XIO3130NMH [TI]

集成 PCI Express® (PCIe) 1:3 4 端口 4 通道分组交换机 | NMH | 196 | 0 to 70;
XIO3130NMH
型号: XIO3130NMH
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 PCI Express® (PCIe) 1:3 4 端口 4 通道分组交换机 | NMH | 196 | 0 to 70

PC 控制器 微控制器 总线控制器 微控制器和处理器
文件: 总139页 (文件大小:1627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XIO3130  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SLLS693C  
May 2007Revised June 2008  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Contents  
1
2
Features............................................................................................................................ 11  
Introduction....................................................................................................................... 12  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Description .................................................................................................................. 12  
Related Documents ........................................................................................................ 12  
Document Conventions.................................................................................................... 13  
Ordering Information ...................................................................................................... 13  
Terminal Assignments ..................................................................................................... 14  
Terminal Descriptions...................................................................................................... 17  
3
Description........................................................................................................................ 22  
3.1  
Power-Up/Power-Down Sequencing..................................................................................... 22  
3.1.1  
Power-Up Sequence ............................................................................................ 22  
Power-Down Sequence......................................................................................... 23  
3.1.2  
3.2  
Express Interface........................................................................................................... 23  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
External Reference Clock ...................................................................................... 23  
Clock Generator ................................................................................................. 23  
Beacon............................................................................................................ 24  
WAKE ............................................................................................................ 24  
Initial Flow Control Credits ..................................................................................... 24  
PCI Express Message Transactions.......................................................................... 24  
3.3  
3.4  
GPIO Terminals ............................................................................................................ 25  
Serial EEPROM ............................................................................................................ 25  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
Serial Bus Interface Implementation .......................................................................... 26  
Serial Bus Interface Protocol................................................................................... 26  
Serial Bus EEPROM Application .............................................................................. 28  
Accessing Serial Bus Devices Through Software........................................................... 31  
3.5  
Switch Reset Features..................................................................................................... 31  
4
XIO3130 Configuration Register Space ................................................................................. 33  
4.1  
PCI Configuration Register Space Overview ........................................................................... 33  
PCI Express Upstream Port Registers .................................................................................. 34  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
PCI Configuration Space (Upstream Port) Register Map .................................................. 35  
Vendor ID Register.............................................................................................. 36  
Device ID Register .............................................................................................. 36  
Command Registers ............................................................................................ 36  
Status Register .................................................................................................. 37  
Class Code and Revision ID Register ........................................................................ 39  
Cache Line Size Register ...................................................................................... 39  
Primary Latency Timer Register............................................................................... 39  
Header Type Register .......................................................................................... 40  
4.2.10 BIST Register .................................................................................................... 40  
4.2.11 Primary Bus Number............................................................................................ 40  
4.2.12 Secondary Bus Number ........................................................................................ 40  
4.2.13 Subordinate Bus Number....................................................................................... 41  
4.2.14 Secondary Latency Timer Register ........................................................................... 41  
4.2.15 I/O Base Register................................................................................................ 41  
4.2.16 I/O Limit Register ................................................................................................ 42  
4.2.17 Secondary Status Register..................................................................................... 42  
4.2.18 Memory Base Register ......................................................................................... 43  
4.2.19 Memory Limit Register.......................................................................................... 43  
4.2.20 Pre-fetchable Memory Base Register......................................................................... 43  
4.2.21 Pre-Fetchable Memory Limit Register ........................................................................ 44  
2
Contents  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.22 Pre-Fetchable Base Upper 32 Bits Register................................................................. 44  
4.2.23 Pre-fetchable Limit Upper 32 Bits Register .................................................................. 45  
4.2.24 I/O Base Upper 16 Bits Register .............................................................................. 45  
4.2.25 I/O Limit Upper 16 Bits Register............................................................................... 45  
4.2.26 Capabilities Pointer Register................................................................................... 45  
4.2.27 Interrupt Line Register .......................................................................................... 46  
4.2.28 Interrupt Pin Register ........................................................................................... 46  
4.2.29 Bridge Control Register......................................................................................... 46  
4.2.30 Capability ID Register........................................................................................... 48  
4.2.31 Next-Item Pointer Register ..................................................................................... 48  
4.2.32 Power Management Capabilities Register ................................................................... 48  
4.2.33 Power Management Control/Status Register ................................................................ 49  
4.2.34 Power Management Bridge Support Extension Register .................................................. 50  
4.2.35 Power Management Data Register ........................................................................... 50  
4.2.36 MSI Capability ID Register ..................................................................................... 50  
4.2.37 Next-Item Pointer Register ..................................................................................... 50  
4.2.38 MSI Message Control Register ................................................................................ 51  
4.2.39 MSI Message Address Register............................................................................... 51  
4.2.40 MSI Message Upper Address Register....................................................................... 52  
4.2.41 MSI Message Data Register ................................................................................... 52  
4.2.42 Capability ID Register........................................................................................... 52  
4.2.43 Next-Item Pointer Register ..................................................................................... 52  
4.2.44 Subsystem Vendor ID Register................................................................................ 53  
4.2.45 Subsystem ID Register ......................................................................................... 53  
4.2.46 PCI Express Capability ID Register........................................................................... 53  
4.2.47 Next-Item Pointer Register ..................................................................................... 54  
4.2.48 PCI Express Capabilities Register ............................................................................ 54  
4.2.49 Device Capabilities Register ................................................................................... 54  
4.2.50 Device Control Register ........................................................................................ 55  
4.2.51 Device Status Register ......................................................................................... 56  
4.2.52 Link Capabilities Register ...................................................................................... 57  
4.2.53 Link Control Register............................................................................................ 58  
4.2.54 Link Status Register............................................................................................. 59  
4.2.55 Serial Bus Data Register ....................................................................................... 59  
4.2.56 Serial Bus Index Register ...................................................................................... 59  
4.2.57 Serial Bus Slave Address Register............................................................................ 60  
4.2.58 Serial Bus Control and Status Register ...................................................................... 60  
4.2.59 Upstream Port Link PM Latency Register.................................................................... 61  
4.2.60 Global Chip Control Register .................................................................................. 63  
4.2.61 GPIO A Control Register ....................................................................................... 64  
4.2.62 GPIO B Control Register ....................................................................................... 66  
4.2.63 GPIO C Control Register ....................................................................................... 68  
4.2.64 GPIO D Control Register ....................................................................................... 70  
4.2.65 GPIO Data Register............................................................................................. 72  
4.2.66 TI Proprietary Register.......................................................................................... 75  
4.2.67 TI Proprietary Register.......................................................................................... 75  
4.2.68 TI Proprietary Register.......................................................................................... 75  
4.2.69 TI Proprietary Register.......................................................................................... 76  
4.2.70 TI Proprietary Register.......................................................................................... 76  
4.2.71 TI Proprietary Register.......................................................................................... 76  
4.2.72 Subsystem Access Register ................................................................................... 77  
4.2.73 General Control Register ....................................................................................... 77  
4.2.74 Downstream Ports Link PM Latency Register ............................................................... 78  
Contents  
3
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.75 Global Switch Control Register ................................................................................ 79  
4.2.76 Advanced Error Reporting Capability ID Register........................................................... 80  
4.2.77 Next Capability Offset/Capability Version Register ......................................................... 80  
4.2.78 Uncorrectable Error Status Register .......................................................................... 80  
4.2.79 Uncorrectable Error Mask Register ........................................................................... 81  
4.2.80 Uncorrectable Error Severity Register ........................................................................ 82  
4.2.81 Correctable Error Status Register............................................................................. 83  
4.2.82 Correctable Error Mask Register .............................................................................. 84  
4.2.83 Advanced Error Capabilities and Control Register.......................................................... 85  
4.2.84 Header Log Register ............................................................................................ 85  
PCI Express Downstream Port Registers............................................................................... 86  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
PCI Configuration Space (Downstream Port) Register Map............................................... 86  
Vendor ID Register.............................................................................................. 87  
Device ID Register .............................................................................................. 87  
Command Register.............................................................................................. 87  
Status Register .................................................................................................. 88  
Class Code and Revision ID Register ........................................................................ 89  
Cache Line Size Register ...................................................................................... 90  
Primary Latency Timer Register............................................................................... 90  
Header Type Register .......................................................................................... 90  
4.3.10 BIST Register .................................................................................................... 90  
4.3.11 Primary Bus Number............................................................................................ 91  
4.3.12 Secondary Bus Number ........................................................................................ 91  
4.3.13 Subordinate Bus Number....................................................................................... 91  
4.3.14 Secondary Latency Timer Register ........................................................................... 91  
4.3.15 I/O Base Register................................................................................................ 92  
4.3.16 I/O Limit Register ................................................................................................ 92  
4.3.17 Secondary Status Register..................................................................................... 92  
4.3.18 Memory Base Register ......................................................................................... 93  
4.3.19 Memory Limit Register.......................................................................................... 94  
4.3.20 Pre-fetchable Memory Base Register......................................................................... 94  
4.3.21 Pre-fetchable Memory Limit Register ......................................................................... 94  
4.3.22 Pre-fetchable Base Upper 32 Bits Register.................................................................. 95  
4.3.23 Pre-fetchable Limit Upper 32 Bits Register .................................................................. 95  
4.3.24 I/O Base Upper 16 Bits Register .............................................................................. 96  
4.3.25 I/O Limit Upper 16 Bits Register............................................................................... 96  
4.3.26 Capabilities Pointer Register................................................................................... 96  
4.3.27 Interrupt Line Register .......................................................................................... 97  
4.3.28 Interrupt Pin Register ........................................................................................... 97  
4.3.29 Bridge Control Register......................................................................................... 97  
4.3.30 Capability ID Register........................................................................................... 99  
4.3.31 Next-Item Pointer Register ..................................................................................... 99  
4.3.32 Power Management Capabilities Register ................................................................... 99  
4.3.33 Power Management Control/Status Register............................................................... 100  
4.3.34 Power Management Bridge Support Extension Register................................................. 101  
4.3.35 Power Management Data Register.......................................................................... 101  
4.3.36 MSI Capability ID Register.................................................................................... 101  
4.3.37 Next-Item Pointer Register.................................................................................... 101  
4.3.38 MSI Message Control Register............................................................................... 102  
4.3.39 MSI Message Address Register ............................................................................. 102  
4.3.40 MSI Message Upper Address Register ..................................................................... 103  
4.3.41 MSI Message Data Register.................................................................................. 103  
4.3.42 Capability ID Register ......................................................................................... 103  
4
Contents  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.43 Next-Item Pointer Register.................................................................................... 104  
4.3.44 Subsystem Vendor ID Register .............................................................................. 104  
4.3.45 Subsystem ID Register........................................................................................ 104  
4.3.46 PCI Express Capability ID Register ......................................................................... 104  
4.3.47 Next-Item Pointer Register.................................................................................... 105  
4.3.48 PCI Express Capabilities Register........................................................................... 105  
4.3.49 Device Capabilities Register.................................................................................. 105  
4.3.50 Device Control Register....................................................................................... 106  
4.3.51 Device Status Register........................................................................................ 107  
4.3.52 Link Capabilities Register ..................................................................................... 108  
4.3.53 Link Control Register .......................................................................................... 109  
4.3.54 Link Status Register ........................................................................................... 110  
4.3.55 Slot Capabilities Register ..................................................................................... 110  
4.3.56 Slot Control Register .......................................................................................... 112  
4.3.57 Slot Status Register............................................................................................ 114  
4.3.58 TI Proprietary Register ........................................................................................ 115  
4.3.59 TI Proprietary Register ........................................................................................ 115  
4.3.60 TI Proprietary Register ........................................................................................ 116  
4.3.61 General Control Register...................................................................................... 116  
4.3.62 L0s Idle Timeout Register..................................................................................... 118  
4.3.63 General Slot Info Register .................................................................................... 118  
4.3.64 Advanced Error Reporting Capabilities ID Register ....................................................... 119  
4.3.65 Next Capability Offset/Capability Version Register........................................................ 119  
4.3.66 Uncorrectable Error Status Register......................................................................... 119  
4.3.67 Uncorrectable Error Mask Register.......................................................................... 120  
4.3.68 Uncorrectable Error Severity Register ...................................................................... 121  
4.3.69 Correctable Error Status Register ........................................................................... 122  
4.3.70 Correctable Error Mask Register............................................................................. 123  
4.3.71 Advanced Error Capabilities and Control Register ........................................................ 123  
4.3.72 Header Log Register .......................................................................................... 124  
5
PCI Hot Plug Implementation Overview ............................................................................... 125  
5.1  
PCI Hot Plug Architecture Overview ................................................................................... 125  
PCI Hot Plug Timing...................................................................................................... 126  
5.2  
5.2.1  
Power-Up Cycle ................................................................................................ 126  
5.2.1.1 NonPCI Hot Plug Power-Up Cycle................................................................ 127  
5.2.1.2 PCI Hot Plug Power-Up Cycle With PWRGDn Feedback ..................................... 127  
5.2.1.3 PCI Hot Plug Power-Up Cycle With No PWRGDn Feedback................................. 127  
Power-Down Cycles ........................................................................................... 128  
5.2.2.1 Normal Power-Down................................................................................ 128  
5.2.2.2 Surprise Removal ................................................................................... 129  
5.2.2.3 PWRGDn De-Assertion ............................................................................ 129  
PMI_Turn_Off and PME_To_Ack Messages............................................................... 129  
Debounce Circuits ............................................................................................. 130  
HP_INTX Pin ................................................................................................... 130  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
6
Electrical Characteristics................................................................................................... 131  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
Absolute Maximum Ratings ............................................................................................. 131  
Recommended Operating Conditions.................................................................................. 131  
PCI Express Differential Transmitter Output Ranges ................................................................ 132  
PCI Express Differential Receiver Input Ranges ..................................................................... 133  
PCI Express Differential Reference Clock Input Ranges............................................................ 134  
PCI Express Reference Clock Output Requirements................................................................ 135  
3.3-V I/O Electrical Characteristics ..................................................................................... 136  
Contents  
5
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
6.8  
POWER CONSUMPTION ............................................................................................... 136  
6
Contents  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
List of Figures  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
4-1  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
Block Diagram ..................................................................................................................... 22  
Power-Up Sequence Diagram................................................................................................... 23  
Power-Down Sequence Diagram ............................................................................................... 23  
Serial EEPROM Applications.................................................................................................... 26  
Serial-Bus Start/Stop Conditions and Bit Transfers .......................................................................... 27  
Serial-Bus Protocol Acknowledge............................................................................................... 27  
Serial-Bus Protocol – Byte Write................................................................................................ 27  
Serial-Bus Protocol – Byte Read................................................................................................ 28  
Serial-Bus Protocol – Multiple-Byte Read ..................................................................................... 28  
XIO3130 Enumerations Topology............................................................................................... 34  
NonPCI Hot Plug Power-Up Cycle ............................................................................................ 127  
PCI Hot Plug Power-Up Cycle With PWFRDn Feedback .................................................................. 127  
PCI Hot Plug Power-Up Cycle With No PWGRDn Feedback ............................................................. 128  
Normal Power-Down ............................................................................................................ 128  
Surprise Removal................................................................................................................ 129  
Effect When PWFRGn Goes Low ............................................................................................. 129  
List of Figures  
7
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
List of Tables  
2-1  
XIO3130 Terminal Assignments ................................................................................................ 14  
XIO3130 Terminals Sorted Alphanumerically ................................................................................. 15  
XIO3130 Signal Names Sorted Alphabetically ................................................................................ 16  
Power Supply Terminals ......................................................................................................... 17  
Combined Power Terminals ..................................................................................................... 17  
Ground Terminals ................................................................................................................. 18  
PCI Express Reference Clock Terminals ...................................................................................... 18  
PCI Express Terminals........................................................................................................... 19  
PCI Hot Plug Strapping Terminals.............................................................................................. 19  
GPIO Terminals ................................................................................................................... 20  
Miscellaneous Terminals......................................................................................................... 21  
Initial Flow Control Credit Advertisements..................................................................................... 24  
Messages Supported by the XIO3130 ......................................................................................... 25  
EEPROM Register Loading Map................................................................................................ 29  
Register for Programming Serial-Bus Devices ................................................................................ 31  
Switch Reset Options............................................................................................................. 32  
PCI Express Upstream Port Configuration Register Map (Type 1)......................................................... 35  
Extended Configuration Space (Upstream Port).............................................................................. 36  
Bit Descriptions – Command Register ......................................................................................... 37  
Bit Descriptions – Status Register .............................................................................................. 38  
Bit Descriptions – Class Code and Revision ID Register.................................................................... 39  
Bit Descriptions – I/O Base Register ........................................................................................... 41  
Bit Descriptions – I/O Limit Register............................................................................................ 42  
Bit Descriptions – Secondary Status Register ................................................................................ 42  
Bit Descriptions – Memory Base Register ..................................................................................... 43  
Bit Descriptions – Memory Limit Register...................................................................................... 43  
Bit Descriptions – Pre-fetchable Memory Base Register .................................................................... 43  
Bit Descriptions – Pre-fetchable Memory Limit Register..................................................................... 44  
Bit Descriptions – Pre-fetchable Base Upper 32 Bits Register.............................................................. 44  
Bit Descriptions – Pre-fetchable Limit Upper 32 Bits Register .............................................................. 45  
Bit Descriptions – I/O Base Upper 16 Bits Register .......................................................................... 45  
Bit Descriptions – I/O Limit Upper 16 Bits Register .......................................................................... 45  
Bit Descriptions – Bridge Control Register..................................................................................... 47  
Bit Descriptions – Power Management Capabilities Register............................................................... 48  
Bit Descriptions – Power Management Control/Status Register............................................................ 49  
Bit Descriptions – PM Bridge Support Extension Register .................................................................. 50  
Bit Descriptions – MSI Message Control Register............................................................................ 51  
Bit Descriptions – MSI Message Address Register........................................................................... 51  
Bit Descriptions – MSI Data Register........................................................................................... 52  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
3-1  
3-2  
3-3  
3-4  
3-5  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
8
List of Tables  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
4-39  
4-40  
4-41  
4-42  
4-43  
4-44  
4-45  
4-46  
4-47  
4-48  
4-49  
4-50  
4-51  
4-52  
4-53  
4-54  
4-55  
4-56  
4-57  
4-58  
4-59  
4-60  
4-61  
4-62  
4-63  
4-64  
Bit Descriptions – PCI Express Capabilities Register ........................................................................ 54  
Bit Descriptions – Device Capabilities Register............................................................................... 55  
Bit Descriptions – Device Control Register .................................................................................... 55  
Bit Descriptions – Device Status Register ..................................................................................... 56  
Bit Descriptions – Link Capabilities Register .................................................................................. 57  
Bit Descriptions – Link Control Register ....................................................................................... 58  
Bit Descriptions – Link Status Register ........................................................................................ 59  
Bit Descriptions – Serial Bus Slave Address Register ....................................................................... 60  
Bit Descriptions – Serial Bus Control and Status Register .................................................................. 60  
Bit Descriptions – Upstream Port Link PM Latency Register................................................................ 61  
Bit Descriptions – Global Chip Control Register .............................................................................. 63  
Bit Descriptions – GPIO A Control Register ................................................................................... 65  
Bit Descriptions – GPIO B Control Register ................................................................................... 67  
Bit Descriptions – GPIO C Control Register................................................................................... 69  
Bit Descriptions – GPIO D Control Register................................................................................... 71  
Bit Descriptions – GPIO Data Register......................................................................................... 72  
Bit Descriptions – Subsystem Access Register ............................................................................... 77  
Bit Descriptions – General Control Register................................................................................... 77  
Bit Descriptions – Downstream Ports Link PM Latency Register........................................................... 78  
Bit Descriptions – Global Switch Control Register............................................................................ 79  
Uncorrectable Error Status Register............................................................................................ 80  
Uncorrectable Error Mask Register............................................................................................. 81  
Uncorrectable Error Severity Register.......................................................................................... 82  
Correctable Error Status Register............................................................................................... 83  
Correctable Error Mask Register................................................................................................ 84  
Advanced Error Capabilities and Control Register ........................................................................... 85  
PCI Express Downstream Port Configuration Register Map (Type 1) ..................................................... 86  
Extended Configuration Space (Downstream Port) .......................................................................... 87  
Bit Descriptions – Command Register ......................................................................................... 88  
Bit Descriptions – Status Register .............................................................................................. 88  
Bit Descriptions – Class Code and Revision ID Register.................................................................... 89  
Bit Descriptions – I/O Base Register ........................................................................................... 92  
Bit Descriptions – I/O Limit Register............................................................................................ 92  
Bit Descriptions – Secondary Status Register ................................................................................ 93  
IBit Descriptions – Memory Base Register .................................................................................... 93  
Bit Descriptions – Memory Limit Register...................................................................................... 94  
Descriptions – Pre-fetchable Memory Base Register ........................................................................ 94  
Bit Descriptions – Pre-fetchable Memory Limit Register..................................................................... 95  
Bit Descriptions – Pre-fetchable Base Upper 32 Bits Register.............................................................. 95  
Descriptions – Pre-fetchable Limit Upper 32 Bits Register .................................................................. 95  
Bit Descriptions – I/O Base Upper 16 Bits Register .......................................................................... 96  
List of Tables  
9
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4-65  
4-66  
4-67  
4-68  
4-69  
4-70  
4-71  
4-72  
4-73  
4-74  
4-75  
4-76  
4-77  
4-78  
4-79  
4-80  
4-81  
4-82  
4-83  
4-84  
4-85  
4-86  
4-87  
4-88  
4-89  
4-90  
5-1  
Bit Descriptions – I/O Limit Upper 16 Bits Register .......................................................................... 96  
Bit Descriptions – Bridge Control Register..................................................................................... 97  
Bit Descriptions – Power Management Capabilities Register............................................................... 99  
Bit Descriptions – Power Management Control/Status Register .......................................................... 100  
Bit Descriptions – PM Bridge Support Extension Register................................................................. 101  
Bit Descriptions – MSI Message Control Register .......................................................................... 102  
Bit Descriptions – MSI Message Address Register ......................................................................... 102  
Bit Descriptions – MSI Data Register ......................................................................................... 103  
Bit Descriptions – PCI Express Capabilities Register....................................................................... 105  
Bit Descriptions – Device Capabilities Register ............................................................................. 106  
Bit Descriptions – Device Control Register................................................................................... 106  
Bit Descriptions – Device Status Register.................................................................................... 107  
Bit Descriptions – Link Capabilities Register................................................................................. 108  
Bit Descriptions – Link Control Register...................................................................................... 109  
Bit Descriptions – Link Status Register....................................................................................... 110  
Bit Descriptions – Slot Capabilities Register................................................................................. 110  
Bit Descriptions – Slot Control Register ...................................................................................... 112  
Bit Descriptions – Slot Status Register ....................................................................................... 114  
Bit Descriptions – General Control Register ................................................................................. 116  
Bit Descriptions – General Slot Info Register ................................................................................ 118  
Uncorrectable Error Status Register .......................................................................................... 119  
Uncorrectable Error Mask Register ........................................................................................... 120  
Uncorrectable Error Severity Register ........................................................................................ 121  
Correctable Error Status Register ............................................................................................. 122  
Correctable Error Mask Register .............................................................................................. 123  
Advanced Error Capabilities and Control Register.......................................................................... 124  
GPIO Matrix ...................................................................................................................... 125  
PCI Hot Plug Sideband Signals................................................................................................ 126  
Pins Assigned to GPIO Control Registers.................................................................................... 126  
5-2  
5-3  
10  
List of Tables  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
1
Features  
Wake Event and Beacon Support  
PCI Express Base Specification, Revision 1.1  
Support for D1, D2, D3hot, and D3cold  
PCI Express Card Electromechanical  
Specification, Revision 1.1  
Active State Power Management (ASPM) Using  
Both L0s and L1  
PCI-to-PCI Bridge Architecture Specification,  
Revision 1.1  
Low-Power PCI Express Transmitter Mode  
PCI Bus Power Management Interface  
Specification, Revision 1.2  
Integrated AUX Power Switch Drains VAUX  
Power Only When Main Power Is Off  
PCI Express Fanout Switch With One ×1  
Upstream Port and Three x1 Downstream  
Ports  
Integrated PCI Hot Plug Support  
Integrated REFCLK Buffers for Switch  
Downstream Ports  
Packet Transmission Starts While Reception  
Still in Progress (Cut-Through)  
3.3-V Multifunction I/O Pins for PCI Hot Plug  
Status and Control or General Purpose I/Os  
256-Byte Maximum Data Payload Size  
Peer-to-Peer Support  
Optional Serial EEPROM for System-Specific  
Configuration Register Initialization  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
PCI Express, PCI Hot Plug are trademarks of others.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2008, Texas Instruments Incorporated  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
2
Introduction  
The Texas Instruments XIO3130 switch is an integrated PCI Express fanout switch solution with one  
upstream x1 port and three downstream x1 ports. This high-performance integrated solution provides the  
latest in PCI Express switch technology including cut-through architecture, integrated reference clock  
buffers for downstream ports, integrated main power/VAUX power switch, and downstream port PCI Hot  
Plug® support.  
The reader is assumed to have prior knowledge of the PCI Express interface and associated terminology  
and of the PCI-SIG specifications.  
2.1 Description  
The Texas Instruments XIO3130 switch is a PCI Express x1 3-port fanout switch. The XIO3130 provides a  
single x1 upstream port supporting full 250-MB/s packet throughput in each direction simultaneously.  
Three independently configurable x1 downstream ports are provided that also support full 250-MB/s  
packet throughput in each direction simultaneously.  
A cut-through architecture is implemented to reduce the latency associated with packets moving through  
the PCI Express fabric. As soon as the address or routing information is decoded within the header of a  
packet entering an ingress port, the packet is directed to the egress port for forwarding. Packet poisoning  
using the EDB framing signal is supported in circumstances where packet errors are detected after the  
transmission of the egress packet begins.  
The downstream ports may be configured to support PCI Hot Plug slot implementations. In this scenario,  
the system designer may decide to use the integrated PCI Hot Plug-compliant controller. This feature is  
available through the classic PCI configuration space under the PCI Express Capability Structure. When  
enabled, the downstream ports provide the PCI Hot Plug standard mechanism to apply and remove power  
to the slot or socket.  
Power-management features include Active State Power Management, PME mechanisms, the  
Beacon/Wake protocol, and all conventional PCI D-states. When ASPM is enabled, each link  
automatically saves power when idle using the L0s and L1 states. PME messages are supported along  
with the PME_Turn_Off/PME_TO_Ack protocol.  
When enabled, the upstream port supports Beacon transmission as well as the WAKE side band signal to  
wake the system as the result of a PCI Hot Plug event. Furthermore, the downstream ports may be  
configured to detect Beacon from downstream devices and forward this upstream. The switch also  
supports the translation and forwarding of WAKE from a downstream device into Beacon on the upstream  
port for cabled implementations.  
2.2 Related Documents  
Trademarks  
PCI Express, PCI Hot Plug are trademarks of others.  
12  
Introduction  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
2.3 Document Conventions  
Throughout this data manual, several conventions are used to convey information. These conventions are  
listed below:  
1. To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit  
binary field.  
2. To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a  
12-bit hexadecimal field.  
3. All other numbers that appear in this document that do not have either a b or h following the number  
are assumed to be decimal format.  
4. If the signal or terminal name has a bar above the name (for example, GRST), then this indicates the  
logical NOT function. When asserted, this signal is a logic low, 0, or 0b.  
5. Differential signal names end with P, N, +, or – designators. The P or + designators signify the positive  
signal associated with the differential pair. The N or – designators signify the negative signal  
associated with the differential pair.  
6. RSVD indicates that the referenced item is reserved.  
7. In Sections 4 through 6, the configuration space for the bridge is defined. For each register bit, the  
software-access method is identified in an access column. The legend for this access column includes  
the following entries:  
r – read access by software  
u – updates by the bridge internal hardware  
w – write access by software  
c – clear an asserted bit with a write-back of 1b by software. Write of zero to the field has no effect  
s – the field may be set by a write of one. Write of zero to the field has no effect.  
na – not accessible or not applicable  
8. The XIO2213 consists of a PCI-Express to PCI translation bridge where the secondary PCI bus is  
internally connected to a 1394b OHCI with a 3-port PHY. When describing functionality that is specific  
to the PCI-Express to PCI translation bridge, the term bridge is used to reduce text. The term 1394b  
OHCI is used to reduce text when describing the 1394b OHCI with 3-port PHY function.  
9. LLC is used to refer to the 1394 link layer controller.  
2.4 Ordering Information  
ORDERING NUMBER  
TEMPERATURE  
PACKAGE  
XIO3130  
0°C to 70°C  
196-terminal ZHC  
Submit Documentation Feedback  
Introduction  
13  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
2.5 Terminal Assignments  
The XIO3130 is packaged in a 196-ball ZHC MicroStar™ BGA.  
