invalid  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
no extra_delay  
Delay time, output clock GPMC_CLK rising  
edge to output write enable GPMC_WEn  
transition  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
no extra_delay  
F15 td(clkH-do)  
Delay time, output clock GPMC_CLK rising  
edge to output data GPMC_AD[15:0]  
transition(11)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
J(10)-2.3 J(10)+2.7 J(10)-2.3 J(10)+2.7 ns  
J(10)-2.3 J(10)+2.7 J(10)-2.3 J(10)+2.7 ns  
J(10)-2.3 J(10)+2.7 J(10)-2.3 J(10)+2.7 ns  
J(10)-2.3 J(10)+1.9 J(10)-2.3 J(10)+1.9 ns  
J(10)-2.3 J(10)+1.9 J(10)-2.3 J(10)+1.9 ns  
J(10)-2.3 J(10)+1.9 J(10)-2.3 J(10)+1.9 ns  
F15 td(clkL-do)  
Delay time, GPMC_CLK falling edge to  
GPMC_AD[15:0] data bus transition(12)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
F15 td(clkL-do).  
F17 td(clkH-be[x]n)  
F17 td(clkL-be[x]n)  
F17 td(clkL-be[x]n).  
Delay time, GPMC_CLK falling edge to  
GPMC_AD[15:0] data bus transition(13)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
Delay time, output clock GPMC_CLK rising  
edge to output lower byte enable and  
div_by_1_mode  
; GPMC_FCLK_MUX;  
command latch enable GPMC_BE0n_CLE TIMEPARAGRANULA  
transition(11)  
RITY_X1  
Delay time, GPMC_CLK falling edge to  
GPMC_BE0n_CLE, GPMC_BE1n  
transition(12)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
Delay time, GPMC_CLK falling edge to  
GPMC_BE0n_CLE, GPMC_BE1n  
transition(13)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULA  
RITY_X1  
F18 tw(csnV)  
Pulse duration, output chip select  
GPMC_CSn[i] low(14)  
Read  
Write  
Read  
Write  
A(1)  
A(1)  
C(3)  
C(3)  
A(1)  
A(1)  
C(3)  
C(3)  
ns  
ns  
ns  
ns  
F19 tw(be[x]nV)  
Pulse duration, output lower byte enable  
and command latch enable  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n low  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MIN  
MAX  
MIN  
MAX  
UNI  
T
NO.(2) PARAMETER  
DESCRIPTION  
MODE(19)  
100 MHz(20)  
K(16)  
133 MHz(20)  
K(16)  
F20 tw(advnV)  
Pulse duration, output address valid and  
address latch enable GPMC_ADVn_ALE  
low  
Read  
Write  
ns  
ns  
K(16)  
K(16)  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
With n being the page burst access number.  
(2) B = ClkActivationTime × GPMC_FCLK(17)  
(3) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: C = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: C = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
With n being the page burst access number.  
(4) For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(5) For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(6) For csn falling edge (CS activated):  
Case GPMCFCLKDIVIDER = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)  
(7) For ADV falling edge (ADV activated):  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
204 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)  
(8) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(9) For WE falling edge (WE activated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (17)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(10) J = GPMC_FCLK(17)  
(11) First transfer only for CLK DIV 1 mode.  
(12) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(13) Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK.  
(14) In GPMC_CSn[i], i is equal to 0, 1, 2, or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
(15) P = GPMC_CLK period in ns  
(16) For read: K = (ADVRdOffTime - ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
For write: K = (ADVWrOffTime - ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)  
(17) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(18) Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER.  
(19) For div_by_1_mode:  
GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100 MHz  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
For no extra_delay:  
GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed  
GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed  
GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed  
GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed  
(20) For 100 MHz:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = MAIN_PLL2_HSDIV1_CLKOUT / 3  
For 133 MHz:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
206 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
GPMC_A[MSB:1]  
Valid Address  
F19  
F7  
GPMC_BE0n_CLE  
GPMC_BE1n  
F19  
F6  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F12  
D 0  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_01  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-51. GPMC and NOR Flash Synchronous Single Read (GPMCFCLKDIVIDER = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
F1  
F0  
F1  
GPMC_CLK  
GPMC_CSn[i]  
GPMCA[MSB:1]  
F2  
F3  
F4  
F6  
Valid Address  
F7  
F7  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F9  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F13  
F12  
F12  
D 0  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 1  
D 2  
D 3  
F21  
F21  
F22  
F22  
GPMC_02  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-52. GPMC and NOR Flash Synchronous Burst Read 4x16bit (GPMCFCLKDIVIDER = 0)  
F1  
F1  
F0  
GPMC_CLK  
GPMC_CSn[i]  
F2  
F3  
F4  
F6  
Valid Address  
GPMC_A[MSB:1]  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F9  
GPMC_ADVn_ALE  
GPMC_WEn  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 0  
D 3  
GPMC_03  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
208 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
B. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-53. GPMC and NOR FlashSynchronous Burst Write (GPMCFCLKDIVIDER = 0)  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F6  
F6  
F4  
F7  
GMPC_BE0n_CLE  
Valid  
F7  
Valid  
GPMC_BE1n  
GPMC_A[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
GPMC_AD[15:0]  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
GPMC_ADVn_ALE  
F10  
F11  
GPMC_OEn_REn  
GPMC_WAIT[j]  
GPMC_04  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-54. GPMC and Multiplexed NOR Flash Synchronous Burst Read  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
F1  
F1  
F0  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
F6  
GPMC_A[27:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE1n  
BPMC_BE0n_CLE  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
F14  
F14  
GPMC_WEn  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
Address (LSB)  
D 0  
F22  
D 3  
F21  
F22  
F21  
GPMC_WAIT[j]  
GPMC_05  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-55. GPMC and Multiplexed NOR Flash Synchronous Burst Write  
7.10.5.10.2 GPMC and NOR Flash Asynchronous Mode  
7.10.5.10.2.1 and 7.10.5.10.2.2 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see 7-56 through 7-61).  
7.10.5.10.2.1 GPMC and NOR Flash Timing Requirements Asynchronous Mode  
NO.  
MODE(7)  
MIN  
MAX UNIT  
FA5(1) tacc(d)  
Data access time  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X  
1
H(5) ns  
FA20(2) tacc1-pgmode(d)  
Page mode successive data access time  
Page mode first data access time  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X  
1
P(4) ns  
FA21(3) tacc2-pgmode(d)  
div_by_1_mode  
; GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X  
1
H(5) ns  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active  
functional clock edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
210 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
(3) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
(4) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(5) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)  
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(7) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
7.10.5.10.2.2 GPMC and NOR Flash Switching Characteristics Asynchronous Mode  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
133 MHz(16)  
FA0 tw(be[x]nV)  
Pulse duration, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid time  
Read  
Write  
N(12) ns  
N(12)  
FA1 tw(csnV)  
Pulse duration, output chip select GPMC_CSn[i](13)  
low  
Read  
Write  
Read  
Write  
A(1) ns  
A(1)  
FA3 td(csnV-advnIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
B(2)- 2.55 B(2)+ 2.65 ns  
B(2)- 2.55 B(2)+ 2.65  
FA4 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Single read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
C(3)- 2.55 C(3)+ 2.65  
FA9 td(aV-csnV)  
Delay time, output address GPMC_A[27:1] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
J(9)- 2.55 J(9)+ 2.65  
FA10 td(be[x]nV-csnV)  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid to output  
chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
J(9)- 2.55 J(9)+ 2.65  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
K(10)  
2.65  
+
K(10)- 2.55  
L(11)- 2.55  
G(7)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
ns  
ns  
L(11)  
+
2.65  
Pulse duration output address GPMC_A[26:1]  
invalid between 2 successive read and write  
accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
FA18 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Burst read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
I(8)- 2.55 I(8)+ 2.65  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MIN  
MAX  
UNIT  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
133 MHz(16)  
FA20 tw(aV)  
Pulse duration, output address GPMC_A[27:1]  
valid - 2nd, 3rd, and 4th accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
D(4)  
FA25 td(csnV-wenV)  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
E(5)- 2.55 E(5)+ 2.65  
F(6)- 2.55 F(6)+ 2.65  
2.65  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
ns  
ns  
ns  
Delay time, output write enable GPMC_WEn valid  
to output data GPMC_AD[15:0] valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
Delay time, output data GPMC_AD[15:0] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
J(9)- 2.55 J(9)+ 2.65  
Delay time, output enable GPMC_OEn_REn valid  
to output address GPMC_AD[15:0] phase end  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
2.65  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
(3) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(6) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay))  
× GPMC_FCLK(14)  
(9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(10) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(11) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
(16) For 133 MHz:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
212 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
Valid Address  
FA0  
FA10  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA10  
FA3  
FA12  
GPMC_ADVn_ALE  
FA4  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data IN 0  
Data IN 0  
GPMC_WAIT[j]  
GPMC_06  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-56. GPMC and NOR Flash Asynchronous Read Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA5  
FA1  
FA1  
GPMC_CSn[i]  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
GPMC_A[MSB:1]  
FA10  
FA10  
Valid  
FA0  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
Valid  
FA10  
FA10  
FA3  
FA3  
FA12  
FA12  
GPMC_ADCn_ALE  
FA4  
FA4  
FA13  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data Upper  
GPMC_WAIT[j]  
GPMC_07  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-57. GPMC and NOR Flash Asynchronous Read 32Bit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
214 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA20  
Add3  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
GPMC_CSn[i]  
FA9  
Add0  
Add4  
GPMC_A[MSB:1]  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
FA0  
GPMC_BE1n  
FA12  
GPMC_ADVn_ALE  
FA18  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
D3  
D0  
D1  
D2  
D3  
GPMC_WAIT[j]  
GPMC_08  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by  
active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock  
edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first  
input page data). FA20 value must be stored in PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-58. GPMC and NOR Flash Asynchronous Read Page Mode 4x16Bit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid Address  
FA0  
FA10  
FA10  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
FA29  
Data OUT  
GPMC_09  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-59. GPMC and NOR Flash Asynchronous Write Single Word  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
216 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA1  
FA5  
GPMC_CSn[i]  
FA9  
Address (MSB)  
FA0  
GPMC_A[27:17]  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA0  
Valid  
FA3  
FA12  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_10  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
7-60. GPMC and Multiplexed NOR Flash Asynchronous Read Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
GPMC_A[27:17]  
FA9  
Address (MSB)  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
FA0  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
FA29  
FA28  
GPMC_AD[15:0]  
Valid Address (LSB)  
Data OUT  
GPMC_WAIT[j]  
GPMC_11  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-61. GPMC and Multiplexed NOR Flash Asynchronous Write Single Word  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
218 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.10.3 GPMC and NAND Flash Asynchronous Mode  
7.10.5.10.3.1 and 7.10.5.10.3.2 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see 7-62 through 7-65).  
7.10.5.10.3.1 GPMC and NAND Flash Timing Requirements Asynchronous Mode  
MIN  
MAX  
NO.  
MODE(4)  
UNIT  
133 MHz(5)  
div_by_1_mode;  
Access time, input data GPMC_AD[15:0](3) GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF12(1)  
tacc(d)  
J(2)  
ns  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
(5) For 133 MHz:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT  
7.10.5.10.3.2 GPMC and NAND Flash Switching Characteristics Asynchronous Mode  
MIN  
MAX  
NO.  
PARAMETER  
MODE(15)  
UNIT  
133 MHz(16)  
A(1)  
GNF0 tw(wenV)  
Pulse duration, output write enable GPMC_WEn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
ns  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
B(2) - 2.55  
B(2)  
2.65  
+
ns  
ns  
ns  
ns  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE high to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
C(3) - 2.55  
D(4) - 2.55  
E(5) - 2.55  
C(3)  
2.65  
+
Delay time, output data GPMC_AD[15:0] valid to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
D(4)  
2.65  
+
Delay time, output write enable GPMC_WEn  
invalid to output data GPMC_AD[15:0] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
E(5)  
2.65  
+
Delay time, output write enable GPMC_WEn  
invalid to output lower-byte enable and command  
latch enable GPMC_BE0n_CLE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
F(6) - 2.55 F(6)+ 2.65 ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
MIN  
133 MHz(16)  
G(7) - 2.55  
MAX  
UNIT  
NO.  
PARAMETER  
MODE(15)  
GNF6 tw(wenIV-CSn[i]V) Delay time, output write enable GPMC_WEn  
invalid to output chip select GPMC_CSn[i](13)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
G(7)  
2.65  
+
ns  
GNF7 tw(aleH-wenV)  
GNF8 tw(wenIV-aleIV)  
GNF9 tc(wen)  
Delay time, output address valid and address latch  
enable GPMC_ADVn_ALE high to output write  
enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
C(3) - 2.55  
C(3)  
2.65  
+
ns  
Delay time, output write enable GPMC_WEn  
invalid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
F(6) - 2.55 F(6)+ 2.65 ns  
Cycle time, write  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
H(8) ns  
GNF10 td(csnV-oenV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
I(9) - 2.55 I(9)+ 2.65 ns  
GNF13 tw(oenV)  
Pulse duration, output enable GPMC_OEn_REn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
K(10) ns  
GNF14 tc(oen)  
Cycle time, read  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_  
X1  
L(11)  
ns  
ns  
GNF15 tw(oenIV-CSn[i]V) Delay time, output enable GPMC_OEn_REn  
invalid to output chip select GPMC_CSn[i](13)  
invalid  
div_by_1_mode;  
M(12) - 2.55  
M(12)  
2.65  
+
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(2) B = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(3) C = ((WEOnTime - ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - ADVExtraDelay)) × GPMC_FCLK(14)  
(4) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(5) E = ((WrCycleTime - WEOffTime) × (TimeParaGranularity + 1) - 0.5 × WEExtraDelay) × GPMC_FCLK(14)  
(6) F = ((ADVWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)  
(7) G = ((CSWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)  
(8) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(9) I = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(10) K = (OEOffTime - OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(11) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)  
(12) M = ((CSRdOffTime - OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - OEExtraDelay)) × GPMC_FCLK(14)  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
(16) For 133 MHz:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
220 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT  
GPMC_FCLK  
GNF1  
GNF2  
GNF6  
GNF5  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADCn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF0  
GNF3  
GNF4  
GPMC_AD[15:0]  
Command  
GPMC_12  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-62. GPMC and NAND Flash Command Latch Cycle  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF6  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GNF7  
GNF8  
GPMC_OEn_REn  
GPMC_WEn  
GNF9  
GNF0  
GNF3  
GNF4  
Address  
GPMC_AD[15:0]  
GPMC_13  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-63. GPMC and NAND Flash Address Latch Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
GPMC_FCLK  
GNF12  
GNF10  
GNF15  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GNF14  
GNF13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
DATA  
GPMC_14  
A. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional  
clock edge. GNF12 value must be stored inside AccessTime register bits field.  
B. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.  
7-64. GPMC and NAND Flash Data Read Cycle  
GPMC_FCLK  
GNF1  
GNF6  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GNF9  
GNF0  
GPMC_WEn  
GNF3  
GNF4  
GPMC_AD[15:0]  
DATA  
GPMC_15  
A. `In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
7-65. GPMC and NAND Flash Data Write Cycle  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
7.10.5.10.4 GPMC0 IOSET  
7-40 present the specific groupings of signals (IOSET) for use with GPMC0.  
7-40. GPMC0 IOSET  
Signals  
IOSET1  
IOSET2  
BALL NAME  
MUX  
BALL NAME  
MDIO0_MDC  
RGMII6_RD1  
MUX  
GPMC0_WAIT2  
GPMC0_BE1n  
MDIO0_MDC  
8
8
8
8
PRG1_PRU0_GPO0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
222 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-40. GPMC0 IOSET (continued)  
Signals  
IOSET1  
IOSET2  
BALL NAME  
MUX  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
BALL NAME  
MUX  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
GPMC0_WAIT0  
GPMC0_WAIT1  
GPMC0_DIR  
GPMC0_CSn2  
GPMC0_WEn  
GPMC0_CSn3  
GPMC0_OEn_REn  
GPMC0_ADVn_ALE  
GPMC0_BE0n_CLE  
GPMC0_WPn  
GPMC0_CSn1  
GPMC0_CSn0  
GPMC0_CLKOUT  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
GPMC0_AD15  
GPMC0_A0  
PRG1_PRU0_GPO1  
PRG1_PRU0_GPO2  
PRG1_PRU0_GPO3  
PRG1_PRU0_GPO4  
PRG1_PRU0_GPO5  
PRG1_PRU0_GPO6  
PRG1_PRU0_GPO8  
PRG1_PRU0_GPO9  
PRG1_PRU0_GPO10  
PRG1_PRU1_GPO5  
PRG1_PRU1_GPO8  
PRG1_PRU1_GPO9  
PRG1_PRU1_GPO10  
PRG0_PRU0_GPO5  
PRG0_PRU0_GPO7  
PRG0_PRU0_GPO8  
PRG0_PRU0_GPO9  
PRG0_PRU0_GPO10  
PRG0_PRU0_GPO17  
PRG0_PRU0_GPO18  
PRG0_PRU0_GPO19  
PRG0_PRU1_GPO5  
PRG0_PRU1_GPO7  
PRG0_PRU1_GPO8  
PRG0_PRU1_GPO9  
PRG0_PRU1_GPO10  
PRG0_PRU1_GPO17  
PRG0_PRU1_GPO18  
PRG0_PRU1_GPO19  
PRG0_MDIO0_MDC  
RGMII5_TX_CTL  
PRG1_PRU0_GPO1  
PRG1_PRU0_GPO2  
PRG1_PRU0_GPO3  
PRG1_PRU0_GPO4  
PRG1_PRU0_GPO5  
PRG1_PRU0_GPO6  
PRG1_PRU0_GPO8  
PRG1_PRU0_GPO9  
PRG1_PRU0_GPO10  
PRG1_PRU1_GPO5  
PRG1_PRU1_GPO8  
PRG1_PRU1_GPO9  
PRG1_PRU1_GPO10  
PRG0_PRU0_GPO5  
PRG0_PRU0_GPO7  
PRG0_PRU0_GPO8  
PRG0_PRU0_GPO9  
PRG0_PRU0_GPO10  
PRG0_PRU0_GPO17  
PRG0_PRU0_GPO18  
PRG0_PRU0_GPO19  
PRG0_PRU1_GPO5  
PRG0_PRU1_GPO7  
PRG0_PRU1_GPO8  
PRG0_PRU1_GPO9  
PRG0_PRU1_GPO10  
PRG0_PRU1_GPO17  
PRG0_PRU1_GPO18  
PRG0_PRU1_GPO19  
PRG0_MDIO0_MDC  
RGMII5_TX_CTL  
GPMC0_A1  
GPMC0_A2  
RGMII5_RX_CTL  
RGMII5_TD3  
RGMII5_RX_CTL  
RGMII5_TD3  
GPMC0_A3  
GPMC0_A4  
RGMII5_TD2  
RGMII5_TD2  
GPMC0_A5  
RGMII5_TD1  
RGMII5_TD1  
GPMC0_A6  
RGMII5_TD0  
RGMII5_TD0  
GPMC0_A7  
RGMII5_TXC  
RGMII5_TXC  
GPMC0_A8  
RGMII5_RXC  
RGMII5_RXC  
GPMC0_A9  
RGMII5_RD3  
RGMII5_RD3  
GPMC0_A10  
GPMC0_A11  
GPMC0_A12  
GPMC0_A13  
GPMC0_A14  
RGMII5_RD2  
RGMII5_RD2  
RGMII5_RD1  
RGMII5_RD1  
RGMII5_RD0  
RGMII5_RD0  
RGMII6_TX_CTL  
RGMII6_TX_CTL  
RGMII6_RX_CTL  
RGMII6_RX_CTL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-40. GPMC0 IOSET (continued)  
Signals  
IOSET1  
IOSET2  
BALL NAME  
MUX  
8
BALL NAME  
MUX  
GPMC0_A15  
GPMC0_A16  
GPMC0_A17  
GPMC0_A18  
GPMC0_A19  
GPMC0_A20  
GPMC0_A21  
GPMC0_A22  
GPMC0_A23  
GPMC0_A24  
GPMC0_A25  
GPMC0_A26  
GPMC0_A27  
GPMC0_WAIT3  
RGMII6_TD3  
RGMII6_TD2  
RGMII6_TD3  
RGMII6_TD2  
RGMII6_TD1  
RGMII6_TD0  
RGMII6_TXC  
RGMII6_RXC  
RGMII6_RD3  
RGMII6_RD2  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
RGMII6_TD1  
8
RGMII6_TD0  
8
RGMII6_TXC  
8
RGMII6_RXC  
8
RGMII6_RD3  
8
RGMII6_RD2  
8
PRG0_PRU1_GPO2  
PRG0_PRU1_GPO4  
PRG0_PRU1_GPO6  
PRG0_PRU1_GPO11  
PRG0_MDIO0_MDIO  
MDIO0_MDIO  
8
PRG0_PRU1_GPO2  
PRG0_PRU1_GPO4  
PRG0_PRU1_GPO6  
PRG0_PRU1_GPO11  
PRG0_MDIO0_MDIO  
MDIO0_MDIO  
8
8
8
8
8
7.10.5.11 HyperBus  
For more details about features and additional description information on the device HyperBus, see the  
corresponding sections within Signal Descriptions and Detailed Description.  
7.10.5.11, 7.10.5.11.2, and 7.10.5.11.3 assume testing over the recommended operating conditions and  
electrical characteristic conditions (see 7-66, 7-67, and 7-68).  
7-41 represents HyperBus timing conditions.  
7-41. HyperBus Timing Conditions  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
2
5
V/ns  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
7.10.5.11.1 Timing Requirements for HyperBus  
NO.  
D1  
D2  
D3  
D4  
PARAMETER  
tw(RESETn)  
DESCRIPTION  
MIN  
MAX  
UNIT  
Pulse width, RESETn  
200  
1000  
ns  
ns  
ns  
ns  
tw(csL)  
Pulse width, Chip Select  
td(RESETnH-csL)  
td(csL-RWDSL)  
Delay time, RESETn inactive to CSn active  
Delay time, CSn active to RWDS falling  
200.34  
115  
7.10.5.11.2 HyperBus 166 MHz Switching Characteristics  
NO.  
D5  
PARAMETER  
tskn(rwdsX-dV)  
DESCRIPTION  
Input skew, RWDS transitioning to D0:D7 valid  
CLK period, CLK/CLKn  
MIN  
-0.46  
6
MAX  
UNIT  
ns  
0.46  
D6  
tc(clk/clkn)  
tw(clk/clkn)  
tw(csIV)  
ns  
D7  
Pulse width, CLK/CLKn  
2.7  
6
ns  
D8  
Pulse width, CS0 invalid between operations  
Delay time, CS0 active to CLK rising/ CLKn falling  
Delay time, last falling CLK/ rising CLKn edge to CS0 inactive  
ns  
D9  
td(clkH-csL)  
td(clkL[LE]-csH)  
-3.34  
ns  
D10  
0.41  
ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
224 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
NO.  
PARAMETER  
DESCRIPTION  
Delay time, CLK transition to RWDS valid  
Delay time, CLK transitioning to D0:D7 valid  
MIN  
1.01  
0.84  
MAX  
2.08  
2.17  
UNIT  
ns  
D11  
D12  
td(clkX-rwdsV)  
td(clkX-d[0:7]V)  
ns  
7.10.5.11.3 HyperBus 100 MHz Switching Characteristics  
NO.  
PARAMETER  
tskn(rwdsX-dV)  
DESCRIPTION  
Input skew, RWDS transitioning to D0:D7 valid  
CLK period, CLK  
MIN  
-0.81  
10  
MAX  
UNIT  
ns  
LFD5  
LFD6  
LFD7  
LFD8  
LFD9  
0.81  
tc(clk)  
ns  
tw(clk)  
Pulse width, CLK  
4.75  
10  
ns  
tw(csIV)  
td(clkH-csL)  
Pulse width, CS0 invalid between operations  
Delay time, CS0 active to CLK rising  
Delay time, last falling CLK edge to CS0 inactive  
Delay time, CLK transition to RWDS valid  
Delay time, CLK transitioning to D0:D7 valid  
ns  
-3.51  
ns  
LFD10 td(clkL[LE]-csH)  
LFD11 td(clkX-rwdsV)  
LFD12 td(clkX-d[0:7]V)  
0.51  
1.51  
1.34  
ns  
3.49  
3.66  
ns  
ns  
D8/LFD8  
D2  
CSn  
D9/LFD9  
D10/LFD10  
CK, CKn  
D7/LFD7  
D6/LFD6  
D4  
D11/LFD11  
RWDS  
D12/LFD12  
Dn Dn+1 Dn+1  
D12/LFD12  
Dn  
A
39:32 31:24 23:16  
7:0  
47:40  
15:8  
DQ[7:0]  
B
A
B
CK and Data are center aligned  
Command-Address  
Host drives DQ[7:0] and Memory drives RWDS  
Host drives DQ[7:0] and RWDS  
HYPERBUS_TIMING_01  
7-66. HyperBus Timing Diagrams Transmitter Mode  
D8/LFD8  
D2  
CSn  
D9/LFD9  
D10/LFD10  
CK, CKn  
D7/LFD7  
D4  
D6/LFD6  
RWDS  
D5/LFD5  
D12/LFD12  
D5/LFD5  
Dn+1 Dn+1  
Dn  
A
Dn  
B
39:32 31:24 23:16  
7:0  
47:40  
15:8  
DQ[7:0]  
A
B
CK and Data are center aligned  
Command-Address  
Host drives DQ[7:0] and Memory drives RWDS  
Host drives DQ[7:0] and RWDS  
HYPERBUS_TIMING_02  
7-67. HyperBus Timing Diagrams Receiver Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
D1  
RESETn  
CSn  
D3  
HYPERBUS_TIMING_03  
7-68. HyperBus Timing Diagrams Reset  
For more information, see HyperBus Interface section in Peripherals chapter in the device TRM.  
7.10.5.12 I2C  
The device contains several multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was  
designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IO Buffers are  
not fully compliant to the I2C electrical specification. Some I2C instances use the LVCMOS Buffer Type, while  
other instances use the I2S OD FS Buffer type. See the Pin Attributes table to determine the IO Buffer  
Type used for each I2C instance on this device. The I2C speeds supported and exceptions are described per  
IO Buffer Type below:  
I2C instances that use the LVCMOS buffer type  
Speeds:  
Standard-mode (up to 100 Kbits/s)  
1.8 V  
3.3 V  
Fast-mode (up to 400 Kbits/s)  
1.8 V  
3.3 V  
Exceptions:  
The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C  
specification because they are implemented with higher performance LVCMOS push-pull IOs that were  
designed to support other signal functions that could not be implemented with I2C compatible IOs. The  
LVCMOS IOs being used on these ports are connected such they emulate open-drain outputs. This  
emulation is achieved by forcing a constant low output and disabling the output buffer to enter the Hi-Z  
state.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.  
I2C instances that use the I2C OD FS buffer type  
Speeds:  
Standard-mode (up to 100 Kbits/s)  
1.8 V  
3.3 V  
Fast-mode (up to 400 Kbits/s)  
1.8 V  
3.3 V  
Hs-mode (up to 3.4 Mbit/s)  
1.8 V  
Exceptions:  
The IOs associated with these ports were not design to support Hs-mode while operating at 3.3 V. So  
Hs-mode is limited to 1.8-V operation.  
The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of 0.8  
V/ns (or 8E+7 V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C  
Copyright © 2023 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow  
the rise and fall times such that they do not exceed a slew rate of 0.8 V/ns.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.  
Refer to the Philips I2C-bus specification version 2.1 for timing details.  
For more details about features and additional description information on the device Inter-Integrated Circuit, see  
the corresponding subsections within 6.3 and Detailed Description.  
7.10.5.13 I3C  
For more details about features and additional description information on the device Inter-Integrated Circuit, see  
the corresponding sections within Signal Descriptions, Signal Descriptions and Detailed Description.  
7-42, 7-43, 7-69, 7-44, and 7-70 assume testing over the recommended operating conditions and  
electrical characteristic conditions.  
7-42. I3C Open Drain Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.2276  
5
OUTPUT CONDITIONS  
CL  
Output load capacitance  
50  
7-43. I3C Open Drain Timing Parameters  
NO.  
PARAMETER  
tLOW_OD  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
D1  
Low Period of SCL Clock  
Controller  
200  
ns  
ns  
tDIG_OD_L  
tLOW_OD  
+
MIN  
tFDA_OD  
MIN  
D2  
tHIGH  
High Period of SCL Clock  
Controller  
41  
tHIGH + tCF  
12  
ns  
ns  
ns  
ns  
ns  
tDIG_H  
tfDA_OD  
tSU_OD  
tCAS  
D3  
D4  
D5  
Fall Time of SDA Signal  
Controller, Target  
Controller, Target  
tCF  
3
SDA Data Setup Time During Open Drain Mode  
Clock After START (S) Condition  
Controller,  
ENTAS0  
38.4  
1000  
100000  
Controller,  
ENTAS1  
38.4  
38.4  
ns  
ns  
ns  
ns  
ns  
Controller,  
ENTAS2  
2000000  
Controller,  
ENTAS3  
38.4 50000000  
D6  
D7  
tCBP  
Clock Before STOP (P) Condition  
Controller  
tCAS MIN  
/
2
tMMOVERLAP  
Current Controller to Secondary Controller Overlap  
time during handoff  
Controller  
tDIG_OD_L  
min  
D8  
D9  
tAVAL  
Bus Available Condition  
Bus Idle Condition  
Controller  
Controller  
Controller  
1000  
1000000  
tAVALmin  
ns  
ns  
ns  
tIDLE  
D10  
tMMLOCK  
Time Internal Where New Controller Not Driving SDA  
Low  
1. This is approximately equal to tLOWmin + tDS_ODmin + trDA_ODtyp + tSU_Odmin  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
2. The Controller may use a shorter Low period if the Controller knows that this is safe, when SDA is already  
above VIH.  
3. Based on tSPIKE, rise and fall times, and interconnect.  
4. This maximum High period may be exceeded when the signals can be safely seen by Legacy I2C Devices,  
and/or in consideration of the interconnect (for example: a short Bus).  
5. On a Legacy Bus where I2C Devices need to see Start, the tCAS Min value is further constrained.  
6. Targets that do not support the optional ENTASx CCCs shall use the tCAS Max value shown for ENTAS3.  
7. On a Mixed Bus with Fm Legacy I2C Devices, tAVAL is 300ns shorter than the Fm Bus Free Condition time  
(tBUF).  
D4  
D3  
0.7xVDD  
0.3xVDD  
SDA  
D5  
D6  
D1  
0.7xVDD  
0.3xVDD  
SCL  
D2  
Stop  
Start  
Repeated  
Start  
Stop  
- Open drain with weak pull-up  
- Open drain with weak pull-up  
I3C_TIMING_01  
7-69. I3C Open Drain Timing  
7-44. I3C Push-Pull Timing Parameters for SDR and HDR-DDR Modes  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
D1  
D2  
fSCL  
SCL Clock Period  
Controller  
Controller  
80 100000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tLOW  
SCL Clock Low Period  
24  
32  
24  
32  
24  
32  
12  
tDIG_L  
D3  
D4  
tHIGH_MIXED  
tDIG_H_MIXED  
tHIGH  
SCL Clock High Period of Mixed Bus (Mixed Bus Topology  
Not Supported)  
Controller  
Controller  
Target  
45  
SCL Clock High Period  
tDIG_H  
D5  
D6  
tSCO  
Clock in to Data Out for Target  
SCL Clock Rise Time  
tCR  
Controller 150 × 1 /  
fSCL  
60  
60  
D7  
D8  
tCF  
SCL Clock Fall Time  
Controller 150 × 1 /  
fSCL  
ns  
ns  
tHD_PP  
SDA Signal Data Hold in Push Pull Mode  
Controller  
tCR + 3  
and tCF  
+
3
Target  
0
3
ns  
ns  
D9  
tSU_PP  
SDA Signal Data Setup In Push-Pull Mode  
Controller,  
Target  
D10  
D11  
tCASr  
tCBSr  
Clock After Repeated START (Sr)  
Clock Before Repeated START (Sr)  
Controller  
tCAS MIN  
ns  
ns  
Controller tCAS MIN  
/
2
1. FSCL = 1 / (tDIG_L + tDIG_H  
)
2. tDIG_L and tDIG_H are the clock Low and High periods as seen at the receiver end of the I3C Bus using VIL  
and VIH.  
3. When communicating with an I3C Device on a mixed Bus, the tDIG_H_MIXED period must be constrained to  
make sure that I2C Devices do not interpret I3C signaling as valid I2C signaling.  
4. As both edges are used, the hold time needs to be satisfied for the respective edges; tCF + 3 for falling edge  
clocks, and tCR + 3 for rising edge clocks.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
228 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
5. Clock Frequency Minimum 0.01 MHz, Maximum 12.5 MHz  
0.7xVDD  
0.3xVDD  
SDA  
D5  
D11  
D10  
D1  
D5  
D2  
D8  
D9  
D9  
0.7xVDD  
0.3xVDD  
SCL  
D4  
D7  
D6  
Stop  
Start  
Repeated  
Start  
Stop  
- Open drain with weak pull-up  
- Open drain with weak pull-up  
I3C_TIMING_02  
7-70. I3C Push-Pull Timing (SDR and HDR-DDR Modes)  
7.10.5.14 MCAN  
For more details about features and additional description information on the device Controller Area Network  
Interface, see the corresponding sections within Signal Descriptions and Detailed Description.  
备注  
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,  
where n represents the specific MCAN module.  
7-45. MCAN Timing Conditions  
PARAMETER  
MIN  
2
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
15  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
5
20  
7-46. MCAN Switching Characteristics  
PARAMETER  
NO.  
MIN  
MAX  
10  
UNIT  
MCAN1 td(MCAN_TX)  
MCAN2 td(MCAN_RX)  
Delay time, transmit shift register to MCANn_TX pin(1)  
Delay time, MCANn_RX pin to receive shift register(1)  
ns  
ns  
10  
(1) n is [0:13] in MCANn_* or [0:1] in MCU_MCANn_*  
For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.15 MCASP  
For more details about features and additional description information on the device Multichannel Audio Serial  
Port, see the corresponding sections within Signal Descriptions and Detailed Description.  
7-48 and 7-71 present timing requirements for MCASP0 to MCASP11.  
7-47 represents MCASP timing conditions.  
7-47. MCASP Timing Conditions  
PARAMETER  
MIN  
0.7  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
100  
1100  
100  
ps  
ps  
td(Trace Mismatch Delay)  
Propagation delay mismatch across all traces  
7-48. MCASP Timing Requirements  
NO.  
MODE(1)  
MIN  
15.26  
0.5P(2)  
MAX UNIT  
ASP1 tc(AHCLKRX)  
Cycle time, MCASP[x]_AHCLKR/X  
ns  
ns  
-
ASP2 tw(AHCLKRX)  
ASP3 tc(ACLKRX)  
ASP4 tw(ACLKRX)  
Pulse duration, MCASP[x]_AHCLKR/X high or low  
Cycle time, MCASP[x]_ACLKR/X  
1.53  
15.26  
ns  
ns  
0.5R(3)  
-
Pulse duration, MCASP[x]_ACLKR/X high or low  
1.53  
12.3  
4
ACLKR/X int  
ns  
ns  
ns  
ns  
Setup time, MCASP[x]_AFSR/X input valid before  
MCASP[x]_ACLKR/X  
ASP5 tsu(AFSRX-ACLKRX)  
ASP6 th(ACLKRX-AFSRX)  
ASP7 tsu(AXR-ACLKRX)  
ASP8 th(ACLKRX-AXR)  
ACLKR/X ext in/out  
ACLKR/X int  
1  
1.6  
12.3  
4
Hold time, MCASP[x]_AFSR/X input valid after  
MCASP[x]_ACLKR/X  
ACLKR/X ext in/out  
ACLKR/X int  
Setup time, MCASP[x]_AXR input valid before  
MCASP[x]_ACLKR/X  
ACLKR/X ext in/out  
ACLKR/X int  
-1  
Hold time, MCASP[x]_AXR input valid after  
MCASP[x]_ACLKR/X  
ACLKR/X ext in/out  
1.6  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns.  
(3) R = ACLKR/X period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
230 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
ASP2  
ASP2  
ASP1  
MCASP[x]_ACLKR/X (Falling Edge Polarity)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP4  
ASP4  
ASP3  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)  
ASP6  
ASP5  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
ASP8  
ASP7  
MCASP[x]_AXR[x] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
7-71. MCASP Input Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-49 and 7-72 present switching characteristics over recommended operating conditions for MCASP0 to  
MCASP11.  
7-49. MCASP Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
MODE(1)  
MIN  
MAX UNIT  
ASP9 tc(AHCLKRX)  
ASP10 tw(AHCLKRX)  
ASP11 tc(ACLKRX)  
ASP12 tw(ACLKRX)  
Cycle time, MCASP[x]_AHCLKR/X  
20  
0.5P(2) - 2  
20  
ns  
ns  
ns  
ns  
Pulse duration, MCASP[x]_AHCLKR/X high or low  
Cycle time, MCASP[x]_ACLKR/X  
Pulse duration, MCASP[x]_ACLKR/X high or low  
0.5R(3) - 2  
ASP13 td(ACLKRX-AFSRX) Delay time, MCASP[x]_ACLKR/X transmit edge to  
MCASP[x]_AFSR/X output valid  
ACLKR/X int  
0
7.25  
12.84  
7.25  
12.84  
7.25  
14  
ns  
ns  
ns  
ACLKR/X ext in/out  
ACLKR/X int  
15.28  
0
ASP14 td(ACLKX-AXR)  
Delay time, MCASP[x]_ACLKX transmit edge to  
MCASP[x]_AXR output valid  
ACLKR/X ext in/out  
ACLKR/X int  
15.28  
0
ASP15 tdis(ACLKX-AXR)  
Disable time, MCASP[x]_ACLKX transmit edge to  
MCASP[x]_AXR output high impedance  
ACLKR/X ext in/out  
14.9  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns.  
(3) R = ACLKR/X period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
232 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
ASP10  
ASP10  
ASP9  
MCASP[x]_ACLKR/X (Falling Edge Polarity)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP12  
ASP12  
ASP11  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)  
ASP13  
ASP13  
ASP13  
ASP13  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
ASP13  
ASP13  
ASP13  
MCASP[x]_AXR[x] (Data Out/Transmit)  
ASP14  
ASP15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
7-72. MCASP Output Timing  
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.16 MCSPI  
For more details about features and additional description information on the device Serial Port Interface, see  
the corresponding sections within Signal Descriptions and Detailed Description.  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
7-50 represents MCSPI timing conditions.  
备注  
The IO timings provided in this section are applicable for all combinations of signals for MCU_SPI0  
and MCU_SPI1. However, the timings are only valid for MCU_SPI0 and MCU_SPI1 if signals within a  
single IOSET are used. The IOSETs are defined in the 7-55 and 7-56 tables.  
7-50. MCSPI Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
2
8.5 V/ns  
OUTPUT CONDITIONS  
CLK  
6
6
24  
12  
pF  
pF  
CL  
Output load capacitance  
D[x], CSi  
7.10.5.16.1 MCSPI Controller Mode  
7-51, 7-73, 7-52, and 7-74 present timing requirements and switching characteristics for MCSPI –  
Controller Mode.  
7-51. MCSPI Timing Requirements - Controller Mode  
see 7-73  
NO.  
MIN  
MAX  
UNIT  
tsu(misoV-  
SM4  
Setup time, SPI_D[x] valid before SPI_CLK active edge  
Hold time, SPI_D[x] valid after SPI_CLK active edge  
2.9  
ns  
spiclkV)  
th(spiclkV-  
SM5  
2
ns  
misoV)  
7-52. MCSPI Switching Characteristics - Controller Mode  
see 7-74  
NO.  
PARAMETER  
Cycle time, SPI_CLK  
MODE  
MIN  
MAX UNIT  
SM1 tc(spiclk)  
SM2 tw(spiclkL)  
20.8  
ns  
0.5P -  
1(1)  
Pulse duration, SPI_CLK low  
Pulse duration, SPI_CLK high  
ns  
ns  
0.5P -  
1(1)  
SM3 tw(spiclkH)  
Delay time, SPI_CLK active edge to SPI_D[x]  
transition  
SM6 td(spiclkV-simoV)  
SM7 td(csV-simoV)  
SM8 td(csV-spiclk)  
2
ns  
2  
Delay time, SPI_CSi active edge to SPI_D[x] transition  
5
B - 4(3)  
A - 4(4)  
A - 4(4)  
B - 4(3)  
ns  
ns  
ns  
ns  
ns  
PHA = 0(2)  
PHA = 1 (2)  
PHA = 0(2)  
PHA = 1(2)  
Delay time, SPI_CSi active to SPI_CLK first edge  
SM9 td(spiclkV-csV)  
Delay time, SPI_CLK last edge to SPI_CSi inactive  
(1) P = SPI_CLK period in ns  
(2) SPI_CLK phase is programmable with the PHA bit of the MCSPI_CHCONF_0/1/2/3 register  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
234 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
(3) B = (TCS + .5) * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register and Fratio = Even >= 2.  
(4) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register.  
When P > 20.8 ns, A = (TCS + 0.5) * Fratio * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register.  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SM5  
SM5  
SM4  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM2  
SM1  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SM5  
SM4  
SM5  
Bit n-2  
SM4  
Bit n-1  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_02  
7-73. SPI Controller Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
POL=1  
SPI_SCLK (OUT)  
SM7  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (OUT)  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM2  
SM8  
SM3  
SM2  
SM9  
POL=0  
SPI_SCLK (OUT)  
SM1  
SM3  
POL=1  
SPI_SCLK (OUT)  
SM6  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
SM6  
Bit 1  
Bit0  
SPI_D[x] (OUT)  
SPRSP08_TIMING_McSPI_01  
7-74. MCSPI Controller Mode Transmit Timing  
7.10.5.16.2 MCSPI Peripheral Mode  
7-53, 7-54, 7-75, and 7-76 present timing requirements and switching characteristics for MCSPI –  
Peripheral Mode.  
7-53. MCSPI Timing Requirements - Peripheral Mode  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
SS1 tc(spiclk)  
Cycle time, SPI_CLK  
20.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SS2 tw(spiclkL)  
Pulse duration, SPI_CLK low  
0.45P(1)  
SS3 tw(spiclkH)  
Pulse duration, SPI_CLK high  
0.45P(1)  