Table 2-1. XIO3130 Terminal Assignments  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
VSSA  
(2)  
DN2_  
PERn  
VSSA  
(2)  
DN2_  
Petn  
DN2_  
DN2_  
14  
13  
12  
11  
10  
GPIO12  
SCL  
VDD15  
GPIO4  
VDD15  
GPIO15  
VDD15  
VDD15  
REFCKOn REFCKOp  
DN2_  
PERp  
DN2_  
PETp  
VSSA  
(2)  
VSSA  
(2)  
DN2_  
DPSTRP  
RSVD  
GPIO2  
VDD33  
GPIO13  
RSVD  
VDD15  
GPIO3  
VDD15  
SDA  
VDD33  
VSS  
VDD15  
VSS  
VDD15  
GPIO6  
VDD15  
VDD15  
GPIO8  
VDD15  
GPIO14  
GPIO11  
VDD15  
GPIO7  
GPIO16  
VDD33  
VSSA  
(2)  
VDDA15  
(2)  
VSSA  
(2)  
VDDA15  
(2)  
VDD33  
VSS  
GPIO5  
VSS  
VSSA  
(2)  
VDDA15  
(2)  
VDDA15  
(2)  
VDDA15  
(2)  
GPIO1  
VDD15  
VSS  
VSSA  
(1)  
DN1_  
DPSTRP  
VSSA  
(3)  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DN1_  
REFCK  
Op  
DN1_  
REFCK  
On  
VSSA  
(1)  
VDDA15  
(1)  
VSSA  
(3)  
VSSA  
(3)  
DN3_  
PERp  
DN3_  
PERn  
9
VSS  
VSS  
DN1_  
PETp  
DN1_  
PETn  
VSSA  
(1)  
VDDA15  
(1)  
VDDA15  
(3)  
VDDA15  
(3)  
VSSA  
(3)  
8
7
6
5
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD15  
VDDA15  
(1)  
VSSA  
(1)  
VDDA15  
(1)  
VDDA15  
(3)  
VSSA  
(3)  
DN3_  
PETp  
DN3_  
PETn  
VDD15  
DN1_  
PERp  
DN1_  
PERn  
VDDA15  
(3)  
VDDA15  
(3)  
VSSA  
(3)  
DN3_  
REFCKOn  
GPIO0  
VDD15  
VSS  
VSS  
VSSA  
(1)  
DN1_  
PERST  
VSSA  
(3)  
DN3_  
REFCKOp  
VSS  
VSS  
VSS  
VDD  
COMB  
33  
VSSA  
REF  
VDDA15  
(0)  
VDDA15  
(0)  
VDDA15  
(0)  
DN3_  
DPSTRP  
4
VDD15  
VDD33  
VDD33  
RSVD  
RSVD  
VDD15  
VDD33  
VDD15  
VDD  
COMBIO  
VDD15  
REF  
VSSA  
(0)  
VDDA15  
(0)  
3
2
1
VDD15  
VDD15  
WAKE  
GRST  
REFR1  
VDD15  
VDDA33  
GPIO18  
GPIO17  
VDD15  
VDD15  
GPIO9  
VDD15  
GPIO10  
RSVD  
DN2_  
PERST  
VDD33  
REF  
UP_  
PETn  
VDDA15  
(0)  
UP_  
PERn  
UP_  
REFCKIn  
CLKREQ  
_UP  
REFR0  
VDD15  
VDD15  
VSS  
DN3_  
PERST  
UP_  
PERST  
VDD  
COMB15  
VSSD  
REF  
VAUX33  
REF  
UP_  
PETp  
VSSA  
(0)  
UP_  
PERp  
VSSA  
(0)  
UP_  
REFCKIp  
VDD33  
14  
Introduction  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 2-2. XIO3130 Terminals Sorted Alphanumerically  
Ball  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
Signal Name  
DN3_PERST  
DN2_PERST  
VDD33  
Ball  
C13  
C14  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F10  
Signal Name  
VDD15  
VDD15  
VSSDREF  
REFR0  
VDDCOMBIO  
RSVD  
Ball  
F11  
F12  
F13  
F14  
G01  
G02  
G03  
G04  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
H01  
H02  
H03  
H04  
H05  
H06  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
J01  
Signal Name  
VSSA(2)  
VSSA(2)  
DN2_PERp  
DN2_PERn  
UP_PETp  
UP_PETn  
VSSA(0)  
VDDA15(0)  
VSS  
Ball  
J08  
J09  
J10  
J11  
J12  
J13  
J14  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
L12  
L13  
L14  
M01  
M02  
M03  
M04  
M05  
Signal Name  
VSS  
Ball  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
Signal Name  
VDDA15(3)  
VSSA(3)  
VDDA15(3)  
VSSA(3)  
GPIO8  
VSS  
VSS  
VDD15  
VDDA15(2)  
VDDA15(2)  
VSSA(2)  
DN2_REFCKOn  
VSSA(0)  
VSS  
VSSA(1)  
DN1_PERp  
VDDA15(1)  
DN1_PETp  
DN1_REFCKOp  
VSSA(1)  
VDD33  
VDD15  
VSS  
VDD15  
VSS  
GPIO6  
VDDA15(1)  
VDDA15(1)  
VDDA15(1)  
VSS  
GPIO15  
VSS  
VDDA15(0)  
VDD15  
VDD33  
VSS  
CLKREQ_UP  
GPIO9  
GPIO2  
VSS  
VSS  
RSVD  
VSS  
VSS  
VSS  
DN3_DPSTRP  
VSSA(3)  
VSSA(3)  
DN3_PETp  
VDD15  
GPIO12  
VDD33  
SDA  
VSS  
VSS  
UP_PERST  
VDD15  
VDDA15(2)  
VDDA15(2)  
VDD15  
VSS  
GPIO4  
VAUX33REF  
VDD33REF  
REFR1  
VSSAREF  
VSS  
VSS  
VDD15  
VSS  
VDD33  
VSSA(2)  
VSSA(0)  
VDDA15(0)  
VDD15  
VSS  
DN3_PERp  
VDD15  
DN1_PERST  
DN1_PERn  
VDD15  
VDD33  
VSSA(2)  
DN2_REFCKOp  
UP_REFCKIp  
UP_REFCKIn  
GPIO18  
VSS  
GPIO11  
GPIO14  
DN1_PETn  
DN1_REFCKOn  
VDD15  
VSS  
VDDA15(0)  
VSS  
VDD15  
VSS  
VDD15  
VSS  
VSS  
RSVD  
GPIO1  
VSS  
VSS  
GPIO10  
RSVD  
VSS  
VSS  
VSS  
VDD15  
GPIO13  
VSS  
VSS  
VDDA15(3)  
VDDA15(3)  
VDDA15(3)  
VSSA(3)  
VSS  
VDD15  
SCL  
VSS  
VSS  
DN3_REFCKOp  
DN3_REFCKOn  
DN3_PETn  
VSSA(3)  
DN3_PERn  
VSSA(3)  
VDD33  
VDDCOMB15  
GRST  
VDD15  
VSSA(2)  
VDD15  
VDD15  
VDD15REF  
VDDCOMB33  
VSS  
VSS  
VDDA15(2)  
VSSA(2)  
DN2_PETp  
DN2_PETn  
UP_PERp  
UP_PERn  
VDDA33  
VDDA15(0)  
VSS  
WAKE  
RSVD  
VSS  
VDD15  
GPIO5  
GPIO0  
DN2_DPSTRP  
VDD15  
VSSA(1)  
VSSA(1)  
VSSA(1)  
DN1_DPSTRP  
VDD15  
J02  
GPIO16  
VSS  
J03  
VDD15  
GPIO7  
VSS  
J04  
VDD15  
VDD15  
VSS  
J05  
GPIO17  
VDD33  
VSS  
J06  
VSS  
GPIO3  
VSS  
J07  
VSS  
VSS  
Submit Documentation Feedback  
Introduction  
15  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 2-3. XIO3130 Signal Names Sorted Alphabetically  
Signal Name  
CLKREQ_UP  
Ball  
Signal Name  
GPIO5  
Ball  
N02  
L12  
DN1_DPSTRP  
DN1_PERn  
C10  
GPIO6  
M13  
B06  
GPIO7  
P13  
DN1_PERp  
A06  
GPIO8  
M10  
DN1_PERST  
DN1_PETn  
B05  
GPIO9  
N03  
B08  
GRST  
C02  
DN1_PETp  
A08 Suggested Program Value  
REFR0  
D02  
DN1_REFCKOn  
DN1_REFCKOp  
DN2_DPSTRP  
DN2_PERn  
B09  
A09  
L13  
F14  
F13  
A02  
H14  
H13  
J14  
K14  
N04  
P09  
REFR1  
E03  
RSVD  
A13, B12, C04, D04, P01  
SCL  
B14  
D13  
J02  
J01  
B01  
G02  
G01  
L02  
L01  
E01  
SDA  
DN2_PERp  
UP_PERn  
UP_PERp  
UP_PERST  
UP_PETn  
UP_PETp  
UP_REFCKIn  
UP_REFCKIp  
VAUX33REF  
DN2_PERST  
DN2_PETn  
DN2_PETp  
DN2_REFCKOn  
DN2_REFCKOp  
DN3_DPSTRP  
DN3_PERn  
A04, B02, B03, B07, B10, C05, C11, C13,  
C14, E13, F01, F02, G13, H03, K04, L14,  
M01, M02, M11, M12, N08, N10, N13, N14,  
P03, P04, P14  
DN3_PERp  
N09  
VDD15  
DN3_PERST  
DN3_PETn  
DN3_PETp  
DN3_REFCKOn  
DN3_REFCKOp  
GPIO0  
A01  
P07  
N07  
P06  
P05  
C06  
B11  
P02  
N11  
A14  
B13  
VDDA15(0)  
VDDA15(1)  
VDDA15(2)  
VDDA15(3)  
VDD15REF  
VDD33  
G04, H02, H04, J04, K03  
A07, D07, D08, D09  
G11, G12, H11, J11, J12  
L06, L07, L08, M06, M08  
F03  
A03, A11, B04, D12, K12, M04, N01, P11  
GPIO1  
VDD33REF  
VDDA33  
E02  
J03  
C01  
F04  
D03  
GPIO10  
GPIO11  
VDDCOMB15  
VDDCOMB33  
VDDCOMBIO  
GPIO12  
GPIO13  
D05, D06, D10, D11, E05, E06, E07, E08,  
E09, E10, E11, E12, F05, F06, F07, F08,  
F09, F10, G05, G06, G07, G08, G09, G10,  
H05, H06, H07, H08, H09, H10, J05, J06,  
J07, J08, J09, J10, K02, K05, K06, K07,  
K08, K09, K10, K11, L04, L05, L10, L11,  
M05  
GPIO14  
N12  
VSS  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO2  
M14  
P12  
M03  
L03  
A12  
C12  
D14  
VSSA(0)  
VSSA(1)  
VSSA(2)  
VSSA(3)  
VSSAREF  
VSSDREF  
WAKE  
G03, H01, K01  
A05, A10, C07, C08, C09  
E14, F11, F12, G14, H12, J13, K13  
L09, M07, M09, N05, N06, P08, P10  
E04  
D01  
C03  
GPIO3  
GPIO4  
16  
Introduction  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
2.6 Terminal Descriptions  
Table 2-4. Power Supply Terminals  
Signal  
Ball  
I/O Type  
External parts  
Description  
G04, H02, H04, J04,  
K03  
1.5-V analog power terminals for PCI-Express upstream port  
0
VDDA15(0)  
PWR  
Filter  
1.5-V analog power terminals for PCI-Express downstream  
port 1  
VDDA15(1)  
VDDA15(2)  
VDDA15(3)  
A07, D07, D08, D09  
G11, G12, H11, J11, J12  
L06, L07, L08, M06, M08  
PWR  
PWR  
PWR  
Filter  
Filter  
Filter  
1.5-V analog power terminals for PCI-Express downstream  
port 2  
1.5-V analog power terminals for PCI-Express downstream  
port 3  
A04, B02, B03, B07,  
B10, C05, C11, C13,  
C14, E13, F01, F02,  
G13, H03, K04, L14,  
M01, M02, M11, M12,  
N08, N10, N13, N14,  
P03, P04, P14  
Bypass  
capacitors  
VDD15  
PWR  
1.5-V digital core power terminals  
A03, A11, B04, D12,  
K12, M04, N01, P11  
Bypass  
capacitors  
VDD33  
PWR  
PWR  
PWR  
3.3-V digital I/O power terminals  
3.3-V analog power terminal  
VDDA33  
J03  
Filter  
Bypass  
capacitors  
VAUX33REF  
E01  
3.3-V digital VAUX power terminal  
VDD15REF  
VDD33REF  
F03  
E02  
PWR  
PWR  
Filter  
Filter  
1.5-V PCI-Express reference power terminal  
3.3-V PCI-Express reference power terminal  
Table 2-5. Combined Power Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
Internally combined 3.3-V main and VAUX power output for external  
bypass capacitor filtering. Supplies all internal 3.3-V input and output  
circuitry powered during D3 cold. Caution: Do not use this terminal to  
supply external power to other devices.  
VDDCOMBIO  
D03  
Passive  
Bypass capacitors  
Bypass capacitors  
Bypass capacitors  
Internally combined 3.3-V main and VAUX power output for external  
bypass capacitor filtering. Supplies all internal 3.3-V circuitry powered  
during D3 cold. Caution: Do not use this terminal to supply external  
power to other devices.  
VDDCOMB33  
VDDCOMB15  
F04  
C01  
Passive  
Passive  
Internally combined 1.5-V main and VAUX power output for external  
bypass capacitor filtering. Supplies all internal 1.5-V circuitry powered  
during D3 cold. Caution: Do not use this terminal to supply external  
power to other devices.  
Submit Documentation Feedback  
Introduction  
17  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 2-6. Ground Terminals  
Signal  
Ball  
I/O Type  
Description  
D05, D06, D10, D11, E05,  
E06, E07, E08, E09, E10,  
E11, E12, F05, F06, F07,  
F08, F09, F10, G05, G06,  
G07, G08, G09, G10,  
H05, H06, H07, H08, H09,  
H10, J05, J06, J07, J08,  
J09, J10, K02, K05, K06,  
K07, K08, K09, K10, K11,  
L04, L05, L10, L11, M05  
VSS  
GND  
Digital ground terminals  
VSSA(0)  
VSSA(1)  
G03, H01, K01  
GND  
GND  
Analog ground terminals for upstream Port 0  
Analog ground terminals for downstream Port 1  
A05, A10, C07, C08, C09  
E14, F11, F12, G14, H12,  
J13, K13  
VSSA(2)  
VSSA(3)  
GND  
GND  
Analog ground terminals for downstream Port 2  
Analog ground terminals for downstream Port 3  
L09, M07, M09, N05, N06,  
P08, P10  
VSSAREF  
VSSDREF  
E04  
D01  
GND  
GND  
1.5-V PCI-Express analog reference ground terminal  
1.5-V PCI-Express digital reference ground terminal  
Table 2-7. PCI Express Reference Clock Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
Capacitor from  
REFCKIn to VSS for  
single-ended mode  
UP_REFCKIp  
UP_REFCKIn  
L01  
L02  
Reference clock inputs. REFCKIp and REFCKIn comprise the  
HS DIFF IN  
differential input pair for the 100-MHz system reference clock.  
100 MHz differential reference clock outputs for downstream port 1  
100 MHz differential reference clock outputs for downstream port 2  
100 MHz differential reference clock outputs for downstream port 3  
DN1_REFCKOp  
DN1_REFCKOn  
A09  
B09  
HS DIFF OUT  
HS DIFF OUT  
HS DIFF OUT  
DN2_REFCKOp  
DN2_REFCKOn  
K14  
J14  
DN3_REFCKOp  
DN3_REFCKOn  
P05  
P06  
18  
Introduction  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 2-8. PCI Express Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
UP_PETp  
UP_PETn  
G01  
G02  
HS DIFF  
OUT  
Series capacitors High-speed differential transmit pair for upstream port 0  
Series capacitors High-speed differential transmit pair for downstream port 1  
Series capacitors High-speed differential transmit pair for downstream port 2  
Series capacitors High-speed differential transmit pair for downstream port 3  
High-speed differential receiver pair for upstream port 0  
DN1_PETp  
DN1_PETn  
A08  
B08  
HS DIFF  
OUT  
DN2_PETp  
DN2_PETn  
H13  
H14  
HS DIFF  
OUT  
DN3_PETp  
DN3_PETn  
N07  
P07  
HS DIFF  
OUT  
UP_PERp  
UP_PERn  
J01  
J02  
HS DIFF IN  
HS DIFF IN  
HS DIFF IN  
HS DIFF IN  
Passive  
DN1_PERp  
DN1_PERn  
A06  
B06  
High-speed differential receiver pair for downstream port 1  
DN2_PERp  
DN2_PERn  
F13  
F14  
High-speed differential receiver pair for downstream port 2  
DN3_PERp  
DN3_PERn  
N09  
P09  
High-speed differential receiver pair for downstream port 3  
REFR0  
REFR1  
D02  
E03  
External bias  
resistor  
External reference resistor terminals for setting TX driver current. An  
external resistor is connected between these terminals.  
PCI-Express reset input. When logic high, the PERST signal  
identifies that the system power is stable. When logic low, the  
PERST signal generates an internal power-on reset.  
System-side  
pullup resistor  
UP_PERST  
B01  
LV CMOS IN  
Note: The UP_PERST input buffer has hysteresis.  
DN1_PERST  
DN2_PERST  
DN3_PERST  
B05  
A02  
A01  
LV CMOS O Pulldown resistor PCI-Express reset output for downstream port 1.  
LV CMOS O Pulldown resistor PCI-Express reset output for downstream port 2.  
LV CMOS O Pulldown resistor PCI-Express reset output for downstream port 3.  
WAKE is an active low signal that is driven low to reactivate the  
System-side  
pullup resistor  
PCI-Express link hierarchy’s main power rails and reference clocks.  
WAKE  
C03  
LV CMOS I/O  
Note: Since WAKE is an open-drain output buffer, a system-side  
pullup resistor is required.  
Table 2-9. PCI Hot Plug Strapping Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
Downstream Port 1 Strap. This pin is pulled high at the de-assertion of  
reset. GPIO0, GPIO1, and GPIO2 are used as PCI Hot Plug terminals  
for downstream port 1 and are no longer available for use as GPIOs.  
The three terminals become PRESENT, PWR_ON, and PWR_GOOD  
respectively. These GPIOs are available for normal use if this terminal  
is pulled low at the de-assertion of reset.  
DN1_DPSTR  
P
Pullup or pulldown  
resistor  
C10  
LV CMOS IN  
LV CMOS IN  
LV CMOS IN  
Downstream Port 2 Strap. This pin is pulled high at the de-assertion of  
reset. GPIO4, GPIO5, and GPIO6 are used as PCI Hot Plug terminals  
for downstream port 2 and are no longer available for use as GPIOs.  
The three terminals become PRESENT, PWR_ON, and PWR_GOOD  
respectively. These GPIOs are available for normal use if this terminal  
is pulled low at the de-assertion of reset.  
DN2_DPSTR  
P
Pullup or pulldown  
resistor  
L13  
N04  
Downstream Port 3 Strap. This pin is pulled high at the de-assertion of  
reset. GPIO8, GPIO9, and GPIO10 are used as PCI Hot Plug terminals  
for downstream port 3 and are no longer available for use as GPIOs.  
The three terminals become PRESENT, PWR_ON, and PWR_GOOD  
respectively. These GPIOs are available for normal use if this terminal  
is pulled low at the de-assertion of reset.  
DN3_DPSTR  
P
Pullup or pulldown  
resistor  
Submit Documentation Feedback  
Introduction  
19  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 2-10. GPIO Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
GPIO 0. If the DN1_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the PRSNT hotplug pin for downstream  
port 1. Otherwise this pin’s function is programmed with the GPIO A  
Control register.  
GPIO0  
C06  
LV CMOS I/O  
GPIO 1. If the DN1_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the POWERON hotplug pin for  
downstream port 1. Otherwise this pin’s function is programmed with  
the GPIO A Control register.  
GPIO1  
B11  
LV CMOS I/O  
GPIO 2. If the DN1_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the PWRGD hotplug pin for downstream  
port 1. Otherwise this pin’s function is programmed with the GPIO A  
Control register  
GPIO2  
GPIO3  
GPIO4  
A12  
C12  
D14  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
GPIO 3. This pin’s function is programmed with the GPIO A Control  
register.  
GPIO 4. If the DN2_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the PRSNT hotplug pin for downstream  
port 2. Otherwise this pin’s function is programmed with the GPIO A  
Control register.  
GPIO 5. If the DN2_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the POWERON hotplug pin for  
downstream port 2. Otherwise this pin’s function is programmed with  
the GPIO A Control register.  
GPIO5  
L12  
LV CMOS I/O  
GPIO 6. If the DN2_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the PWRGD hotplug pin for downstream  
port 2. Otherwise this pin’s function is programmed with the GPIO A  
Control register.  
GPIO6  
GPIO7  
GPIO8  
M13  
P13  
M10  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
GPIO 7. This pin’s function is programmed with the GPIO A Control  
register.  
GPIO 8. If the DN3_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the PRSNT hotplug pin for downstream  
port 3. Otherwise this pin’s function is programmed with the GPIO B  
Control register.  
GPIO 9. If the DN3_DPSTRP pin is pulled high at the de-assertion of  
reset, this pin functions as the POWERON hotplug pin for  
downstream port 3. Otherwise this pin’s function is programmed with  
the GPIO B Control register.  
GPIO9  
N03  
P02  
LV CMOS I/O  
LV CMOS I/O  
GPIO 10. If the DN3_DPSTRP pin is pulled high at the de-assertion  
of reset, this pin functions as the PWRGD hotplug pin for  
downstream port 3. Otherwise this pin’s function is programmed with  
the GPIO B Control register.  
GPIO10  
GPIO 11. This pin’s function is programmed with the GPIO B Control  
register.  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
N11  
A14  
B13  
N12  
M14  
P12  
M03  
L03  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
LV CMOS I/O  
GPIO 12. This pin’s function is programmed with the GPIO B Control  
register.  
GPIO 13. This pin’s function is programmed with the GPIO B Control  
register.  
GPIO 14. This pin’s function is programmed with the GPIO B Control  
register.  
GPIO 15. This pin’s function is programmed with the GPIO B Control  
register.  
GPIO16. This pin’s function is programmed with the GPIO C Control  
register.  
GPIO 17. This pin’s function is programmed with the GPIO C Control  
register.  
GPIO 18. This pin’s function is programmed with the GPIO C Control  
register.  
20  
Introduction  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 2-11. Miscellaneous Terminals  
Signal  
Ball  
I/O Type  
External Parts  
Description  
C02  
LV CMOS IN  
Global power-on reset input. Note: a pullup to Vaux (if supported) or  
VDD3.3 (if not) is required unless this terminal is always driven by  
the upstream device.  
GRST  
See description  
SDA  
SCL  
D13  
B14  
LV CMOS I/O  
LV CMOS O  
Serial Data. This pin is the serial data pin for the EEPROM interface.  
Serial Clock. This pin is the serial clock pin for the EEPROM  
interface.  
N02  
LV CMOS O  
Upstream Clock Request. When asserted low, requests upstream  
device restart clock in cases where upstream clock may be removed  
in L1  
CLKREQ_UP  
RSVD  
RSVD  
RSVD  
A13, B12,  
C04, P01  
D04  
Reserved. These terminals must tied to VDD15.  
Reserved. This terminal must be tied to GND.  
See description  
Reserved. Pullup to Vaux (if supported) or VDD3.3 (if not)  
Submit Documentation Feedback  
Introduction  
21  
 
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
3
Description  
Figure 3-1 is the block diagram of the XIO3130.  
Clock  
Distribution/  
Reset Logic  
PCI  
Express  
X1 Phy  
GPIO  
Port 0  
(Up)  
Logic  
PCI Hot  
Plug  
Virtual  
PCI to  
PCI  
EEPROM  
Bridge  
Virtual  
PCI to  
Virtual  
PCI to  
Virtual  
PCI to  
PCI Bridge  
Bridge  
PCI Bridge  
Bridge  
PCI Bridge  
Bridge  
Port 1  
(Down)  
Logic  
Port 3  
(down)  
logic  
Port 2  
(Down)  
Logic  
PCI  
Express x1  
Phy  
PCI  
Express x1  
Phy  
PCI  
Express x1  
Phy  
Figure 3-1. Block Diagram  
3.1 Power-Up/Power-Down Sequencing  
The following sections describe the procedures to power up and power down the XIO3130 switch.  
3.1.1 Power-Up Sequence  
1. Assert PERST to the device.  
2. Apply 1.5-V and 3.3-V voltages in any order with any time relationship and with any ramp rate.  
3. Apply a stable PCI Express reference clock.  
To meet PCI Express specification requirements, PERST cannot be de-asserted until the following two  
delay requirements are satisfied:  
Wait a minimum of 100 µs after applying a stable PCI Express reference clock. The 100-µs limit  
satisfies the requirement for stable device clocks by the de-assertion of PERST.  
Wait a minimum of 100 ms after applying power. The 100-ms limit satisfies the requirement for stable  
power by the de-assertion of PERST.  
See Figure 3-2, Power-Up Sequence Diagram.  
22  
Description  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Figure 3-2. Power-Up Sequence Diagram  
3.1.2 Power-Down Sequence  
Assert PERST to the device.  
Remove the reference clock.  
Remove 3.3-V and 1.5-V voltages.  
See the power-down sequence diagram in Figure 3-3. If the VAUX33REF terminal is to remain powered  
after a system shutdown, the switch power-down sequence is exactly the same as shown in Figure 3-3.  
Figure 3-3. Power-Down Sequence Diagram  
3.2 Express Interface  
3.2.1 External Reference Clock  
The Texas Instruments XIO3130 switch requires a differential 100 MHz common clock reference. The  
clock reference must meet all PCI Express electrical specification requirements for frequency tolerance,  
spread spectrum clocking, and signal electrical characteristics.  
3.2.2 Clock Generator  
The clock generator is responsible for generating all internal and external clocks from the PCI Express  
reference clock. This includes the PHY transmitter serial link clock, the three downstream reference clock  
outputs, the 60-kHz serial bus interface clock, and all internal clock domains.  
Submit Documentation Feedback  
Description  
23  
 
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
3.2.3 Beacon  
The XIO3130 supports the PCI Express in-band beacon feature. Beacon is driven on the PCI Express link  
by the XIO3130 to request the re-application of main power when in the L2 link state. Once beacon is  
activated, the XIO3130 continues to send the beacon signal until main power is restored as indicated by  
PERST going inactive. At this time, the beacon signal is deactivated.  
3.2.4 WAKE  
The XIO3130 supports the PCI Express sideband WAKE feature. WAKE is an active-low signal driven by  
the XIO3130 to request the re-application of main power when in the L2 link state. Since WAKE is an  
open-collector output, a system-side pullup resistor is required to prevent the signal from floating. If WAKE  
to Beacon translation is enabled (see section 3.2.60), the XIO3130 detects when WAKE is asserted and  
transmits beacon to alert the system. This enables support for devices that use the WAKE protocol in a  
system that does not support it.  
3.2.5 Initial Flow Control Credits  
The XIO3130 flow control credits are initialized using the rules defined in the PCI Express Base  
Specification. Table 3-1 identifies the initial flow control credit advertisement for the XIO3130. The initial  
advertisement is exactly the same for both upstream and downstream ports.  
Table 3-1. Initial Flow Control Credit Advertisements  
Initial Advertisement  
Credit Type  
Hex  
10  
80  
10  
10  
10  
80  
Decimal  
16  
Posted Request Headers (PH)  
Posted Request Data (PD)  
Non-Posted Header (NPH)  
Non-Posted Data (NPD)  
128  
16  
16  
Completion Header (CPLH)  
Completion Data (CPLD)  
16  
128  
3.2.6 PCI Express Message Transactions  
PCI Express messages are initiated by, received by and passed through the XIO3130. Table 3-2 outlines  
message support within the switch.  
24  
Description  
Submit Documentation Feedback  
 
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 3-2. Messages Supported by the XIO3130  
Message  
Supported  
Yes  
XIO3130 Action  
Assert_INTx  
Passed through upstream  
Passed through upstream  
Received and processed  
Passed through upstream  
Deassert_INTx  
Yes  
PM_Active_State_Nak  
Yes  
PM_PME  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Downstream PCI Hot Plug Event: Initiated upstream  
Received and processed  
PME_Turn_Off  
PME_TO_Ack  
ERR_COR  
Passed through downstream  
Downstream port: Received and processed  
Downstream ports: Initiated upstream  
Passed through upstream  
Initiated upstream  
Passed through upstream  
Initiated upstream  
ERR_NONFATAL  
ERR_FATAL  
Unlock  
Passed through upstream  
Initiated upstream  
Received and processed  
Passed through downstream  
Upstream port: Received and processed  
Downstream port: Initiated downstream  
Set_Slot_Power_Limit  
Yes  
No  
Advanced Switching Messages  
Vendor Defined Type 0  
Discarded  
Upstream port: Unsupported request  
Passed through downstream  
Yes  
Upstream port: Discarded  
Passed through downstream  
Vendor Defined Type 1  
Yes  
All supported message transactions are processed according to the PCI Express Base Specification.  
3.3 GPIO Terminals  
Up to 19 general-purpose input/output (GPIO) terminals are provided for system customization. These  
GPIO terminals are 3.3-V tolerant.  
The exact number of GPIO terminals available varies based on the implementation of various supported  
functions that share GPIO terminals. When any of the shared functions are enabled, the associated GPIO  
terminal is disabled. When pulled high, the DPSTRP terminals cause some GPIO terminals to be mapped  
to PCI Hot Plug functions for specific ports. Additional information can be found in the DPSTRP pin  
descriptions and in Chapter 4.  