SS4 tsu(simoV-spiclkV)  
SS5 th(spiclkV-simoV)  
SS8 tsu(csV-spiclkV)  
SS9 th(spiclkV-csV)  
Setup time, SPI_D[x] valid before SPI_CLK active edge  
Hold time, SPI_D[x] valid after SPI_CLK active edge  
Setup time, SPI_CSi valid before SPI_CLK first edge  
Hold time, SPI_CSi valid after SPI_CLK last edge  
5
5
5
5
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
236 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-54. MCSPI Switching Characteristics - Peripheral Mode  
PARAMET  
NO.  
SS6  
SS7  
DESCRIPTION  
MIN  
MAX  
UNIT  
ER  
td(spiclkV-  
Delay time, SPI_CLK active edge to SPI_D[x] transition  
2
17.12  
ns  
ns  
somiV)  
tsk(csV-somiV) Delay time, SPI_CSi active edge to SPI_D[x] transition  
20.95  
(1) P = SPI_CLK period in ns.  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS2  
POL=1  
SPI_SCLK (IN)  
SS5  
SS4  
SS5  
Bit n-2  
SS4  
Bit n-1  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS3  
POL=1  
SPI_SCLK (IN)  
SS4  
SS5  
SS4  
SS5  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_04  
7-75. SPI Peripheral Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS2  
POL=1  
SPI_SCLK (IN)  
SS7  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (OUT)  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS3  
POL=1  
SPI_SCLK (IN)  
SS6  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
SS6  
Bit 1  
Bit 0  
SPI_D[x] (OUT)  
SPRSP08_TIMING_McSPI_03  
7-76. MCSPI Peripheral Mode Transmit Timing  
7-55 and 7-56 present the specific groupings of signals (IOSET) for use with MCU_SPI0 and MCU_SPI1.  
7-55. MCU_SPI0 IOSETs  
Signals  
IOSET1  
IOSET2  
BALL NAME  
MUX  
BALL NAME  
MUX  
MCU_SPI0_CLK  
MCU_SPI0_D0  
MCU_SPI0_D1  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
MCU_SPI0_CS2  
MCU_SPI0_CLK  
MCU_SPI0_D0  
0
0
0
0
5
5
MCU_SPI0_CLK  
MCU_SPI0_D0  
0
0
0
0
1
1
MCU_SPI0_D1  
MCU_SPI0_D1  
MCU_SPI0_CS0  
MCU_OSPI1_D3  
MCU_OSPI1_CSn1  
MCU_SPI0_CS0  
WKUP_GPIO0_12  
WKUP_GPIO0_14  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
238 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-56. MCU_SPI1 IOSET  
Signals  
IOSET1  
IOSET2  
BALL NAME  
MCU_SPI1_CLK  
MCU_SPI1_D0  
MCU_SPI1_D1  
MCU_SPI1_CS0  
MCU_OSPI1_D1  
MCU_OSPI1_D2  
MUX  
BALL NAME  
MCU_SPI1_CLK  
MCU_SPI1_D0  
MCU_SPI1_D1  
MCU_SPI1_CS0  
WKUP_GPIO0_13  
WKUP_GPIO0_15  
MUX  
MCU_SPI1_CLK  
MCU_SPI1_D0  
MCU_SPI1_D1  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
MCU_SPI1_CS2  
0
0
0
0
5
5
0
0
0
0
1
1
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
7.10.5.17 MMCSD  
The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD),  
and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at  
transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking  
for syntactical correctness.  
For more details about MMCSD interfaces, see the corresponding MMC0, MMC1, and MMC2 sections within  
Signal Descriptions and Detailed Description.  
备注  
Some operating modes require software configuration of the MMC DLL delay settings, as shown in 表  
7-57 and 7-67.  
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in  
the device TRM.  
7.10.5.17.1 MMC0 - eMMC Interface  
MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and it supports the  
following eMMC applications:  
Legacy speed  
High speed SDR  
High speed DDR  
High Speed HS200  
High Speed HS400  
7-57 presents the required DLL software configuration settings for MMC0 timing modes.  
7-57. MMC0 DLL Delay Mapping for All Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD0_SS_PHY_CTRL_4_REG  
[15:12]  
MMCSD0_SS_PHY_CTRL_5_REG  
[31:24]  
[20]  
[8]  
[4:0]  
[17:16]  
[10:8]  
[2:0]  
SELDLYTXCLK  
SELDLYRXCLK  
BIT FIELD NAME  
STRBSEL  
OTAPDLYENA  
OTAPDLYSEL  
ITAPDLYENA  
ITAPDLYSEL  
FRQSEL  
CLKBUFSEL  
OUTPUT  
DELAY  
ENABLE  
OUTPUT  
DELAY  
VALUE  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DLL/  
DELAY CHAIN  
SELECT  
DELAY  
BUFFER  
DURATION  
STROBE  
DELAY  
DLL REF  
FREQUENCY  
MODE DESCRIPTION  
8-bit PHY  
Legacy  
operating 1.8 V,  
SDR  
0x0  
0x0  
0x0  
0x0  
NA  
NA  
0x1  
0x1  
0x10  
0xA  
0x1  
0x1  
0x0  
0x0  
0x7  
0x7  
25 MHz  
High  
Speed operating 1.8 V,  
SDR 50 MHz  
8-bit PHY  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-57. MMC0 DLL Delay Mapping for All Timing Modes (continued)  
REGISTER NAME  
BIT FIELD  
MMCSD0_SS_PHY_CTRL_4_REG  
MMCSD0_SS_PHY_CTRL_5_REG  
[31:24]  
[20]  
[15:12]  
[8]  
[4:0]  
[17:16]  
[10:8]  
[2:0]  
SELDLYTXCLK  
SELDLYRXCLK  
BIT FIELD NAME  
STRBSEL  
OTAPDLYENA  
OTAPDLYSEL  
ITAPDLYENA  
ITAPDLYSEL  
FRQSEL  
CLKBUFSEL  
OUTPUT  
DELAY  
ENABLE  
OUTPUT  
DELAY  
VALUE  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DLL/  
DELAY CHAIN  
SELECT  
DELAY  
BUFFER  
DURATION  
STROBE  
DELAY  
DLL REF  
FREQUENCY  
MODE DESCRIPTION  
High  
8-bit PHY  
Speed operating 1.8 V,  
0x0  
0x0  
0x1  
0x1  
0x1  
0x6  
0x8  
0x5  
0x1  
0x1  
0x1  
Tuning  
Tuning  
Tuning  
0x0  
0x0  
0x0  
0x4  
0x0  
0x0  
0x7  
0x7  
0x7  
DDR  
50 MHz  
8-bit PHY  
HS200 operating 1.8 V,  
200 MHz  
8-bit PHY  
HS400 operating 1.8 V,  
200 MHz  
0x66  
7-58 presents timing conditions for MMC0.  
7-58. MMC0 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
Legacy SDR  
0.14  
0.3  
1.44 V/ns  
0.90 V/ns  
0.90 V/ns  
0.90 V/ns  
High Speed SDR  
SRI  
Input slew rate  
High Speed DDR (CMD)  
High Speed DDR (DAT[7:0])  
0.3  
0.45  
OUTPUT CONDITIONS  
HS200, HS400  
All other modes  
1
1
6
pF  
pF  
CL  
Output load capacitance  
12  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
All modes  
134  
756  
100  
8
ps  
ps  
ps  
Legacy SDR, High Speed SDR,  
High Speed DDR  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
Delay)  
HS200, HS400  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
240 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.1.1 Legacy SDR Mode  
7-59, 7-77, 7-60, and 7-78 present timing requirements and switching characteristics for MMC0 –  
Legacy SDR Mode.  
7-59. MMC0 Timing Requirements Legacy SDR Mode  
see 7-77  
NO.  
MIN  
2.5  
6.5  
2.5  
6.5  
MAX  
UNIT  
ns  
LSDR1 tsu(cmdV-clkH)  
LSDR2 th(clkH-cmdV)  
LSDR3 tsu(dV-clkH)  
LSDR4 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
7-77. MMC0 Legacy SDR Receive Mode  
7-60. MMC0 Switching Characteristics Legacy SDR Mode  
see 7-78  
NO.  
PARAMETER  
Operating frequency, MMC0_CLK  
Cycle time, MMC0_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
25  
LSDR5  
LSDR6  
LSDR7  
LSDR8  
LSDR9  
tc(clk)  
40  
18.7  
tw(clkH)  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
tw(clkL)  
18.7  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
3.8  
3.8  
ns  
3.2  
3.2  
ns  
7-78. MMC0 Legacy SDR Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.1.2 High Speed SDR Mode  
7-61, 7-79, 7-62, and 7-80 present timing requirements and switching characteristics for MMC0 –  
High Speed SDR Mode.  
7-61. MMC0 Timing Requirements High Speed SDR Mode  
see 7-79  
NO.  
MIN  
2.99  
2.67  
2.99  
2.67  
MAX  
UNIT  
ns  
HSSDR1 tsu(cmdV-clkH)  
HSSDR2 th(clkH-cmdV)  
HSSDR3 tsu(dV-clkH)  
HSSDR4 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
7-79. MMC0 High Speed SDR Mode Receive Mode  
7-62. MMC0 Switching Characteristics High Speed SDR Mode  
see 7-80  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
HSSDR5 tc(clk)  
Operating frequency, MMC0_CLK  
50  
Cycle time, MMC0_CLK  
20  
9.2  
HSSDR6 tw(clkH)  
HSSDR7 tw(clkL)  
HSSDR8 td(clkL-cmdV)  
HSSDR9 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
9.2  
ns  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
3.8  
3.8  
ns  
3.2  
3.2  
ns  
7-80. MMC0 High Speed SDR Mode Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
242 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.1.3 High Speed DDR Mode  
7-63, 7-81, 7-64, and 7-82 present timing requirements and switching characteristics for MMC0 –  
High Speed DDR Mode.  
7-63. MMC0 Timing Requirements High Speed DDR Mode  
see 7-81  
NO.  
MIN  
3.79  
2.67  
0.74  
1.67  
MAX  
UNIT  
ns  
HSDDR1 tsu(cmdV-clkH)  
HSDDR2 th(clkH-cmdV)  
HSDDR3 tsu(dV-clkV)  
HSDDR4 th(clkV-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK transition  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK transition  
ns  
ns  
ns  
7-81. MMC0 High Speed DDR Mode Receive Mode  
7-64. MMC0 Switching Characteristics High Speed DDR Mode  
see 7-82  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
HSDDR5 tc(clk)  
Operating frequency, MMC0_CLK  
50  
Cycle time, MMC0_CLK  
20  
9.2  
9.2  
3.4  
2.9  
HSDDR6 tw(clkH)  
HSDDR7 tw(clkL)  
HSDDR8 td(clkH-cmdV)  
HSDDR9 td(clkV-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK transition to MMC0_DAT[7:0] transition  
9.8  
ns  
6.85  
ns  
7-82. MMC0 High Speed DDR Mode Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.1.4 HS200 Mode  
7-65 and 7-83 present switching characteristics for MMC0 HS200 Mode.  
7-65. MMC0 Switching Characteristics HS200 Mode  
see 7-83  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
HS2005  
HS2006  
HS2007  
HS2008  
HS2009  
tc(clk)  
Cycle time, MMC0_CLK  
5
2.08  
2.08  
0.99  
0.99  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition  
3.16  
3.16  
ns  
ns  
7-83. MMC0 HS200 Mode Transmit Mode  
7.10.5.17.1.5 HS400 Mode  
7-66 and 7-84 present switching characteristics for MMC0 HS400 Mode.  
7-66. MMC0 Switching Characteristics HS400 Mode  
see 7-84  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
HS4005  
HS4006  
HS4007  
HS4008  
tc(clk)  
Cycle time, MMC0_CLK  
5
2.08  
2.08  
0.99  
tw(clkH)  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
tw(clkL)  
ns  
td(clkH-cmdV)  
Delay time, MMC0_CLK rising clock edge to MMC0_CMD  
transition  
3.28  
1.84  
ns  
HS4009  
td(clkV-dV)  
Delay time, MMC0_CLK transition to MMC0_DAT[7:0] transition  
0.59  
ns  
HS4005  
HS4006  
HS4007  
MMC0_CLK  
HS4008  
HS4008  
MMC0_CMD  
HS4009  
HS4009  
MMC0_DAT[7:0]  
7-84. eMMC in HS400 Mode Transmitter Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
244 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2 MMC1/2 - SD/SDIO Interface  
MMC1 interface is compliant with the SD Host Controller Standard Specification 4.10 and SD Physical Layer  
Specification v3.01 as well as SDIO Specification v3.00 and they support the following SD Card applications:  
Default speed  
High speed  
UHSI SDR12  
UHSI SDR25  
UHSI SDR50  
UHSI SDR104  
UHSI DDR50  
7-67 presents the required DLL software configuration settings for MMC1 timing modes.  
7-67. MMC1 DLL Delay Mapping for All Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD12_SS_PHY_CTRL_4_REG  
[15:12] [8]  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
MMCSD12_SS_PHY_CTRL_5_REG  
[20]  
[4:0]  
[2:0]  
BIT FIELD NAME  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0xF  
0xF  
0xC  
0xC  
0x5  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x1  
0x0  
0x0  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
Tuning  
0x2  
UHS-I  
DR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
Tuning  
7-68 presents timing conditions for MMC1.  
7-68. MMC1 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
Default Speed, High Speed  
UHSI SDR12, UHSI SDR25  
USH-1 DDR50  
0.69  
0.34  
1.00  
2.06 V/ns  
1.34 V/ns  
2.00 V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
All modes  
1
10  
pF  
PCB CONNECTIVITY REQUIREMENTS  
240.03  
126  
1134  
1386  
20  
ps  
ps  
ps  
ps  
ps  
UHSI DDR50  
All other modes  
UHSI DDR50  
UHSI SDR104  
All other modes  
td(Trace Delay)  
Propagation delay of each trace  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
8
Delay)  
100  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.1 Default Speed Mode  
7-69, 7-85, 7-70, and 7-86 present timing requirements and switching characteristics for MMC1/2 –  
Default Speed Mode.  
7-69. MMC1/2 Timing Requirements Default Speed Mode  
see 7-85  
NO.  
DS1  
DS2  
DS3  
DS4  
MIN  
2.15  
4.56  
2.15  
4.56  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge  
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge  
ns  
ns  
ns  
A. x = 1, 2 for MMC1 and MMC2  
B. x = 1, 2 for MMC1 and MMC2  
MMC[x]_CLK  
MMC[x]_CMD  
DS2  
DS4  
DS1  
DS3  
MMC[x]_DAT[3:0]  
7-85. MMC1/2 Default Speed Receive Mode  
7-70. MMC1/2 Switching Characteristics Default Speed Mode  
see 7-86  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
25  
DS5  
DS6  
DS7  
DS8  
DS9  
tc(clk)  
Cycle time, MMC[x]_CLK  
40  
18.7  
tw(clkH)  
Pulse duration, MMC[x]_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC[x]_CLK low  
18.7  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC[x]_CLK falling edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK falling edge to MMC[x]_DAT[3:0] transition  
3.53  
3.53  
ns  
3.53  
3.53  
ns  
DS5  
DS6  
DS7  
MMC[x]_CLK  
MMC[x]_CMD  
DS8  
DS9  
MMC[x]_DAT[3:0]  
7-86. MMC1/2 Default Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
246 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.2 High Speed Mode  
7-71, 7-87, 7-72, and 7-88 present timing requirements and switching characteristics for MMC1/2 –  
High Speed Mode.  
7-71. MMC1/2 Timing Requirements High Speed Mode  
see 7-87  
NO.  
HS1  
HS2  
HS3  
HS4  
MIN  
2.15  
2.26  
2.15  
2.26  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge  
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge  
ns  
ns  
ns  
A. x = 1, 2 for MMC1 and MMC2  
B. x = 1, 2 for MMC1 and MMC2  
MMC[x]_CLK  
MMC[x]_CMD  
HS1  
HS3  
HS2  
HS4  
MMC[x]_DAT[3:0]  
7-87. MMC1 /2High Speed Receive Mode  
7-72. MMC1/2 Switching Characteristics High Speed Mode  
see 7-88  
NO.  
PARAMETER  
Operating frequency, MMC[x]_CLK  
Cycle time. MMC[x]_CLK  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
50  
HS5  
HS6  
HS7  
HS8  
HS9  
tc(clk)  
20  
9.2  
tw(clkH)  
Pulse duration, MMC[x]_CLK high  
Pulse duration, MMC[x]_CLK low  
ns  
tw(clkL)  
9.2  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC[x]_CLK falling edge to MMC[x]_CMD transition  
2.07  
2.07  
ns  
2.07  
2.07  
Delay time, MMC[x]_CLK falling edge to MMC[x]_DAT[3:0]  
transition  
ns  
HS5  
HS6  
HS7  
MMC[x]_CLK  
HS8  
HS9  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
7-88. MMC1/2 High Speed Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.3 UHSI SDR12 Mode  
7-73, 7-89, 7-74, and 7-90 present timing requirements and switching characteristics for MMC1/2 –  
UHS-I SDR12 Mode.  
7-73. MMC1/2 Timing Requirements UHS-I SDR12 Mode  
see 7-89  
NO.  
MIN  
5.46  
1.67  
5.46  
1.67  
MAX  
UNIT  
ns  
SDR121 tsu(cmdV-clkH)  
SDR122 th(clkH-cmdV)  
SDR123 tsu(dV-clkH)  
SDR124 th(clkH-dV)  
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge  
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge  
ns  
ns  
ns  
A. x = 1, 2 for MMC1 and MMC2  
B. x = 1, 2 for MMC1 and MMC2  
MMC[x]_CLK  
MMC[x]_CMD  
SDR122  
SDR124  
SDR121  
SDR123  
MMC[x]_DAT[3:0]  
7-89. MMC1/2 UHS-I SDR12 Receive Mode  
7-74. MMC1/2 Switching Characteristics UHS-I SDR12 Mode  
see 7-90  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
25  
SDR125 tc(clk)  
Cycle time, MMC[x]_CLK  
40  
18.7  
18.7  
1.2  
SDR126 tw(clkH)  
SDR127 tw(clkL)  
SDR128 td(clkH-cmdV)  
SDR129 td(clkH-dV)  
Pulse duration, MMC[x]_CLK high  
ns  
Pulse duration, MMC[x]_CLK low  
ns  
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition  
13.55  
13.55  
ns  
1.2  
ns  
SDR125  
SDR126  
SDR127  
MMC[x]_CLK  
SDR128  
SDR128  
MMC[x]_CMD  
SDR129  
SDR129  
MMC[x]_DAT[3:0]  
7-90. MMC1/2 UHS-I SDR12 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
248 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.4 UHSI SDR25 Mode  
7-75, 7-91, 7-76, and 7-92 present timing requirements and switching characteristics for MMC1/2 –  
UHS-I SDR25 Mode.  
7-75. MMC1/2 Timing Requirements UHS-I SDR25 Mode  
see 7-91  
NO.  
MIN  
2.1  
MAX  
UNIT  
ns  
SDR251 tsu(cmdV-clkH)  
SDR252 th(clkH-cmdV)  
SDR253 tsu(dV-clkH)  
SDR254 th(clkH-dV)  
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge  
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge  
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge  
1.67  
2.1  
ns  
ns  
1.67  
ns  
A. x = 1, 2 for MMC1 and MMC2  
B. x = 1, 2 for MMC1 and MMC2  
MMC[x]_CLK  
MMC[x]_CMD  
SDR252  
SDR254  
SDR251  
SDR253  
MMC[x]_DAT[3:0]  
7-91. MMC1/2 UHS-I SDR25 Receive Mode  
7-76. MMC1/2 Switching Characteristics UHS-I SDR25 Mode  
see 7-92  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
50  
SDR255 tc(clk)  
Cycle time, MMC[x]_CLK  
20  
9.2  
9.2  
2.4  
2.4  
SDR256 tw(clkH)  
SDR257 tw(clkL)  
SDR258 td(clkH-cmdV)  
SDR259 td(clkH-dV)  
Pulse duration, MMC[x]_CLK high  
ns  
Pulse duration, MMC[x]_CLK low  
ns  
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition  
9.37  
9.37  
ns  
ns  
SDR255  
SDR256  
SDR257  
MMC[x]_CLK  
SDR258  
SDR258  
MMC[x]_CMD  
SDR259  
SDR259  
MMC[x]_DAT[3:0]  
7-92. MMC1/2 UHS-I SDR25 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.5 UHSI SDR50 Mode  
7-77, and 7-93 presents switching characteristics for MMC1/2 UHS-I SDR50 Mode.  
7-77. MMC1/2 Switching Characteristics UHS-I SDR50 Mode  
see 7-93  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
100  
SDR505 tc(clk)  
Cycle time, MMC[x]_CLK  
10  
4.45  
4.45  
1.2  
SDR506 tw(clkH)  
SDR507 tw(clkL)  
SDR508 td(clkH-cmdV)  
SDR509 td(clkH-dV)  
Pulse duration, MMC[x]_CLK high  
ns  
Pulse duration, MMC[x]_CLK low  
ns  
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
A. x = 1, 2 for MMC1 and MMC2  
SDR505  
SDR506  
SDR507  
MMC[x]_CLK  
MMC[x]_CMD  
SDR508  
SDR508  
SDR509  
SDR509  
MMC[x]_DAT[3:0]  
7-93. MMC1/2 UHS-I SDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
250 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.6 UHSI DDR50 Mode  
7-78 and 7-94 present switching characteristics for MMC1/2 UHS-I DDR50 Mode.  
7-78. MMC1/2 Switching Characteristics UHS-I DDR50 Mode  
see 7-94  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
40  
DDR505  
DDR506  
DDR507  
DDR508  
DDR509  
tc(clk)  
Cycle time, MMC[x]_CLK  
25  
9.2  
tw(clkH)  
tw(clkL)  
td(clkH-cmdV)  
td(clk-dV)  
Pulse duration, MMC[x]_CLK high  
ns  
Pulse duration, MMC[x]_CLK low  
9.2  
ns  
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK transition to MMC[x]_DAT[3:0] transition  
1.12  
1.12  
3.46  
6.12  
ns  
ns  
A. x = 1, 2 for MMC1 and MMC2  
DDR505  
DDR506  
DDR507  
MMC[x]_CLK  
MMC[x]_CMD  
DDR508  
DDR509  
DDR509  
MMC[x]_DAT[3:0]  
7-94. MMC1/2 UHS-I DDR50 Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.17.2.7 UHSI SDR104 Mode  
7-79, and 7-95 present switching characteristics for MMC1/2 UHS-I SDR104 Mode.  
7-79. MMC1/2 Switching Characteristics UHS-I SDR104 Mode  
see 7-95  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC[x]_CLK  
200  
SDR1045 tc(clk)  
Cycle time, MMC[x]_CLK  
5
2.12  
2.12  
1.07  
1.07  
SDR1046 tw(clkH)  
SDR1047 tw(clkL)  
SDR1048 td(clkH-cmdV)  
SDR1049 td(clkH-dV)  
Pulse duration, MMC[x]_CLK high  
ns  
Pulse duration, MMC[x]_CLK low  
ns  
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition  
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition  
3.21  
3.21  
ns  
ns  
A. x = 1, 2 for MMC1 and MMC2  
SDR1045  
SDR1046  
SDR1047  
MMC[x]_CLK  
MMC[x]_CMD  
SDR1048  
SDR1048  
SDR1049  
SDR1049  
MMC[x]_DAT[3:0]  
7-95. MMC1/2 UHS-I SDR104 Transmit Mode  
7.10.5.18 CPTS  
7-80 represents CPTS timing conditions.  
7-80. CPTS Timing Conditions  
PARAMETER  
DESCRIPTION  
MIN  
0.5  
2
MAX  
5
UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
7.10.5.18.1, 7.10.5.18.2, 7-96, and 7-97 present timing requirements and switching characteristics of  
the CPTS interface.  
7.10.5.18.1 CPTS Timing Requirements  
see 7-96  
NO.  
T1  
T2  
T3  
T4  
T5  
MIN  
12P + 2(1)  
12P + 2(1)  
5
MAX UNIT  
tw(HWnTSPUSHH)  
tw(HWnTSPUSHL)  
tc(RFT_CLK)  
Pulse duration, HWnTSPUSH(2) high  
Pulse duration, HWnTSPUSH(2) low  
Cycle time, RFT_CLK  
ns  
ns  
8
ns  
ns  
ns  
tw(RFT_CLKH)  
tw(RFT_CLKL)  
Pulse duration, RFT_CLK high  
Pulse duration, RFT_CLK low  
0.45 * T(3)  
0.45 * T(3)  
(1) P = functional clock period in ns.  
(2) In HWnTSPUSH, n = 1 to 2.  
(3) T = RFT_CLK period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
252 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
T1  
T2  
HWn_TSPUSH  
T3  
T4  
T5  
RFT_CLK  
7-96. CPTS Timing Requirements  
7.10.5.18.2 CPTS Switching Characteristics  
see 7-97  
NO.  
PARAMETER  
SOURCE  
MIN  
36P - 2(1)  
36P - 2(1)  
36P - 2(1)  
36P - 2(1)  
36P - 2(1)  
5P - 2(1)  
MAX UNIT  
T6  
tw(TS_COMPH)  
tw(TS_COMPL)  
tw(TS_SYNCH)  
tw(TS_SYNCL)  
Pulse duration, TS_COMP high  
Pulse duration, TS_COMP low  
Pulse duration, TS_SYNC high  
Pulse duration, TS_SYNC low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T7  
T8  
T9  
TS_SYNC  
T10  
T11  
tw(SYNC_OUTH)  
Pulse duration, SYNCn_OUT(2) high  
Pulse duration, SYNCn_OUT(2) low  
TS_GENF  
TS_SYNC  
TS_GENF  
36P - 2(1)  
5P - 2(1)  
tw(SYNC_OUTL)  
(1) P = functional clock period in ns.  
(2) n = 0 to 3 in SYNCn_OUT  
T6  
T7  
TS_COMP  
T8  
T9  
TS_SYNC  
T10  
T11  
SYNCn_OUT  
7-97. CPTS Switching Characteristics  
For more information, see Navigator Subsystem (NAVSS) section in Data Movement Architecture (DMA) chapter  
in the device TRM.  
7.10.5.19 OSPI  
For more details about features and additional description information on the device Octal Serial Peripheral  
Interface, see the corresponding sections within Signal Descriptions and Detailed Description.  
7-81 represents OSPI timing conditions.  
7-81. OSPI Timing Conditions  
PARAMETER  
INPUT CONDITIONS  
SRI  
MIN  
MAX  
UNIT  
Input slew rate  
3.3 V  
2
1
6
6
V/ns  
V/ns  
All other modes  
OUTPUT CONDITIONS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-81. OSPI Timing Conditions (continued)  
PARAMETER  
MIN  
MAX  
UNIT  
CL  
Output load capacitance  
All modes  
3
10  
pF  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay  
OSPI_CLK trace  
No Loopback;  
Internal Pad  
Loopback  
ps  
450  
Propagation delay  
OSPI_LBCLKO trace  
External Board  
Loopback  
ps  
ps  
ps  
2*L-30(2)  
L-30(2)  
2*L+30(2)  
L+30(2)  
Propagation delay  
OSPI_DQS trace  
DQS  
td(Trace Mismatch Delay)  
Propagation delay mismatch  
OSPI_D[i:0](1), OSPI_CSn  
relative to OSPI_CLK  
All modes  
60  
(1) i in D[i:0] = 0 to 7 for OSPI0; i in [i:0] = 3 for OSPI1  
(2) L = Propagation delay of OSPI_CLK trace  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
254 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.19.1 OSPI0 PHY Mode  
7.10.5.19.1.1 OSPI With Data Training  
备注  
I/O timing requirements and switching characteristics are not applicable when OSPI is used with data  
training. Follow the OSPI and QSPI Board Design and Layout Guidelines section to ensure proper  
operation.  
7.10.5.19.1.1.1 OSPI Switching Characteristics Data Training  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
6
MAX  
UNIT  
ns  
tc(CLK)  
Cycle time, CLK  
Cycle time, CLK  
DDR, 1.8V  
DDR, 3.3V  
SDR, 1.8V  
SDR, 3.3V  
7.5  
6
ns  
tc(CLK)  
ns  
7.5  
ns  
7.10.5.19.1.2 OSPI Without Data Training  
备注  
The I/O Timings provided in this section are only applicable when data training is not implemented.  
Additionally, the I/O Timings are valid only for some OSPI usage modes when the corresponding DLL  
Delays are configured as described in 7-82 found in this section.  
7.10.5.19.1.2.4, 7.10.5.19.1.2.2, 7.10.5.19.1.2, and 7.10.5.19.1.2 present switching characteristics  
for OSPI DDR and SDR Mode.  
7.10.5.19.1.2.1 OSPI Timing Requirements SDR Mode  
7-82. OSPI DLL Delay Mapping - SDR Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
PHY_CONFIG_TX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
DELAY VALUE  
All modes  
0x0  
0x0  
7-83. OSPI Timing Requirements SDR Mode  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
0.6  
0.9  
1.7  
2
MAX  
UNIT  
ns  
O21 tsu(D-LBCLK)  
Setup time, D[i:0] valid before active LBCLK  
input (DQS) edge(1)  
1.8V, External Board Loopback  
3.3V, External Board Loopback  
1.8V, External Board Loopback  
3.3V, External Board Loopback  
ns  
O22 th(LBCLK-D)  
Hold time, D[i:0] valid after active LBCLK  
input (DQS) edge(1)  
ns  
ns  
(1) i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1  
OSPI_DQS  
O21  
O22  
OSPI_D[i:0]  
OSPI_TIMING_06  
7-98. OSPI Timing Requirements SDR, External Loopback Clock  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 255  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.19.1.2.2 OSPI Switching Characteristics SDR Mode  
NO. PARAMETER  
DESCRIPTION  
MODE  
1.8V  
MIN  
7
MAX  
UNIT  
ns  
O7 tc(CLK)  
Cycle time, CLK  
3.3V  
7.5  
ns  
O8 tw(CLKL)  
Pulse duration, CLK low  
Pulse duration, CLK high  
ns  
0.3+0.475*P  
(2)  
O9  
ns  
0.3+0.475*P  
(2)  
O10 ttd(CSn-CLK)  
Delay time, CSn[3:0] active edge to CLK rising  
edge  
1.8V  
3.3V  
1.8V  
3.3V  
0.475 * P +  
0.525 * P +  
ns  
ns  
ns  
ns  
0.975 * M * R 1.025 * M * R  
- 7 (2) (3) (5)  
+ 1 (2) (3) (5)  
0.475 * P +  
0.525 * P +  
0.975 * M * R 1.025 * M * R  
- 7(2) (3) (5)  
+ 1 (2) (3) (5)  
O11 td(CLK-CSn)  
Delay time, CLK rising edge to CSn inactive  
edge  
0.475 * P +  
0.525 * P +  
0.975 * N * R 1.025 * N * R  
- 1 (2) (4) (5)  
+ 1 (2) (4) (5)  
0.475 * P +  
0.525 * P +  
0.975 * N * R 1.025 * N * R  
- 1 (2) (4) (5)  
+ 1(2) (4) (5)  
O12 td(CLK-D)  
Delay time, CLK active edge to D[i:0]  
transition(1)  
1.8V  
3.3V  
1.25  
ns  
ns  
1.16  
1.51  
1.33  
(1) i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1  
(2) P = CLK cycle time = SCLK period  
(3) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(4) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(5) R = refclk  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
7-99. OSPI Switching Characteristics SDR  
7.10.5.19.1.2.3, 7.10.5.19.1.2.1, 7.10.5.19.1.2.2, 7.10.5.19.1.2.2, and 7-98 presents timing  
requirements for OSPI DDR and SDR Mode.  
7.10.5.19.1.2.3 OSPI Timing Requirements DDR Mode  
7-84. OSPI DLL Delay Mapping - DDR Timing Modes  
OSPI0  
OSPI1  
OSPI_PHY_CONFIGURATION_REG  
BIT FIELD  
MODE  
DELAY VALUE  
TRANSMIT  
1.8V  
PHY_CONFIG_TX_DLL_DELAY_FLD  
0x54  
0x54  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
256 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-84. OSPI DLL Delay Mapping - DDR Timing Modes (continued)  
OSPI0  
OSPI1  
OSPI_PHY_CONFIGURATION_REG  
BIT FIELD  
MODE  
DELAY VALUE  
3.3V  
PHY_CONFIG_TX_DLL_DELAY_FLD  
0x55  
0x5C  
RECEIVE  
1.8V, DQS  
3.3V, DQS  
All other modes  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
0x23  
0x47  
0x0  
0x29  
0x42  
0x0  
7-85. OSPI Timing Requirements DDR Mode  
NO. PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
ns  
O15 tsu(D-LBCLK)  
Setup time, D[i:0] valid before active LBCLK (DQS) 1.8V, External Board Loopback  
0.52  
1.97  
edge(1)  
3.3V, External Board Loopback  
ns  
O16 th(LBCLK-D)  
Hold time, D[i:0] valid after active LBCLK (DQS)  
edge(1)  
1.8V, External Board Loopback 1.24 (2)  
ns  
3.3V, External Board Loopback 1.44 (2)  
ns  
O17 tsu(D-DQS)  
Setup time, DQS edge to D[i:0] transition(1)  
1.8V, DQS  
ns  
0.46  
3.3V, DQS  
1.8V, DQS  
3.3V, DQS  
ns  
0.66  
3.59  
O18 th(DQS-D)  
Hold time, DQS edge to D[i:0] transition(1)  
ns  
8.89  
ns  
(1) i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1  
(2) This Hold time requirement is larger than the Hold time provided by a typical flash device. Therefore, the trace length between the SoC  
and flash device must be sufficiently long enough to ensure that the Hold time is met at the SoC. Refer to OSPI and QSPI Board  
Design and Layout Guidelines for more details.  
OSPI_DQS  
O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
7-100. OSPI Timing Requirements DDR, External Loopback Clock and DQS  
7.10.5.19.1.2.4 OSPI Switching Characteristics DDR Mode  
NO. PARAMETER  
DESCRIPTION  
MODE  
1.8V  
MIN  
19  
MAX  
UNIT  
ns  
O1 tc(CLK)  
Cycle time, CLK  
3.3V  
19  
ns  
O2 tw(CLKL)  
O3 tw(CLKH)  
O4 td(CLK-CSn)  
Pulse duration, CLK low  
0.475*P - 0.3  
ns  
(2)  
Pulse duration, CLK high  
0.475*P - 0.3  
ns  
ns  
(2)  
Delay time, CSn active edge to CLK rising edge  
1.8V  
3.3V  
0.475 * P +  
0.525 * P +  
0.975 * M * R 1.025 * M * R  
- 7 (2) (3) (5)  
+ 1(2) (3) (5)  
0.475 * P +  
0.525 * P +  
ns  
0.975 * M * R 1.025 * M * R  
- 7(2) (3) (5) + 1(2) (3) (5)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 257  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
UNIT  
NO. PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
0.525 * P +  
O5 td(CLK-CSn)  
Delay time, CLK rising edge to CSn inactive  
edge  
1.8V  
0.475 * P +  
ns  
0.975 * N * R 1.025 * N * R  
- 7(2) (4) (5)  
+ 1 (2) (4) (5)  
3.3V, OSPI0 DDR TX; 0.475 * P +  
0.525 * P +  
ns  
3.3V, OSPI1 DDR TX 0.975 * N * R 1.025 * N * R  
- 7(2) (4) (5)  
+ 1 (2) (4) (5)  
O6 td(CLK-D)  
Delay time, CLK active edge to D[i:0]  
transition(1)  
1.8V, OSPI0 DDR TX;  
1.8V, OSPI1 DDR TX  
ns  
ns  
7.71  
1.56  
3.3V, OSPI0 DDR TX;  
3.3V, OSPI1 DDR TX  
7.71  
1.56  
(1) i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1  
(2) P = CLK cycle time = SCLK period  
(3) N = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(4) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(5) R = refclk  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O1  
O6  
O6  
OSPI_D[i:0]  
OSPI_TIMING_01  
7-101. OSPI Switching Characteristics DDR  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
258 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.19.2 OSPI0 Tap Mode  
7.10.5.19.2.1 OSPI0 Tap SDR Timing  
7-86, 7-102, 7-87, and 7-103 present timing requirements and switching characteristics for OSPI0  
Tap SDR Mode.  
7-86. OSPI0/1 Timing Requirements Tap SDR Mode  
see 7-102  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0/1_D[7:0] valid before  
active OSPI0/1_CLK edge  
(10.4 -  
O19 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0/1_D[7:0] valid after  
active OSPI0/1_CLK edge  
(0.2 +  
O20 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = refclk cycle time in ns  
OSPI_CLK  
O19  
O20  
OSPI_D[i:0]  
OSPI_TIMING_05  
7-102. OSPI0/1 Timing Requirements Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 259  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-87. OSPI0/1 Switching Characteristics Tap SDR Mode  
see 7-103  
NO.  
PARAMETER  
MODE  
MIN  
20  
MAX UNIT  
O7  
O8  
O9  
tc(CLK)  
Cycle time, OSPI0/1_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0/1_CLK low  
Pulse duration, OSPI0/1_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0/1_CSn[3:0] active edge  
to OSPI0/1_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O10 td(CSn-CLK)  
O11 td(CLK-CSn)  
O12 td(CLK-D)  
ns  
ns  
ns  
(0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0/1_CLK rising edge to  
OSPI0/1_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
Delay time, OSPI0/1_CLK active edge to  
OSPI0/1_D[7:0] transition  
2
2  
(1) P = CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
7-103. OSPI0/1 Switching Characteristics Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
260 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.19.2.2 OSPI0 Tap DDR Timing  
7-88, 7-104, 7-89, and 7-105 present timing requirements and switching characteristics for OSPI0  
Tap DDR Mode.  
7-88. OSPI0/1 Timing Requirements Tap DDR Mode  
see 7-104  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0/1_D[7:0] valid before  
active OSPI0/1_CLK edge  
(12.04 -  
O13 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0/1_D[7:0] valid after  
active OSPI0/1_CLK edge  
(1.84 +  
O14 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = refclk cycle time in ns  
OSPI_CLK  
O13 O14 O13 O14  
OSPI_D[i:0]  
OSPI_TIMING_03  
7-104. OSPI0/1 Timing Requirements Tap DDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 261  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-89. OSPI0/1 Switching Characteristics Tap DDR Mode  
see 7-105  
NO.  
PARAMETER  
MODE  
MIN  
40  
MAX UNIT  
O1  
O2  
O3  
tc(CLK)  
Cycle time, OSPI0/1_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0/1_CLK low  
Pulse duration, OSPI0/1_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0/1_CSn[3:0] active edge  
to OSPI0/1_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O4  
O5  
O6  
td(CSn-CLK)  
td(CLK-CSn)  
td(CLK-D)  
ns  
ns  
ns  
((0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0/1_CLK rising edge to  
OSPI0/1_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
Delay time, OSPI0/1_CLK active edge to  
OSPI0/1_D[7:0] transition  
(17.94 +  
(1.56 +  
(0.975T(5)R(4)))  
(1.025T(5)R(4)))  
(1) P = CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
(5) T = OSPI_RD_DATA_CAPTURE_REG[DDR_READ_DELAY_FLD]  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O6  
O6  
O1  
OSPI_D[i:0]  
OSPI_TIMING_01  
7-105. OSPI0/1 Switching Characteristics Tap DDR, No Loopback  
7.10.5.20 OLDI  
7.10.5.20.1 OLDI Switching Characteristics  
NO.  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O8  
PARAMETER  
MODE  
IOSET1  
IOSET1  
IOSET1  
IOSET1  
IOSET1  
IOSET1  
IOSET1  
IOSET1  
MIN  
0.18  
0.18  
1
MAX  
0.5  
UNIT  
ns  
LVDS Low-to-High Transition Time max  
LVDS high-to-low Transition Time max  
Transmitter Output Bit Width min  
0.5  
ns  
1
UI  
0.25  
-0.06  
0.75  
0.06  
110  
0.035  
0.25  
ns  
Transmitter Pulse Positions Normalized  
Variation in transmitter pulse position across Bit 7:0 pulse positions  
TxOut Channel to Channel Skew  
ns  
ns  
Transmitter Jitter Cycle-to-Cycle  
0.028  
ns  
Input Total Jitter Tolerance (Includes data to clock skew, pulse position  
variation.)  
ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
262 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
T
OLDI_CLK  
bit 0  
bit 1  
bit 0  
3UI  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
1UI  
OLDI_DATA[3:0]  
tTPP1  
tTPP2  
tTPP3  
tTPP4  
tTPP5  
tTPP6  
tTPP7  
2UI  
ΔtTPP  
4UI  
5UI  
6UI  
7UI  
7-106. OLDI Transmitter Pulse Positions  
Ideal Data  
Bit Beginning  
Ideal Data  
Bit End  
Sampling  
Window  
VTH  
OLDI_DATA[3:0]  
0 V  
VTL  
DATA_TOL  
Right  
DATA_TOL  
Left  
Ideal Center Position (tBIT/2)  
tBIT (1UI)  
7-107. OLDI Data Output Jitter  
+VOD  
80%  
80%  
VSS=2|VOD|  
OLDI_CLK  
0 V  
20%  
20%  
LLHT  
-VOD  
LLHT  
7-108. LVDS Output Transition Times  
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter in the device  
TRM.  
7.10.5.21 PCIE  
The PCI-Express Subsystem is compliant with the PCIe® Base Specification, Revision 4.0. Refer to the  
specification for timing details.  
For more details about features and additional description information on the device Peripheral Component  
Interconnect Express, see the corresponding sections within Signal Descriptions and Detailed Description.  
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals  
chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 263  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.5.22 Timers  
For more details about features and additional description information on the device Timers, see the  
corresponding sections within Signal Descriptions and Detailed Description.  
7-90 represents Timers timing conditions.  
7-90. Timers Timing Conditions  
PARAMETER  
DESCRIPTION  
MODE  
CAPTURE  
PWM  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
7.10.5.22.1, 7.10.5.22.2 and 7-109 present timings and switching characteristics of the Timers.  
7.10.5.22.1 Timing Requirements for Timers  
NO.  
PARAMETER  
tw(TINPH)  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
T1  
Pulse duration, high  
Pulse duration, low  
CAPTURE  
2.5 +  
4P(1)  
ns  
T2  
tw(TINPL)  
CAPTURE  
2.5 +  
4P(1)  
ns  
(1) P = functional clock period in ns.  
7.10.5.22.2 Switching Characteristics for Timers  
NO.  
PARAMETER  
tw(TOUTH)  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
T3  
Pulse duration, high  
Pulse duration, low  
PWM  
-2.5 +  
4P(1)  
ns  
T4  
tw(TOUTL)  
PWM  
-2.5 +  
4P(1)  
ns  
(1) P = functional clock period in ns.  
T1  
T2  
TIMER_IOx (inputs)  
T3  
T4  
TIMER_IOx (outputs)  
TIMER_01  
7-109. Timer Timing  
For more information, see Timers section in Peripherals chapter in the device TRM.  
7.10.5.23 UART  
For more details about features and additional description information on the device Universal Asynchronous  
Receiver Transmitter, see the corresponding sections within , Signal Descriptions and Detailed Description.  
7-91 represents UART timing conditions.  
7-91. UART Timing Conditions  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
INPUT CONDITIONS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
264 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7-91. UART Timing Conditions (continued)  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
SRI  
Input slew rate  
0.5  
5
V/ns  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
1
30(1)  
pF  
(1) This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the  
load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall  
times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore,  
it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the  
device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point  
where the minimum data valid time of the attached device is violated.  
7.10.5.23.1, 7.10.5.23.2, and 7-110 present timing requirements and switching characteristics for UART  
interface.  
7.10.5.23.1 Timing Requirements for UART  
NO.  
PARAMETER  
tw(rxd)  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
4
Pulse width, receive data bit, high or low  
0.95U(1) 1.05U(1)  
ns  
(2)  
(2)  
5
tw(rxdS)  
Pulse width, receive start bit, low  
0.95U(1)  
ns  
(2)  
(1) U = UART baud time = 1/Programmed baud rate  
(2) This value defines the data valid time, where the input voltage is required to be above VIH or below VIL.  
7.10.5.23.2 UART Switching Characteristics  
NO.  
PARAMETER  
f(baud)  
DESCRIPTION  
Maximum programmable baud rate  
MIN  
MAX  
UNIT  
Mbps  
ns  
12  
2
3
tw(TX)  
Pulse width, transmit data bit, high or low  
Pulse width, transmit start bit, high or low  
U - 2(1)  
U - 2(1)  
U + 2(1)  
tw(RTS)  
ns  
(1) U = UART baud time = 1/Programmed baud rate  
2
1
Start  
Bit  
VIH  
VIL  
UARTi_RXD  
Data Bits  
4
3
Start  
Bit  
UARTi_TXD  
Data Bits  
UART_TIMING_01_RCVRVIHVIL  
7-110. UART Timing  
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter  
in the device TRM.  
7.10.5.24 USB  
The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the  
specification for timing details.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 265  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
The USB 3.1 GEN1 Dual-Role Device Subsystem is compliant with the Universal Serial Bus (USB) 3.1  
Specification, revision 1.0. Refer to the specification for timing details.  
For more details about features and additional description information on the device Universal Serial Bus  
Subsystem (USB), see the corresponding sections within Signal Descriptions and Detailed Description.  
7.10.6 Emulation and Debug  
7.10.6.1 Trace  
7-92. Trace Timing Conditions  
PARAMETER  
MIN  
MAX  
UNIT  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
5
pF  
PCB CONNECTIVITY REQUIREMENTS  
Propagation delay mismatch across  
all traces  
td(Trace Mismatch)  
200  
ps  
7-93 and 7-111 assume testing over the recommended operating conditions and electrical characteristic  
conditions.  
7-93. Trace Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX UNIT  
1.8 V Mode  
DBTR1 tc(TRC_CLK)  
Cycle time, TRC_CLK  
6.50  
2.50  
2.50  
0.81  
0.81  
0.81  
0.81  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
DBTR4 tosu(TRC_DATAV-TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI)  
DBTR6 tosu(TRC_CTLV-TRC_CLK)  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
3.3 V Mode  
Output setup time, TRC_DATA valid to TRC_CLK edge  
Output hold time, TRC_CLK edge to TRC_DATA invalid  
Output setup time, TRC_CTL valid to TRC_CLK edge  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
DBTR1 tc(TRC_CLK)  
Cycle time, TRC_CLK  
9.75  
4.13  
4.13  
1.22  
1.22  
1.22  
1.22  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
DBTR4 tosu(TRC_DATAV-TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI)  
DBTR6 tosu(TRC_CTLV-TRC_CLK)  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output setup time, TRC_DATA valid to TRC_CLK edge  
Output hold time, TRC_CLK edge to TRC_DATA invalid  
Output setup time, TRC_CTL valid to TRC_CLK edge  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