All GPIO terminals are individually configurable as either inputs or outputs by writing the corresponding  
bits in the GPIOA, GPIOB, GPIOC, or GPIOD Control Registers. The GPIO data register is used to  
monitor GPIO terminals defined as inputs or to set the state of GPIO terminals defined as outputs. For  
more information on GPIO terminals, see sections Section 4.2.61 through Section 4.2.65.  
3.4 Serial EEPROM  
The XIO3130 provides a two-wire serial-bus interface to load subsystem identification information and  
specific register defaults from an external EEPROM. This interface supports slow, fast, and high-speed  
EEPROM speed options.  
Submit Documentation Feedback  
Description  
25  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
3.4.1 Serial Bus Interface Implementation  
To enable the serial bus interface, a pullup resistor must be implemented on the SDA signal. At the rising  
edge of PERST or GRST, whichever occurs last, the SDA terminal is checked for a pullup resistor. If one  
is detected, bit 3 (SBDETECT) in the serial bus control and status register (see Table 4-32) is set.  
Software may disable the serial bus interface at any time by writing a zero to the SBDETECT bit. If no  
external EEPROM is required, the serial bus interface is permanently disabled by attaching a pulldown  
resistor to the SDA signal.  
The XIO3130 implements a two-terminal serial interface with one clock signal (SCL) and one data signal  
(SDA). The SCL signal is a unidirectional output from the XIO3130 and the SDA signal is bidirectional.  
Both are open-drain signals and require pullup resistors. The XIO3130 is a bus master device and drives  
SCL at approximately 60 kHz during data transfers and places SCL in a high-impedance state during bus  
idle states. The serial EEPROM is a bus slave device and must acknowledge a slave address equal to  
1010_000X binary. Figure 3-4 illustrates a sample application implementing the two-wire serial bus.  
VDD33  
SERIAL  
XIO3130  
EEPROM  
SCL  
SDA  
SCL A2  
A1  
SDA A0  
Figure 3-4. Serial EEPROM Applications  
3.4.2 Serial Bus Interface Protocol  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a  
start condition, which is signaled when the SDA line transitions to a low state while SCL is in the high  
state, as illustrated in Figure 3-5. The end of a requested data transfer is indicated by a stop condition,  
which is signaled by a low-to-high transition of SDA while SCL is in the high state, as shown in Figure 3-5.  
Data on SDA must remain stable during the high state of the SCL signal because changes on the SDA  
signal during the high state of SCL are interpreted as control signals (i.e., a start or a stop condition).  
26  
Description  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Figure 3-5. Serial-Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. During a data transfer operation, an unlimited number of bytes  
are transmitted. However, each byte must be followed by an acknowledge bit to continue the data transfer  
operation. An acknowledge (ACK) is indicated by the data byte receiver pulling the SDA signal low, so that  
it remains low during the high state of the SCL signal. Figure 3-6 illustrates the acknowledge protocol.  
Figure 3-6. Serial-Bus Protocol Acknowledge  
The XIO3130 performs three basic serial bus operations: single-byte reads, single-byte writes, and  
multiple-byte reads. The single-byte operations occur under software control. The multiple-byte read  
operations are performed by the serial EEPROM initialization circuitry immediately after a PCI Express  
Reset. For details on how the XIO3130 automatically loads the subsystem identification and other register  
defaults from the serial-bus EEPROM, see Section 3.4.3, Serial Bus EEPROM Application.  
Figure 3-7 illustrates a single-byte write. The XIO3130 issues a start condition and sends the 7-bit slave  
device address and the R/W command bit equal to zero. A zero in the R/W command bit indicates that the  
data transfer is a write. The slave device acknowledges that it recognizes the slave address. If the  
XIO3130 receives no acknowledgment, the SB_ERR status bit is set in the serial-bus control and status  
register (PCI offset B3h; see Table 4-32). Next, the XIO3130 sends the EEPROM word address, and  
another slave acknowledgment is expected. Then the XIO3130 delivers the data byte (MSB first) and  
expects a final acknowledgment before issuing the stop condition.  
Figure 3-7. Serial-Bus Protocol – Byte Write  
Figure 3-8 illustrates a single-byte read. The XIO3130 issues a start condition and sends the 7-bit slave  
device address and the R/W command bit equal to zero (write). The slave device acknowledges that it  
recognizes the slave address. Next, the XIO3130 sends the EEPROM word address, and another slave  
Submit Documentation Feedback  
Description  
27  
 
 
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
acknowledgment is expected. Then, the XIO3130 issues a restart condition followed by the 7-bit slave  
address and the R/W command bit equal to one (read). Once again, the slave device responds with  
acknowledge. Next, the slave device sends the 8-bit data byte, MS bit first. Since this is a one-byte read,  
the XIO3130 responds with no acknowledge (logic high), indicating the last data byte. Finally, the XIO3130  
issues a stop condition.  
Slave Address  
Word Address  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
Start  
R/W  
Slave Address  
b6 b5 b4 b3 b2 b1 b0  
Data Byte  
S
1
A
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
Restart  
R/W  
M = Master Acknowledgement  
A = Slave Acknowledgement  
S/P = Start/Stop Condition  
Figure 3-8. Serial-Bus Protocol – Byte Read  
Figure 3-9 illustrates the serial interface protocol during a multiple-byte serial EEPROM download. The  
serial bus protocol starts exactly the same way as a one-byte read. The only difference is that multiple  
data bytes are transferred. The number of transferred data bytes is controlled by the XIO3130 master.  
After each data byte, if more data bytes are requested, the XIO3130 master issues acknowledge (logic  
low). The transfer ends after an XIO3130 master no acknowledge (logic high), followed by a stop  
condition.  
Figure 3-9. Serial-Bus Protocol – Multiple-Byte Read  
The PROT_SEL bit (bit 7) in the Serial Bus Control and Status register changes the serial bus protocol.  
Each of the three previous serial-bus protocol figures illustrates the PROT_SEL bit default (logic low).  
When this control bit is asserted, the word address and corresponding acknowledge are removed from the  
serial bus protocol. This feature allows the system designer a second serial bus protocol option when  
selecting external EEPROM devices.  
3.4.3 Serial Bus EEPROM Application  
The registers and corresponding bits that are loaded through the EEPROM are provided in Table 3-3.  
Note the following:  
EEPROM bytes 00h through 1Dh affect the general control options for the XIO3130.  
EEPROM bytes 1Eh through 27h affect the operation of the upstream port (port 0).  
Bytes 00h through 27h are loaded into the configuration registers for the upstream virtual bridge or port  
0 (see Figure 4-1).  
EEPROM bytes 28h through 35h correspond to and are loaded into the configuration space for the first  
downstream virtual bridge or port 1 (see Figure 4-1).  
28  
Description  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
EEPROM bytes 36h through 43h correspond to and are loaded into the configuration space for the  
second downstream virtual bridge or port 2 (see Figure 4-1).  
EEPROM bytes 44h through 51h correspond to and are loaded into the configuration space for the  
third downstream virtual bridge or port 3 (see Figure 4-1).  
Table 3-3. EEPROM Register Loading Map  
EEPROM Byte Address  
(hex)  
Suggested Programmed CONFIG Register Address  
Register Description  
Value (hex)  
(hex)  
0
4C  
0
NA  
Global Switch/Upstream Port Function Indicator(1)  
TI Proprietary register(1)  
1
NA  
2
24  
0
0B4  
0B5  
0B8  
0B9  
0BA  
0BB  
0BC  
0BD  
0BE  
0BF  
0C0  
0C1  
0C2  
0C3  
0C4  
0C5  
0C6  
0C7  
0C8  
0CC  
0CD  
0D0  
0D1  
0D2  
0D3  
0DC  
0DE  
0DF  
NA  
Upstream Port Link PM Latency register  
Upstream Port Link PM Latency register  
Global Chip Control register  
Global Chip Control register  
Global Chip Control register  
Global Chip Control register  
GPIOA register  
3
4
0
5
0
6
0
7
0
8
0
9
0
GPIOA register  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
0
GPIOB register  
0
GPIOB register  
0
GPIOC register  
0
GPIOC register  
0
GPIOD register  
0
GPIOD register  
0
GPIO Data register  
0
GPIO Data register  
0
GPIO Data register  
0
GPIO Data register  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
01  
0
0
0
0
14  
32  
2
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
0
0
0
Global Switch/Upstream Port 0 Function Indicator  
Not used  
0
NA  
XX  
XX  
XX  
XX  
0
0E0  
0E1  
0E2  
0E3  
0E4  
0E8  
0E9  
0EA  
NA  
Subsystem Access Vendor ID register  
Subsystem Access Vendor ID register  
Subsystem Access Subsys ID register  
Subsystem Access Subsys ID register  
General Control register  
24  
3F  
4
Downstream Port Link PM Latency register  
Downstream Port Link PM Latency register  
Global Switch Control register  
Downstream Port 1 Function Indicator  
1
(1) Required program value  
Submit Documentation Feedback  
Description  
29  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 3-3. EEPROM Register Loading Map (continued)  
EEPROM Byte Address  
(hex)  
Suggested Programmed CONFIG Register Address  
Register Description  
Value (hex)  
(hex)  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
0
01  
0
NA  
Not used  
0C8  
0CC  
0CD  
0D0  
0D1  
0D2  
0D3  
0D4  
0D5  
0EC  
0EE  
0EF  
NA  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
General Control register  
General Control register  
L0s Timeout register  
0
0
0
14  
32  
10  
60  
1A  
0
General Slot Info register  
General Slot Info register  
Downstream Port 2 Function Indicator  
Not used  
0
2
0
NA  
01  
0
0C8  
0CC  
0CD  
0D0  
0D1  
0D2  
0D3  
0D4  
0D5  
0EC  
0EE  
0EF  
NA  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
General Control register  
General Control register  
L0s Timeout register  
0
0
0
14  
32  
10  
60  
1A  
0
General Slot Info register  
General Slot Info register  
Downstream Port 3 Function Indicator  
Not used  
0
2
0
NA  
01  
0
0C8  
0CC  
0CD  
0D0  
0D1  
0D2  
0D3  
0D4  
0D5  
0EC  
0EE  
0EF  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
TI Proprietary register(1)  
General Control register  
General Control register  
L0s Timeout register  
0
0
0
14  
32  
10  
60  
1A  
0
General Slot Info register  
General Slot Info register  
0
30  
Description  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
This download table must be explicitly followed for the XIO3130 to correctly load initialization values from  
a serial EEPROM. All byte locations must be considered when programming the EEPROM.  
The XIO3130 addresses the serial EEPROM using a default slave address of 1010_000X binary. For an  
EEPROM download operation that occurs immediately after PERST, this address is fixed. The serial  
EEPROM in the sample application circuit (Figure 3-4) assumes the 1010b high-address nibble. The lower  
three address bits are terminal inputs to the chip, and the sample application shows these terminal inputs  
tied to VSS to match the least-significant three address bits.  
During an EEPROM download operation, bit 4 (ROMBUSY) in the serial-bus control and status register is  
asserted. After the download is finished, bit 4 is negated. At that time, bit 0 (ROM_ERR) in the serial-bus  
control and status register may be monitored to verify a successful download.  
3.4.4 Accessing Serial Bus Devices Through Software  
The XIO3130 provides a programming mechanism to control serial bus devices through system software.  
The programming is accomplished through a doubleword of PCI configuration space at offset B0h.  
Table 3-4 lists the registers used to program a serial-bus device through software.  
Table 3-4. Register for Programming Serial-Bus Devices  
PCI Offset  
Register Name  
Description  
This register contains the data byte to send on write commands or  
the received data byte on read commands.  
B0h  
Serial-bus data  
The content of this register is sent as the word address on byte  
writes or reads. This register is not used in the quick command  
protocol.  
B1h  
B2h  
B3h  
Serial-bus word address  
Serial-bus slave address  
Control and Status  
Write transactions to this register initiate a serial-bus transaction.  
The slave device address and the R/W command selector are  
programmed through this register.  
Serial interface enable, busy, and error status are communicated  
through this register. In addition, the protocol-select bit and serial  
bus test bit are programmed through this register.  
To access the serial EEPROM through the software interface, the software performs five steps:  
1. Reads the Control and Status Byte to verify that the EEPROM interface is enabled (SBDETECT  
asserted) and not busy (REQBUSY and ROMBUSY negated).  
2. Loads the Serial Bus word address. If the access is a write, the data byte is also loaded.  
3. Writes the Serial Bus slave address and read/write command selector byte.  
4. Monitors REQBUSY until this bit is negated.  
5. Checks SB_ERR to verify that the serial bus operation completed without error. If the operation is a  
read, after REQBUSY is negated, the serial bus data byte is valid.  
3.5 Switch Reset Features  
Four XIO3130 reset options are available:  
Internally-generated power-on reset  
A global reset generated by asserting GRST input terminal  
A PCI Express reset generated by asserting PERST input terminal  
Software-initiated resets that are controlled by sending a PCI Express training control hot reset  
Table 3-5 identifies these reset sources and describes how the XIO3130 responds to each reset.  
Submit Documentation Feedback  
Description  
31  
 
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 3-5. Switch Reset Options  
Reset Option  
XIO3130 Feature  
Reset Response  
When the internal power-on reset is asserted, all  
internal reset and monitors the VDDCOMB15 (N01) control registers, state machines, sticky register bits,  
Internally-generated power-on During a power-on cycle, the XIO3130 asserts an  
reset  
terminal. When this terminal reaches 90% of the  
nominal input voltage specification, power is  
considered stable. After stable power, the XIO3130  
monitors the PCI Express reference clock  
(REFCLKI) and waits 10 µs after active clocks are  
detected. Then, internal power-on reset is  
de-asserted.  
and power management state machines are  
initialized to their default state.  
Global reset input GRST (C02) When GRST is asserted low, an internal power-on  
reset occurs. This reset is asynchronous and  
When GRST is asserted low, all control registers,  
state machines, sticky register bits, and power  
functions during both normal power states and VAUX management state machines are initialized to their  
power states.  
default state. When the rising edge of GRST occurs,  
the switch samples the state of all static control  
inputs and latches the information internally. If an  
external serial EEPROM is detected, then a  
download cycle is initiated. Also, the process to  
configure and initialize the PCI Express link is  
started. The switch starts link training within 80 ms  
after PERST or GRST is de-asserted.  
PCI Express reset input  
PERST (C01)  
When PERST is asserted low, all control register  
bits that are not sticky are reset. Also, all state  
machines that are not associated with sticky  
functionality or VAUX power management are reset.  
When the rising edge of PERST occurs, the switch  
samples the state of all static control inputs and  
latches the information internally. If an external  
serial EEPROM is detected, then a download cycle  
is initiated. Also, the process to configure and  
initialize the PCI Express link is started. The switch  
starts link training within 80 ms after PERST or  
GRST is de-asserted.  
This XIO3130 input terminal is used by an upstream  
PCI Express device to generate a PCI Express reset  
and to signal a system power good condition.  
When PERST is asserted low, all control register  
bits that are not sticky are reset. Also, all state  
machines that are not associated with sticky  
functionality or VAUX power management are reset.  
When the rising edge of PERST occurs, the switch  
samples the state of all static control inputs and  
latches the information internally. If an external  
serial EEPROM is detected, then a download cycle  
is initiated. Also, the process to configure and  
initialize the PCI Express link is started. The switch  
starts link training within 80 ms after PERST or  
GRST is de-asserted.  
Note: The system must assert PERST before power  
is removed, before REFCLKI is removed, or before  
REFCLKI becomes unstable.  
PCI Express training control  
hot reset  
The XIO3130 responds to a training control hot  
reset received on the PCI Express interface. After a register bits and state machines are reset. All  
training control hot reset, the PCI Express interface remaining bits exclude sticky bits and EEPROM  
In the DL_DOWN state, all remaining configuration  
enters the DL_DOWN state.  
loadable bits. All remaining state machines exclude  
sticky functionality, EEPROM functionality, and VAUX  
power management.  
32  
Description  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4
XIO3130 Configuration Register Space  
This chapter specifies the configuration registers that are used to enumerate the XIO3130 device within a  
PC system.  
An overview of the configuration register space is provided along with a detailed description of the register  
bits associated with the upstream and downstream ports of the XIO3130.  
4.1 PCI Configuration Register Space Overview  
Each PCI Express port contains a set of PCI configuration registers. One of the upstream port registers,  
the Global Chip Control register, is used to control functions across the entire XIO3130.  
For downstream ports, only one register set is specified, but this register set is duplicated for each  
downstream port. Figure 4-1 illustrates the enumeration topology.  
The XIO3130 must appear as a hierarchy of PCI-to-PCI bridges in the manner outlined by the PCI  
Express base specification.  
NOTE  
This numbering scheme is typical but not ensured. Bus numbers are assigned within the  
Type 01h configuration header during the initial enumeration of the PCI bus by the system  
at power-up.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
33  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Port# 0  
Device# 0  
Bus# N**  
000h  
Upstream Port  
Header Type 01h  
03Fh  
040h  
PCI Capability  
Structures /  
Proprietary  
Register Space  
0FFh  
100h  
Extended  
Configuration  
Space / PCI Express  
Capability Structures  
FFFh  
Virtual Internal PCI Bus (Bus# N+1**)  
Device# 0  
Device# 1  
Device# 2  
000h  
000h  
000h  
Downstream Port  
Downstream Port  
Downstream Port  
Header Type 01h  
Header Type 01h  
Header Type 01h  
03Fh  
040h  
03Fh  
040h  
03Fh  
040h  
PCI Capability  
Structures /  
PCI Capability  
Structures /  
PCI Capability  
Structures /  
Proprietary  
Proprietary  
Proprietary  
Register Space  
Register Space  
Register Space  
0FFh  
100h  
0FFh  
100h  
0FFh  
100h  
Extended  
Extended  
Extended  
Configuration  
Configuration  
Configuration  
Space / PCI Express  
Capability Structures  
Space / PCI Express  
Capability Structures  
Space / PCI Express  
Capability Structures  
FFFh  
FFFh  
FFFh  
Port# 1  
Port# 2  
Port# 3  
Bus# N+2**  
Bus# N+3**  
Bus# N+4**  
** Example values. Actual bus numbers may change based on system hierarchy.  
Figure 4-1. XIO3130 Enumerations Topology  
4.2 PCI Express Upstream Port Registers  
The default reset domain for all upstream port registers is IPRST. The internal IPRST reset signal is  
asserted when the internally-generated power-on reset is asserted, when GRST is asserted, when PERST  
is asserted, or when PCI Express training control hot reset is asserted. Some register fields are placed in  
a reset domain different from the default reset domain; all bit or field descriptions identify any unique reset  
domains. Generally, all sticky bits are placed in the GRST domain and all (non-sticky) EEPROM loadable  
bits are placed in the PERST domain.  
34  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.1 PCI Configuration Space (Upstream Port) Register Map  
Table 4-1. PCI Express Upstream Port Configuration Register Map (Type 1)  
Register Name  
Offset  
000h  
Device ID  
Status  
Vendor ID  
Command  
004h  
Class Code  
Revision ID  
008h  
BIST  
Header Type  
Latency Timer  
Cache Line Size  
00Ch  
Reserved  
010h-014h  
018h  
Secondary Latency Timer  
Subordinate Bus Number  
Secondary Bus Number  
I/O Limit  
Primary Bus Number  
I/O Base  
Secondary Status  
01Ch  
Memory Limit  
Memory Base  
020h  
Pre-fetchable Memory Limit  
Pre-fetchable Memory Base  
024h  
Pre-fetchable Base Upper 32 Bits  
Pre-fetchable Limit Upper 32 Bits  
028h  
02Ch  
I/O Limit Upper 16 Bits  
I/O Base Upper 16 Bits  
030h  
Reserved  
Capabilities Pointer  
034h  
Reserved  
Reserved  
038h  
Bridge Control  
Interrupt Pin  
Interrupt Line  
PM CAP ID  
03Ch  
040h-04Ch  
050h  
Power Management Capabilities  
Next-item Pointer  
PM Data (RSVD)  
PMCSR_BSE  
Power Management CSR  
054h  
Reserved  
058h-06Ch  
070h  
MSI Message Control  
Next-item Pointer  
MSI CAP ID  
MSI Message Address  
074h  
MSI Upper Message Address  
078h  
Reserved  
Reserved  
MSI Message Data  
Next-item Pointer SSID/SSVID CAP ID  
Subsystem Vendor ID  
07Ch  
080h  
Subsystem ID  
084h  
Reserved  
Next-item Pointer  
088h-08Ch  
090h  
PCI Express Capabilities Register  
Device Status  
PCI Express Capability ID  
Device Capabilities  
Link Capabilities  
Reserved  
094h  
Device Control  
098h  
09Ch  
Link Status  
Link Control  
0A0h  
0A4h-0ACh  
0B0h  
SB Control and Status  
Serial Bus Slave Address  
Serial Bus Index  
Serial Bus Data  
Upstream Port L1 Idle  
Upstream Port Link PM Latency  
0B4h  
Global Chip Control  
0B8h  
GPIO B Control  
GPIO D Control  
GPIO A Control  
GPIO C Control  
0BCh  
0C0h  
GPIO Data  
TI Proprietary  
0C4h  
0C8h-0DCh  
0E0h  
Subsystem Access  
General Control  
0E4h  
Global Switch Control  
Downstream Ports Link PM Latency  
0E8h  
Reserved  
0ECh-0FCh  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
35  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-2. Extended Configuration Space (Upstream Port)  
Register Name  
PCI Express Advanced Error Reporting Capabilities ID  
Offset  
Next Capability Offset / Capability Version  
100h  
104h  
Uncorrectable Error Status Register  
Uncorrectable Error Mask Register  
Uncorrectable Error Severity Register  
Correctable Error Status Register  
Correctable Error Mask  
108h  
10Ch  
110h  
114h  
Advanced Error Capabilities and Control  
Header Log Register  
118h  
11Ch  
120h  
Header Log Register  
Header Log Register  
124h  
Header Log Register  
128h  
Reserved  
12Ch-FFCh  
4.2.2 Vendor ID Register  
This 16-bit read-only register contains the value 104Ch, which is the vendor ID assigned to Texas  
Instruments.  
PCI register offset:  
Register type:  
00h  
Read-only  
104Ch  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
0
1
0
0
1
1
0
0
4.2.3 Device ID Register  
This 16-bit read-only register contains the value 8232h, which is the device ID assigned by TI to the  
XIO3130 upstream port function.  
PCI register offset:  
Register type:  
02h  
Read-only  
8232Ch  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1
0
0
0
0
0
1
0
0
0
1
1
0
0
1
0
4.2.4 Command Registers  
PCI register offset:  
Register type:  
04h  
Read/Write; Read-only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
36  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-3. Bit Descriptions – Command Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:11  
RSVD  
r
INTx disable. This bit is used to enable device-specific interrupts. The XIO3130 upstream port does  
not generate any interrupts internally, so this bit is ignored. The XIO3130 does forward INTx  
messages from downstream ports to the upstream port.  
10  
9
INT_DISABLE  
FBB_ENB  
rw  
r
Fast back-to-back enable. This bit does not apply to PCI-Express, and returns zero when read.  
SERR enable. When set, the XIO3130 can signal fatal and nonfatal errors on the upstream PCI  
Express interface.  
8
7
SERR_ENB  
STEP_ENB  
rw  
r
0 – Disable the reporting of nonfatal errors and fatal errors.  
1 – Enable the reporting of nonfatal errors and fatal errors.  
Address/data stepping control. This bit does not apply to PCI-Express and is hardwired to 0.  
Parity error response enable. Mask bit for the DATAPAR bit in the Status Register.  
0 – The upstream bridge must ignore any address or data parity errors that it detects and  
continue normal operation.  
6
PERR_ENB  
rw  
1 – The upstream bridge must detect address or data parity errors and report them by setting  
the DATAPAR bit in the Status Register.  
VGA palette snoop enable. The XIO3130 does not support VGA palette snooping, thus this bit  
returns zero when read.  
5
VGA_ENB  
r
Memory write and invalidate enable. This bit does not apply to PCI-Express, and is hardwired to  
zero.  
4
3
MWI_ENB  
SPECIAL  
r
r
Special cycle enable. This bit does not apply to PCI-Express and is hardwired to zero.  
Bus master enable. When set, the XIO3130 is enabled to initiate cycles on the upstream PCI  
Express interface.  
0 – Upstream PCI Express interface cannot initiate transactions. The bridge must disable  
response to memory and I/O transactions on the PCI interface.  
2
MASTER_ENB  
rw  
1 – Upstream PCI Express interface can initiate transactions. The bridge can forward memory  
and I/O transactions from the secondary interface.  
Memory response enable. Setting this bit enables the XIO3130 to respond to memory transactions  
on the upstream PCI Express interface.  
1
0
MEMORY_ENB  
IO_ENB  
rw  
rw  
I/O space enable. Setting this bit enables the XIO3130 to respond to I/O transactions on the  
upstream PCI Express interface.  
4.2.5 Status Register  
The Status register provides information about the primary interface to the system.  
PCI register offset:  
Register type:  
06h  
Read Only; Cleared by a Write of One; Hardware Update  
0010h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
37  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-4. Bit Descriptions – Status Register  
BIT FIELD NAME  
ACCESS  
DESCRIPTION  
Detected parity error. This bit is set when the PCI Express interface receives a poisoned TLP on the  
upstream port. This bit is set regardless of the state of the Parity Error Response bit in the Command  
Register.  
15  
PAR_ERR  
rcu  
0 – No parity error detected.  
1 – Parity Error detected.  
Signaled system error. This bit is set when the XIO3130 sends an ERR_FATAL or ERR_NONFATAL  
message upstream, and the SERR Enable bit in the Command Register is set.  
14  
13  
SYS_ERR  
MABORT  
rcu  
rcu  
rcu  
rcu  
0 – No error signaled.  
1 – ERR_FATAL or ERR_NONFATAL signaled.  
Received master abort. This bit is set when the upstream PCI Express interface of the XIO3130  
receives a Completion with Unsupported Request Status  
0 – Unsupported Request not received.  
1 – Unsupported Request received on.  
Received target abort. This bit is set when the upstream PCI Express interface of the XIO3130  
receives a Completion with Completer Abort Status  
12 TABORT_REC  
0 – Completer Abort not received.  
1 – Completer Abort received.  
Signaled target abort. This bit is set when the upstream PCI Express interface completes a Request  
with Completer Abort Status.  
11  
TABORT_SIG  
0 – Completer Abort not signaled.  
1 – Completer Abort signaled.  
10:9  
8
PCI_SPEED  
DATAPAR  
r
DEVSEL timing. These bits are read only zero because they do not apply to PCI Express.  
Master data parity error. This bit is set when the XIO3130 receives a poisoned completion or poisons  
a write request on the upstream PCI Express interface. This bit is never set if the parity error  
response enable bit in the Command register is clear.  
rcu  
Fast back-to-back capable. This bit does not have a meaningful context for a PCI Express device and  
is hardwired to 0.  
7
6
5
FBB_CAP  
RSVD  
r
r
r
Reserved. When read, this bit returns zero.  
66 MHz capable. This bit does not have a meaningful context for a PCI Express device and is  
hardwired to 0.  
66MHZ  
Capabilities list. This bit returns 1 when read, indicating that the XIO3130 supports additional PCI  
capabilities.  
4
CAPLIST  
r
Interrupt status. This bit reflects the interrupt status of the function. This bit is read-only zero since the  
XIO3130 upstream port does not generate any interrupts internally. The XIO3130 does forward INTx  
messages from downstream ports to the upstream port (see INTx Support section).  
3
INT_STATUS  
RSVD  
r
r
2:0  
Reserved. When read, these bits return zeros.  
38  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.6 Class Code and Revision ID Register  
This read-only register categorizes the Base Class, Sub Class, and Programming Interface of the  
XIO3130. The Base Class is 06h, identifying the device as bridge device. The Sub Class is 04h,  
identifying the function as a PCI-to-PCI bridge, and the Programming Interface is 00h. Also, the TI chip  
revision is indicated in the lower byte (02h).  
PCI register offset:  
Register type:  
08h  
Read only  
0604 0002h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
Table 4-5. Bit Descriptions – Class Code and Revision ID Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:24  
BASECLASS  
r
Base Class. This field returns 06h when read, which classifies the function as a Bridge device.  
Sub Class. This field returns 04h when read, which specifically classifies the function as a  
PCI-to-PCI bridge.  
23:16  
SUBCLASS  
r
15:8  
7:0  
PGMIF  
r
r
Programming Interface. This field returns 00h when read.  
Silicon Revision. This field returns the silicon revision.  
CHIPREV  
4.2.7 Cache Line Size Register  
The Cache Line Size Register is implemented by PCI Express devices as a read-write field for legacy  
compatibility purposes but has no impact on any PCI Express device functionality.  
PCI register offset:  
Register type:  
0Ch  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.8 Primary Latency Timer Register  
This read-only register has no meaningful context for a PCI Express device and returns zeros when read.  
PCI register offset:  
Register type:  
0Dh  
Read Only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
39  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.9 Header Type Register  
This read-only register indicates that this function has a type one PCI header. Bit seven of this register is a  
zero, indicating that the upstream port is a single device.  
PCI register offset:  
Register type:  
0Eh  
Read Only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
4.2.10 BIST Register  
Since the XIO3130 does not support a built-in self test (BIST), this read-only register returns the value of  
00h when read.  