DBTR1  
DBTR2  
DBTR3  
TRC_CLK  
(Worst Case 1)  
(Ideal)  
(Worst Case 2)  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
TRC_DATA  
TRC_CTL  
SPRSP08_Debug_01  
7-111. Trace Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
266 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.6.2 JTAG  
For more details about features and additional description information on the device IEEE 1149.1 Standard–  
TestAccess Port, see the corresponding sections within Signal Descriptions and Detailed Description.  
备注  
The JTAG signals are split across two IO power domains on the device. Timings parameters defined  
in this section only apply when the two IO power domains are operating at the same voltage and level-  
shifters are not inserted into the signal path. Values for the following timing parameters are not defined  
when operating the two IO power domains at different voltages since propagation delay through the  
device IO buffers differ when some are operating at 1.8 V while others are operating at 3.3 V. This  
effectively reduces timing margin beyond the values defined in this section. The JTAG interface is still  
expected to function when the two IO power domains are operated at different voltages, assuming the  
system designer has implemented appropriate level-shifters and the operating frequency is reduced to  
accommodate additional delay inserted by the level-shifters and IO buffers operating at different  
voltages.  
7-94. JTAG Timing Conditions  
PARAMETER  
MIN  
0.50  
5
MAX  
2.00  
15  
UNIT  
V/ns  
pF  
Input Conditions  
SRI  
Input slew rate  
Output Conditions  
CL  
Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
Propagation delay mismatch across all traces  
83.5  
1000(1)  
100  
ps  
ps  
td(Trace Mismatch Delay)  
(1) Maximum propagation delay associated with the JTAG signal traces has a significant impact on maximum TCK operating frequency. It  
may be possible to increase the trace delay beyond this value, but the operating frequency of TCK must be reduced to account for the  
additional trace delay.  
7.10.6.2.1 JTAG Electrical Data and Timing  
7.10.6.2.1.1, 7.10.6.2.1.2, and 7-112 assume testing over the recommended operating conditions and  
electrical characteristic conditions.  
7.10.6.2.1.1 JTAG Timing Requirements  
See 7-112  
NO.  
MIN  
46.5(1)  
18.6(2)  
18.6(2)  
4.5  
MAX UNIT  
J1  
tc(TCK)  
Cycle time minimum, TCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J2  
tw(TCKH)  
Pulse width minimum, TCK high  
J3  
tw(TCKL)  
Pulse width minimum, TCK low  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
Input setup time minimum, TDI valid to TCK high  
Input setup time minimum, TMS valid to TCK high  
Input hold time minimum, TDI valid from TCK high  
Input hold time minimum, TMS valid from TCK high  
J4  
J5  
4.5  
2
2
(1) The maximum TCK operating frequency assumes the following timing requirements and switching characteristics for the attached  
debugger. The operating frequency of TCK must be reduced to provide appropriate timing margin if the debugger exceeds any of these  
assumptions.  
Minimum TDO setup time of 4.6 ns relative to the rising edge of TCK  
TDI and TMS output delay in the range of 16.5 ns to 14.0 ns relative to the falling edge of TCK  
(2) P = TCK cycle time in ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 267  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
7.10.6.2.1.2 JTAG Switching Characteristics  
See 7-112  
NO.  
PARAMETER  
MIN  
MAX UNIT  
J6  
J7  
td(TCKL-TDOI)  
td(TCKL-TDOV)  
Delay time minimum, TCK low to TDO invalid  
Delay time maximum, TCK low to TDO valid  
0
ns  
12  
ns  
1. The JTAG signals are split across two IO power domains on the device. Timings parameters defined in this  
table only apply when the two IO power domains are operating at the same voltage. Values for these timing  
parameters are not defined when operating the two IO power domains at different voltages since  
propagation delay through the device IO buffers differ when some are operating at 1.8V while others are  
operating at 3.3V. This effectively reduces timing margin beyond the values defined in this table. The JTAG  
interface is still expected to function when the two IO power domains are operated at different voltages,  
assuming the system designer has implemented appropriate level shifters and the operating frequency is  
reduced to accommodate additional delay inserted by the level-shifters and IO buffers operating at different  
voltages.  
J1  
J2  
J3  
TCK  
TDI / TMS  
TDO  
J4  
J5  
J4  
J5  
J7  
J6  
7-112. JTAG Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
268 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The AM69A processor family is based on the evolutionary Jacinto 7 architecture, targeted at ADAS and  
Autonomous Vehicle (AV) applications and built on extensive market knowledge accumulated over a decade of  
TIs leadership in the ADAS processor market. The AM69A provides high performance compute for both  
traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system  
integration to enable scalability and lower costs for advanced automotive platforms supporting multiple sensor  
modalities in centralized ECUs or stand-alone sensors. Key cores include next generation DSP with scalar and  
vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for  
general compute, an integrated next generation imaging subsystem (ISP), video codec, Ethernet hub and  
isolated MCU island. All protected by automotive grade safety and security hardware accelerators.  
备注  
For more information on features, subsystems, and architecture of superset device System on Chip  
(SoC), see the device TRM.  
8.2 Functional Block Diagram  
8-1 is functional block diagram for the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 269  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
AM69Ax  
Application Cores  
Deep Learning Accelerator (32 TOPS)  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
Arm®  
Cortex®-A72  
4x C7x DSP + 4x MMA  
2MB Shared L2 Cache with ECC  
Application Cores  
1MB Shared L2 Cache with ECC  
MCU Channels with FFI  
General Compute (MAIN Domain)  
Arm®  
Arm®  
Arm®  
Arm®  
Cortex®-A72  
Cortex®-A72  
Cortex®-A72  
Cortex®-A72  
Arm®  
Arm®  
Cortex®-R5F  
Cortex®-R5F  
2MB Shared L2 Cache with ECC  
64KB TCM  
512KB SRAM with ECC  
General Connectivity (MAIN)  
System Memory  
8MB MSMC  
1-port Gb (RGMII) Ethernet w/ 1588  
Up to 8-port Serial Ethernet w/ 1588  
PCIe Gen 3 (2x 4 Lane or 4x 2 Lane)  
Device Management (MCU Domain)  
GPMC  
SRAM with ECC  
Arm®  
Arm®  
Cortex®-R5F  
Cortex®-R5F  
4x 32-b LPDDR4  
with Inline ECC  
2x MMCSD  
1x USB3.0/2.0  
11x UART  
18x CAN-FD  
8x I2C  
8x SPI  
GPIO  
64KB TCM  
1MB SRAM with ECC  
Multimedia  
3x ePWM  
3x eCAP  
3x eQEP  
5x McASP  
2x H.264/H.265 Video Codec  
General Connectivity (MCU Domain)  
1-port Gb Ethernet w/ 1588  
3D GPU  
2x VPAC  
(BXS 4-64)  
1x OSPI  
GPIO  
2x I2C  
3x SPI  
1x UART  
2x CAN-FD  
2x ADC  
1x QSPI  
2x CSI2 TX  
3x CSI2 RX  
Display SS  
eDP + 2x DSI + 1x DPI  
Security  
HSM  
(Secure Boot)  
SMS  
System Services  
NAVSS/DMA  
Debug  
Firewall  
IPC  
SHA  
PKA  
AES  
MD5  
DRBG  
TRNG  
Device/Power  
Manager  
System Monitor  
Timers  
Secure Boot  
DCC  
ESM  
ECC  
8-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
270 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8.3 Processor Subsystems  
8.3.1 Arm Cortex-A72  
The device implements one dual-core Arm® Cortex®-A72 MPU, which is integrated inside the Compute Cluster,  
along with other modules. The Cortex-A72 cores are general-purpose processors that can be used for running  
customer applications.  
The A72SS is built around the Arm Cortex-A72 MPCore (A72 cluster), which is provided by Arm and configured  
by TI. It is based on the symmetric multiprocessor (SMP) architecture, and thus it delivers high performance and  
optimal power management and debug capabilities.  
The A72 processor is a multi-issue out-of-order superscalar execution engine with integrated L1 instruction and  
data caches, compatible with Armv8-A architecture. The Armv8-A architecture brings a number of new features.  
These include 64-bit data processing, extended virtual addressing and 64-bit general purpose registers.  
For more information, see Dual-A72 MPU Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
8.3.2 Arm Cortex-R5F  
The MCU_ARMSS is a dual-core implementation of the Arm® Cortex®-R5F processor configured for split/lock  
operation. It also includes accompanying memories (L1 caches and tightly-coupled memories), standard Arm®  
CoreSightdebug and trace architecture, integrated Vectored Interrupt Manager (VIM), ECC Aggregators, and  
various wrappers for protocol conversion and address translation for easy integration into the SoC.  
For more information, see Dual-R5F MCU Subsystem section in Processors and Accelerators chapter in the  
device TRM.  
8.3.3 DSP C71x  
The TMS320C71x is the next-generation fixed and floating-point DSP platform. The C71x DSP is a new core in  
the Texas Instruments' DSP family. The C71x DSP supports vector signal processing, providing significant lift in  
DSP processing power over a broad range of general signal processing tasks in comparison to the C6x DSP  
family. In addition, the C71x provides several specialized functions which accelerate targeted functions by more  
than 30 times. Besides expanding vector processing capabilities, the new C71x core also incorporates advanced  
techniques to improve control code efficiency and ease of programming such as branch prediction, protected  
pipeline, precise exception and virtual memory management.  
For more information, see C71x DSP Subsystem section in Processors and Accelerators chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 271  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8.4 Accelerators and Coprocessors  
8.4.1 GPU  
The Graphics Processing Unit (GPU) accelerates 3-dimensional (3D) and 2-dimensional (2D) graphics and  
compute applications.  
The GPU module is a scalable architecture which efficiently processes a number of different workload  
concurrently:  
3D Graphic Workload, which involves vertex data and pixel data processing for rendering of 3D scenes.  
2D Graphic Workload, which involves pixel data processing for rendering 2D objects.  
Compute Applications Workload, which involves general purpose data processing.  
For more information, see Graphics Accelerator (GPU) section in Processors and Accelerators chapter in the  
device TRM.  
8.4.2 VPAC  
The Vision Pre-processing Accelerator (VPAC) is a set of common vision primitive functions, performing  
memory-to-memory (M2M) pixel data processing tasks, such as: color processing and enhancement, noise  
filtering, wide dynamic range (WDR) processing, lens distortion correction, pixel remap for dewarping, on-the-fly  
scale generation, on-the-fly pyramid generation. The VPAC offloads these common tasks from the main SoC  
processors (ARM, DSP, etc.), so these CPUs can be utilized for differentiated high-level algorithms. The VPAC is  
designed to support multiple cameras by working in time-multiplexing mode. The VPAC works as front end to  
vision processing and prepares frame/scales for further processing by other vision accelerators or processor  
cores in the SoC.  
For more information, see Vision Pre-processing Accelerator (VPAC) section in Processors and Accelerators  
chapter in the device TRM.  
8.4.3 DMPAC  
The Depth and Motion Perception Accelerator (DMPAC) is a power efficient hardware accelerator that computes  
dense stereo depth maps (depth) and dense optical flow vectors (motion) from camera inputs.  
The image/video sensor-based environmental perception (also known as scene understanding) is at the core of  
many emerging applications in automotive, industrial and consumer electronics. Typically, this involves detection  
of all objects in the scene along with their 3D position and motion with regards to the observer or the car by  
analyzing one or many related input video streams. Various computer vision algorithms are used to achieve  
these tasks.  
A very robust method of obtaining the 3D depth from images is to use two cameras in a stereo setup - two  
cameras with known relative positions and camera parameters. The two images of the same scene, captured  
from two different camera poses/perspectives, are analyzed to find disparities among every pixel positions in the  
images. This is known as the Stereo Disparity map. The disparity values of every pixel can be used to obtain the  
3D positions of the object/space they belong to via triangulation.  
On the other hand, by analyzing two images from a single camera, captured at two different time instances (that  
is, two temporal frames in a video), one can determine where each pixel in a past frame moved to in the future  
frame. This is known as the Optical Flow vector. The flow vectors for each pixel position can be used to obtain  
3D structure of the scene, identify moving objects and determine their relative speed and direction of motion.  
The DMPAC is dedicated to the aforesaid image processing tasks. The stereo and optical flow processing is  
partitioned into two top level sub-blocks: the Dense Optical Flow (DOF) engine and the Stereo Disparity Engine  
(SDE). The DOF and SDE blocks share a common shared local memory, DMA, external messaging and control  
infrastructure.  
For more information, see Depth and Motion Perception Accelerator (DMPAC) section in Processors and  
Accelerators chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
272 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8.5 Other Subsystems  
8.5.1 MSMC  
The Multicore Shared Memory Controller (MSMC) forms the heart of the compute cluster  
(COMPUTE_CLUSTER0) providing high-bandwidth resource access both to and from all of the connected  
processing elements and the rest of the system. MSMC serves as the data-movement backbone of the compute  
cluster.  
For more information, see Multicore Shared Memory Controller (MSMC) section in Device Configuration chapter  
in the device TRM.  
8.5.2 NAVSS  
8.5.2.1 NAVSS0  
Main SoC Navigator Subsystem (NAVSS0) consists of DMA/Queue Management components UDMA and  
Ring Accelerator (UDMASS), Peripherals (Module subsystem [MODSS]), Virtualization translation (VirtSS), and  
a North Bridge (NBSS).  
8.5.2.2 MCU_NAVSS  
MCU Navigator Subsystem (MCU NAVSS) has a subset of the modules of the main NAVSS and is instantiated  
in the MCU domain.  
MCU Navigator Subsystem consists of DMA/Queue Management components UDMA and Ring Accelerator  
(UDMASS), and Peripherals (Module subsystem [MODSS]).  
For more information, see Main Navigator Subsystem (NAVSS) and MCU Navigator Subsystem (MCU NAVSS)  
sections in the device TRM.  
8.5.3 PDMA Controller  
The Peripheral DMA is a simple DMA which has been architected to specifically meet the data transfer needs of  
peripherals, which perform data transfers using memory mapped registers accessed via a standard non-  
coherent bus fabric. The PDMA module is intended to be located close to one or more peripherals which require  
an external DMA for data movement and is architected to reduce cost by using VBUSP interfaces and  
supporting only statically configured Transfer Request (TR) operations.  
The PDMA is only responsible for performing the data movement transactions which interact with the peripherals  
themselves. Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L data  
stream which is then sent to a remote peer UDMA-P destination channel which then performs the movement of  
the data into memory. Likewise, a remote UDMA-P source channel fetches data from memory and transfers it to  
a peer PDMA destination channel over PSI-L which then performs the writes to the peripheral.  
The PDMA architecture is intentionally heterogeneous (UDMA-P + PDMA) to right size the data transfer  
complexity at each point in the system to match the requirements of whatever is being transferred to or from.  
Peripherals are typically FIFO based and do not require multi-dimensional transfers beyond their FIFO  
dimensioning requirements, so the PDMA transfer engines are kept simple with only a few dimensions (typically  
for sample size and FIFO depth), hardcoded address maps, and simple triggering capabilities.  
Multiple source and destination channels are provided within the PDMA which allow multiple simultaneous  
transfer operations to be ongoing. The DMA controller maintains state information for each of the channels and  
employs round-robin scheduling between channels in order to share the underlying DMA hardware.  
For more information, see PDMA Controller section in DMA Controllers chapter in the device TRM.  
8.5.4 Power Supply  
The device requires 6 power supply types and 1 internal LDO connection type, see Power Supply Signal  
Descriptions  
Digital IO Voltages  
Digital Low Voltages  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 273  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Digital AVS Voltage  
Analog PHY & CLK Voltages  
Analog Low Voltages  
Efuse Programming Voltages  
LDO Bulk Filter Capacitors  
Common device power supply input types can be grouped together into power rails. All power rails must be  
supplied by power resources designed to support the most strigent power supply voltage specification and total  
load current demands. Two recommended Power Distribution Networks (PDNs) have been defined that either  
combine or isolate MCU and Main domains, (refer to Power Supply Mapping).  
It is possible that a few power supply inputs may not be needed in some systems. In such cases, all unused  
supply inputs, other than VPP_CORE & VPP_MCU, must be connected to a valid power rail with a proper  
voltage level in order to ensure device reliability (refer to Recommended Operating Conditions). The following  
examples are given for reference:  
1. If MCU Island safety monitor or MCU Only low power processing are not used, then VDD_MCU supply can  
be combined with the VDD_CORE supply with compatible operating voltage specification.  
2. If UHS-I SD Card or USB2.0 interface is not needed, then VDDSHV5 (MMC1 interface) and  
VDDA_USB_3P3 (USB PHY interface) can be combined with VDD_IO_3V3 digital IO power rail.  
3. If General Purpose device type is used, then Efuse programming voltages VPP_CORE & VPP_MCU are not  
needed and should be left unconnected.  
8.5.5 Peripherals  
8.5.5.1 ADC  
The Analog-to-Digital Converter (ADC) module contains a single 12-bit ADC which can be multiplexed to any 1  
of 8 analog inputs (channels).  
For more information, see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM.  
8.5.5.2 ATL  
The Audio Tracking Logic (ATL) is used by HD Radio™ applications to synchronize the digital audio output to the  
baseband clock. This same IP can also be used generically to track errors between two reference signals (such  
as frame syncs) and generate a modulated clock output (using software-controlled cycle stealing) which  
averages to some desired frequency. This process can be used as a hardware assist for asynchronous sample  
rate conversion algorithms.  
For more information, see Audio Tracking Logic (ATL) section in Peripherals chapter in the device TRM.  
8.5.5.3 CSI  
8.5.5.3.1 Camera Streaming Interface Receiver (CSI_RX_IF) and MIPI DPHY Receiver (DPHY_RX)  
The integration of the CSI_RX_IF module allows the device to stream video inputs from multiple cameras to the  
image processing accelerator (VPAC) or to internal memory. The video input may also be retransmitted via the  
transmitter CSI (CSI_TX_IF) for debug and test purposes.  
For more information, see Camera Streaming Interface (CSI) section in Peripherals chapter in the device TRM.  
8.5.5.3.2 Camera Streaming Interface Transmitter (CSI_TX_IF)  
The integration of the CSI_TX_IF module allows the device to stream out video data from memory, or retransmit  
from the CSI receivers as an optional loopback output for diagnostics, debug, and test purposes.  
For more information, see Camera Streaming Interface (CSI) section in Peripherals chapter in the device TRM.  
8.5.5.4 CPSW2G  
The two-port Gigabit Ethernet MAC (MCU_CPSW0) subsystem provides Ethernet packet communication for the  
device and is configured in a similar manner as an Ethernet switch. MCU_CPSW0 features the Reduced Gigabit  
Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII), and the Management Data  
Input/Output (MDIO) interface for physical layer device (PHY) management.  
Copyright © 2023 Texas Instruments Incorporated  
274 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
For more information, see Gigabit Ethernet Switch (CPSW0) section in Peripherals chapter in the device TRM.  
8.5.5.5 CPSW9G  
The 9-port Gigabit Ethernet Switch (CPSW0) subsystem provides Ethernet packet communication for the device  
and can be configured as an Ethernet switch. CPSW0 features the Serial Gigabit Media Independent Interface  
(SGMII), Reduced Gigabit Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII)  
and the Management Data Input/Output (MDIO) interface for physical layer device (PHY) management.  
For more information, see Gigabit Ethernet Switch (MCU_CPSW0) section in Peripherals chapter in the device  
TRM.  
8.5.5.6 DCC  
The Dual Clock Comparator (DCC) is used to determine the accuracy of a clock signal during the time execution  
of an application. Specifically, the DCC is designed to detect drifts from the expected clock frequency. The  
desired accuracy can be programed based on calculation for each application. The DCC measures the  
frequency of a selectable clock source using another input clock as a reference.  
For more information, see Dual Clock Comparator (DCC) section in Peripherals chapter in the device TRM.  
8.5.5.7 DDRSS  
The DDR subsystem in this device comprises DDR controller, DDR PHY and wrapper logic to integrate these  
blocks in the device. The DDR subsystem is referred to as DDRSS0 and is used to provide an interface to  
external SDRAM devices which can be utilized for storing program or data. DDRSS0 is accessed via MSMC,  
and not directly through the system interconnect.  
For more information, see DDR Subsystem (DDRSS) section in Peripherals chapter in the device TRM.  
8.5.5.8 DSS  
The DSS is a flexible composition-enabled display subsystem, that supports multiple high resolution display  
outputs. It consists of one Display Controller (DISPC) and one Frame Buffer Decompression Core (FBDC). The  
DISPC supports a multi-layer blending and transparency for each of its display outputs. The DISPC also  
supports a write-back pipeline with scaling to enable memory-to-memory composition and/or to capture a display  
output for Ethernet video encoding.  
For more information, see Display Subsystem (DSS) section in Peripherals chapter in the device TRM.  
8.5.5.8.1 DSI  
The MIPI DSI v1.3.1 Controller (DSITX) implements the stream arbitration and low-level protocol layer  
functionalities required by MIPI DSI 1.3 standard. It supports up to 4 x 2.5 Gbps D-PHY data lanes in a single-  
link configuration and handles the byte lane mapping per use case (1, 2, 3, or 4-lanes). The accompaning DSI  
(Physical Layer) D-PHY module (DPHYTX) provides the video output interfacing by implementing a four-lane  
MIPI D-PHY transmitter.  
For more information, see Display Subsystem (DSS) and Display Peripherals section in Peripherals chapter in  
the device TRM.  
8.5.5.8.2 eDP  
The VESA DP1.4/eDP1.4 Compliant Transmitter Host Controller (EDP) can output up to 4 video streams  
(through Multiple Stream Transport / MST) and one audio stream through the 4-lane accompaning SerDes  
module. It provides up to 25.92 Gbps of application bandwidth. An additional eDP (Physical Layer) auxiliary PHY  
(AUXPHY) module implements a doubly-terminated differential pair required for 1 Mbps data rates over a long  
(15m) cable.  
For more information, see Display Subsystem (DSS) and Display Peripherals section in Peripherals chapter in  
the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 275  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8.5.5.9 VPFE  
The Video Processing Front End (VPFE) is an input interface module that receives raw (unprocessed) image/  
video data or YUV digital video data from external imaging peripherals (such as image sensors, video decoders,  
etc) and performs DMA transfers to store the captured data in the system DDR memory.  
For more information, see Video Processing Front End (VPFE) section in Peripherals chapter in the device TRM.  
8.5.5.10 eCAP  
The enhanced Capture (ECAP) module can be used for:  
Sample rate measurements of audio inputs  
Speed measurements of rotating machinery (for example, toothed sprockets sensed via Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors.  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
8.5.5.11 EPWM  
An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU  
overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand  
and use. The EPWM unit described here addresses these requirements by allocating all needed timing and  
control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided;  
instead, the EPWM is built up from smaller single channel modules with separate resources and that can  
operate together as required to form a system. This modular approach results in an orthogonal architecture and  
provides a more transparent view of the peripheral structure, helping users to understand its operation quickly.  
In the further description the letter x within a signal or module name is used to indicate a generic EPWM instance  
on a device. For example, output signals EPWMxA and EPWMxB refer to the output signals from the EPWM_x  
instance. Thus, EPWM1A and EPWM1B belong to EPWM1, EPWM2A and EPWM2B belong to EPWM2, and so  
forth.  
Additionally, the EPWM integration allows this synchronization scheme to be extended to the capture peripheral  
modules (ECAP). The number of modules is device-dependent and based on target application needs. Modules  
can also operate stand-alone.  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
8.5.5.12 ELM  
The Error Location Module (ELM) is used with the GPMC. Syndrome polynomials generated on-the-fly when  
reading a NAND flash page and stored in GPMC registers are passed to the ELM. A host processor can then  
correct the data block by flipping the bits to which the ELM error-location outputs point.  
When reading from NAND flash memories, some level of error-correction is required. In the case of NAND  
modules with no internal correction capability, sometimes referred to as bare NANDs, the correction process is  
delegated to the memory controller. ELM can be also used to support parallel NOR flash or NAND flash.  
For more information, see Error Location Module (ELM) section in Peripherals chapter in the device TRM.  
8.5.5.13 ESM  
The Error Signaling Module (ESM) aggregates safety-related events and/or errors from throughout the device  
into one location. It can signal both low and high priority interrupts to a processor to deal with a safety event  
and/or manipulate an I/O error pin to signal an external hardware that an error has occurred. Therefore an  
external controller is able to reset the device or keep the system in safe, known state.  
For more information, see Error Signaling Module (ESM) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
276 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8.5.5.14 eQEP  
The Enhnanced Quadrature Encoder Pulse (EQEP) peripheral is used for direct interface with a linear or rotary  
incremental encoder to get position, direction and speed information from a rotating machine for use in high  
performance motion and position control system. The disk of an incremental encoder is patterned with a single  
track of slots patterns. These slots create an alternating pattern of dark and light lines. The disk count is defined  
as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is  
added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate  
an absolute position. Encoder manufacturers identify the index pulse using different terms such as index,  
marker, home position and zero reference.  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
8.5.5.15 GPIO  
The General-Purpose Input/Output (GPIO) peripheral provides dedicated general-purpose pins that can be  
configured as either inputs or outputs. When configured as an output, the user can write to an internal register to  
control the state driven on the output pin. When configured as an input, user can obtain the state of the input by  
reading the state of an internal register.  
In addition, the GPIO peripheral can produce host CPU interrupts and DMA synchronization events in different  
interrupt/event generation modes.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
8.5.5.16 GPMC  
The General-Purpose Memory Controller is a unified memory controller dedicated for interfacing with external  
memory devices like:  
Asynchronous SRAM-like memories and application-specific integrated circuit (ASIC) devices  
Asynchronous, synchronous, and page mode (available only in non-multiplexed mode) burst NOR flash  
devices  
NAND flash  
Pseudo-SRAM devices  
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the  
device TRM.  
8.5.5.17 Hyperbus  
The Hyperbus module is a part of the device Flash Subsystem (FSS).  
The Hyperbus module is low pin count memory interface that provides high read/write performance. The  
Hyperbus module connects to hyperbus memory (HyperFlash or HyperRAM) and uses simple hyperbus protocol  
for read and write transactions.  
There is one Hyperbus™ module inside the device. The Hyperbus module includes one Hyperbus Memory  
Controller (HBMC).  
For more information, see Hyperbus Interface section in Peripherals chapter in the device TRM.  
8.5.5.18 I2C  
The device contains ten multimaster Inter-Integrated Circuit (I2C) controllers each of which provides an interface  
between a local host (LH), such as an Arm or a Digital Signal Processor (DSP), and any I2C-bus-compatible  
device that connects via the I2C serial bus. External components attached to the I2C bus can serially transmit  
and receive up to 8 bits of data to and from the LH device through the 2-wire I2C interface.  
Each multimaster I2C module can be configured to act like a slave or master I2C-compatible device.  
The WKUP_I2C0, MCU_I2C0, I2C0, and I2C1 controllers have dedicated I2C compliant open drain buffers, and  
support high speed mode (up to 3.4 Mbps in 1.8 V mode and up to 400 kbps in 3.3 V mode). The MCU_I2C1,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 277  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
I2C2, I2C3, I2C4, I2C5, and I2C6 controllers are multiplexed with standard LVCMOS I/O, connected to emulate  
open drain, and support fast mode (up to 400 kbps in 1.8 V/3.3 V mode). The I2C emulation is achieved by  
configuring the LVCMOS buffers to output Hi-Z instead of driving high when transmitting logic 1.  
For more information, see Inter-Integrated Circuit (I2C) Interface section in Peripherals chapter in the device  
TRM.  
8.5.5.19 I3C  
The device contains three Improved Inter-Integrated Circuit (I3C) controllers each of which provides an interface  
between a local host (LH), such as an Arm, and any I3C-bus-compatible device that connects via the I3C serial  
bus.  
For more information, see Improved Inter-Integrated Circuit (I3C) Interface section in Peripherals chapter in the  
device TRM.  
8.5.5.20 MCAN  
The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed  
real-time control. CAN has high immunity to electrical interference. In a CAN network, many short messages are  
broadcast to the entire network, which provides for data consistency in every node of the system.  
The MCAN module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN  
FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices  
can coexist on the same network without any conflict.  
For more information, see Modular Controller Area Network (MCAN) section in Peripherals chapter in the device  
TRM.  
8.5.5.21 MCASP  
The MCASP functions as a general-purpose audio serial port are optimized to the requirements of various audio  
applications. The MCASP module can operate in both transmit and receive modes. The MCASP is useful for  
time-division multiplexed (TDM) stream, Inter-IC Sound (I2S) protocols reception and transmission as well as for  
an inter-component digital audio interface transmission (DIT). The MCASP has the flexibility to gluelessly  
connect to a Sony/Philips digital interface (S/PDIF) transmit physical layer component.  
Although inter-component digital audio interface reception (DIR) mode (this is, S/PDIF stream receiving) is not  
natively supported by the MCASP module, a specific TDM mode implementation for the MCASP receivers allows  
an easy connection to external DIR components (for example, S/PDIF to I2S format converters).  
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device  
TRM.  
8.5.5.22 MCRC Controller  
VBUSM CRC controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the  
integrity of a memory system. A signature representing the contents of the memory is obtained when the  
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to calculate the  
signature for a set of data and then compare the calculated signature value against a predetermined good  
signature value. MCRC controller provides four channels to perform CRC calculation on multiple memories in  
parallel and can be used on any memory system. Channel 1 can also be put into data trace mode, where MCRC  
controller compresses each data being read through CPU read data bus.  
For more information, see MCRC Controller section in Interprocessor Communication chapter in the device  
TRM.  
8.5.5.23 MCSPI  
The MCSPI module is a multichannel transmit/receive, master/slave synchronous serial bus.  
There are total of eleven MCSPI modules in the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
278 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
8.5.5.24 MMC/SD  
The MMCSD Host Controller provides an interface to eMMC 5.1 (embedded MultiMedia Card), SD 4.10 (Secure  
Digital), and SDIO 4.0 (Secure Digital IO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO  
protocol at transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion,  
and checking for syntactical correctness.  
For more information, see Multimedia Card/Secure Digital (MMC/SD) Interface section in Peripherals chapter in  
the device TRM.  
8.5.5.25 OSPI  
The Octal Serial Peripheral Interface (OSPI) module is a kind of Serial Peripheral Interface (SPI) module which  
allows single, dual, quad or octal read and write access to external flash devices. This module has a memory  
mapped register interface, which provides a direct memory interface for accessing data from external flash  
devices, simplifying software requirements.  
The OSPI module is used to transfer data, either in a memory mapped direct mode (for example a processor  
wishing to execute code directly from external flash memory), or in an indirect mode where the module is set-up  
to silently perform some requested operation, signalling its completion via interrupts or status registers. For  
indirect operations, data is transferred between system memory and external flash memory via an internal  
SRAM which is loaded for writes and unloaded for reads by a device master at low latency system speeds.  
Interrupts or status registers are used to identify the specific times at which this SRAM should be accessed using  
user programmable configuration registers.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
8.5.5.26 PCIE  
The Peripheral Component Interconnect Express (PCIe) subsystem is built around a multi-lane dual-mode PCIe  
controller that provides low pin-count, high reliability, and high-speed data transfers at rates of up to 8.0 Gbps  
per lane for serial links on backplanes and printed wiring boards.  
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals  
chapter in the device TRM.  
8.5.5.27 SerDes  
SerDes'es goal is to convert device (SoC) parallel data into serialized data that can be output over a highspeed  
electrical interface. In the opposite direction, SerDes converts high-speed serial data into parallel data that can  
be processed by the device. To this end, the SerDes contains a variety of functional blocks to handle both the  
external analog interface as well as the internal digital logic.  
For more information, see Serializer/Deserializer (SerDes) section in Peripherals chapter in the device TRM.  
8.5.5.28 WWDT  
The Windowed Watchdog Timer provides timer functionality for operating systems and for benchmarking code.  
The module incorporates several counters, which define the timebases needed for scheduling in the operating  
system. The module is implemented with an RTI module, but only WWDT is supported.  
This module is specifically designed to fulfill the requirements for OSEK (Offene Systeme und deren  
Schnittstellen für die Elektronik im Kraftfahrzeug; Open Systems and the Corresponding Interfaces for  
Automotive Electronics) as well as OSEK/Time compliant operating systems.  
For more information, see Real Time Interrupt (RTI) Module section in Peripherals chapter in the device TRM.  
8.5.5.29 Timers  
All timers include specific functions to generate accurate tick interrupts to the operating system.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 279  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Each timer can be clocked from several different independent clocks. The selection of clock source is made from  
registers in the MCU_CTRL_MMR0/CTRL_MMR0.  
In the MCU domain the device provides 10 timer pins to be used as MCU Timer Capture inputs or as MCU Timer  
PWM outputs. In order to provide maximum flexibility, these 10 pins may be used with any of MCU_TIMER0  
through MCU_TIMER9 instances. System level muxes are used to control the capture source pin for each  
MCU_TIMER[9-0] and the MCU_TIMER[9-0] source for each MCU_TIMER_IO[1-0] PWM output.  
In the MAIN domain the device provides 8 timer pins to be used as Timer Capture inputs or as Timer PWM  
outputs. For maximum flexibility, these 8 pins may be used with any of TIMER0 through TIMER19 instances.  
System level muxes are used to control the capture source pin for each TIMER[19-0] and the TIMER[19-0]  
source for each TIMER_IO[7-0] PWM output.  
Each odd numbered timer instance from each of the domains may be optionally cascaded with the previous  
even numbered timer instance from the same domain to form up to a 64-bit timer. For example, TIMER1 may be  
cascaded to TIMER0, MCU_TIMER1 may be cascaded to MCU_TIMER0, etc.  
When cascaded, TIMERi acts as a 32-bit prescaler to TIMERi+1, as well as MCU_TIMERn acts as a 32-bit  
prescaler to MCU_TIMERn+1. TIMERi / MCU_TIMERn must be configured to generate a PWM output edge at  
the desired rate to increment the TIMERi+1/ MCU_TIMERn+1 counter.  
For more information, see Timers section in Peripherals chapter in the device TRM.  
8.5.5.30 UART  
The UART is a slave peripheral that utilizes the DMA for data transfer or interrupt polling via host CPU. There  
are twelve UART modules in the device. All UART modules support IrDA and CIR modes when 48 MHz function  
clock is used. Each UART can be used for configuration and data exchange with a number of external peripheral  
devices or interprocessor communication between devices.  
For more information, see Universal Synchronous/Asynchronous Receiver/Transmitter (UART) section in  
Peripherals chapter in the device TRM.  
8.5.5.31 USB  
Similar to earlier versions of USB bus, USB 3.0 is a general-purpose cable bus, supporting data exchange  
between a host device and a wide range of simultaneously accessible peripherals.  
The device supports two identical USB subsystems:  
USB3SS0 is SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with on-chip SS (USB3.0) PHY  
and HS/FS/LS (1) (USB2.0) PHY  
USB3SS1 is SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with on-chip SS (USB3.0) PHY  
and HS/FS/LS (USB2.0) PHY  
For more information, see Universal Serial Bus (USB) Subsystem section in Peripherals chapter in the device  
TRM.  
8.5.5.32 UFS  