PCI register offset:  
Register type:  
0Fh  
Read Only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.11 Primary Bus Number  
This read/write register specifies the bus number of the PCI bus segment to which the upstream PCI  
Express interface is connected.  
PCI register offset:  
Register type:  
18h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.12 Secondary Bus Number  
This read/write register specifies the bus number of the PCI bus segment for the XIO3130’s internal PCI  
bus. The XIO3130 uses this register to determine how to respond to a Type 1 configuration transaction.  
PCI register offset:  
Register type:  
19h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
40  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.13 Subordinate Bus Number  
This register specifies the bus number of the highest number PCI bus segment that is downstream of the  
XIO3130’s upstream port. The XIO3130 uses this register to determine how to respond to a Type 1  
configuration transaction.  
PCI register offset:  
Register type:  
1Ah  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.14 Secondary Latency Timer Register  
This register does not apply to PCI-Express. It is hardwired to zero.  
PCI register offset:  
Register type:  
1Bh  
Read Only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.15 I/O Base Register  
This read/write register specifies the lower limit of the I/O addresses that the XIO3130 forwards  
downstream.  
PCI register offset:  
Register type:  
1Ch  
Read/Write; Read Only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
Table 4-6. Bit Descriptions – I/O Base Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
7:4  
IOBASE  
rw  
I/O base. These bits define the bottom address of the I/O address range that is used to determine  
when to forward I/O transactions from one interface to the other. These bits correspond to address  
bits [15:12] in the I/O address. The lower 12 I/O address bits are assumed to be 0. The 16 bits  
corresponding to address bits [31:16] of the I/O address are defined in the I/O Base Upper 16 Bits  
register.  
3:0  
IOTYPE  
r
I/O type. This field is read-only 01h, indicating that the XIO3130 supports 32-bit I/O addressing.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
41  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.16 I/O Limit Register  
This read/write register specifies the upper limit of the I/O addresses that the XIO3130 forwards  
downstream.  
PCI register offset:  
Register type:  
1Dh  
Read/Write; Read Only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
Table 4-7. Bit Descriptions – I/O Limit Register  
BIT  
7:4  
3:0  
FIELD NAME  
IOLIMIT  
ACCESS  
DESCRIPTION  
I/O limit. These bits define the top address of the I/O address range used to determine when to  
forward I/O transactions from one interface to the other. These bits correspond to address bits  
[15:12] in the I/O address. The lower 12 I/O address bits are assumed to be FFFh. The 16 bits  
corresponding to address bits [31:16] of the I/O address are defined in the I/O Limit Upper 16 Bits  
register.  
rw  
r
IOTYPE  
I/O type. This field is read-only 01h, indicating that the XIO3130 supports 32-bit I/O addressing.  
4.2.17 Secondary Status Register  
The Secondary Status register provides information about the XIO3130’s internal PCI bus between the  
upstream port and the downstream ports.  
PCI register offset:  
Register type:  
1Eh  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-8. Bit Descriptions – Secondary Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Detected parity error. This bit is hardwired to zero. It is assumed that the relevant error checking  
is unnecessary for the XIO3130’s internal PCI bus.  
15  
14  
13  
12  
PAR_ERR  
r
r
r
r
Received system error. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130’s internal PCI bus.  
SYS_ERR  
MABORT  
Received master abort. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130’s internal PCI bus.  
Received target abort. This bit is hardwired to zero. It is assumed that the relevant error checking  
is unnecessary for the XIO3130’s internal PCI bus.  
TABORT_REC  
Signaled target abort. This bit is hardwired to zero. It is assumed that the relevant error checking  
is unnecessary for the XIO3130’s internal PCI bus.  
11  
10:9  
8
TABORT_SIG  
PCI_SPEED  
DATAPAR  
r
r
r
DEVSEL timing. These bits are hardwired to 00. These bits do not apply to PCI Express.  
Master data parity error. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130’s internal PCI bus.  
7
6
FBB_CAP  
RSVD  
r
r
r
r
Fast back-to-back capable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Reserved. When read, this bit returns zero.  
5
66MHZ  
RSVD  
66 MHz capable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Reserved. When read, these bits return zeros.  
4:0  
42  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.18 Memory Base Register  
This read/write register specifies the lower limit of the memory addresses that the XIO3130 forwards  
downstream.  
PCI register offset:  
Register type:  
20h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-9. Bit Descriptions – Memory Base Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Memory base. This field defines the bottom address of the memory address range used to  
determine when to forward memory transactions from one interface to the other. These bits  
correspond to address bits [31:20] in the memory address. The lower 20 bits are assumed to be 0.  
15:4  
3:0  
MEMBASE  
RSVD  
rw  
r
Reserved. When read, these bits return zeros.  
4.2.19 Memory Limit Register  
This read/write register specifies the upper limit of the memory addresses that the XIO3130 forwards  
downstream.  
PCI register offset:  
Register type:  
22h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Table 4-10. Bit Descriptions – Memory Limit Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Memory limit. This field defines the top address of the memory address range used to determine  
when to forward memory transactions from one interface to the other. These bits correspond to  
address bits [31:20] in the memory address. The lower 20 bits are assumed to be FFFFFh.  
15:4  
3:0  
MEMLIMIT  
RSVD  
rw  
r
Reserved. When read, these bits return zeros.  
4.2.20 Pre-fetchable Memory Base Register  
This read/write register specifies the lower limit of the pre-fetchable memory addresses that the XIO3130  
forwards downstream.  
PCI register offset:  
Register type:  
24h  
Read/Write; Read Only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Table 4-11. Bit Descriptions – Pre-fetchable Memory Base Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory base. This field defines the bottom address of the pre-fetchable memory  
address range that is used to determine when to forward memory transactions from one interface  
to the other. These bits correspond to address bits [31:20] in the memory address. The lower 20  
bits are assumed to be 0. The Pre-fetchable Base Upper 32 Bits register is used to specify the bit  
[63:32] of the 64-bit pre-fetchable memory address.  
15:4  
PREBASE  
rw  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
43  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-11. Bit Descriptions – Pre-fetchable Memory Base Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
64-bit memory indicator. These read-only bits indicate that 64-bit addressing is supported for this  
memory window.  
3:0  
64BIT  
r
4.2.21 Pre-Fetchable Memory Limit Register  
This read/write register specifies the upper limit of the pre-fetchable memory addresses that the XIO3130  
forwards downstream.  
PCI register offset:  
Register type:  
26h  
Read/Write; Read Only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Table 4-12. Bit Descriptions – Pre-fetchable Memory Limit Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory limit. These bits define the top address of the pre-fetchable memory  
address range used to determine when to forward memory transactions from one interface to the  
other. These bits correspond to address bits [31:20] in the memory address. The lower 20 bits are  
assumed to be FFFFFh. The Pre-fetchable Limit Upper 32 Bits register is used to specify the bit  
[63:32] of the 64-bit pre-fetchable memory address.  
15:4  
3:0  
PRELIMIT  
rw  
64-bit memory indicator. These read-only bits indicate that 64-bit addressing is supported for this  
memory window.  
64BIT  
r
4.2.22 Pre-Fetchable Base Upper 32 Bits Register  
This read/write register specifies the upper 32 bits of the Pre-fetchable Memory Base register.  
PCI register offset:  
Register type:  
28h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-13. Bit Descriptions – Pre-fetchable Base Upper 32 Bits Register  
BIT  
31:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory base upper 32 bits. This field defines the upper 32 bits of the bottom  
address of the pre-fetchable memory address range that is used to determine when to forward  
memory transactions downstream.  
PREBASE  
rw  
44  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.23 Pre-fetchable Limit Upper 32 Bits Register  
This read/write register specifies the upper 32 bits of the Pre-fetchable Memory Limit register.  
PCI register offset:  
Register type:  
2Ch  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-14. Bit Descriptions – Pre-fetchable Limit Upper 32 Bits Register  
FIELD  
NAME  
BIT  
ACCESS  
DESCRIPTION  
Pre-fetchable memory limit upper 32 bits. This field defines the upper 32 bits of the top address of the  
pre-fetchable memory address range used to determine when to forward memory transactions  
downstream.  
PRELIMI  
T
31:0  
rw  
4.2.24 I/O Base Upper 16 Bits Register  
This read/write register specifies the upper 16 bits of the I/O Base register.  
PCI register offset:  
Register type:  
30h  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-15. Bit Descriptions – I/O Base Upper 16 Bits Register  
BIT  
15:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
I/O base upper 16 bits. This field defines the upper 16 bits of the bottom address of the I/O  
address range that is used to determine when to forward I/O transactions downstream.  
IOBASE  
rw  
4.2.25 I/O Limit Upper 16 Bits Register  
This read/write register specifies the upper 16 bits of the I/O Limit register.  
PCI register offset:  
Register type:  
32h  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-16. Bit Descriptions – I/O Limit Upper 16 Bits Register  
BIT  
15:0  
FIELD NAME  
IOLIMIT  
ACCESS  
DESCRIPTION  
I/O limit upper 16 bits. This field defines the upper 16 bits of the top address of the I/O address  
range used to determine when to forward I/O transactions downstream.  
rw  
4.2.26 Capabilities Pointer Register  
This read-only register provides a pointer into the PCI configuration header where the PCI power  
management block resides. Since the PCI power management registers begin at 50h, this register is  
hardwired to 50h.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
45  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
PCI register offset:  
Register type:  
34h  
Read only  
50h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
0
4.2.27 Interrupt Line Register  
This read/write register, which is programmed by the system, indicates to the software which interrupt line  
the XIO3130 has assigned to it. The default value of this register is FFh, which indicates that an interrupt  
line has not yet been assigned to the function. Since the XIO3130 does not generate interrupts internally,  
this register is essentially a scratch-pad register; it has no effect on the XIO3130 itself.  
PCI register offset:  
Register type:  
3Ch  
Read/Write  
FFh  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
4.2.28 Interrupt Pin Register  
The Interrupt Pin register is read-only 00h, which indicates that the XIO3130 upstream port does not  
generate interrupts. The value of this register has no effect on forwarding interrupts from the downstream  
ports to the upstream port.  
PCI register offset:  
Register type:  
3Dh  
Read Only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.29 Bridge Control Register  
The Bridge Control register provides extensions to the Command register that are specific to a bridge.  
PCI register offset:  
Register type:  
3Eh  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
46  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-17. Bit Descriptions – Bridge Control Register  
BIT  
15:12  
11  
10  
9
FIELD NAME  
RSVD  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
r
r
r
r
r
r
DTSERR  
DTSTATUS  
SEC_DT  
Discard timer SERR enable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Discard timer status. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Secondary discard timer. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Primary discard timer. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Fast back-to-back enable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
8
PRI_DEC  
FBB_EN  
7
Secondary bus reset. This bit is set when software wishes to reset all devices downstream of the  
XIO3130. Setting this bit causes all of the downstream ports to be reset, and all of the downstream  
ports to send a reset via a training sequence.  
6
SRST  
rw  
0 – Downstream ports not in Reset state.  
1 – Downstream ports in Reset state.  
5
4
MAM  
r
Master abort mode. This bit is hardwired to zero. This bit does not apply to PCI Express.  
VGA 16-bit decode. This bit enables the XIO3130 to provide full 16-bit decoding for VGA I/O  
addresses. This bit only has meaning if the VGA enable bit is set.  
VGA16  
rw  
0 – Ignore address bits [15:10] when decoding VGA I/O addresses.  
1 – Decode address bits [15:10] when decoding VGA I/O addresses.  
VGA enable. This bit modifies the response by the XIO3130 to VGA-compatible addresses. If this  
bit is set, the XIO3130 positively decodes and forwards the following accesses on the primary  
interface to the secondary interface (and, conversely, blocks the forwarding of these addresses  
from the secondary to primary interface):  
Memory accesses in the range 000A 0000h to 000BFFFFh  
I/O addresses in the first 64 KB of the I/O address space (Address bits [31:16] are 0000h)  
and where address bits [9:0] is in the range of 3B0h to 3BBh or 3C0h to 3DFh (inclusive of  
ISA address aliases – Address bits [15:10] may possess any value and is not used in the  
decoding).  
If the VGA Enable bit is set, forwarding of VGA addresses is independent of the value of the ISA  
Enable bit (located in the Bridge Control register), the I/O address range and memory address  
ranges defined by the I/O Base and Limit registers, the Memory Base and Limit registers, and the  
Pre-fetchable Memory Base and Limit registers of the bridge. The forwarding of VGA addresses is  
qualified by the I/O Enable and Memory Enable bits in the Command register.  
3
VGA  
rw  
0 – Do not forward VGA-compatible memory and I/O addresses from the primary to secondary  
interface (addresses defined above) unless they are enabled for forwarding by the defined  
I/O and memory address ranges.  
1 – Forward VGA-compatible memory and I/O addresses (addresses defined above) from the  
primary interface to the secondary interface (if the I/O Enable and Memory Enable bits are  
set) independent of the I/O and memory address ranges and independent of the ISA  
Enable bit.  
ISA enable. This bit modifies the response by the XIO3130 to ISA I/O addresses. This bit applies  
only to I/O addresses that are enabled by the I/O Base and I/O Limit registers and are in the first  
64 KB of PCI I/O address space (0000 0000h to 0000 FFFFh). If this bit is set, the bridge blocks  
any forwarding from primary to secondary of I/O transactions addressing the last 768 bytes in each  
1 KB block. In the opposite direction (secondary to primary), I/O transactions are forwarded if they  
address the last 768 bytes in each 1K block.  
2
ISA  
rw  
0 – Forward downstream all I/O addresses in the address range defined by the I/O Base and  
I/O Limit registers.  
1 – Forward upstream ISA I/O addresses in the address range defined by the I/O Base and I/O  
Limit registers that are in the first 64 KB of PCI I/O address space (top 768 bytes of each 1  
KB block).  
SERR enable. This bit controls forwarding of system error events upstream from the secondary  
interface to the primary interface. The XIO3130 forwards system error events when:  
This bit is set.  
The SERR enable bit in the upstream port command register is set.  
SERR is asserted on the secondary interface.  
1
SERR_EN  
rw  
0 – Disable the forwarding of system error events.  
1 – Enable the forwarding of system error events.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
47  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-17. Bit Descriptions – Bridge Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Parity error response enable. It is assumed that the relevant error checking is unnecessary for the  
XIO3130’s internal PCI bus; therefore, setting this bit has no effect.  
0
PERR_EN  
rw  
4.2.30 Capability ID Register  
This read-only register identifies the linked list item as the register for PCI power management. The  
register returns 01h when read.  
PCI register offset:  
Register type:  
50h  
Read only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
4.2.31 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130. This register reads 70h, which points to the MSI Capabilities registers.  
PCI register offset:  
Register type:  
51h  
Read only  
70h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
1
1
1
0
0
0
0
4.2.32 Power Management Capabilities Register  
This register indicates the capabilities of the XIO3130 related to PCI power management.  
PCI register offset:  
Register type:  
52h  
Read only  
XX03h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
y
1
1
x
1
1
x
0
0
0
0
0
0
0
1
1
Table 4-18. Bit Descriptions – Power Management Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
PME support. This five-bit field indicates the power states from which the (upstream) port may  
assert PME. These five bits return a value of 5’by11x1, indicating that the XIO3130 can assert  
PME from D0, D2, D3hot, maybe D3cold (i.e., depending on y), and maybe D1 (i.e., depending  
on x). The bit defining this for D3cold (i.e., y) is controlled by the AUX_PRSNT bit in the Global  
Chip Control register. The bit defining this for D1 (i.e., x) is controlled by the D1_SUPPORT bit in  
the Global Switch Control register.  
15:11 PME_SUPPORT  
r
D2 device power state support. This bit returns a 1 when read, which indicates that the function  
supports the D2 device power state.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
r
r
D1 device power state support. This bit indicates whether the function supports the D1 device  
power state. This bit is controlled by the D1_SUPPORT bit in the Global Switch Control register.  
The default value x refers to whatever the default value is for the D1_SUPPORT bit in the Global  
Switch Control register.  
3.3-VAUX auxiliary current requirements. This field is hardwired to 3’b000. See PCI Power  
Management Specification Revision 1.2, Section 3.2.3, Page 26, for mapping this field to specific  
current consumption values.  
8:6  
5
AUX_CURRENT  
DSI  
r
r
Device-specific initialization. This bit returns 0 when read, which indicates that the XIO3130 does  
not require special initialization beyond the standard PCI configuration header before a generic  
class driver is able to use it.  
48  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-18. Bit Descriptions – Power Management Capabilities Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, this bit returns zero.  
4
RSVD  
r
PME clock. This bit returns zero, which indicates that the PCI clock is not needed to generate  
PME.  
3
PME_CLK  
r
r
2:0  
PM_VERSION  
Power management version. This field returns 3’b011, which indicates Revision 1.2 compatibility.  
4.2.33 Power Management Control/Status Register  
This register determines and changes the current power state of the XIO3130.  
PCI register offset:  
Register type:  
54h  
Read/Write; Read Only  
0008h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
Table 4-19. Bit Descriptions – Power Management Control/Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
PME status. This bit is hardwired to 0b since the XIO3130’s upstream port does not generate  
PME regardless of PME_SUPPORT field setting.  
15  
PME_STAT  
r
Data scale. This 2-bit field returns 0’s when read since the XIO3130 does not use the Data  
Register.  
14:13  
12:9  
DATA_SCALE  
DATA_SEL  
r
r
Data select. This 4-bit field returns 0’s when read since the XIO3130 does not use the Data  
Register  
PME enable. This bit enables PME signaling. This bit is hardwired to 0b since the XIO3130’s  
upstream port does not generate PME.  
8
PME_EN  
RSVD  
r
r
7:4  
Reserved. When read, these bits return zeros.  
No soft reset. This bit controls whether the transition from D3hot to D0 resets the state  
according to the PCI Power Management Specification Revision 1.2. This bit is hardwired to  
1’b1.  
3
2
NO_SOFT_RST  
RSVD  
r
r
0 – D3hot to D0 transition causes reset.  
1 – D3hot to D0 transition does not cause reset.  
Reserved. When read, this bit returns zero.  
Power state. This 2-bit field is used both to determine the current power state of the function  
and to set the function into a new power state. This field is encoded as follows:  
00 = D0  
01 = D1  
10 = D2  
11 = D3hot  
1:0  
PWR_STATE  
rw  
See the Power Management section of this document for information about what the XIO3130  
does in these different power states.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
49  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.34 Power Management Bridge Support Extension Register  
This read-only register is used to indicate to host software the state of the secondary bus when the  
XIO3130 is placed in D3.  
PCI register offset:  
Register type:  
56h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Table 4-20. Bit Descriptions – PM Bridge Support Extension Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Bus power/Clock control enable. This bit is read-only zero. This bit does not apply to PCI  
Express.  
7
BPCC  
r
6
BSTATE  
RSVD  
r
r
B2/B3 support. This bit is read-only zero. This bit does not apply to PCI Express.  
Reserved. When read, these bits return zeros.  
5:0  
4.2.35 Power Management Data Register  
This read-only register is not applicable to the XIO3130 and returns 00h when read.  
PCI register offset:  
Register type:  
57h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.36 MSI Capability ID Register  
This read-only register identifies the linked list item as the register for Message Signaled Interrupts (MSI)  
Capabilities. The register returns 05h when read.  
PCI register offset:  
Register type:  
70h  
Read only  
05h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
1
4.2.37 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130. This register reads 80h, which points to the Subsystem ID and Subsystem Vendor ID  
Capabilities registers.  
PCI register offset:  
Register type:  
71h  
Read only  
80h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
50  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.38 MSI Message Control Register  
This register is used to control the sending of MSI messages.  
PCI register offset:  
Register type:  
72h  
Read/Write; Read Only  
0080h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
Table 4-21. Bit Descriptions – MSI Message Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:8  
RSVD  
r
64-bit message capability. This bit is read-only 1, which indicates that the XIO3130 supports 64-bit  
MSI message addressing.  
7
64CAP  
r
Multiple message enable. This bit indicates the number of distinct messages that the XIO3130 is  
allowed to generate.  
000 – 1 Message  
001 – 2 Messages  
010 – 4 Messages  
011 – 8 Messages  
100 – 16 Messages  
101 – 32 Messages  
110 – Reserved  
6:4  
MM_EN  
rw  
111 – Reserved  
Multiple message capabilities. This field indicates the number of distinct messages that the  
XIO3130 is capable of generating. This field is read-only 000, which indicates that the XIO3130  
can signal one interrupt.  
3:1  
0
MM_CAP  
MSI_EN  
r
MSI enable. This bit is used to enable MSI interrupt signaling. MSI signaling must be enabled by  
software for the XIO3130 to send MSI messages.  
rw  
0 – MSI signaling is prohibited.  
1 – MSI signaling is enabled.  
4.2.39 MSI Message Address Register  
This register contains the lower 32 bits of the address that a MSI message shall be written to when an  
interrupt is to be signaled.  
PCI register offset:  
Register type:  
74h  
Read/Write; Read Only  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-22. Bit Descriptions – MSI Message Address Register  
BIT  
FIELD NAME  
ADDRESS  
RSVD  
ACCESS  
DESCRIPTION  
31:2  
1:0  
rw  
r
System Specified Message Address.  
Reserved. When read, these bits return zeros.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
51  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.40 MSI Message Upper Address Register  
This register contains the upper 32 bits of the address that a MSI message shall be written to when an  
interrupt is to be signaled. If this register is 0000 0000h, 32-bit addressing is used; otherwise, 64-bit  
addressing is used.  
PCI register offset:  
Register type:  
78h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PCI register offset:  
Register type:  
56h  
Read only  
00h  
Default value:  
4.2.41 MSI Message Data Register  
This register contains the data that software programmed the device to send when it sends a MSI  
message.  
PCI register offset:  
Register type:  
7Ch  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-23. Bit Descriptions – MSI Data Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
System-specific message. This field contains the portion of the message that the XIO3130 can  
never modify.  
15:4  
MSG  
rw  
Message number. This portion of the message field may be modified to contain the message  
number if multiple messages are enabled. Since the XIO3130 only generates one MSI type,  
these bits are not modified by XIO3130 hardware.  
3:0  
MSG_NUM  
rw  
4.2.42 Capability ID Register  
This read-only register identifies the linked list item as the register for Subsystem ID and Subsystem  
Vendor ID Capabilities. The register returns 0Dh when read.  
PCI register offset:  
Register type:  
80h  
Read only  
0Dh  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
1
4.2.43 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130. This register reads 90h, which points to the PCI Express Capabilities registers.  
PCI register offset:  
81h  
52  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Register type:  
Read only  
90h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
0
0
1
0
0
0
0
4.2.44 Subsystem Vendor ID Register  
This register, which is used for system and option card identification purposes, may be required for certain  
operating systems. This read-only register is a direct reflection of the Subsystem Access register, which is  
read/write and is initialized through the EEPROM (if present).  
PCI register offset:  
Register type:  
84h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.2.45 Subsystem ID Register  
This register, which is used for system and option card identification purposes, may be required for certain  
operating systems. This read-only register is a direct reflection of the Subsystem Access register, which is  
read/write and is initialized through the EEPROM (if present).  
PCI register offset:  
Register type:  
86h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.2.46 PCI Express Capability ID Register  
This read-only register identifies the linked list item as the register for PCI Express Capabilities. The  
register returns 10h when read.  
PCI register offset:  
Register type:  
90h  
Read only  
10h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
53  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.47 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130. This register reads 00h, which indicates that no additional capabilities are supported.  
PCI register offset:  
Register type:  
91h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.48 PCI Express Capabilities Register  
This register indicates the capabilities of the upstream port of the XIO3130 related to PCI Express.  
PCI register offset:  
Register type:  
92h  
Read only  
0051h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
Table 4-24. Bit Descriptions – PCI Express Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:14  
RSVD  
r
Interrupt message number. This field is used for MSI support and is implemented as read-only  
zero in the XIO3130.  
13:9  
INT_NUM  
SLOT  
r
r
r
r
Slot implemented. This bit is invalid for the upstream port on the XIO3130 and is read-only  
zero.  
8
Device/Port type. This read-only field returns 0101b, which indicates that the device is an  
upstream port of a PCI Express XIO3130.  
7:4  
3:0  
DEV_TYPE  
VERSION  
Capability version. This field returns 0001b, which indicates revision 1 of the PCI Express  
capability.  
4.2.49 Device Capabilities Register  
The Device Capabilities register indicates the device-specific capabilities of the XIO3130.  
PCI register offset:  
Register type:  
94h  
Read Only; Hardware Update  
0000 8001h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
54  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-25. Bit Descriptions – Device Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
31:28  
RSVD  
r
Captured slot power limit scale. The value in this register is programmed by the host by issuing  
a Set_Slot_Power_Limit Message. When a Set_Slot_Power_Limit Message is received, bits 9:8  
are written to this field. The value in this register specifies the scale used for the Slot Power  
Limit.  
27:26  
25:18  
CSPLS  
ru  
00 – 1.0x  
01 – 0.1x  
10 – 0.01x  
11 – 0.001x  
Captured slot power limit value. The value in this register is programmed by the host by issuing  
a Set_Slot_Power_Limit Message. When a Set_Slot_Power_Limit Message is received, bits 7:0  
are written to this field. The value in this register, in combination with the Slot power limit scale  
value, specifies the upper limit of power supplied to the slot. The power limit is calculated by  
multiplying the value in this field by the value in the Slot power limit scale field.  
CSPLV  
ru  
17:16  
15  
RSVD  
RBER  
RSVD  
ETFS  
r
r
r
r
Reserved. When read, these bits return zeros.  
Role-based error reporting. This field is set to 1b to indicate support for role-based error  
reporting.  
14:6  
5
Reserved. When read, these bits return zeros.  
Extended tag field supported. This field indicates the size of the tag field supported. This bit is  
hardwired to zero, indicating support for 5-bit tag fields.  
Phantom functions supported. This field is read-only 00b, indicating that function numbers are  
not used for phantom functions.  
4:3  
2:0  
PFS  
r
r
Max payload size supported. This field indicates the maximum payload size that the device can  
support for TLPs. This field is encoded as 001b, which indicates that the maximum payload size  
for a TLP is 256 bytes.  
MPSS  
4.2.50 Device Control Register  
The Device Control register controls PCI Express device-specific parameters.  
PCI register offset:  
Register type:  
98h  
Read/Write; Read Only  
2000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-26. Bit Descriptions – Device Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, this bit returns zero.  
15  
RSVD  
r
Max read request size. This field is programmed by the host software to set the maximum size  
of a read request that the XIO3130 can generate. The XIO3130 uses this field in conjunction  
with the cache line size register to determine how much data to fetch on a read request. This  
field is encoded as:  
000 – 128B  
001 – 256B  
14:12  
MRRS  
rw  
010 – 512B  
011 – 1024B  
100 – 2048B  
101 – 4096B  
110 – Reserved  
111 – Reserved  
Enable no snoop. Since the XIO3130 does not initiate such transactions, this bit is read-only  
zero.  
11  
ENS  
r
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
55  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-26. Bit Descriptions – Device Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Auxiliary power PM enable. This bit is read-only zero, since the XIO3130 requires a minimal  
amount of AUX power when PME is disabled.  
10  
APPE  
r
Phantom function enable. Since the XIO3130 part does not support phantom functions, this bit  
is read-only zero.  
9
8
PFE  
r
r
Extended tag field enable. Since the XIO3130 part does not support extended tags, this bit is  
read-only zero.  
ETFE  
Max payload size. This field is programmed by the host software to set the maximum size of  
posted writes or read completions that the XIO3130 can initiate. This field is encoded as:  
000 – 128B  
001 – 256B  
010 – 512B  
7:5  
MPS  
rw  
011 – 1024B  
100 – 2048B  
101 – 4096B  
110 – Reserved  
111 – Reserved  
Enable relaxed ordering. Since the XIO3130 part does not support relaxed ordering, this bit is  
read-only zero.  
4
3
ERO  
r
Unsupported request reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_NONFATAL messages to the root complex when an unsupported request is received by  
the upstream port.  
URRE  
rw  
0 – Do not report unsupported requests to the root complex.  
1 – Report unsupported requests to the root complex.  
Fatal error reporting enable. If this bit is set, the XIO3130 is enabled to send ERR_FATAL  
messages to the root complex when a system error event occurs.  
2
1
0
FERE  
NFERE  
CERE  
rw  
rw  
rw  
0 – Do not report fatal errors to the root complex.  
1 – Report fatal errors to the root complex.  
Nonfatal error reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_NONFATAL messages to the root complex when a system error event occurs.  
0 – Do not report nonfatal errors to the root complex.  
1 – Report nonfatal errors to the root complex.  
Correctable error reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_CORR messages to the root complex when a system error event occurs.  
0 – Do not report correctable errors to the root complex.  
1 – Report correctable errors to the root complex.  
4.2.51 Device Status Register  
The Device Status register controls PCI Express device-specific parameters.  
PCI register offset:  
Register type:  
9Ah  
Read Only; Clear by a Write of One; Hardware Update  
00X0h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
Table 4-27. Bit Descriptions – Device Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:6  
RSVD  
r
Transaction PENDING. This bit is set when the XIO3130 has issued a non-posted transaction  
that has not been completed yet.  
5
PEND  
ru  
56  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-27. Bit Descriptions – Device Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
AUX power detected. This bit indicates that AUX power is present. This bit is a direct reflection  
of the AUX_PRSNT bit in the Global Chip Control register and has the same default value.  