The Universal Flash Storage (UFS) interface is a standard-based serial interface engine.  
There is one UFS module inside the device - UFS0. The UFS module includes one UFS 2.1 host controller (HC)  
with an integrated M-PHY.  
The UFS module complies with the standards as listed in 8-1.  
8-1. UFS Standards  
DOCUMENT  
JESD220-1A  
JESD220-2  
JESD220C  
VERSION  
DESCRIPTION  
Universal Flash Storage (UFS) Unified Memory Extension  
Universal Flash Storage (UFS) Card Extension  
Universal Flash Storage (UFS)  
v1.1  
v1.0  
v2.1, March 2016  
Copyright © 2023 Texas Instruments Incorporated  
280 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
8-1. UFS Standards (continued)  
DOCUMENT  
VERSION  
DESCRIPTION  
JESD223-1B  
v1.1A  
Universal Flash Storage Host Controller Interface (UFSHCI) Unified Memory  
Extension  
JESD223C  
JESD224  
v2.1, March 2016  
March 2013  
Universal Flash Storage Host Controller Interface (UFSHCI)  
Universal Flash Storage (UFS) Test  
November, 2001  
Federal Information Processing Standards (FIPS) 197 Advanced Encryption Standard  
(AES)  
v3.1, 2014  
MIPI® Alliance Specification for M-PHY  
v1.60, 2013  
MIPI Alliance Specification for Unified Protocol (UniProSM)  
Small Computer System Interface (SCSI) Block Commands - 3  
SCSI Primary Commands - 4  
Revision 24, August 2010  
Revision 27, October 2010  
For more information, see Universal Flash Storage (UFS) Interface section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 281  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
9 Applications, Implementation, and Layout  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test design  
implementation to confirm system functionality.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
282 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
10 Device Connection and Layout Fundamentals  
10.1 Power Supply Decoupling and Bulk Capacitors  
10.1.1 Power Distribution Network Implementation Guidance  
The Sitara Processor Power Distribution Networks: Implementation and Analysis provides guidance for  
successful implementation of the power distribution network. This includes PCB stackup guidance as well as  
guidance for optimizing the selection and placement of the decoupling capacitors. TI supports only designs that  
follow the board design guidelines contained in the application report.  
10.2 External Oscillator  
For more information about External Oscillators, see Clock Specifications.  
10.3 JTAG and EMU  
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various  
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target  
Connection Guide.  
For more recommendations on EMU routing, see Emulation and Trace Headers Technical Reference Manual  
10.4 Reset  
The device incorporates four external reset pins (MCU_PORz, MCU_RESETz, PORz, and RESET_REQz) and  
two reset status pins (MCU_RESETSTATz and RESETSTATz). These pins can be driven by an external power  
good circuitry or Power Management IC (PMIC). MCU_PORz and Main PORz pins should be held active low  
during the entire power-up phase, and until all power supplies as well as the HFOSC0 clock are stable.  
All MCU domain resets act as master resets to the whole device, whereas Main domain resets only reset Main  
domain (MCU domain is reset isolated from all Main domain resets).  
10.5 Unused Pins  
For more information about Unused Pins, see Pin Connectivity Requirements  
10.6 Hardware Design Guide for JacintoTM 7 Devices  
The Hardware Design Guide for JacintoTM 7 Devices document describes hardware system design  
considerations for the JacintoTM 7 family of processors.This design guide is intended to be used as an aid during  
the development of application hardware.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 283  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
11 Peripheral- and Interface-Specific Design Information  
11.1 LPDDR4 Board Design and Layout Guidelines  
The goal of the Jacinto 7 DDR Board Design and Layout Guidelines is to make the LPDDR4 system  
implementation straightforward for all designers. Requirements have been distilled down to a set of layout and  
routing rules that allow designers to successfully implement a robust design for the topologies that TI supports.  
TI only supports board designs using LPDDR4 memories that follow the guidelines in this document.  
11.2 OSPI and QSPI Board Design and Layout Guidelines  
The following section details the routing guidelines that must be observed when routing the OSPI and QSPI  
interfaces.  
11.2.1 No Loopback and Internal Pad Loopback  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The signal propagation delay from the MCU_OSPI[x]_CLK signal to the flash device must be < 450 ps (~7cm  
as stripline or ~8cm as microstrip)  
50 ΩPCB routing is recommended along with series terminations, as shown in 11-1  
Propagation delays and matching:  
A to B < 450 ps  
Matching skew: < 60 ps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
284 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
MCU_OSPI[x]_CLK  
MCU_OSPI[x]_LBCLKO  
OSPI Device DQS  
MCU_OSPI[x]_DQS  
E
F
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
MCU_OSPI_Board_01  
* 0 Ωresistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is placeholder for fine tuning, if needed.  
11-1. OSPI Interface High Level Schematic  
11.2.2 External Board Loopback  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The MCU_OSPI[x]_LBCLKO output signal must be looped back into the MCU_OSPI[x]_DQS input  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)  
should be approximately equal to half of the signal propagation delay from the MCU_OPSI[x]_LBCLKO pin to  
the MCU_OSPI[x]_DQS pin ((C to D)/2). See the note below.  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B) must  
be approximately equal to the signal propagation delay of the control and data signals between the flash  
device and the SoC device (E to F, or F to E)  
50 ΩPCB routing is recommended along with series terminations, as shown in 11-2  
Propagation delays and matching:  
A to B = E to F = (C to D) / 2  
Matching skew: < 60 ps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 285  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
备注  
The OSPI Board Loopback Hold time requirement (described in OSPI) is larger than the Hold time  
provided by a typical flash device. Therefore, the length of MCU_OPSI[x]_LBCLKO pin to the  
MCU_OSPI[x]_DQS pin (C to D) can be shortened to compensate.  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
MCU_OSPI[x]_CLK  
C
R1  
0 Ω*  
MCU_OSPI[x]_LBCLKO  
D
OSPI Device DQS  
MCU_OSPI[x]_DQS  
E
F
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
MCU_OSPI_Board_02  
* 0 Ωresistor (R1), located as close as possible to the MCU_OSPI[x]_CLK and MCU_OSPI[x]_LBCLKO pins, is a placeholder for fine  
tuning, if needed.  
11-2. OSPI Interface High Level Schematic  
11.2.3 DQS (only available in Octal Flash devices)  
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device  
The DQS pin of the flash devices must be connected to MCU_OSPI[x]_DQS signal  
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)  
should be approximately equal to the signal propagation delay from the MCU_OSPI[x]_DQS pin to the DQS  
output pin (C to D)  
50 ΩPCB routing is recommended along with series terminations, as shown in 11-3  
Propagation delays and matching:  
A to B = C to D  
Matching skew: < 60 ps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
286 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
device clock input  
MCU_OSPI[x]_CLK  
C
D
OSPI device DQS  
MCU_OSPI[x]_DQS  
E
F
MCU_OSPI[x]_D[y],  
MCU_OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
device IOy, CS#  
J7ES_OSPI_Board_03  
* 0 Ωresistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed.  
11-3. OSPI Interface High Level Schematic  
11.3 USB VBUS Design Guidelines  
The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as  
20 V when the Power Delivery addendum is supported. Some automotive applications require a max voltage to  
be 30 V.  
The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in the  
11-4), which limits the voltage applied to the actual device pin (USB0_VBUS). The tolerance of these external  
resistors should be equal to or less than 1%, and the leakage current of zener diode at 5 V should be less than  
100 nA.(1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 287  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
Device  
USBn_VBUS  
16.5 kΩ  
1%  
3.5 kΩ  
1%  
VBUS signal  
10 kΩ  
1%  
6.8V  
(BZX84C6V8 or equivalent)  
VSS  
VSS  
J7ES_USB_VBUS_01  
11-4. USB VBUS Detect Voltage Divider / Clamp Circuit  
The USB0_VBUS pin can be considered to be fail-safe because the external circuit in 11-4 limits the input  
current to the actual device pin in a case where VBUS is applied while the device is powered off.  
11.4 System Power Supply Monitor Design Guidelines using VMON/POK  
The VMON1_ER_VSYS pin provides a way to monitor a system power supply. This system power supply is  
typically a single pre-regulated power source for the entire system. This supply is monitored by comparing the  
output of an external voltage divider circuit sourced by this supply with an internal voltage reference, with a  
power fail event being triggered when the voltage applied to VMON1_ER_VSYS drops below the internal  
reference voltage. The actual system power supply voltage trip point is determined by the system designer when  
selecting component values used to implement the external resistor voltage divider circuit. When designing the  
resistor divider circuit it is important to understand various factors which contribute to variability in the system  
power supply monitor trip point. The first thing to consider is the initial accuracy of the VMON1_ER_VSYS input  
threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1% resistors with similar  
thermal coefficient are recommended for implementing the resistor voltage divider. This minimizes variability  
contributed by resistor value tolerances. Input leakage current associated with VMON1_ER_VSYS must also be  
considered since any current flowing into the pin creates a loading error on the voltage divider output. The  
VMON1_ER_VSYS input leakage current may be in the range of 10 nA to 2.5 μA when applying 0.45 V.  
备注  
The resistor voltage divider shall be designed such that its output voltage never exceeds the  
maximum value defined in Recommended Operating Conditions during normal operating conditions.  
11-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger  
threshold is 5 V - 10%, or 4.5 V.  
For this example, it is important to understand which variables effect the maximum trigger threshold when  
selecting resistor values. It is obvious a device which has a VMON1_ER_VSYS input threshold of 0.45 V + 3%  
needs to be considered when trying to design a voltage divider that doesnt trip until the system supply drops  
10%. The effect of resistor tolerance and input leakage also needs to be considered, but how these contributions  
effect the maximum trigger point may not be obvious. When selecting component values which produce a  
maximum trigger voltage, the system designer must consider a condition where the value of R1 is 1% low and  
the value of R2 is 1% high combined with a condition where input leakage current for the VMON1_ER_VSYS pin  
is 2.5 μA. When implementing a resistor divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a  
maximum trigger threshold of 4.523 V.  
Once component values have been selected to satisfy the maximum trigger voltage as described above, the  
system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an  
output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input  
Copyright © 2023 Texas Instruments Incorporated  
288 Submit Document Feedback  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result  
is a minimum trigger threshold of 4.008 V.  
This example demonstrates a system power supply voltage trip point that ranges from 4.008 V to 4.523 V.  
Approximately 250 mV of this range is introduced by VMON1_ER_VSYS input threshold accuracy of ±3%,  
approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this  
range is introduced by loading error when VMON1_ER_VSYS input leakage current is 2.5 μA.  
The resistor values selected in this example produces approximately 100 μA of bias current through the resistor  
divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above could be reduced to  
about 10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor  
divider bias current vs loading error is something the system designer needs to consider when selecting  
component values.  
The system designer should also consider implementing a noise filter on the voltage divider output since  
VMON1_ER_VSYS has minimum hysteresis and a high-bandwidth response to transients. This could be done  
by installing a capacitor across R1 as shown in 11-5. However, the system designer must determine the  
response time of this filter based on system supply noise and expected response to transient events.  
11-5 presents an example, when the system power supply voltage is nominally 5 V and the desired trigger  
threshold is -10% or 4.5 V.  
Device  
VMON_VSYS  
R2  
VSYS  
40.2 kΩ 1%  
C1  
Value = Determined by system designer  
(System Power Supply)  
4.81 kΩ  
1%  
R1  
VSS  
SPRSP56_VMON_ER_MON_01  
11-5. System Supply Monitor Voltage Divider Circuit  
The VMON2_IR_VCPU pin provides a way to monitor VDD_CPU power supply. Must be externally connected as  
close as possible to VDD_CPU pin on the board. SoCs that have a VMON6_IR_VEXT0P8 can optionally monitor  
other domains such as VDD_CORE or VDD_MCU. Similarly, those signals should be as close as possible to  
VDD_CORE or VDD_MCU pin on the board.  
The VMON3_IR_VEXT1P8 and VMON4_IR_VEXT1P8 pins provide a way to monitor an external 1.8-V power  
supply. The VMON5_IR_VEXT3P3 pin provides a way to monitor an external 3.3-V power supply. An internal  
resistor divider with software control is implemented inside the SoC. Software can program the internal resistor  
divider to create appropriate under voltage and over voltage interrupts. These pins should not be sourced from  
an external resistor divider. If the monitored voltage requires adjustment, be sure to buffer the divided voltage  
prior connecting to monitor pin.  
11.5 High Speed Differential Signal Routing Guidance  
The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed  
differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and  
spacing limits. TI supports only designs that follow the board design guidelines contained in the application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 289  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
11.6 Thermal Solution Guidance  
The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful  
implementation of a thermal solution for system designs containing this device. This document provides  
background information on common terms and methods related to thermal solutions. TI only supports designs  
that follow system design guidelines contained in the application report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
290 Submit Document Feedback  
Product Folder Links: AM69A  
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AM69A). Texas Instruments recommends two of three possible prefix designators for its support tools:  
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
For orderable part numbers of AM69A devices in the ALY package type, see the Package Option Addendum of  
this document, the TI website (ti.com), or contact your TI sales representative.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 291  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
12.1.1 Standard Package Symbolization  
备注  
Some devices may have a cosmetic circular marking visible on the top of the device package which  
results from the production test process. In addition, some devices may also show a color variation in  
the package substrate which results from the substrate manufacturer. These differences are cosmetic  
only with no reliability impact.  
xBBBBBBBBzYrPPPcQ1  
PIN ONE INDICATOR  
XXXXXXX  
G1  
ZZZ  
YYY  
O
J7ES_SPRSP35_PACK_01  
12-1. Printed Device Reference  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
292 Submit Document Feedback  
Product Folder Links: AM69A  
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
12.1.2 Device Naming Convention  
备注  
BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
12-1. Nomenclature Description  
FIELD  
PARAMETER  
FIELD  
DESCRIPTION  
VALUE  
DESCRIPTION  
X
P
Prototype  
Preproduction (production test flow, no reliability data)  
a
Device evolution stage  
BLANK(1) Production  
AM69A92  
BBBBBBB  
Base production part number  
Device revision  
See Device Comparison  
AM69A72  
r
A
T
SR1.0  
See Speed Grade Maximum Frequency.  
Alternate speed grade  
Z
Device Speed Grade  
OTHER  
Features  
(see Device Comparison)  
f
G
Base, no additional Features  
Y
Functional Safety(3)  
Security  
G
G
Non-Functional Safety  
Non-Secure  
y
t
Other  
Secure  
40°C to 105°C - Extended Industrial (see Recommended Operation  
Conditions)  
A
H
I
Temperature(2)  
0°C to 95°C - Commercial (see Recommended Operation Conditions)  
40°C to 125°C - Automotive (see Recommended Operation  
Conditions)  
PPP  
Q1  
Package Designator  
ALY  
Q1  
FCBGA (1414-pin; 23 mm x 23 mm)  
Auto Qualified (Q100)  
Automotive Designator  
BLANK(1) Standard  
xxxxxxx  
YYY  
ZZZ  
O
Lot Trace Code (LTC)  
Production Code, For TI use only  
Production Code, For TI use only  
Pin one designator  
G1  
ECAT - Green package designator  
(1) BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
(2) Applies to device max junction temperature.  
(3) Functional Safety is not supported on this device family, if interested in this feature, please see the TDA4VH device family.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 293  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
12.2 Tools and Software  
The following products support development for AM69A platforms:  
Development Tools  
Code Composer StudioIntegrated Development Environment Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step  
of the application development flow. Familiar tools and interfaces allow users to get started faster than ever  
before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced  
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for  
embedded developers.  
Pin mux tool The Pin MUX Utility is a software tool which provides a Graphical User Interface for configuring pin  
multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as  
C header/code files that can be imported into software development kits (SDKs) or used to configure customer's  
custom software. Version 4 of the Pin Mux utility adds the capability of automatically selecting a mux  
configuration that satisfies the entered requirements.  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized  
distributor.  
12.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The following documents describe the TDA4VM and AM69A devices.  
Technical Reference Manual  
J784S4/TDA4AP/TDA4VP/TDA4AH/TDA4VH/AM69A Processors Technical Reference Manual Details the  
integration, the environment, the functional description, and the programming models for each peripheral and  
subsystem in the TDA4VM and AM69A families of devices.  
Errata  
J784S4/TDA4AP/TDA4VP/TDA4AH/TDA4VH/AM69A Processors Silicon Errata Describes the known  
exceptions to the functional specifications for the device.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
eMMCis a trademark of MultiMediaCard Association.  
Jacinto, C7000, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
CoreSightis a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
PCI-Express® is a registered trademark of PCI-SIG.  
安全数字® is a registered trademark of SD Card Association.  
MIPI® is a registered trademark of MIPI Alliance, Inc.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
294 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 295  
Product Folder Links: AM69A  
English Data Sheet: SPRSP92  
 
 
AM69A  
ZHCSRW1 FEBRUARY 2023  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
13.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SPRSP92  
296 Submit Document Feedback  
Product Folder Links: AM69A  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM69A34AHMGHAALYR  
AM69A54ANMGHAALYR  
AM69A78ATMGHAALYR  
AM69A94ATMGHAALYR  
AM69A98ATNGHAALYR  
XAM69A98ATNGHAALY  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
ALY  
ALY  
ALY  
ALY  
ALY  
ALY  
1414  
1414  
1414  
1414  
1414  
1414  
200  
200  
200  
200  
200  
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-May-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
ALY1414A  
FCBGA - 3.341 mm max height  
SCALE 0.500  
BALL GRID ARRAY  
31.1  
30.9  
A
B
BALL A1 CORNER  
31.1  
30.9  
(
24.6)  
(
0.1 C  
30.6)  
(
22)  
(1.94)  
3.341  
3.023  
0.2 C  
C
SEATING PLANE  
0.15 C  
(0.842)  
29.6 TYP  
PKG  
0.5  
0.3  
TYP  
(0.7) TYP  
0.8 TYP  
(0.7) TYP  
AV  
AU  
AT  
AR  
AP  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
PKG  
29.6  
TYP  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
0.55  
0.45  
C
B
A
1414X  
0.25  
0.1  
1
2
3
4
5
6
7
8
9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38  
11 13 15 17 19 21 23 25 27 29 31 33 35 37  
C A B  
0.8 TYP  
C
4228539/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALY1414A  
FCBGA - 3.341 mm max height  
BALL GRID ARRAY  
1414X ( 0.4)  
(0.8) TYP  
3
4
5
6
7
8
9
11  
13 14  
16 17 18  
1
2
10  
12  
15  
19 20  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  
A
B
C
D
E
F
(0.8) TYP  
G
H
J
K
L
M
N
P
R
T
U
V
SYMM  
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
AT  
AU  
AV  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:3X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228539/B 04/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALY1414A  
FCBGA - 3.341 mm max height  
BALL GRID ARRAY  
1414X 0.4  
(0.8) TYP  
3
4
5
6
7
8
9
11  
13 14  
16 17 18  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  
19 20  
1
2
10  
12  
15  
A
B
C
D
E
F
(0.8) TYP  
G
H
J
K
L
M
N
P
R
T
U
V
SYMM  
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
AT  
AU  
AV  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 3X  
4228539/B 04/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XAMPL138ZCE3

OMAP-L138 Low-Power Applications Processor
TI

XAMPL138ZCEA3

OMAP-L138 Low-Power Applications Processor
TI

XAMPL138ZWT3

OMAP-L138 Low-Power Applications Processor
TI

XAMPL138ZWTA3

OMAP-L138 Low-Power Applications Processor
TI

XAMR20A

16 SEGMENT SINGLE DIGIT ALPHANUMERIC DISPLAY
ETC

XAP-02V-1

CONN HOUSING XA 2POS 2.5MM
ETC

XAP-03V-1

CONN XA HOUSING 3 POS 2.5MM
ETC

XAP-04V-1

XA CONN DISCON CRIMP STYLE 4POS
ETC

XAP-05V-1

CONN XA HOUSING 5 POS 2.5MM
ETC

XAP-06V-1

CONN XA HOUSING 6 POS 2.5MM
ETC

XAP-07V-1

CONN XA HOUSING 7 POS 2.5MM
ETC

XAP-08V-1

CONN XA HOUSING 8 POS 2.5MM
ETC