4
APD  
ru  
0 – No AUX power detected.  
1 – AUX power detected.  
Unsupported request detected. This bit is asserted when a request is received that results in  
sending a completion with an Unsupported Request status). Errors are logged in this bit  
regardless of whether error reporting is enabled in the Device Control register.  
3
2
1
URD  
FED  
rcu  
rcu  
rcu  
Fatal error detected. This bit is set by the XIO3130 when a fatal error is detected. Errors are  
logged in this bit regardless of whether error reporting is enabled in the Device Control register.  
Nonfatal error detected. This bit is set by the XIO3130 when a nonfatal error is detected. Errors  
are logged in this bit regardless of whether error reporting is enabled in the Device Control  
register.  
NFED  
Correctable error detected. This bit is set by the XIO3130 when a correctable error is detected.  
Errors are logged in this bit regardless of whether error reporting is enabled in the Device  
Control register.  
0
CED  
rcu  
4.2.52 Link Capabilities Register  
The Link Capabilities register indicates the link-specific capabilities of the device.  
PCI register offset:  
Register type:  
9Ch  
Read only  
000X XX11h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
y
y
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
y
z
z
z
x
1
0
0
0
0
0
1
0
0
0
1
Table 4-28. Bit Descriptions – Link Capabilities Register  
BIT  
31:24  
23:19  
18  
FIELD NAME  
PORT_NUM  
RSVD  
ACCESS  
DESCRIPTION  
Port number. This field indicates the port number for the PCI Express link. This field is  
read-only zero.  
r
r
r
Reserved. When read, these bits return zeros.  
Clock power management. This field is read-only 1b, which indicates that CLKREQ is  
supported on the upstream port.  
CLK_PM  
L1 exit latency. This field indicates the time that it takes to transition from the L1 state to the  
L0 state. This field is a direct reflection of the Upstream Port Link PM Latency register  
L1_EXIT_LAT field, which is a read/write field that is loaded from EEPROM (if present). The  
default value of this field, yyy, is the same as the default value of the Link PM Latency  
register L1_EXIT_LAT field.  
17:15  
L1_LATENCY  
r
L0s exit latency. This field indicates the time that required to transition from the L0s state to  
the L0 state. This field is a direct reflection of the Upstream Port Link PM Latency register  
L0S_EXIT_LAT field, which is a read/write field that is loaded from EEPROM (if present).  
The default value of this field, zzz, is the same as the default value of the Link PM Latency  
register L0S_EXIT_LAT field.  
14:12  
11:10  
L0S_LATENCY  
ASLPMS  
r
r
Active state link PM support. This field reads either 01b or 11b, which indicates that the  
device supports L0s and may or may not support ASPM-based L1 for Active State Link PM.  
ASPM-based L1 support is controlled by the ASPM_L1_EN field in the Global Chip Control  
register.  
Maximum link width. This field is encoded 000001b to indicate that the device only supports  
an x1 PCI Express link.  
9:4  
3:0  
MLW  
MLS  
r
r
Maximum link speed. This field is encoded 0001b to indicate that the device supports a  
maximum link speed of 2.5 Gb/s.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
57  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.53 Link Control Register  
The Link Control register is used to control link-specific behavior.  
PCI register offset:  
Register type:  
A0h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-29. Bit Descriptions – Link Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:9  
RSVD  
r
Clock power management enable. When CLKREQ support is enabled, the EP_LI_LAT field in  
the Upstream Ports Link PM Latency register increases due to link PLL locking requirements.  
8
CPM_EN  
ES  
rw  
0 – Disable CLKREQ on upstream port  
1 – Enable CLKREQ on upstream port  
Extended synch. This bit is used to force the device to extend the transmission of FTS ordered  
sets and an extra TS2 when exiting from L1 before entering to L0.  
7
6
rw  
rw  
0 – Normal synch  
1 – Extended synch  
Common clock configuration. This bit is set when a common clock is provided to both ends of  
the PCI Express link. This bit can be used to change the L0s and L1 exit latencies.  
CCC  
0 – Reference clock is asynchronous.  
1 – Reference clock is synchronous.  
5
4
RL  
LD  
r
r
Retrain link. This bit has no function for upstream ports and is read-only zero.  
Link disable. This bit has no function for upstream ports and is read-only zero.  
Read completion boundary. This bit specifies the minimum size read completion packet that the  
XIO3130 can send when breaking a read request into multiple completion packets. This field is  
not applicable to XIO3130 switches; i.e., the XIO3130 does not break up completion packets  
and is hardwired to zero.  
3
2
RCB  
RSVD  
r
r
0 – 64 bytes  
1 – 128 bytes  
Reserved. When read, this bit returns zero.  
Active state link PM control. This field is used to enable and disable active state PM.  
00 – Active state PM disabled  
1:0  
ASLPMC  
rw  
01 – L0s entry enabled  
10 – Reserved  
11 – L0s and L1 entry enable  
58  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.54 Link Status Register  
The Link Status register indicates the current state of the PCI Express Link.  
PCI register offset:  
Register type:  
A2h  
Read only  
1X11h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
1
0
x
0
0
0
0
0
1
0
0
0
1
Table 4-30. Bit Descriptions – Link Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:13  
RSVD  
r
Slot clock configuration. This bit reflects the reference clock configurations and is read-only 1,  
indicating that a 100 MHz common clock reference is used.  
12  
SCC  
r
11  
10  
LT  
UNDEF  
NLW  
LS  
r
r
r
r
Link training in progress. This bit has no function for upstream ports and is read-only zero.  
Undefined. The value read from this bit is undefined.  
9:4  
3:0  
Negotiated link width. This field is read-only 000001b, which indicates that the lane width is x1.  
Link speed. This field is read-only 0001b, which indicates that the link speed is 2.5Gb/s.  
4.2.55 Serial Bus Data Register  
The Serial Bus Data register is used to read and write data on the serial bus interface, e.g., for use with a  
serial EEPROM. When writing data to the serial bus, this register must be written before writing to the  
Serial Bus Address register to initiate the cycle. When reading data from the serial bus, this register  
contains the data read after the REQBUSY (bit 5 Serial Bus Control register) bit is cleared. This register is  
reset with PERST.  
PCI register offset:  
Register type:  
B0h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.2.56 Serial Bus Index Register  
The value written to the Serial Bus Index register represents the byte address of the byte being read or  
written from the serial bus device. The Serial Bus Index register must be written before initiating a serial  
bus cycle by writing to the Serial Bus Slave Address register. This register is reset with PERST.  
PCI register offset:  
Register type:  
B1h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
59  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.57 Serial Bus Slave Address Register  
The Serial Bus Slave Address register is used to indicate the address of the device being targeted by the  
serial bus cycle. This register also indicates whether the cycle will be a read or a write cycle. Writing to  
this register initiates the cycle on the serial interface. This register is reset with PERST. The default value  
corresponds to a serial EEPROM slave address of 7’b101_0000.  
PCI register offset:  
Register type:  
B2h  
Read/Write  
A0h  
Default value:  
BIT NUM BER  
RESET STATE  
7
6
5
4
3
2
1
0
1
0
1
0
0
0
0
0
Table 4-31. Bit Descriptions – Serial Bus Slave Address Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Serial bus slave address. This bit field represents the slave address for a read/write transaction  
on the serial interface.  
7:1  
SLAVE_ADDR  
rw  
This field is reset with PERST.  
Read/Write command. This bit is used to determine whether the serial bus cycle is a read or a  
write cycle.  
0 – A single byte write is requested.  
1 – A single byte read is requested.  
This field is reset with PERST.  
0
RW_CMD  
rw  
4.2.58 Serial Bus Control and Status Register  
The Serial Bus Control and Status register is used to control the behavior of the serial bus interface. This  
register also provides status information about the state of the serial bus.  
PCI register offset:  
Register type:  
B3h  
Read/Write; Read Only; Clear by a Write of One; Hardware Update  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Table 4-32. Bit Descriptions – Serial Bus Control and Status Register  
BIT  
FIELD NAME  
PROT_SEL  
RSVD  
ACCESS  
DESCRIPTION  
Protocol select. This bit is used to select the serial bus address mode used.  
0 – Slave address and byte address are sent on the serial bus.  
1 – Only the slave address is sent on the serial bus.  
This field is reset with PERST.  
7
6
5
rw  
r
Reserved. When read, this bit returns zero.  
Requested serial bus access busy. This bit is set when a serial bus cycle is in progress.  
0 – No serial bus cycle  
REQBUSY  
ru  
1 – Serial bus cycle in progress  
This field is reset with PERST.  
Serial EEPROM access busy. This bit is set when the serial EEPROM circuitry in the XIO3130  
device is downloading register defaults from a serial EEPROM.  
0 – No EEPROM activity  
4
ROMBUSY  
ru  
1 – EEPROM download in progress  
This field is reset with PERST.  
60  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-32. Bit Descriptions – Serial Bus Control and Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Serial EEPROM detected. This bit is automatically set when a serial EEPROM is detected via  
the strapping option. For more information on strapping options, see section 1.9.1. The value  
of this bit is used to enable the serial bus interface and to control whether the EEPROM load  
occurs. Note that a serial EEPROM is only detected once following PERST or GRST.  
0 – No EEPROM present, EEPROM load process does not occur.  
1 – EEPROM present, EEPROM load process occurs.  
3
SBDETECT  
rwu  
Note that even if a serial EERPOM is not detected following PERST, system software can still  
set this bit to enable the serial bus interface. For more information on system software setting  
the bit, see section 1.9.4.  
This field is reset with PERST.  
2
1
RSVD  
r
Reserved. When read, this bit returns zero.  
Serial bus error. This bit is set when an error occurs during a software-initiated serial bus  
cycle.  
0 – No error  
SB_ERR  
rc  
1 – Serial bus error  
This field is reset with PERST.  
Serial EEPROM load error. This bit is set when an error occurs while downloading registers  
from a serial EEPROM.  
0 – No error  
0
ROM_ERR  
rc  
1 – EEPROM load error  
This field is reset with PERST.  
4.2.59 Upstream Port Link PM Latency Register  
This read/write register is used to program L0s and L1 exit latencies for the upstream port.  
PCI register offset:  
Register type:  
B4h  
Read/Write; Read Only; Clear by a Write of One; Hardware Update  
0024h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
Table 4-33. Bit Descriptions – Upstream Port Link PM Latency Register  
BIT  
15:14  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
Endpoint L0s acceptable latency. This field is used to program the maximum acceptable  
RSVD  
r
latency when exiting the L0s state. This field is used to set the L0s Acceptable Latency field in  
the Device Capabilities register.  
000 – Less than 64 ns (default)  
001 – 64 ns up to less than 128 ns  
010 – 128 ns up to less than 256 ns  
011 – 256 ns up to less than 512 ns  
100 – 512 ns up to less than 1 µs  
101 – 1 µs up to less than 2 µs  
13:11  
EP_L0S_LAT  
rw  
110 – 2 µs to 4 µs  
111 – More than 4 µs  
This field is loaded from EEPROM (when present) and reset with PERST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
61  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-33. Bit Descriptions – Upstream Port Link PM Latency Register (continued)  
BIT  
10:8  
7:6  
FIELD NAME  
EP_L1_LAT  
RSVD  
ACCESS  
DESCRIPTION  
Endpoint L1 acceptable latency. This field is used to program the maximum acceptable latency  
when exiting the L1 state. This field is used to set the L1 Acceptable Latency field in the Device  
Capabilities register.  
000 – Less than 1 µs (default)  
001 – 1 µs up to less than 2 µs  
010 – 2 µs up to less than 4 µs  
rw  
011 – 4 µs up to less than 8 µs  
100 – 8 µs up to less than 16 µs  
101 – 16 µs up to less than 32 µs  
110 – 32 µs to 64 µs  
111 – More than 64 µs  
This field is loaded from EEPROM (when present) and reset with PERST.  
Reserved. When read, these bits return zeros.  
r
L0s exit latency. This field is used to program the maximum latency for the PHY to exit the L0s  
state. This field is used to set the L0s Exit Latency field in the Link Capabilities register.  
000 – Less than 64 ns  
001 – 64 ns up to less than 128 ns  
010 – 128 ns up to less than 256 ns  
011 – 256 ns up to less than 512 ns  
100 – 512 ns up to less than 1 µs (default)  
101 – 1 µs up to less than 2 µs  
110 – 2 µs to 4 µs  
5:3  
L0S_EXIT_LAT  
rw  
111 – More than 4 µs  
Define writtenBySW to default to false, be set to true whenever the software or serial EEPROM  
writes this field to a value that is different from its current state, and can only be subsequently  
set to false as a result of a reset. When writtenBySW is false, this field is set to 011b when the  
CCC bit in the Link Control register is asserted (i.e., common clock mode) and set to 100b  
when the CCC bit is de-asserted (i.e., non-common clock mode). When writtenBySW is true,  
this field is the value that was last written by the software.  
This field is loaded from EEPROM (when present) and reset with PERST.  
This field may be programmed differently depending on the values programmed in the  
DEFER_L_EXIT and SMART_L_EXIT fields in the Global Switch Control register.  
L1 exit latency. This field is used to program the maximum latency for the PHY to exit the L1  
state. This field is used to set the L1 Exit Latency field in the Link Capabilities register.  
000 – Less than 1 µs  
001 – 1 µs up to less than 2 µs  
010 – 2 µs up to less than 4 µs  
011 – 4 µs up to less than 8 µs  
100 – 8 µs up to less than 16 µs (default)  
101 – 16 µs up to less than 32 µs  
110 – 32 µs to 64 µs  
2:0  
L1_EXIT_LAT  
rw  
111 – More than 64 µs  
Define writtenBySW to default to false, be set to true when the software or serial EEPROM  
writes this field to a value that is different from its current state, and can only be subsequently  
set to false as a result of a reset. When writtenBySW is false, this field is set to 100b. When  
writtenBySW is true, this field is the value last written by the software.  
This field is loaded from EEPROM (when present) and reset with PERST.  
This field may be programmed differently depending on the values programmed in the  
DEFER_L_EXIT and SMART_L_EXIT fields in the Global Switch Control register.  
62  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.60 Global Chip Control Register  
This read/write register is used to control various functionalities across the entire device.  
PCI register offset:  
Register type:  
B8h  
Read/Write; Read Only; Hardware Update; Sticky  
0000 000Xh  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
Table 4-34. Bit Descriptions – Global Chip Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, this bit returns zero.  
31  
RSVD  
r
ASPM-based L1 PLL disable. This bit enables or disables PLL during ASPM-based L1 for  
all PHYs on the XIO3130. This setting does not affect D-state-based L1, for which PLLs  
must be shut off during L1.  
30  
ASPM_L1_PLL_DIS  
rw  
rw  
0 – Enable PLL during ASPM-based L1.  
1 – Disable PLL during ASPM-based L1.  
This field is loaded from EEPROM (when present) and reset with PERST.  
ASPM-based L1 enable. This bit enables ASPM-based L1 on the PCI Express chip-level  
upstream port. This field controls whether the ASPM Support field in the Link Capabilities  
register reports support for ASPM-based L1 for all functions in a multifunction device.  
29  
ASPM_L1_EN  
0 – Disable ASPM based L1.  
1 – Enable ASPM based L1.  
This field is loaded from EEPROM (when present) and reset with PERST.  
This bit is a reserved diagnostic bit and must be set to 0 for proper operation. If an  
EEPROM is used, the corresponding bit in the EEPROM must be set to 0.  
28  
RSVD  
RSVD  
rw  
r
27:22  
Reserved. When read, these bits return zeros.  
Minimum power scale. This value is programmed to indicate the scale of the Minimum  
Power Value field.  
00 – 1.0x  
MIN_POWER_SCA  
LE  
01 – 0.1x  
21:20  
rw  
10 – 0.01x  
11 – 0.001x  
This field is loaded from EEPROM (when present) and reset with PERST.  
Minimum power value. This value is programmed to indicate the minimum power  
requirements for all circuitry powered by a slot, and is not applicable for motherboard  
down applications (i.e., must be programmed to zero in that case). This value is multiplied  
by the Minimum Power Scale field. When the value is non-zero, the resultant power figure  
is compared against information conveyed in Set_Slot_Power_Limit Messages received  
on the upstream port. When the value is zero, the comparison is ignored as if there is no  
power limit.  
MIN_POWER_VAL  
UE  
19:12  
rw  
This field is loaded from EEPROM (when present) and reset with PERST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
63  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-34. Bit Descriptions – Global Chip Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Power override. This field is used to determine how the device responds when the slot  
power limit (via Set_Slot_Power_Limit Message received) is greater than the amount of  
power programmed in the MIN_SLOT_POWER field of this register. This power  
comparison is disabled when the MIN_SLOT_POWER field of the register is zero.  
00 – Ignore slot power limit.  
01 – Assert the PWR_OVER pin.  
11:10  
PWR_OVRD  
rw  
10 – Assert the PWR_OVER pin and respond with Unsupported request to all transactions  
except configuration transactions (Type 0 or Type 1) and Set_Slot_Power_Limit  
Messages.  
11 – Reserved  
This field is loaded from EEPROM (when present) and reset with PERST.  
Reserved. When read, these bits return zeros.  
9:3  
2
RSVD  
r
Wake or beacon. This bit controls whether wake events are signaled using the WAKE pin  
or a beacon transmission.  
0 – Beacon mode.  
WAKE_OR_BCN  
rwh  
1 – WAKE mode.  
This field is reset with GRST and is loaded from EEPROM (when present).  
Wake to beacon enable. This bit enables externally generated wake events detected on  
the WAKE pin to cause a beacon to be transmitted. This field is ignored if  
WAKE_OR_BCN is set to WAKE mode.  
1
0
WAKE2BCN  
AUX_PRSNT  
rwh  
0 – WAKE input to beacon translation disabled.  
1 – WAKE input to beacon translation enabled.  
This field is reset with GRST and is loaded from EEPROM (when present).  
AUX power present. This bit reflects the state of a 3.3-VAUX presence detection circuit  
output in the PCI Express reference macro. This bit controls the AUX Power Detected bit  
in the Device Status register (i.e., whether AUX power is present) for all ports.  
ru  
0 – AUX power is not present.  
1 – AUX power is present.  
4.2.61 GPIO A Control Register  
This register is used to control the function of the PCIE_GPIO 0 – 4 pins.  
PCI register offset:  
Register type:  
BCh  
Read/Write; Read Only; Hardware Update; Sticky  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-35. Bit Descriptions – GPIO A Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
15  
RSVD  
r
Reserved. Reads back zero.  
GPIO 4 Control. This field controls the GPIO4 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_BTN0  
011 – Port 3 ACT_BTN2  
100 – Port 1 PWRFLT0  
101 – Port 3 PWRFLT2  
14:12  
PCIE_GPIO4_CTL  
rw  
110 – Port 1 EMIL_ENG0  
111 – Port 3 EMIL_ENG2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN2_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO4 terminal  
is directly mapped as the PRESENT PCI Hot Plug terminal for port 3 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
GPIO 3 Control. This field controls the GPIO3 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 CLKREQ0  
011 – Port 1 MRLS_DET0  
100 – Port 2 PWRFLT1  
11:9  
PCIE_GPIO3_CTL  
rw  
101 – Port 3 PWRFLT2  
110 – Port 2 MRLS_DET1  
111 – Port 3 MRLS_DET2,  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 2 Control. This field controls the GPIO2 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 2 ACT_BTN1  
011 – Port 3 ACT_BTN2  
100 – Port 2 PWRFLT1  
101 – Port 3 PWRFLT2  
8:6  
PCIE_GPIO2_CTL  
rw  
110 – Port 2 MRLS_DET1  
111 – Port 3 MRLS_DET2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN1_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO2 terminal  
is directly mapped as the PWR_GOOD PCI Hot Plug terminal for port 2 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
65  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-35. Bit Descriptions – GPIO A Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
GPIO 1 Control. This field controls the GPIO1 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 2 EMIL_CTL1  
011 – Port 3 EMIL_CTL2  
100 – Port 2 ATN_LED1  
101 – Port 3 ATN_LED2  
5:3  
PCIE_GPIO1_CTL  
rw  
110 – Port 2 PWR_LED1  
111 – Port 3 PWR_LED2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN1_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO1 terminal  
is directly mapped as the PWR_ON PCI Hot Plug terminal for port 2 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
GPIO 0 Control. This field controls the GPIO0 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 2 ACT_BTN1  
011 – Port 3 ACT_BTN2  
100 – Port 2 PWRFLT1  
101 – Port 3 PWRFLT2  
2:0  
PCIE_GPIO0_CTL  
rw  
110 – Port 2 EMIL_ENG1  
111 – Port 3 EMIL_ENG2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN1_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO1 terminal  
is directly mapped as the PWR_ON PCI Hot Plug terminal for port 2 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
4.2.62 GPIO B Control Register  
This register is used to control the function of the PCIE_GPIO 5 – 9 pins.  
PCI register offset:  
Register type:  
BEh  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
66  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-36. Bit Descriptions – GPIO B Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
15  
RSVD  
r
Reserved, reads back zero  
GPIO 9 Control. This field controls the GPIO9 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 EMIL_CTL0  
011 – Port 2 EMIL_CTL2  
100 – Port 1 ATN_LED0  
101 – Port 2 ATN_LED1  
14:12  
PCIE_GPIO9_CTL  
rw  
110 – Port 1 PWR_LED0  
111 – Port 2 PWR_LED1  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN3_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO9 terminal  
is directly mapped as the PWR_ON PCI Hot Plug terminal for port 3 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
GPIO 8 Control. This field controls the GPIO8 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_BTN0  
011 – Port 2 ACT_BTN1  
100 – Port 1 PWRFLT0  
101 – Port 2 PWRFLT1  
11:9  
PCIE_GPIO8_CTL  
rw  
110 – Port 1 EMIL_ENG0  
111 – Port 2 EMIL_ENG1  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN3_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO8 terminal  
is directly mapped as the PRESENT PCI Hot Plug terminal for port 3 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
GPIO 7 Control. This field controls the GPIO7 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 2 CLKREQ1  
011 – Port 2 MRLS_DET1  
100 – Port 1 PWRFLT0  
8:6  
PCIE_GPIO7_CTL  
rw  
101 – Port 3 PWRFLT2  
110 – Port 1 MRLS_DET0  
111 – Port 3 MRLS_DET2,  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
67  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-36. Bit Descriptions – GPIO B Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
GPIO 6 Control. This field controls the GPIO6 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_BTN0  
011 – Port 3 ACT_BTN2  
100 – Port 1 PWRFLT0  
101 – Port 3 PWRFLT2  
110 – Port 1 MRLS_DET0  
5:3  
PCIE_GPIO6_CTL  
rw  
111 – Port 3 MRLS_DET2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If DPSTRP[1] == 1, this bit field is read only and reads back zero.  
If the DN2_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO6 terminal  
is directly mapped as the PWR_GOOD PCI Hot Plug terminal for port 3 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
GPIO 5 Control. This field controls the GPIO5 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 EMIL_CTL0  
011 – Port 3 EMIL_CTL2  
100 – Port 1 ATN_LED0  
101 – Port 3 ATN_LED2  
110 – Port 1 PWR_LED0  
2:0  
PCIE_GPIO5_CTL  
rw  
111 – Port 3 PWR_LED2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If DPSTRP[1] == 1, this bit field is read only and reads back zero.  
If the DN2_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO5 terminal  
is directly mapped as the PWR_ON PCI Hot Plug terminal for port 3 and is no longer  
available for use as a GPIO. In this situation these bits have no meaning and should be left  
at their default value.  
4.2.63 GPIO C Control Register  
This register is used to control the function of the PCIE_GPIO 10 – 13 pins.  
PCI register offset:  
Register type:  
C0h  
Read/Write; Sticky  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
68  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-37. Bit Descriptions – GPIO C Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
15  
RSVD  
r
Reserved. Reads back zero.  
GPIO 14 Control. This field controls the GPIO14 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_LED0  
011 – Port 2 ACT_LED1  
100 – Port 3 ACT_LED2  
14:12  
11:9  
8:6  
PCIE_GPIO14_CTL  
PCIE_GPIO13_CTL  
PCIE_GPIO12_CTL  
PCIE_GPIO11_CTL  
rw  
rw  
rw  
rw  
101 – Port 1 PWR_LED0  
110 – Port 2 PWR_LED1  
111 – Port 3 PWRFLT2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 12 Control. This field controls the GPIO12 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_LED0  
011 – Port 2 ACT_LED1  
100 – Port 3 ACT_LED2  
101 – Port 1 ATN_LED0  
110 – Port 2 PWR_LED1  
111 – Port 3 PWR_LED2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 12 Control. This field controls the GPIO12 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_LED0  
011 – Port 2 ACT_LED1  
100 – Port 3 ACT_LED2  
101 – Port 1 PWR_LED0  
110 – Port 2 ATN_LED1  
111 – Port 3 ATN_LED2  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 11 Control. This field controls the GPIO11 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 3 CLKREQ2  
011 – Port 3 MRLS_DET2  
100 – Port 1 PWRFLT0  
5:3  
101 – Port 2 PWRFLT1  
110 – Port 1 MRLS_DET0  
111 – Port 2 MRLS_DET1,  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
69  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-37. Bit Descriptions – GPIO C Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
GPIO 10 Control. This field controls the GPIO10 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ACT_BTN0  
011 – Port 2 ACT_BTN1  
100 – Port 1 PWRFLT0  
101 – Port 2 PWRFLT1  
2:0  
PCIE_GPIO10_CTL  
rw  
110 – Port 1 MRLS_DET0  
111 – Port 2 MRLS_DET1  
See GPIO Data register for a detailed description of this field.  
This field is loaded from EEPROM (if present), and reset with FRST.  
If the DN3_DPSTRP terminal is pulled high at the de-assertion of reset, the GPIO10  
terminal is directly mapped as the PWR_GOOD PCI Hot Plug terminal for port 3 and is no  
longer available for use as a GPIO. In this situation these bits have no meaning and should  
be left at their default value.  
4.2.64 GPIO D Control Register  
This register is used to control the function of the PCIE_GPIO 15–19 pins.  
PCI register offset:  
Register type:  
C2h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
70  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-38. Bit Descriptions – GPIO D Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:10  
RSVD  
r
GPIO 18 Control. This field controls the GPIO18 pin as follows:  
00 – General Purpose Input (default)  
01 – General Purpose Output  
9:8  
PCIE_GPIO18_CTL  
rw  
10 – HP_INTX, PCI Hot Plug Interrupt Output  
11 – PD_CHG, Presence Detect Changed Output  
See GPIO Data register for a detailed description of this field. This field is loaded from  
EEPROM (if present), and reset with FRST.  
GPIO 17 Control. This field controls the GPIO19 pin as follows:  
00 – General Purpose Input (default)  
01 – General Purpose Output  
7:6  
PCIE_GPIO17_CTL  
rw  
10 – General Purpose Input  
11 – PWR_OVER, Power Limits exceeded  
See GPIO Data register for a detailed description of this field. This field is loaded from  
EEPROM (if present), and reset with FRST.  
GPIO 16 Control. This field controls the GPIO16 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ATN_LED0  
011 – Port 2 ATN_LED1  
5:3  
PCIE_GPIO16_CTL  
rw  
100 – Port 3 ATN_LED2  
101 – Port 1 PWRFLT0  
110 – Port 2 PWRFLT1  
111 – Port 3 PWRFLT2  
See GPIO Data register for a detailed description of this field. This field is loaded from  
EEPROM (if present), and reset with FRST.  
GPIO 15 Control. This field controls the GPIO15 pin as follows:  
000 – General Purpose Input (default)  
001 – General Purpose Output  
010 – Port 1 ATN_LED0  
011 – Port 2 ATN_LED1  
2:0  
PCIE_GPIO15_CTL  
rw  
100 – Port 3 PWR_LED2  
101 – Port 1 PWRFLT0  
110 – Port 2 PWRFLT1  
111 – Port 3 PWRFLT2.  
See GPIO Data register for a detailed description of this field. This field is loaded from  
EEPROM (if present), and reset with FRST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
71  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.65 GPIO Data Register  
This register is used to read the state of the GPIO pins and to change the state of GPIO pins that are in  
output mode. Reads to this register return the state of the GPIO pins, regardless of PCI Hot Plug  
strapping or GPIO configuration. Writes to this register only affect pins that are configured as a general  
purpose output.  
PCI register offset:  
Register type:  
C4h  
Read/Write; Read Only  
00000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-39. Bit Descriptions – GPIO Data Register  
BIT  
31:19  
FIELD NAME  
ACCESS  
DESCRIPTION  
RSVD  
r
GPIO 18 data.  
HP_INTX / PD_CHG / GPIO 18 data.  
HP_INTX output mode:  
Reads indicate current state of pin  
Writes have no affect  
PD_CHG output mode:  
Reads indicate current state of pin  
Writes have no affect  
18  
PCIE_GPIO18_DATA  
rw  
PD_CHG is asserted whenever all of the following are true for any given slot:  
PDC[n] bit is asserted in the Slot Status register for switch downstream port n, and  
PDC_EN[n] bit is asserted in Slot Control Register for switch downstream port n  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This field is loaded from EEPROM (if present), and reset with FRST.  
PWR_OVER / GPIO 17 data.  
PWR_OVER mode: reads state of pin; writes have no affect  
PWR_OVER pin is asserted whenever any of the following conditions are true:  
PERST is asserted  
17  
PCIE_GPIO17_DATA  
rw  
Conditions are met for exceeding slot power limit (see PWR_OVRD field in  
Global Chip Control Register)  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This field is loaded from EEPROM (if present), and reset with FRST.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 15 data.  
16  
15  
PCIE_GPIO16_DATA  
PCIE_GPIO15_DATA  
rw  
rw  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This field is loaded from EEPROM (if present), and reset with FRST.  
72  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-39. Bit Descriptions – GPIO Data Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
GPIO 14 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 13 data.  
14  
PCIE_GPIO14_DATA  
rw  
LED driver (see GPIO C Controls)  
13  
12  
11  
PCIE_GPIO13_DATA  
PCIE_GPIO12_DATA  
PCIE_GPIO11_DATA  
rw  
rw  
rw  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This bit field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 12 data.  
LED driver (see GPIO C Controls)  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
This bit field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 11 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input or output pin  
This bit field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 10 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
10  
PCIE_GPIO10_DATA  
rw  
This field is valid only if DN3_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 9 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
9
PCIE_GPIO9_DATA  
rw  
This field is valid only if DN3_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 8 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP output pin  
8
7
PCIE_GPIO8_DATA  
PCIE_GPIO7_DATA  
rw  
rw  
This field is valid only if DN3_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 7 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
GP Output mode: reads and also controls state of pin  
This bit field is loaded from EEPROM (if present), and reset with FRST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
73  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-39. Bit Descriptions – GPIO Data Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
GPIO 6 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
6
PCIE_GPIO6_DATA  
rw  
This field is valid only if DN2_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 5 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
5
PCIE_GPIO5_DATA  
rw  
This field is valid only if DN2_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 4 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP output pin  
4
3
2
PCIE_GPIO4_DATA  
PCIE_GPIO3_DATA  
PCIE_GPIO2_DATA  
rw  
rw  
rw  
This field is valid only if DN2_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 3 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP Input or Output pin  
This bit field is loaded from EEPROM (if present), and reset with FRST.  
GPIO 2 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
This field is valid only if DN1_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 1 data.  
GP Input mode: reads state of pin; writes have no affect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP input pin  
1
PCIE_GPIO1_DATA  
rw  
This field is valid only if DN1_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
GPIO 0 data.  
GP Input mode: reads state of pin; writes have no effect  
GP Output mode: reads and also controls state of pin  
Program-selectable HP output pin  
0
PCIE_GPIO0_DATA  
rw  
This field is valid only if DN1_DPSTRP == 0. If this bit field is valid then it is loaded from  
EEPROM (if present), and reset with FRST. If this field is invalid, it is a read-only bit  
field.  
74  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.66 TI Proprietary Register  
This read/write TI proprietary register is located at offset C8h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be  
00000001h.  
PCI register offset:  
Register type:  
C8h  
Read/Write  
xxxx 0001h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4.2.67 TI Proprietary Register  
This read/write TI proprietary register is located at offset CCh and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be  
00000000h.  
PCI register offset:  
Register type:  
CCh  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.2.68 TI Proprietary Register  
This read/write TI proprietary register is located at offset D0h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be  
32140000h.  
PCI register offset:  
Register type:  
D0h  
Read/Write  
3214 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
1
1
0
0
1
0
0
0
0
1
0
1
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
75  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.69 TI Proprietary Register  
This read/write TI proprietary register is located at offset D4h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for register D5h must be 10h.  
PCI register offset:  
Register type:  
D4h  
Read/Write  
0000 0010  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
4.2.70 TI Proprietary Register  
This read/write TI proprietary register is located at offset D8h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
PCI register offset:  
Register type:  
D8h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.2.71 TI Proprietary Register  
This read/write TI proprietary register is located at offset DCh and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
PCI register offset:  
Register type:  
DCh  
Read/Write  
0000 0002h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
76  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.72 Subsystem Access Register  
This register is a read/write register. The contents of this register are aliased to the Subsystem Vendor ID  
and Subsystem ID registers at PCI Offsets 84h and 86h for all PCI Express ports.  
PCI register offset:  
Register type:  
E0h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-40. Bit Descriptions – Subsystem Access Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Subsystem ID. The value written to this field is aliased to the Subsystem ID register at PCI  
Offset 66h. This field is loaded from EEPROM (when present) and reset with PERST.  
31:16  
SubsystemID  
rw  
Subsystem Vendor ID. The value written to this field is aliased to the Subsystem Vendor  
ID register at PCI Offset 64h. This field is loaded from EEPROM (when present) and reset  
with PERST.  
15:0  
SubsystemVendorID  
rw  
4.2.73 General Control Register  
This register is a read/write register that is used to control various functions of the XIO3130.  
PCI register offset:  
Register type:  
E4h  
Read/Write; Read Only  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-41. Bit Descriptions – General Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
31:3  
RSVD  
r
2
1
0
TI_PROPRIETARY  
L1_DISABLE  
RSVD  
rw  
TI proprietary. This bit must not be changed from the specified default value.  
L1 disable. This bit may be used to disable software-directed L1 entry when in  
lower D-states (D1-D3). The value of L1_DISABLE is 0 (the default). Link  
power states are managed in accordance with the PCI Express base  
specification. When L1_DISABLE is 1, the upstream port of the XIO3130 does  
not enter L1 even when directed to do so through software.  
rw  
r
Reserved. When read, this bit returns zero.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
77  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.74 Downstream Ports Link PM Latency Register  
This read/write register is used to program L0s and L1 exit latencies for all XIO3130 downstream ports.  
Similar information is provided in a separate register for the upstream port.  
PCI register offset:  
Register type:  
E8h  
Read/Write; Read Only  
3F24h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-42. Bit Descriptions – Downstream Ports Link PM Latency Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
Endpoint L0s acceptable latency. This field is used to program the maximum acceptable  
15:14  
RSVD  
r
latency when exiting the L0s state. This field is used to set the L0s Acceptable Latency field  
in the Device Capabilities register.  
000 – Less than 64 ns  
001 – 64 ns up to less than 128 ns  
010 – 128 ns up to less than 256 ns  
011 – 256 ns up to less than 512 ns  
100 – 512 ns up to less than 1 µs  
101 – 1 µs up to less than 2 µs  
13:11  
EP_L0S_LAT  
rw  
110 – 2 µs to 4 µs  
111 – More than 4 µs (default)  
This field is loaded from EEPROM (when present) and reset with PERST.  
Endpoint L1 acceptable latency. This field is used to program the maximum acceptable  
latency when exiting the L1 state. This field is used to set the L1 Acceptable Latency field in  
the Device Capabilities register.  
000 – Less than 1 µs  
001 – 1 µs up to less than 2 µs  
010 – 2 µs up to less than 4 µs  
10:8  
EP_L1_LAT  
rw  
011 – 4 µs up to less than 8 µs  
100 – 8 µs up to less than 16 µs  
101 – 16 µs up to less than 32 µs  
110 – 32 µs to 64 µs  
111 – More than 64 µs (default)  
This field is loaded from EEPROM (when present) and reset with PERST.  
Reserved. When read, these bits return zeros.  
7:6  
5:3  
RSVD  
r
L0s exit latency. This field is used to program the maximum latency for the PHY to exit the  
L0s state. This is used to set the L0s Exit Latency field in the Link Capabilities register.  
000 – Less than 64 ns  
001 – 64 ns up to less than 128 ns  
010 – 128 ns up to less than 256 ns  
011 – 256 ns up to less than 512 ns  
100 – 512 ns up to less than 1 µs (default)  
101 – 1 µs up to less than 2 µs  
110 – 2 µs to 4 µs  
L0S_EXIT_LAT  
rw  
111 – More than 4 µs  
78  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-42. Bit Descriptions – Downstream Ports Link PM Latency Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
L1 exit latency. This field is used to program the maximum latency for the PHY to exit the  
L1 state. This is used to set the L1 Exit Latency field in the Link Capabilities register.  
000 – Less than 1 µs  
001 – 1 µs up to less than 2 µs  
010 – 2 µs up to less than 4 µs  
011 – 4 µs up to less than 8 µs  
100 – 8 µs up to less than 16 µs (default)  
101 – 16 µs up to less than 32 µs  
110 – 32 µs to 64 µs  
2:0  
L1_EXIT_LAT  
rw  
111 – More than 64 µs  
4.2.75 Global Switch Control Register  
This read/write register is used to control various functions across the entire XIO3130.  
PCI register offset:  
Register type:  
EAh  
Read/Write; Read Only; Clear by a Write of One; Sticky  
0004h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-43. Bit Descriptions – Global Switch Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
Downstream ports L0s independence  
15:7  
RSVD  
r
0 – Downstream ports (all) Tx L0s entry dependent on whether upstream Rx is in L0s according to  
6
DP_L0S_IND  
rw  
PCI Express Base Specification, section 5.4.1.1.1.  
1 – Downstream ports Tx L0s entry not dependent on whether upstream Rx is in L0s.  
Reserved. When read, this bit returns zero.  
5
4
3
RSVD  
DEFER_L_EXIT  
RSVD  
r
rw  
r
Defer L0s, L1 exit. This bit configures logic to not automatically power up all downstream ports when  
the upstream port receives a downstream flowing packet.  
This field is loaded from EEPROM (when present) and reset with PERST.  
Reserved. When read, this bit returns zero.  
D1 support. This bit enables whether all PCI Express XIO3130 functions are capable of D1 support.  
The field controls (1) the D1_SUPPORT bit in the Power Management Capabilities register for all  
XIO3130 ports, and (2) bit 1 in the 5-bit PME_SUPPORT field in the Power Management Capabilities  
register for all XIO3130 ports.  
2
D1_SUPPORT  
rw  
0 – D1 not supported  
1 – D1 supported  
This field is loaded from EEPROM (when present) and reset with PERST.  
PCI Hot Plug PME message enable. This bit enables PME_Turn_Off/PME_TO_Ack messages when  
power is shut off to a slot using the PC_CTL bit in the Slot Control register for downstream ports.  
HP_PME_MSG  
_EN  
0 – Disable PME_Turn_Off / PME_TO_Ack messages for slot power control  
1 – Enable PME_Turn_Off / PME_TO_Ack messages for slot power control  
This field is loaded from EEPROM (when present) and reset with PERST.  
1
0
rw  
Beacon detect disable. This bit disables beacon detection on all downstream ports and allows the  
reference macro to be placed in low power state during D3cold.  
0 – Beacon detection enabled  
BCN_DET_DIS  
rwh  
1 – Beacon detection disabled  
This field is loaded from EEPROM (when present) and reset with GRST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
79  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.2.76 Advanced Error Reporting Capability ID Register  
This read-only register identifies the linked list item as the register for PCI Express Advanced Error  
Reporting Capabilities. The register returns 0001h when read.  
PCI register offset:  
Register type:  
100h  
Read only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4.2.77 Next Capability Offset/Capability Version Register  
This read-only register returns the value 0000h to indicate that this extended capability block represents  
the end of the linked list of extended capability structures. The least significant four bits identify the  
revision of the current capability block as 1h.  
PCI register offset:  
Register type:  
102h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.2.78 Uncorrectable Error Status Register  
This register reports the status of individual errors as they occur. Software may clear these bits only by  
writing a 1 to the desired location.  
PCI register offset:  
Register type:  
104h  
Read Only, Cleared by a Write of one  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-44. Uncorrectable Error Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:21  
RSVD  
r
Reserved. Return zeros when read.  
Unsupported Request error. This bit is asserted when an Unsupported Request error is  
20  
UR_ERROR  
rcuh  
detected (i.e., when a request is received that results in the sending of a completion with  
an Unsupported Request status).  
19  
18  
ECRC_ERROR  
MAL_TLP  
rcuh  
rcuh  
Extended CRC error. This bit is asserted when an Extended CRC error is detected.  
Malformed TLP. This bit is asserted when a malformed TLP is detected.  
Receiver overflow. This bit is asserted when the flow control logic detects that the  
transmitting device has illegally exceeded the number of credits that were issued.  
17  
16  
15  
14  
13  
RX_OVERFLOW  
UNXP_CPL  
rcuh  
rcuh  
rcuh  
rcuh  
rcuh  
Unexpected completion. This bit is asserted when a completion packet is received that  
does not correspond to an issued request.  
Completer abort. This bit is asserted when the completion to a pending request arrives with  
Completer Abort status.  
CPL_ABORT  
CPL_TIMEOUT  
FC_ERROR  
Completion timeout. This bit is asserted when no completion has been received for an  
issued request before the timeout period.  
Flow control error. This bit is asserted when a flow control protocol error is detected either  
during initialization or during normal operation.  
80  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-44. Uncorrectable Error Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Poisoned TLP. This bit is asserted when an outgoing packet (request or completion) has  
been poisoned by setting the poison bit and has inverted the extended CRC attached to  
the end of the packet.  
12  
PSN_TLP  
rcuh  
11:6  
5
RSVD  
SD_ERROR  
DLL_ERROR  
RSVD  
r
rcuh  
rcuh  
r
Reserved. Return zeros when read.  
Surprise down error. See Surprise Down ECN for a description of this error condition.  
Data link protocol error. This bit is asserted if a data link layer protocol error is detected.  
Reserved. Return zeros when read.  
4
3:1  
0
Undefined  
r
The value read from this bit is undefined.  
4.2.79 Uncorrectable Error Mask Register  
The Uncorrectable Error Mask register controls the reporting of individual errors as they occur. When a bit  
is set to one, the error status bits are still affected, but the error is not logged and no error reporting  
message is sent upstream.  
PCI register offset:  
Register type:  
108h  
Read Only, Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-45. Uncorrectable Error Mask Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:21  
RSVD  
r
Reserved. Return zeros when read.  
Unsupported Request error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Extended CRC error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Malformed TLP mask.  
20  
UR_ERROR_MASK  
rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
19  
18  
17  
16  
15  
14  
ECRC_ERROR_MASK  
MAL_TLP_MASK  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Receiver Overflow mask.  
RX_OVERFLOW_MASK  
UNXP_CPL_MASK  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Unexpected Completion mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Completer Abort mask.  
CPL_ABORT_MASK  
CPL_TIMEOUT_MASK  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Completion Timeout mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
81  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-45. Uncorrectable Error Mask Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Flow Control error mask.  
13  
FC_ERROR_MASK  
rwh  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Poisoned TLP mask.  
12  
11:6  
5
PSN_TLP_MASK  
RSVD  
rwh  
r
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Reserved. Return zeros when read.  
Surprise Down error mask.  
SD_MASK  
rwh  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Data Link Protocol error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
4
DLL_ERROR_MASK  
rwh  
3:1  
0
RSVD  
r
r
Reserved. Return zeros when read.  
The value read from this bit is undefined.  
Undefined  
4.2.80 Uncorrectable Error Severity Register  
The Uncorrectable Error Severity register controls the reporting of individual errors as ERR_FATAL or  
ERR_NONFATAL. When a bit is set, the corresponding error condition is identified as fatal. When a bit is  
clear, the corresponding error condition is identified as nonfatal.  
PCI register offset:  
Register type:  
10Ch  
Read Only, Read/Write  
0003 2030h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
Table 4-46. Uncorrectable Error Severity Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
Unsupported Request error severity.  
31:21  
RSVD  
r
20  
19  
18  
17  
UR_ERROR_SEVR  
ECRC_ERROR_SEVR  
MAL_TLP_SEVR  
rwh  
rwh  
rwh  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Extended CRC error severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Malformed TLP severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Receiver Overflow severity.  
RX_OVERFLOW_SEVR  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
82  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-46. Uncorrectable Error Severity Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Unexpected Completion severity.  
16  
UNXP_CPL_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Completer Abort severity.  
15  
14  
13  
CPL_ABORT_SEVR  
CPL_TIMEOUT_SEVR  
FC_ERROR_SEVR  
rwh  
rwh  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Completion Timeout severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Flow Control error severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Poisoned TLP severity.  
12  
11:6  
5
PSN_TLP_SEVR  
RSVD  
rwh  
r
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Reserved. Return zeros when read.  
Surprise Down error severity.  
SD_ERROR_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Data Link Protocol error severity.  
4
DLL_ERROR_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Reserved. Return zeros when read.  
3:1  
0
RSVD  
r
r
Undefined  
The value read from this bit is undefined.  
4.2.81 Correctable Error Status Register  
The Correctable Error Status register reports the status of individual errors as they occur. Software may  
clear these bits only by writing a 1 to the desired location.  
PCI register offset:  
Register type:  
110h  
Read Only, Cleared by a Write of one  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-47. Correctable Error Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:14  
13  
RSVD  
r
Reserved. Return zeroes when read.  
Advisory nonfatal error status.  
ANFES  
rcuh  
Replay timer timeout. This bit is asserted when the replay timer expires for a pending  
request or completion that has not been acknowledged.  
12  
11:9  
8
REPLAY_TMOUT  
RSVD  
rcuh  
r
Reserved. Return zeroes when read.  
REPLAY_NUM rollover. This bit is asserted when the replay counter rolls over when a  
pending request of completion has not been acknowledged.  
REPLAY_ROLL  
rcuh  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
83  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-47. Correctable Error Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Bad DLLP error. This bit is asserted when an 8b/10n error is detected by the PHY during  
reception of a DLLP.  
7
BAD_DLLP  
rcuh  
Bad TLP error. This bit is asserted when an 8b/10b error is detected by the PHY during  
reception of a TLP.  
6
5:1  
0
BAD_TLP  
RSVD  
rcuh  
r
Reserved. Return zeros when read.  
Receiver error. This bit is asserted when an 8b/10b error is detected by the PHY at any  
time.  
RX_ERROR  
rcuh  
4.2.82 Correctable Error Mask Register  
The Correctable Error Mask register controls the reporting of individual errors as they occur. When a bit is  
set to one, error status bits are still affected, but the error is not logged and no error reporting message is  
sent upstream.  
PCI register offset:  
Register type:  
114h  
Read Only, Read/Write  
0000 2000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-48. Correctable Error Mask Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
31:14  
RSVD  
r
Advisory nonfatal error mask. This bit is set by default to enable compatibility with  
software that does not comprehend role-based error reporting.  
13  
ANFEM  
rwh  
0 – Error condition is unmasked  
1 – Error condition is masked  
Replay timer timeout mask.  
0 – Error condition is unmasked  
1 – Error condition is masked  
Reserved. Return zeros when read.  
REPLAY_NUM rollover mask.  
0 – Error condition is unmasked  
1 – Error condition is masked  
Bad DLLP error mask.  
12  
11:9  
8
REPLAY_TMOUT_MASK  
RSVD  
rwh  
r
REPLAY_ROLL_MASK  
rwh  
7
BAD_DLLP_MASK  
rwh  
0 – Error condition is unmasked  
1 – Error condition is masked  
Bad TLP error mask.  
6
5:1  
0
BAD_TLP_MASK  
RSVD  
rwh  
r
0 – Error condition is unmasked  
1 – Error condition is masked  
Reserved. Return zeros when read.  
Receiver error mask.  
RX_ERROR_MASK  
rwh  
0 – Error condition is unmasked  
1 – Error condition is masked  
84  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.2.83 Advanced Error Capabilities and Control Register  
The Advanced Error Capabilities and Control register allows the system to monitor and control the  
advanced error reporting capabilities.  
PCI register offset:  
Register type:  
118h  
Read Only, Read/Write  
0000 00A0h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
Table 4-49. Advanced Error Capabilities and Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
31:9  
RSVD  
r
Extended CRC check enable.  
8
ECRC_CHK_EN  
ECRC_CHK_CAPABLE  
ECRC_GEN_EN  
rwh  
r
0 – Extended CRC checking is disabled  
1 – Extended CRC checking is enabled  
Extended CRC check capable. This read-only bit returns a value of ‘1’ indicating that  
the bridge is capable of checking extended CRC information.  
7
6
Extended CRC generation enable.  
rwh  
0 – Extended CRC generation is disabled  
1 – Extended CRC generation is enabled  
Extended CRC generation capable. This read-only bit returns a value of ‘1’  
indicating that the bridge is capable of generating extended CRC information.  
5
ECRC_GEN_CAPABLE  
FIRST_ERR  
r
First error pointer. This five-bit value reflects the bit position within the Uncorrectable  
Error Status register corresponding to the class of the first error condition that was  
detected.  
4:0  
rh  
4.2.84 Header Log Register  
The Header Log register stores the TLP header for the packet that lead to the most recently detected error  
condition. Offset 11Ch contains the first DWORD. Offset 128h contains the last DWORD (in the case of a  
4DW TLP header).  
PCI register offset:  
Register type:  
11Ch – 128h  
Read only  
Default value:  
0000 0000h  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
85  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3 PCI Express Downstream Port Registers  
The default reset domain for all downstream port registers is SBRST. Some register fields are placed in a  
different reset domain from the default reset domain; all bit and field descriptions identify any unique reset  
domains. Generally, all sticky bits are placed in the GRST domain and all (non-sticky) EEPROM loadable  
bits are placed in the PERST domain.  
4.3.1 PCI Configuration Space (Downstream Port) Register Map  
Table 4-50. PCI Express Downstream Port Configuration Register Map (Type 1)  
Register Name  
Offset  
000h  
Device ID  
Status  
Vendor ID  
Command  
004h  
Class Code  
Revision ID  
008h  
BIST  
Header Type  
Latency Timer  
Cache Line Size  
00Ch  
Reserved  
010h-014h  
018h  
Secondary Latency Timer  
Subordinate Bus Number  
Secondary Bus Number  
I/O Limit  
Primary Bus Number  
I/O Base  
Secondary Status  
01Ch  
Memory Limit  
Memory Base  
020h  
Pre-fetchable Memory Limit  
Pre-fetchable Memory Base  
024h  
Pre-fetchable Base Upper 32 Bits  
Pre-fetchable Limit Upper 32 Bits  
028h  
02Ch  
I/O Limit Upper 16 Bits  
I/O Base Upper 16 Bits  
030h  
Reserved  
Capabilities Pointer  
034h  
Reserved  
Reserved  
038h  
Bridge Control  
Interrupt Pin  
Interrupt Line  
PM CAP ID  
03Ch  
040h-04Ch  
050h  
Power Management Capabilities  
Next-item Pointer  
PM Data (RSVD)  
PMCSR_BSE  
Power Management CSR  
054h  
Reserved  
058h-06Ch  
070h  
MSI Message Control  
Next-item Pointer  
MSI CAP ID  
MSI Message Address  
074h  
MSI Upper Message Address  
078h  
Reserved  
Reserved  
MSI Message Data  
Next-item Pointer SSID/SSVID CAP ID  
Subsystem Vendor ID  
07Ch  
080h  
Subsystem ID  
084h  
Reserved  
Next-item Pointer  
088h-08Ch  
090h  
PCI Express Capabilities Register  
Device Status  
PCI Express Capability ID  
Device Capabilities  
Link Capabilities  
Slot Capabilities  
094h  
Device Control  
098h  
09Ch  
Link Status  
Link Control  
Slot Control  
0A0h  
A4h  
Slot Status  
A8h  
Reserved  
TI Proprietary  
General Control  
Reserved  
0ACh-0C4h  
0C8h-0D0h  
0D4h  
0D8h-0E8h  
0ECh  
General Slot Info  
Reserved  
LOs Idle Timeout  
Reserved  
0F0h-0FCh  
86  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-51. Extended Configuration Space (Downstream Port)  
Register Name  
PCI Express Advanced Error Reporting Capabilities ID  
Offset  
100h  
Next Capability Offset / Capability Version  
Uncorrectable Error Status Register  
Uncorrectable Error Mask Register  
Uncorrectable Error Severity Register  
Correctable Error Status Register  
Correctable Error Mask  
104h  
108h  
10Ch  
110h  
114h  
Advanced Error Capabilities and Control  
Header Log Register  
118h  
11Ch  
120h  
Header Log Register  
Header Log Register  
124h  
Header Log Register  
128h  
Reserved  
12Ch-FFCh  
4.3.2 Vendor ID Register  
This 16-bit read-only register contains the value 104Ch, which is the vendor ID assigned to Texas  
Instruments.  
PCI register offset:  
Register type:  
00h  
Read only  
104Ch  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
0
1
0
0
1
1
0
0
4.3.3 Device ID Register  
This 16-bit read-only register contains the device ID assigned by TI to the XIO3130. The value in this  
register is the same for all downstream ports, as defined in the following table.  
PCI register offset:  
Register type:  
02h  
Read only  
8233h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1
0
0
0
0
0
1
0
0
0
1
1
0
0
1
1
4.3.4 Command Register  
The Command register controls the way the downstream port bridge behaves on its primary interface; i.e.,  
the internal PCI bus between the upstream and downstream ports.  
PCI register offset:  
Register type:  
04h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
87  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-52. Bit Descriptions – Command Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
INTx disable. This bit is used to enable device-specific INTx interrupts. The XIO3130  
15:11  
RSVD  
r
downstream ports can generate INTx interrupts due to PCI Hot Plug events. The XIO3130  
forwards INTx messages from downstream ports to the upstream port (see INTx Support  
section) regardless of this bit.  
10  
9
INT_DISABLE  
FBB_ENB  
rw  
r
Fast back-to-back enable. This bit does not apply to PCI-Express, so it returns zero when read.  
SERR enable. The relevant error checking is unnecessary for the XIO3130 internal PCI bus.  
When set, this bit enables the transmission by the primary interface of ERR_NONFATAL and  
ERR_FATAL messages forwarded from the secondary interface. This bit does not affect  
transmission of ERR_COR messages.  
8
SERR_ENB  
rw  
7
6
STEP_ENB  
PERR_ENB  
r
Address/data stepping control. This bit does not apply to PCI-Express and is hardwired to 0.  
Parity error response enable. This bit has no impact on hardware behavior. It is assumed that  
the relevant error checking is unnecessary for the XIO3130 internal PCI bus.  
rw  
VGA palette snoop enable. The XIO3130 does not support VGA palette snooping, so this bit  
returns zero when read.  
5
VGA_ENB  
r
Memory write and invalidate enable. This bit does not apply to PCI-Express, so it is hardwired to  
zero.  
4
3
MWI_ENB  
SPECIAL  
r
r
Special cycle enable. This bit does not apply to PCI-Express and is hardwired to zero.  
Bus master enable. When set, the XIO3130 is enabled to initiate cycles on the downstream PCI  
Express interface.  
0 – Downstream PCI Express interface cannot initiate transactions. The XIO3130 must  
disable response to memory and I/O transactions on the downstream interface.  
2
MASTER_ENB  
rw  
1 – Downstream PCI Express interface can initiate transactions. The bridge can forward  
memory and I/O transactions.  
Memory response enable. Setting this bit enables the downstream port to respond to memory  
transactions.  
1
0
MEMORY_ENB  
IO_ENB  
rw  
rw  
I/O space enable. Setting this bit enables the downstream port to respond to I/O transactions.  
4.3.5 Status Register  
The Status register provides information about the downstream port’s primary interface, i.e., the internal  
PCI bus between the upstream and downstream ports.  
PCI register offset:  
Register type:  
06h  
Read Only; Clear by a Write of One; Hardware Update  
0010h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-53. Bit Descriptions – Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Detected parity error. This bit is set when the virtual internal PCI interface receives a  
poisoned TLP. This bit is set regardless of the state of the Parity Error Response bit in the  
Command register.  
15  
PAR_ERR  
rcu  
0 – No parity error detected.  
1 – Parity error detected.  
Signaled system error. This bit is set when the XIO3130 sends an ERR_FATAL or  
ERR_NONFATAL message upstream and the SERR Enable bit in the Command register is  
set.  
14  
13  
SYS_ERR  
MABORT  
rcu  
r
0 – No error signaled.  
1 – ERR_FATAL or ERR_NONFATAL signaled.  
Received master abort. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130 internal PCI bus.  
88  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-53. Bit Descriptions – Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Received target abort. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130 internal PCI bus.  
12  
TABORT_REC  
r
Signaled target abort. This bit is hardwired to zero. It is assumed that the relevant error  
checking is unnecessary for the XIO3130 internal PCI bus.  
11  
TABORT_SIG  
PCI_SPEED  
r
r
10:9  
DEVSEL timing. These bits are read only zero because they do not apply to PCI Express.  
Master data parity error. This bit is set when the downstream port receives a poisoned  
completion or poisons a write request on the internal virtual PCI bus. This bit is never set if  
the parity error response enable bit in the Command register is clear.  
8
DATAPAR  
rcu  
Fast back-to-back capable. This bit does not have a meaningful context for a PCI Express  
device and is hardwired to zero.  
7
6
5
FBB_CAP  
RSVD  
r
r
r
Reserved. When read, this bit returns zero.  
66-MHz capable. This bit does not have a meaningful context for a PCI Express device and is  
hardwired to zero.  
66MHZ  
Capabilities list. This bit returns 1 when read, indicating that the XIO3130 supports additional  
PCI capabilities.  
4
CAPLIST  
r
Interrupt status. This bit reflects the INTx interrupt status of the function. The XIO3130  
forwards INTx messages from downstream ports to the upstream port.  
3
INT_STATUS  
RSVD  
r
r
2:0  
Reserved. When read, these bits return zeros.  
4.3.6 Class Code and Revision ID Register  
This read-only register categorizes the Base Class, Sub Class, and Programming Interface of the  
XIO3130. The Base Class is 06h, which identifies the device as a bridge device. The Sub Class is 04h,  
which identifies the function as a PCI-to-PCI bridge. The Programming Interface is 00h. In addition, the TI  
chip revision is indicated in the lower byte (01h).  
PCI register offset:  
Register type:  
08h  
Read only  
0604 0001h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Table 4-54. Bit Descriptions – Class Code and Revision ID Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Base class. This field returns 06h when read, which classifies the function as a bridge  
device.  
31:24  
23:16  
BASECLASS  
r
Subclass. This field returns 04h when read, which specifically classifies the function as a  
PCI-to-PCI bridge.  
SUBCLASS  
r
15:8  
7:0  
PGMIF  
r
r
Programming interface. This field returns 00h when read.  
Silicon revision. This field returns the silicon revision.  
CHIPREV  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
89  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.7 Cache Line Size Register  
The Cache Line Size register is implemented by PCI Express devices as a read-write field for legacy  
compatibility, but has no impact on any PCI Express device functionality.  
PCI register offset:  
Register type:  
0Ch  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.8 Primary Latency Timer Register  
This read-only register has no meaningful context for a PCI Express device, so it returns zeros when read.  
PCI register offset:  
Register type:  
0Dh  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.9 Header Type Register  
This read-only register indicates that this function has a Type 1 PCI header. Bit seven of this register is  
zero, indicating that the XIO3130 downstream port PCI-to-PCI bridge is not a multifunction device.  
PCI register offset:  
Register type:  
0Eh  
Read only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
4.3.10 BIST Register  
Since the XIO3130 does not support a built-in self test (BIST), this read-only register returns the value 00h  
when read.  
PCI register offset:  
Register type:  
0Fh  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
90  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.11 Primary Bus Number  
This register specifies the bus number of the PCI bus segment for the downstream port primary interface  
(i.e., the internal PCI bus).  
PCI register offset:  
Register type:  
18h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.12 Secondary Bus Number  
This register specifies the bus number of the PCI bus segment for the downstream port secondary  
interface (i.e., the PCI Express interface). The XIO3130 uses this register to determine how to respond to  
a Type 1 configuration transaction.  
PCI register offset:  
Register type:  
19h  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.13 Subordinate Bus Number  
This register specifies the bus number of the highest number PCI bus segment that is downstream of the  
XIO3130 downstream port. The XIO3130 uses this register to determine how to respond to a Type 1  
configuration transaction.  
PCI register offset:  
Register type:  
1Ah  
Read/Write  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.14 Secondary Latency Timer Register  
This register does not apply to PCI-Express, so it is hardwired to zero.  
PCI register offset:  
Register type:  
1Bh  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
91  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.15 I/O Base Register  
This read/write register specifies the lower limit of the I/O addresses that the XIO3130 downstream port  
forwards downstream.  
PCI register offset:  
Register type:  
1Ch  
Read/Write; Read Only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
Table 4-55. Bit Descriptions – I/O Base Register  
BIT  
FIELD NAME  
IOBASE  
ACCESS  
DESCRIPTION  
I/O base. This field defines the bottom address of the I/O address range that is used to  
determine when to forward I/O transactions from one interface to the other. These bits  
correspond to address bits [15:12] in the I/O address. The lower 12 bits are assumed to be 0.  
The 16 bits that correspond to address bits [31:16] of the I/O address are defined in the I/O  
Base Upper 16 Bits register.  
7:4  
3:0  
rw  
r
IOTYPE  
I/O type. This field is read-only 01h, which indicates 32 bit I/O addressing support.  
4.3.16 I/O Limit Register  
This read/write register specifies the upper limit of the I/O addresses that the XIO3130 downstream port  
forwards downstream.  
PCI register offset:  
Register type:  
1Dh  
Read/Write; Read Only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
Table 4-56. Bit Descriptions – I/O Limit Register  
BIT  
FIELD NAME  
IOLIMIT  
ACCESS  
DESCRIPTION  
I/O limit. This field defines the top address of the I/O address range that is used to determine  
when to forward I/O transactions from one interface to the other. These bits correspond to  
address bits [15:12] in the I/O address. The lower 12 bits are assumed to be FFFh. The 16  
bits that correspond to address bits [31:16] of the I/O address are defined in the I/O Limit  
Upper 16 Bits register.  
7:4  
3:0  
rw  
r
IOTYPE  
I/O type. This field is read-only 01h, which indicates 32-bit I/O addressing support.  
4.3.17 Secondary Status Register  
The Secondary Status register provides information about the downstream port PCI Express interface.  
PCI register offset:  
Register type:  
1Eh  
Read Only; Clear by a Write of One; Hardware Update  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
92  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-57. Bit Descriptions – Secondary Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Detected parity error. This bit is set when the PCI Express interface receives a poisoned TLP  
on the downstream port. This bit is set regardless of the state of the Parity Error Response bit  
in the Bridge Control register.  
15  
PAR_ERR  
rcu  
0 – No parity error detected.  
1 – Parity error detected.  
Received System Error. This bit is set when the XIO3130 sends an ERR_FATAL or  
ERR_NONFATAL message upstream and the SERR Enable bit in the Command register is set.  
14  
13  
12  
11  
SYS_ERR  
MABORT  
rcu  
rcu  
rcu  
rcu  
0 – No error signaled.  
1 – ERR_FATAL or ERR_NONFATAL signaled.  
Received master abort. This bit is set when the downstream PCI Express interface of the  
XIO3130 receives a completion with Unsupported Request Status.  
0 – Unsupported Request not received.  
1 – Unsupported Request received on.  
Received target abort. This bit is set when the downstream PCI Express interface of the  
XIO3130 receives a completion with Completer Abort Status.  
TABORT_REC  
TABORT_SIG  
0 – Completer Abort not received.  
1 - Completer Abort received.  
Signaled target abort. This bit is set when the downstream PCI Express interface completes a  
Request with Completer Abort Status.  
0 – Completer Abort not signaled.  
1 – Completer Abort signaled.  
10:9  
8
PCI_SPEED  
DATAPAR  
r
DEVSEL timing. These bits are hardwired to 00. These bits do not apply to PCI Express.  
Master data parity error. This bit is set when the XIO3130 receives a poisoned completion or  
poisons a write request on the downstream PCI Express interface. This bit is never set if the  
parity error response enable bit in the Bridge Control register is clear.  
rcu  
7
6
FBB_CAP  
RSVD  
r
r
r
r
Fast back-to-back capable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Reserved. When read, this bit returns zero.  
5
66MHZ  
RSVD  
66-MHz capable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Reserved. When read, these bits return zeros.  
4:0  
4.3.18 Memory Base Register  
This read/write register specifies the lower limit of the memory addresses that the downstream port  
forwards downstream.  
PCI register offset:  
Register type:  
20h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-58. IBit Descriptions – Memory Base Register  
BIT  
FIELD NAME  
MEMBASE  
RSVD  
ACCESS  
DESCRIPTION  
Memory base. This field defines the bottom address of the memory address range that is  
used to determine when to forward memory transactions from one interface to the other.  
These bits correspond to address bits [31:20] in the memory address. The lower 20 bits are  
assumed to be zero.  
15:4  
3:0  
rw  
r
Reserved. When read, these bits return zeros.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
93  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.19 Memory Limit Register  
This read/write register specifies the upper limit of the memory addresses that the downstream port  
forwards downstream.  
PCI register offset:  
Register type:  
22h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-59. Bit Descriptions – Memory Limit Register  
BIT  
15:4  
3:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
Memory limit. This field defines the top address of the memory address range that is used to  
determine when to forward memory transactions from one interface to the other. These bits  
correspond to address bits [31:20] in the memory address. The lower 20 bits are assumed to  
be FFFFFh.  
MEMLIMIT  
RSVD  
rw  
r
Reserved. When read, these bits return zeros.  
4.3.20 Pre-fetchable Memory Base Register  
This read/write register specifies the lower limit of the pre-fetchable memory addresses that the  
downstream port forwards downstream.  
PCI register offset:  
Register type:  
24h  
Read/Write; Read Only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Table 4-60. Descriptions – Pre-fetchable Memory Base Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory base. This field defines the bottom address of the pre-fetchable  
memory address range that is used to determine when to forward memory transactions from  
one interface to the other. These bits correspond to address bits [31:20] in the memory  
address. The lower 20 bits are assumed to be zero. The Pre-fetchable Base Upper 32 Bits  
register is used to specify the bit [63:32] of the 64-bit pre-fetchable memory address.  
15:4  
3:0  
PREBASE  
rw  
64-bit memory indicator. These read-only bits indicate that 64-bit addressing is supported for  
this memory window.  
64BIT  
r
4.3.21 Pre-fetchable Memory Limit Register  
This read/write register specifies the upper limit of the pre-fetchable memory addresses that the  
downstream port forwards downstream.  
PCI register offset:  
Register type:  
26h  
Read/Write; Read Only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
94  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-61. Bit Descriptions – Pre-fetchable Memory Limit Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory limit. This field defines the top address of the pre-fetchable memory  
address range that is used to determine when to forward memory transactions from one  
interface to the other. These bits correspond to address bits [31:20] in the memory address.  
The lower 20 bits are assumed to be FFFFFh. The Pre-fetchable Limit Upper 32 Bits register  
is used to specify the bit [63:32] of the 64-bit pre-fetchable memory address.  
15:4  
PRELIMIT  
rw  
64-bit memory indicator. These read-only bits indicate that 64-bit addressing is supported for  
this memory window.  
3:0  
64BIT  
r
4.3.22 Pre-fetchable Base Upper 32 Bits Register  
This read/write register specifies the upper 32 bits of the Pre-fetchable Memory Base register.  
PCI register offset:  
Register type:  
28h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-62. Bit Descriptions – Pre-fetchable Base Upper 32 Bits Register  
BIT  
31:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory base upper 32 bits. This field defines the upper 32 bits of the bottom  
address of the pre-fetchable memory address range that is used to determine when to forward  
memory transactions downstream.  
PREBASE  
rw  
4.3.23 Pre-fetchable Limit Upper 32 Bits Register  
This read/write register specifies the upper 32 bits of the Pre-fetchable Memory Limit register.  
PCI register offset:  
Register type:  
2Ch  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-63. Descriptions – Pre-fetchable Limit Upper 32 Bits Register  
BIT  
31:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
Pre-fetchable memory limit upper 32 bits. This field defines the upper 32 bits of the top address  
of the pre-fetchable memory address range that is used to determine when to forward memory  
transactions downstream.  
PRELIMIT  
rw  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
95  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.24 I/O Base Upper 16 Bits Register  
This read/write register specifies the upper 16 bits of the I/O Base register.  
PCI register offset:  
Register type:  
30h  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-64. Bit Descriptions – I/O Base Upper 16 Bits Register  
BIT  
15:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
I/O base upper 16 bits. This field defines the upper 16 bits of the bottom address of the I/O  
address range that is used to determine when to forward I/O transactions downstream.  
IOBASE  
rw  
4.3.25 I/O Limit Upper 16 Bits Register  
This read/write register specifies the upper 16 bits of the I/O Limit register.  
PCI register offset:  
Register type:  
32h  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-65. Bit Descriptions – I/O Limit Upper 16 Bits Register  
BIT  
15:0  
FIELD NAME  
ACCESS  
DESCRIPTION  
I/O limit upper 16 bits. This field defines the upper 16 bits of the top address of the I/O  
address range that is used to determine when to forward I/O transactions downstream.  
IOLIMIT  
rw  
4.3.26 Capabilities Pointer Register  
This read-only register provides a pointer into the PCI configuration header, which is where the PCI power  
management block resides. Since the PCI power management registers begin at 50h, this register is  
hardwired to 50h.  
PCI register offset:  
Register type:  
34h  
Read only  
50h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
0
96  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.27 Interrupt Line Register  
This read/write register, which the system programs, indicates to the software which interrupt line that the  
XIO3130 downstream port has assigned to it. The default value of this register is FFh, which indicates that  
an interrupt line has not yet been assigned to the function. This register is essentially a scratch-pad  
register; it has no effect on the XIO3130 itself.  
PCI register offset:  
Register type:  
3Ch  
Read/Write  
FFh  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
4.3.28 Interrupt Pin Register  
The Interrupt Pin register is read-only, which indicates that the XIO3130 downstream ports generate INTx  
interrupts as follows:  
Downstream port 0 on PCI Interrupt pin INTA (register value of 01h)  
Downstream port 1 on PCI Interrupt pin INTA (register value of 01h)  
Downstream port 2 on PCI Interrupt pin INTA (register value of 01h)  
Interrupts originated by XIO3130 downstream ports are associated with the primary side of the  
downstream port PCI-to-PCI bridge, and as a result are only passed through the upstream port PCI-to-PCI  
bridge as described in PCI Express Base Specification Revision 1.1, Page 69, Table 2-13.  
PCI register offset:  
Register type:  
3Dh  
Read only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
4.3.29 Bridge Control Register  
The Bridge Control register provides extensions to the Command register that are specific to a bridge.  
PCI register offset:  
Register type:  
3Eh  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-66. Bit Descriptions – Bridge Control Register  
BIT  
FIELD NAME  
RSVD  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:12  
11  
10  
9
r
r
r
r
r
r
DTSERR  
DTSTATUS  
SEC_DT  
Discard timer SERR enable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Discard timer status. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Secondary discard timer. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Primary discard timer. This bit is hardwired to zero. This bit does not apply to PCI Express.  
Fast back-to-back enable. This bit is hardwired to zero. This bit does not apply to PCI Express.  
8
PRI_DEC  
FBB_EN  
7
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
97  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-66. Bit Descriptions – Bridge Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Secondary bus reset. This bit is set when the software resets all devices downstream of the  
XIO3130 downstream port. Setting this bit causes the downstream port to send a reset downstream  
via a training sequence.  
6
SRST  
rw  
0 – Downstream port not in Reset state  
1 – Downstream port in Reset state  
5
4
MAM  
r
Master abort mode. This bit is hardwired to zero. This bit does not apply to PCI Express.  
VGA 16-bit decode. This bit enables the XIO3130 downstream port to provide full 16-bit decoding  
for VGA I/O addresses. This bit only has meaning if the VGA enable bit is set.  
VGA16  
rw  
0 – Ignore address bits [15:10] when decoding VGA I/O addresses.  
1 – Decode address bits [15:10] when decoding VGA I/O addresses.  
VGA enable. This bit modifies the response by the XIO3130 downstream port to VGA-compatible  
addresses. If this bit is set, the XIO3130 downstream port positively decodes and forwards the  
following accesses on the primary interface to the secondary interface (and, conversely, blocks the  
forwarding of these addresses from the secondary to primary interface):  
Memory accesses in the range 000A 0000h to 000BFFFFh  
I/O addresses in the first 64KB of the I/O address space (address bits [31:16] are 0000h.) and  
where address bits [9:0] are in the range 3B0h to 3BBh or 3C0h to 3DFh (inclusive of ISA  
address aliases; address bits [15:10] may possess any value and are not used in the  
decoding).  
If the VGA Enable bit is set, forwarding of VGA addresses is independent of the value of the ISA  
Enable bit (located in the Bridge Control register), the I/O address range and memory address  
ranges defined by the I/O Base and Limit registers, the Memory Base and Limit registers, and the  
Pre-fetchable Memory Base and Limit registers of the bridge. Forwarding of VGA addresses is  
qualified by the I/O Enable and Memory Enable bits in the Command register.  
3
VGA  
rw  
0 – Do not forward VGA-compatible memory and I/O addresses from the primary to secondary  
interface unless they are enabled for forwarding by the defined I/O and memory address  
ranges.  
1 – Forward VGA-compatible memory and I/O addresses from the primary interface to the  
secondary interface (if the I/O Enable and Memory Enable bits are set) independent of the I/O  
and memory address ranges and independent of the ISA Enable bit.  
ISA enable. This bit modifies the response by the XIO3130 downstream port to ISA I/O addresses.  
This bit applies only to I/O addresses that are enabled by the I/O Base and I/O Limit registers and  
are in the first 64 KB of PCI I/O address space (0000 0000h to 0000 FFFFh). If this bit is set, the  
bridge blocks any forwarding from primary to secondary of I/O transactions addressing the last 768  
bytes in each 1 KB block. In the opposite direction (secondary to primary), I/O transactions are  
forwarded if they address the last 768 bytes in each 1K block.  
2
ISA  
rw  
0 – Forward downstream all I/O addresses in the address range defined by the I/O Base and I/O  
Limit registers.  
1 – Forward upstream ISA I/O addresses in the address range defined by the I/O Base and I/O  
Limit registers that are in the first 64 KB of PCI I/O address space (top 768 bytes of each 1 KB  
block).  
SERR enable. This bit controls the forwarding of system error events upstream from the secondary  
interface to the primary interface. The XIO3130’s downstream port forwards system error events  
upstream when:  
This bit is set.  
The SERR enable bit in the downstream port command register is set.  
1
0
SERR_EN  
PERR_EN  
rw  
rw  
A nonfatal or fatal error condition is detected on the secondary interface (i.e., the PCI Express  
interface).  
0 – Disable the reporting of nonfatal errors and fatal errors.  
1 – Enable the reporting of nonfatal errors and fatal errors.  
Parity error response enable. For PCI Express, this bit controls responses to poisoned TLPs  
received on the downstream port.  
0 – Disable responses to poisoned TLPs.  
1 – Enable responses to poisoned TLPs.  
98  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.30 Capability ID Register  
This read-only register identifies the linked list item as the register for PCI power management. It returns  
01h when read.  
PCI register offset:  
Register type:  
50h  
Read only  
01h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
4.3.31 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130 downstream port. This register reads 70h, which points to the MSI Capabilities registers.  
PCI register offset:  
Register type:  
51h  
Read only  
70h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
1
1
1
0
0
0
0
4.3.32 Power Management Capabilities Register  
This register indicates the capabilities of the XIO3130 downstream port related to PCI power  
management.  
PCI register offset:  
Register type:  
52h  
Read only  
XXX3h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
y
1
1
x
1
1
x
0
0
y
0
0
0
0
1
1
Table 4-67. Bit Descriptions – Power Management Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
PME support. This 5-bit field indicates the power states from which the downstream port  
may assert PME. These five bits return a value of 5’by11x1, which indicates that the  
XIO3130 can assert PME from D0, D2, D3hot, maybe D3cold (i.e., depending on y), and  
maybe D1 (i.e., depending on x). The bit that defines this power state for D3cold (i.e., y) is  
controlled by the AUX_PRESENT bit in the Global Chip Control register. The bit defining  
this power state for D1 (i.e., x) is controlled by the D1_SUPPORT bit in the Global Switch  
Control register.  
15:11  
PME_SUPPORT  
r
This bit returns a 1 when read, which indicates that the function supports the D2 device  
power state.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
r
r
This bit indicates whether the function supports the D1 device power state. This bit is  
controlled by the D1_SUPPORT bit in the Global Switch Control register. The default  
value x is controlled by the default value for the D1_SUPPORT bit in the Global Switch  
Control register.  
3.3-VAUX auxiliary current requirements. This field reads 3’b00y, i.e., either 3’b001 or  
3’b000, depending on the AUX_PRESENT bit in the Global Chip Control register. 3’b001  
indicates 55 mA maximum current in D3cold when PME is enabled, according to PCI  
Power Management Specification Revision 1.2, Section 3.2.3, page 26.  
8:6  
AUX_CURRENT  
r
Device-specific initialization. This bit returns 0 when read, which indicates that the  
XIO3130 does not require special initialization beyond the standard PCI configuration  
header before a generic class driver is able to use it.  
5
4
DSI  
r
r
RSVD  
Reserved. When read, this bit returns zero.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
99  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-67. Bit Descriptions – Power Management Capabilities Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
PME clock. This bit returns zero, which indicates that the PCI clock is not needed to  
generate PME.  
3
PME_CLK  
r
Power management version. This field returns 3’b011, which indicates Revision 1.2  
compatibility.  
2:0  
PM_VERSION  
r
4.3.33 Power Management Control/Status Register  
This register determines and changes the current power state of the downstream port.  
PCI register offset:  
Register type:  
54h  
Read/Write; Read Only; Clear by a Write of One; Hardware Update; Sticky  
0008h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
Table 4-68. Bit Descriptions – Power Management Control/Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
PME status. PME events are generated due to PCI Hot Plug events. This bit reflects the  
PME status regardless of the state of PME_EN.  
0 – No PME event pending  
1 – PME event pending  
15  
PME_STAT  
rcuh  
This bit is reset with GRST.  
Data scale. This 2-bit field returns 0s when read since the XIO3130 does not use the Data  
register.  
14:13  
12:9  
DATA_SCALE  
DATA_SEL  
r
r
Data select. This 4-bit field returns 0s when read since the XIO3130 does not use the Data  
register.  
PME enable. This bit enables PME/WAKE signaling, even though the XIO3130 never  
generates WAKE .  
0 – Disable PME signaling.  
8
PME_EN  
rwh  
1 – Enable PME signaling.  
This bit is reset with GRST.  
7:4  
3
RSVD  
NO_SOFT_RST  
RSVD  
r
r
r
Reserved. When read, these bits return zeros.  
No Soft Reset. This bit controls whether the transition from D3hot to D0 resets the state  
according to PCI Power Management Specification Revision 1.2. This bit is hardwired to  
1’b1.  
0 – D3hot to D0 transition causes reset.  
1 – D3hot to D0 transition does not cause reset.  
Reserved. When read, this bit returns zero.  
2
Power state. This 2-bit field is used to determine the current power state of the function and  
to set the function into a new power state. This field is encoded as follows:  
00 = D0  
01 = D1  
10 = D2  
11 = D3hot  
1:0  
PWR_STATE  
rw  
100  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.34 Power Management Bridge Support Extension Register  
This read-only register is used to indicate to the host software what the state of the downstream port’s  
secondary bus will be when the downstream port is placed in D3.  
PCI register offset:  
Register type:  
56h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Table 4-69. Bit Descriptions – PM Bridge Support Extension Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Bus power/Clock control enable. This bit is read-only zero. This bit does not apply to PCI  
Express.  
7
BPCC  
r
6
BSTATE  
RSVD  
r
r
B2/B3 support. This bit is read-only zero. This bit does not apply to PCI Express.  
Reserved. When read, these bits return zeros.  
5:0  
4.3.35 Power Management Data Register  
The read-only register is not applicable to the XIO3130 and returns 00h when read.  
PCI register offset:  
Register type:  
57h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.36 MSI Capability ID Register  
This read-only register identifies the linked list item as the register for Message Signaled Interrupts  
Capabilities. The register returns 05h when read.  
PCI register offset:  
Register type:  
70h  
Read only  
05h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
1
4.3.37 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130. This register reads 80h, which points to the Subsystem ID and Subsystem Vendor ID  
Capabilities registers.  
PCI register offset:  
Register type:  
71h  
Read only  
80h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
101  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.38 MSI Message Control Register  
This register is used to control the sending of MSI messages.  
PCI register offset:  
Register type:  
72h  
Read/Write; Read Only  
0080h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
Table 4-70. Bit Descriptions – MSI Message Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:8  
RSVD  
r
64-bit message capability. This bit is read-only 1, which indicates that the XIO3130 downstream  
port supports 64-bit MSI message addressing.  
7
64CAP  
r
Multiple message enable. This field indicates the number of distinct messages that the XIO3130  
downstream port is allowed to generate.  
000 – 1 message  
001 – 2 messages  
010 – 4 messages  
011 – 8 messages  
100 – 16 messages  
101 – 32 messages  
110 – Reserved  
6:4  
MM_EN  
rw  
111 – Reserved  
Multiple message capabilities. This field indicates the number of distinct messages that the  
XIO3130 downstream port can generate. This field is read-only 000, which indicates that the  
downstream port can signal one interrupt.  
3:1  
0
MM_CAP  
MSI_EN  
r
MSI Enable. This bit is used to enable MSI interrupt signaling. The software must enable MSI  
signaling for the XIO3130 downstream port to send MSI messages.  
rw  
0 – MSI signaling is prohibited  
1 – MSI signaling is enabled  
4.3.39 MSI Message Address Register  
This register contains the lower 32 bits of the address that an MSI message shall be written to when an  
interrupt is to be signaled.  
PCI register offset:  
Register type:  
74h  
Read/Write; Read Only  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-71. Bit Descriptions – MSI Message Address Register  
BIT  
FIELD NAME  
ADDRESS  
RSVD  
ACCESS  
DESCRIPTION  
31:2  
1:0  
rw  
r
System-specified message address.  
Reserved. When read, these bits return zeros.  
102  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.40 MSI Message Upper Address Register  
This read/write register contains the upper 32 bits of the address that a MSI message shall be written to  
when an interrupt is to be signaled. If this register is 0000 0000h, 32-bit addressing is used in the MSI  
Message packet. Otherwise, 64-bit addressing is used.  
PCI register offset:  
Register type:  
78h  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.3.41 MSI Message Data Register  
This register contains the data that the software programmed the device to send when it sends an MSI  
message.  
PCI register offset:  
Register type:  
7Ch  
Read/Write  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-72. Bit Descriptions – MSI Data Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
System-specific message. This field contains the portion of the message that the XIO3130 can  
never modify.  
15:4  
MSG  
rw  
Message number. This portion of the message field may be modified to contain the message  
number if multiple messages are enabled. Since the XIO3130 downstream port only generates  
one MSI type, the XIO3130 hardware does not modify these bits.  
3:0  
MSG_NUM  
rw  
4.3.42 Capability ID Register  
This read-only register identifies the linked list item as the register for Subsystem ID and Subsystem  
Vendor ID Capabilities. This register returns 0Dh when read.  
PCI register offset:  
Register type:  
80h  
Read only  
0Dh  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
1
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
103  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.43 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130 downstream port. This register reads 90h, which points to the PCI Express Capabilities registers.  
PCI register offset:  
Register type:  
81h  
Read only  
90h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
1
0
0
1
0
0
0
0
4.3.44 Subsystem Vendor ID Register  
This register is used for system and option card identification and may be required for certain operating  
systems. This read-only register is a direct reflection of the upstream port’s Subsystem Access register,  
which is read/write and is initialized through the EEPROM (if present).  
PCI register offset:  
Register type:  
84h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.3.45 Subsystem ID Register  
This register is used for system and option card identification and may be required for certain operating  
systems. This read-only register is a direct reflection of the upstream port’s Subsystem Access register,  
which is read/write and is initialized through the EEPROM (if present).  
PCI register offset:  
Register type:  
86h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.3.46 PCI Express Capability ID Register  
This read-only register identifies the linked list item as the register for PCI Express Capabilities. When  
read, this register returns 10h.  
PCI register offset:  
Register type:  
90h  
Read only  
10h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
104  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.47 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the  
XIO3130 downstream port. This register reads 00h, which indicates that no additional capabilities are  
supported.  
PCI register offset:  
Register type:  
91h  
Read only  
00h  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
4.3.48 PCI Express Capabilities Register  
This register indicates the capabilities of the downstream port of the XIO3130 related to PCI Express.  
PCI register offset:  
Register type:  
92h  
Read only  
0061h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
Table 4-73. Bit Descriptions – PCI Express Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:14  
RSVD  
r
Interrupt message number. This field is used for MSI support and is implemented as read-only  
zero.  
13:9  
INT_NUM  
r
Slot implemented. This bit indicates whether the port is connected to a slot connector (e.g., for  
PCI Express, ExpressCard™ or other add-in cards). This field can be programmed by writing to  
the General Control register.  
8
SLOT  
r
0 – Port not connected to a slot  
1 – Port connected to a slot  
Device/Port type. This read-only field returns 0110b, which indicates that the device is a  
downstream port of a PCI Express XIO3130.  
7:4  
3:0  
DEV_TYPE  
VERSION  
r
r
Capability version. This field returns 0001b, which indicates revision 1 of the PCI Express  
capability.  
4.3.49 Device Capabilities Register  
The Device Capabilities register indicates the device-specific capabilities of the XIO3130 downstream port.  
PCI register offset:  
Register type:  
94h  
Read Only; Hardware Update  
0000 8XX1h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1
0
0
0
u
u
u
v
v
v
0
0
0
0
0
1
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
105  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-74. Bit Descriptions – Device Capabilities Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
31:28  
RSVD  
r
Captured slot power limit scale. This field is only applicable to upstream ports and is  
hardwired to zero.  
27:26  
CSPLS  
ru  
Captured slot power limit value. This field is only applicable to upstream ports and is  
hardwired to zero.  
25:18  
17:16  
15  
CSPLV  
RSVD  
RBER  
ru  
r
Reserved. When read, these bits return zeros.  
Role-based error reporting. This bit is set to 1b to indicate support for role-based error  
reporting.  
r
Power indicator present. This bit indicates whether the XIO3130 has a power indicator. This  
bit is hardwired to zero.  
14  
13  
PIP  
AIP  
r
r
Attention indicator present. This bit indicates whether the XIO3130 has an attention  
indicator. This bit is hardwired to zero.  
Attention button present. This bit indicates whether the XIO3130 has a power button. This bit  
is hardwired to zero.  
12  
11:6  
5
ABP  
RSVD  
ETFS  
r
r
r
Reserved. When read, these bits return zeros.  
Extended tag field supported. This bit indicates the size of the tag field supported. This bit is  
hardwired to 0, which indicates support for 5-bit tag fields.  
Phantom functions supported. This field is read-only 00b, which indicates that function  
numbers are not used for phantom functions.  
4:3  
2:0  
PFS  
r
r
Max payload size supported. This field indicates the maximum payload size that the device  
can support for TLPs. This field is encoded as 001b, which indicates that the maximum  
payload size for a TLP is 256 bytes.  
MPSS  
4.3.50 Device Control Register  
The Device Control register controls PCI Express device-specific parameters.  
PCI register offset:  
Register type:  
98h  
Read/Write; Read Only  
2000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-75. Bit Descriptions – Device Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, this bit returns zero.  
15  
RSVD  
r
Max read request size. This field is programmed by the host software to set the maximum  
size of a read request that the XIO3130 can generate. The XIO3130 uses this field in  
conjunction with the Cache Line Size register to determine how much data to fetch on a  
read request. This field is encoded as:  
000 – 128B  
001 – 256B  
14:12  
MRRS  
rw  
010 – 512B (default)  
011 – 1024B  
100 – 2048B  
101 – 4096B  
110 – Reserved  
111 – Reserved  
Enable no snoop. Since the XIO3130 does not support setting the no-snoop attribute, this bit  
is read-only zero.  
11  
10  
ENS  
r
r
Auxiliary power PM enable. This bit is read-only zero, since the XIO3130 requires a minimal  
amount of AUX power when PME is disabled.  
APPE  
106  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-75. Bit Descriptions – Device Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Phantom function enable. Since the XIO3130 part does not support phantom functions, this  
bit is read-only zero.  
9
PFE  
r
Extended tag field enable. Since the XIO3130 part does not support extended tags, this bit  
is read-only zero.  
8
ETFE  
r
Max payload size. This field is programmed by the host software to set the maximum size of  
posted writes or read completions that the XIO3130 can initiate. This field is encoded as:  
000 – 128B (default)  
001 – 256B  
010 – 512B  
7:5  
MPS  
rw  
011 – 1024B  
100 – 2048B  
101 – 4096B  
110 – Reserved  
111 – Reserved  
Enable relaxed ordering. Since the XIO3130 part does not support relaxed ordering, this bit  
is read-only zero.  
4
3
ERO  
r
Unsupported request reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_NONFATAL messages to the root complex when an unsupported request is received  
by the downstream port.  
URRE  
rw  
0 – Do not report unsupported requests to the root complex.  
1 – Report unsupported requests to the root complex.  
Fatal error reporting enable. If this bit is set, the XIO3130 is enabled to send ERR_FATAL  
messages to the root complex when a system error event occurs.  
2
1
0
FERE  
NFERE  
CERE  
rw  
rw  
rw  
0 – Do not report fatal errors to the root complex.  
1 – Report fatal errors to the root complex.  
Nonfatal error reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_NONFATAL messages to the root complex when a system error event occurs.  
0 – Do not report nonfatal errors to the root complex.  
1 – Report nonfatal errors to the root complex.  
Correctable error reporting enable. If this bit is set, the XIO3130 is enabled to send  
ERR_CORR messages to the root complex when a system error event occurs.  
0 – Do not report correctable errors to the root complex.  
1 – Report correctable errors to the root complex.  
4.3.51 Device Status Register  
The Device Status register controls PCI Express device-specific parameters.  
PCI register offset:  
Register type:  
9Ah  
Read Only; Clear by a Write of One; Hardware Update  
00X0h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
Table 4-76. Bit Descriptions – Device Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:6  
RSVD  
r
Transaction pending. This bit is set when the XIO3130 downstream port has issued a  
non-posted transaction that has not been completed yet.  
5
PEND  
ru  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
107  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-76. Bit Descriptions – Device Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
AUX power detected. This bit indicates that AUX power is present. This bit is a direct  
reflection of the AUX_PRSNT bit in the Global Chip Control register, and it has the same  
default value.  
4
APD  
ru  
0 – No AUX power detected.  
1 – AUX power detected.  
Unsupported Request detected. This bit is asserted when an Unsupported Request error is  
detected (i.e., when a request is received that results in sending a completion with an  
Unsupported Request status). Errors are logged in this bit regardless of whether error  
reporting is enabled in the Device Control register.  
3
URD  
rcu  
Fatal error detected. This bit is set by the XIO3130 when a fatal error is detected. Errors  
are logged in this bit regardless of whether error reporting is enabled in the Device Control  
register.  
2
1
0
FED  
NFED  
CED  
rcu  
rcu  
rcu  
Nonfatal error detected. This bit is set by the XIO3130 when a nonfatal error is detected.  
Errors are logged in this bit regardless of whether error reporting is enabled in the Device  
Control register.  
Correctable error detected. This bit is set by the XIO3130 when a correctable error is  
detected. Errors are logged in this bit regardless of whether error reporting is enabled in  
the Device Control register.  
4.3.52 Link Capabilities Register  
The Link Capabilities register indicates the link-specific capabilities of the XIO3130 downstream port.  
PCI register offset:  
Register type:  
9Ch  
Read only  
0XXX XC11h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
x
x
0
0
0
w
w
1
y
y
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
y
z
z
z
1
1
0
0
0
0
0
1
0
0
0
1
Table 4-77. Bit Descriptions – Link Capabilities Register  
BIT  
FIELD NAME  
PORT_NUM  
RSVD  
ACCESS  
DESCRIPTION  
Port number. This field indicates the port number for the PCI Express link. This field is set to  
8’h01 for downstream port 0, 8’h02 for downstream port 1, and 8’h03 for downstream port 2.  
31:24  
23:21  
r
r
Reserved. When read, these bits return zeros.  
Data link layer link active reporting capable. This bit indicates whether this slot is capable of  
reporting whether the link is active. This field can be programmed by writing to the General  
Control register. The default state w is that of the LINK_ACT_RPT_CAP field in the General  
Control register.  
20  
19  
DLL_LARC  
SDERC  
r
r
0 – Incapable of link active reporting  
1 – Capable of link active reporting  
Surprise down error reporting capable. This bit indicates whether this slot is capable of  
detecting and reporting a surprise down error condition. This field can be programmed by  
writing to the LINK_ACT_RPT_CAP field in the General Control register. The default state w is  
that of the LINK_ACT_RPT_CAP field in the General Control register.  
0 – Incapable of detecting and reporting a surprise down error condition  
1 – Capable of detecting and reporting a surprise down error condition  
Clock power management. This bit is 1b, which indicates support for CLKREQ.  
18  
CPM  
r
r
L1 exit latency. This field indicates the time required to transition from the L1 state to the L0  
state. This field is a direct reflection of the Downstream Ports Link PM Latency register  
L1_EXIT_LAT field, which is a read/write field that is loaded from EEPROM (if present). The  
default value of this field is yyy, which is the same as the default value of the Link PM Latency  
register L1_EXIT_LAT field.  
17:15  
L1_LATENCY  
108  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-77. Bit Descriptions – Link Capabilities Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
L0s exit latency. This field indicates the time required to transition from the L0s state to the L0  
state. This field is a direct reflection of the Downstream Ports Link PM Latency register  
L0S_EXIT_LAT field, which is a read/write field that is loaded from EEPROM (if present). The  
default value of this field is zzz, which is the same as the default value of the Link PM Latency  
register L0S_EXIT_LAT field.  
14:12  
L0S_LATENCY  
r
Active State Link PM support. This field reads 11b, which indicates that the XIO3130 supports  
both L0s and L1 for Active State Link PM.  
11:10  
9:4  
ASLPMS  
MLW  
r
r
r
Maximum link width. This field is encoded 000001b to indicate that the XIO3130 downstream  
port supports only an x1 PCI Express link.  
Maximum link speed. This field is encoded 0001b to indicate that the XIO3130 downstream  
port supports a maximum link speed of 2.5 Gb/s.  
3:0  
MLS  
4.3.53 Link Control Register  
The Link Control register is used to control link-specific behavior.  
PCI register offset:  
Register type:  
A0h  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-78. Bit Descriptions – Link Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:9  
RSVD  
r
Clock power management enable. When CLKREQ support is enabled, the EP_LI_LAT field in  
the Downstream Ports Link PM Latency register increases due to link PLL locking requirements.  
8
CPM_EN  
rw  
0 – Disables CLKREQ support on downstream port  
1 – Enables CLKREQ support on downstream port  
Extended synch. This bit is used to force the XIO3130 downstream port to extend the  
transmission of FTS ordered sets and an extra TS2 when exiting from L1 before entering to L0.  
7
6
ES  
rw  
rw  
0 – Normal synch  
1 – Extended synch  
Common clock configuration. This bit is set when a common clock is provided to both ends of  
the downstream port’s PCI Express link. This bit can be used to change the L0s and L1 exit  
latencies.  
CCC  
0 – Reference clock is asynchronous  
1 – Reference clock is synchronous  
Retrain link. This bit initiates link retraining on the downstream port. This bit always returns 0b  
when read.  
5
4
RL  
LD  
rw  
rw  
0 – Do not initiate link retraining  
1 – Initiate link retraining  
Link disable. This bit disables the link. Writes to this bit are immediately reflected in the value  
read from the bit, regardless of the actual link state.  
0 – Link enabled  
1 – Link disabled  
Read completion boundary. This bit specifies the minimum size read completion packet that the  
XIO3130 can send when breaking a read request into multiple completion packets. This field is  
not applicable to XIO3130; i.e., the XIO3130 does not break up completion packets and is  
hardwired to zero.  
3
2
RCB  
r
r
0 – 64 bytes  
1 – 128 bytes  
RSVD  
Reserved. When read, this bit returns zero.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
109  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-78. Bit Descriptions – Link Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Active State Link PM Control. This field is used to enable and disable active state PM.  
00 – Active State PM disabled  
1:0  
ASLPMC  
rw  
01 – L0s entry enabled  
10 – Reserved  
11 – L0s and L1 entry enabled  
4.3.54 Link Status Register  
The Link Status register indicates the current state of the PCI Express Link.  
PCI register offset:  
Register type:  
A2h  
Read Only; Hardware Update  
XX11h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
1
0
x
0
0
0
0
0
1
0
0
0
1
Table 4-79. Bit Descriptions – Link Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:14  
RSVD  
r
Data link layer active. When the DLL_LARC field in the Link Capabilities register is asserted,  
this field returns the value of the following comparison: (Link_State == DL_Active). This field  
returns zero when the DLL_LARC field in the Link Capabilities register is de-asserted.  
13  
DLL_ACTV  
r
Slot clock configuration. This bit reflects the reference clock configurations and is read-only 1,  
indicating that a 100 MHz common clock reference is used.  
12  
11  
SCC  
LT  
r
Link training in progress. The hardware automatically clears this bit when the LTSSM exits the  
Configuration/Recovery state.  
ru  
10  
9:4  
3:0  
UNDEF  
NLW  
LS  
r
r
r
Undefined. The value read from this bit is undefined.  
Negotiated link width. This field is read-only 000001b, which indicates that the lane width is x1.  
Link speed. This field is read-only 0001b, which indicates that the link speed is 2.5 Gb/s.  
4.3.55 Slot Capabilities Register  
The Slot Capabilities register indicates the slot-specific capabilities of the downstream port.  
PCI register offset:  
Register type:  
A4h  
Read/Write; Read Only; Hardware Update  
0000 0060h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
Table 4-80. Bit Descriptions – Slot Capabilities Register  
BIT  
31:19  
FIELD NAME  
ACCESS  
DESCRIPTION  
Physical slot number. This field indicates a system-dependent physical slot number that is  
unique to each slot in the system. This field can be programmed by writing to the General  
Slot Info register.  
SLOT_NUM  
r
110  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-80. Bit Descriptions – Slot Capabilities Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Electromechanical interlock present. This bit indicates whether an electromechanical  
interlock is implemented on the chassis for this slot. This bit can be programmed by writing  
to the General Control register.  
18  
EMILP  
ru  
0 – Electromechanical interlock not present.  
1 – Electromechanical interlock present.  
No command completed support. This bit is hardwired to zero, which indicates that  
command completed software notification (i.e., interrupt generation) is always supported.  
17  
NCCS  
SPLS  
ru  
0 – Command completed support is provided.  
1 – Command completed support is not provided.  
Slot power limit scale. This field Indicates the scale that is used for the slow power limit  
value. This field may be written only once after any given PERST; the effect when written is  
to cause the port to send the Set_Slot_Power_Limit message.  
00 – 1.0x  
16:15  
rw  
01 – 0.1x  
10 – 0.01x  
11 – 0.001x  
This field is loaded from EEPROM (if present) and reset with PERST.  
Slot power limit value. When multiplied by the SPLS field (see previous row in this table), this  
field indicates the maximum power in watts that can be consumed by a card plugged into a  
slot attached to this port,. This field may be written only once after any given PERST; the  
effect when written is to cause the port to send the Set_Slot_Power_Limit message.  
14:7  
SPLV  
rw  
This field is loaded from EEPROM (if present) and reset with PERST.  
PCI Hot Plug capable. This bit indicates whether this slot is capable of supporting PCI Hot  
Plug operations. The default setting of this register is defined by the DPSTRP[2,0] strapping.  
This bit can be programmed by writing to the General Control register bit 14, which is  
SLOT_HPC. For more information on the General Control register, see section 3.3.61.  
6
HP_CAPABLE  
r
0 – Incapable of supporting PCI Hot Plug operations  
1 – Capable of supporting PCI Hot Plug operations  
PCI Hot Plug surprise. This bit indicates whether a device present in this slot can be  
removed from the system without any prior notification. This bit can be programmed by  
writing to the General Control register bit 13, which is SLOT_HPS. For more information on  
the General Control register, see section 3.3.61.  
5
4
3
2
HP_SURPRISE  
r
r
r
r
0 – No device present that can be removed by surprise  
1 – Device present that can be removed by surprise  
Power indicator present. This bit indicates whether a power indicator is implemented on the  
chassis for this slot. This bit can be programmed by writing to the General Control register bit  
12, which is SLOT_PIP. For more information on the General Control register, see section  
3.3.61.  
PIP  
0 – Power indicator not present  
1 – Power indicator present  
Attention indicator present. This bit indicates whether an attention indicator is implemented  
on the chassis for this slot. This bit can be programmed by writing to the General Control  
register bit 11, which is SLOT_AIP. For more information on the General Control register,  
see section 3.3.61.  
AIP  
0 – Attention indicator not present  
1 – Attention indicator present  
Manual retention latch sensor present. This bit indicates whether a manual retention latch  
(MRL) sensor is implemented on the chassis for this slot. This bit can be programmed by  
writing to the General Control register bit 10, which is SLOT_MRLSP. For more information  
on the General Control register, see section 3.3.61.  
MRLSP  
0 – MRL sensor not present  
1 – MRL sensor present  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
111  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-80. Bit Descriptions – Slot Capabilities Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Power controller present. This bit indicates whether a power controller is implemented for  
this slot. The default setting of this register is defined by the DPSTRP[2,0] strapping. This bit  
can be programmed by writing to the General Control register bit 9, which is SLOT_PCP. For  
more information on the General Control Register, see section 3.3.61. If this bit is zero, then  
the PWRON_EC output signal, which may go to a pin, is forced asserted; there is no such  
effect on the PWRON output signal.  
1
PCP  
r
0 – Power controller not present  
1 – Power controller present  
Attention button present. This bit indicates whether an attention button is implemented on the  
chassis for this slot. This bit can be programmed by writing to the General Control register bit  
8, which is SLOT_ABP. For more information on the General Control register, see section  
3.3.61.  
0
ABP  
r
0 – Attention button not present  
1 – Attention button present  
4.3.56 Slot Control Register  
The Slot Control register controls slot-specific parameters.  
PCI register offset:  
Register type:  
A8h  
Read/Write; Read Only  
07C0h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
Table 4-81. Bit Descriptions – Slot Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:13  
RSVD  
r
Data link layer state changed enable. This bit enables software notification (i.e., interrupts) due to  
an assertion of the DLLSC field in the Slot Status register.  
12  
DLLSC_EN  
rw  
0 – DLLSC interrupts disabled  
1 – DLLSC interrupts enabled  
Electromechanical interlock control. When read, this bit returns zero. A write of 1’b0 has no effect.  
If the EMILP field in the Slot Capabilities register is asserted, then a write of 1’b1 causes a 100 ms  
high-going pulse on the EMIL_CTL output pin; otherwise, the write has no effect.  
11  
10  
EMIL_CTL  
PC_CTL  
rw  
rw  
Power controller control. When read, this bit indicates the current state of power applied to the  
slot. Writes set the power state of the slot and control the PWR_ON pin. When this bit transitions  
from power on to power off, and the HP_PME_MSG_EN bit in the Global Switch Control register  
is asserted, a PME_Turn_Off message is sent and the PWRON output pin gets de-asserted only  
after a PME_TO_Ack is received or after a 100 ms timeout.  
0 – Power on  
1 – Power off  
Power indicator control. When read, this field indicates the current state of the power indicator.  
Writes set the power indicator state. When writes cause this field to change, the appropriate  
POWER_INDICATOR_* messages are sent. This bit controls the PWR_LED output pin.  
00b – Reserved  
01b – On  
9:8  
PI_CTL  
rw  
10b – Blinking  
11b – Off  
112  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-81. Bit Descriptions – Slot Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Attention indicator control. When read, this field indicates the current state of the attention  
indicator. Writes set the attention indicator state. When writes cause this field to change, the  
appropriate ATTENTION_INDICATOR_* messages are sent. This bit controls the ATN_LED  
output pin.  
7:6  
AI_CTL  
rw  
00b – Reserved  
01b – On  
10b – Blinking  
11b – Off  
PCI Hot Plug interrupt enable. This bit enables generation of PCI Hot Plug interrupts on enabled  
PCI Hot Plug events.  
5
4
HPI_EN  
CCI_EN  
rw  
rw  
0 – PCI Hot Plug interrupts disabled  
1 – PCI Hot Plug interrupts enabled  
Command-completed interrupt enable. This bit enables generation of an interrupt upon completion  
of a command by the PCI Hot Plug Controller. HPI_EN, and MSI_EN (see MSI Message Control  
register) must also be enabled for interrupt generation. A Hot Plug Controller Command is defined  
as a state change in any of the *_CTL bits in this register (i.e., software writes).  
0 – Command-completed interrupts disabled  
1 – Command-completed interrupts enabled  
Presence detect changed enable. This bit enables generation of a  
========= PCI Hot Plug interrupt  
========= PME  
when the PDC bit in the Slot Status register is asserted.  
0 – Disabled  
3
2
1
PDC_EN  
MRLSC_EN  
PFD_EN  
rw  
rw  
rw  
1 – Enabled  
HPI_EN and MSI_EN (see MSI Message Control register) must also be enabled for interrupt  
generation. PME_EN must also be enabled for PME signaling during D1, D2, or D3hot. For more  
information, see section 6.7.7 in PCI Express Base Specification Revision 1.0a.  
Manual retention latch sensor changed enable. This bit enables generation of a  
========= PCI Hot Plug interrupt  
========= PME  
when the MRLSC bit in the Slot Status register is asserted.  
0 – Disabled  
1 – Enabled  
HPI_EN and MSI_EN (see MSI Message Control register) must also be enabled for interrupt  
generation. PME_EN must also be enabled for PME signaling during D1, D2, or D3hot. For more  
information, see section 6.7.7 in PCI Express Base Specification Revision 1.0a.  
Power fault detected enable. This bit enables generation of a  
========= PCI Hot Plug interrupt  
========= PME  
when the PFD bit in the Slot Status register is asserted.  
0 – Disabled  
1 – Enabled  
HPI_EN and MSI_EN (see MSI Message Control register) must also be enabled for interrupt  
generation. PME_EN must also be enabled for PME signaling during D1, D2, or D3hot. For more  
information, see section 6.7.7 in PCI Express Base Specification Revision 1.0a.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
113  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-81. Bit Descriptions – Slot Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Attention button pressed enable. This bit enables generation of a  
========= PCI Hot Plug interrupt  
========= PME  
when the ABP bit in the Slot Status register is asserted.  
0 – Disabled  
0
ABP_EN  
rw  
1 – Enabled  
HPI_EN and MSI_EN (see Table 3 21) must also be enabled for interrupt generation. PME_EN  
must also be enabled for PME signaling during D1, D2, or D3hot. For more information, see  
section 6.7.7 in PCI Express Base Specification Revision 1.0a.  
4.3.57 Slot Status Register  
The Slot Status register provides information about slot-specific parameters.  
PCI register offset:  
Register type:  
AAh  
Read Only; Clear by a Write of One; Hardware Update  
0010h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Table 4-82. Bit Descriptions – Slot Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
15:9  
RSVD  
r
Data link layer state changed. This bit is set when the DLL_ACTV field in the Link Status  
register changes state. A write of 1’b1 clears this field. A write of 1’b0 has no effect.  
8
DLLSC  
ruc  
Electromechanical interlock status. If an electromechanical interlock is implemented for the  
slot, this field indicates the current status of the electromechanical interlock.  
7
6
5
4
EMIL_STAT  
r
0 – Electromechanical interlock disengaged  
1 – Electromechanical interlock engaged  
Presence detect state. This bit indicates whether a card is present in a slot. If the  
SLOT_PRSNT bit in the General Control register is de-asserted, this bit always reads back  
asserted. If the SLOT_PRSNT bit is asserted, this bit indicates the state of a de-bounced  
derivative of the PRSNT input pin.  
PDS  
MRLSS  
CC  
ru  
0 – Card presence detection output de-asserted (i.e., slot empty)  
1 – Card presence detection output asserted (i.e., card present in slot)  
Manual retention latch sensor state. This bit indicates the state of a de-bounced derivative of  
the MRLS_DET input pin.  
ru  
0 – MRLS_DET pin asserted (i.e., MRL closed)  
1 – MRLS_DET pin de-asserted (i.e., MRL open)  
Command completed. This bit is set when the PCI Hot Plug Controller is ready to accept  
another command; it does not ensure that the previous command is completely finished. A  
Hot Plug controller command is defined as a state change in any of the *_CTL bits in the Slot  
Control register (i.e., software writes).  
ruc  
0 – PCI Hot Plug controller is not ready to accept a new command.  
1 – PCI Hot Plug controller is ready to accept a new command.  
Presence detect changed. This bit indicates whether the state of the PDS bit has changed.  
0 – PDS bit has not changed.  
3
2
PDC  
ruc  
ruc  
1 – PDS bit has changed.  
MRL sensor changed. This bit indicates whether the state of the MRLSS bit has changed.  
0 – MRLSS bit has not changed.  
MRLSC  
1 – MRLSS bit has changed.  
114  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
 
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-82. Bit Descriptions – Slot Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Power fault detected. This bit indicates the state of the PWRFLT pin.  
0 – PWRFLT pin de-asserted (no power fault at slot).  
1 – PWRFLT pin asserted (power fault at slot).  
1
PFD  
ruc  
Attention button pressed. This bit indicates a de-asserted-to-asserted transition on a  
de-bounced derivative of the ATN_BTN pin.  
0
ABP  
ruc  
0 – Attention button not pressed  
1 – Attention button pressed  
4.3.58 TI Proprietary Register  
This read/write TI proprietary register is located at offset C8h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be 0000  
0001h.  
PCI register offset:  
Register type:  
C8h  
Read/Write  
xxxx 0001  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4.3.59 TI Proprietary Register  
This read/write TI proprietary register is located at offset CCh and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be 0000  
0000h.  
PCI register offset:  
Register type:  
CCh  
Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
115  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
4.3.60 TI Proprietary Register  
This read/write TI proprietary register is located at offset D0h and controls TI proprietary functions. This  
register must not be changed from the specified default state. If the default value is changed in error, a  
PCI Express Reset (PERST) returns this register to a default state.  
If an EEPROM is used to load configuration registers, the value loaded for this register must be 3214  
0000h.  
PCI register offset:  
Register type:  
D0h  
Read/Write  
3214 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
1
1
0
0
1
0
0
0
0
1
0
1
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.3.61 General Control Register  
This read/write register is used to control various functions of the XIO3130 downstream port.  
PCI register offset:  
Register type:  
D4h  
Read/Write; Read Only  
0000 x0xx  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
x
x
0
0
0
0
0
x
0
0
1
0
0
0
x
Table 4-83. Bit Descriptions – General Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. When read, these bits return zeros.  
TI proprietary. This bit must not be changed from the specified default state.  
31:17  
16  
RSVD  
r
TI_PROPRIETARY  
rw  
REFCK power fault control. This bit controls whether REFCK output should be disabled when  
PWR_FAULT is asserted.  
0 – REFCK output enable is not a function of PWR_FAULT.  
1 – REFCK output enable is a function of PWR_FAULT.  
15  
14  
RC_PF_CTL  
rw  
rw  
This field is loaded from EEPROM (if present) and reset with PERST.  
PCI Hot Plug capable. This bit indicates whether this slot is capable of PCI Hot Plug operations.  
This bit is used to control the PCI Hot Plug capable (HPC) field in the Slot Capabilities register.  
0 – Slot is not PCI Hot Plug capable.  
1 – Slot is PCI Hot Plug capable.  
SLOT_HPC  
SLOT_HPS  
This field is loaded from EEPROM (if present) and reset with PERST. The default value for this  
bit is that of the DNn_DPSTRP pin for the associated port.  
PCI Hot Plug surprise. This bit indicates whether a device present in this slot can be removed  
from the system without prior notification. This bit is used to control the PCI Hot Plug surprise  
(HPS) field in the Slot Capabilities register.  
0 – No device present that can be removed without prior notification  
1 – Device present that can be removed without prior notification.  
13  
rw  
This field is loaded from EEPROM (if present) and reset with PERST. The default value for this  
bit is that of the DNn_DPSTRP pin for the associated port.  
116  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-83. Bit Descriptions – General Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Power indicator present. This bit indicates whether a power indicator is implemented on the  
chassis for this slot. This bit is used to control the PIP field in the Slot Capabilities register.  
0 – Power indicator not implemented  
12  
11  
SLOT_PIP  
rw  
1 – Power indicator implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Attention indicator present. This bit indicates whether an attention indicator is implemented on  
the chassis for this slot. This bit is used to control the AIP field in the Slot Capabilities register.  
0 – Attention indicator not implemented  
SLOT_AIP  
rw  
rw  
1 – Attention indicator implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Manual retention latch sensor present. This bit indicates whether an MRL sensor is  
implemented on the chassis for this slot. This bit is used to control the MRLSP field in the Slot  
Capabilities register.  
10  
SLOT_MRLSP  
0 – MRL sensor not implemented  
1 – MRL sensor implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Power controller present. This bit indicates whether a power controller is implemented for this  
slot to control power. This bit is used to control the power controller present (PCP) field in the  
Slot Capabilities register.  
9
SLOT_PCP  
SLOT_ABP  
rw  
rw  
0 – Power controller not implemented  
1 – Power controller implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Attention button present. This bit indicates whether an attention button is implemented on the  
chassis for this slot. This bit is used to control the attention button present (ABP) field in the Slot  
Capabilities register.  
8
0 – Attention button not implemented  
1 – Attention button implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Slot implemented. This bit indicates that the downstream port is connected to an add-in card  
slot (e.g., PCI Express, ExpressCard, etc.). This bit is used to control the SLOT bit in the PCI  
Express Capabilities register.  
0 – Port not connected to slot  
1 – Port connected to slot  
7
SLOT_PRSNT  
rw  
This field is loaded from EEPROM (if present) and reset with PERST. The default value for this  
bit is that of the DNn_DPSTRP pin for the associated port.  
Power fault input present. This bit indicates whether an input pin is used as a power fault  
detection input for this slot. This bit is used to control whether the power fault input pin is used,  
e.g., for disabling the REFCLK output buffer.  
6
5
SLOT_PFIP  
rw  
rw  
0 – Power fault input not implemented  
1 – Power fault input implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Electromechanical interlock present. This bit indicates whether an electromechanical interlock is  
implemented on the chassis for this slot. This bit is used to control the EMILP field in the Slot  
Capabilities register.  
SLOT_EMILP  
0 – Electromechanical interlock not implemented  
1 – Electromechanical interlock implemented  
This field is loaded from EEPROM (if present) and reset with PERST.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
117  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-83. Bit Descriptions – General Control Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Link active reporting capable. This bit indicates whether this slot is capable of reporting whether  
the link is active. This bit is used to control the DLL_LARC field in the Link Capabilities register.  
This field is used to control the SDERC field in the Link Capabilities register.  
LINK_ACT_RPT_CA  
P
4
rw  
0 – Slot is not link active reporting capable  
1 – Slot is link active reporting capable  
This field is loaded from EEPROM (if present) and reset with PERST.  
This bit is a reserved diagnostic bit that must be set to 0 for proper operation. If an EEPROM is  
used, the corresponding bit in the EEPROM must be set to 0.  
3
2
RSVD  
RSVD  
rw  
r
Reserved. When read, this bit returns zero.  
Reference clock disable. This bit is used to disable the REFCK output.  
0 – REFCK enabled  
1
REFCK_DIS  
rw  
1 – REFCK disabled  
This field is loaded from EEPROM (if present) and reset with PERST.  
Receiver presence detect enable. This bit selects whether the PRSNT pin or receiver detect us  
used to determine whether the slot is present.  
0 – PRSNT pin is used to determine whether slot is present  
0
RCVR_PRSNT_EN  
rw  
1 – Receiver detect is used to determine whether slot is present. It is recommended to only use  
this option when PRSNT is not available and the card is removable.  
This field is loaded from EEPROM (if present) and reset with PERST. The default value for this  
bit is the inverse of the DNn_DPSTRP pin for the associated port.  
4.3.62 L0s Idle Timeout Register  
This read/write register controls the idle timeout for initiating L0s entry on the Tx path. The value is in units  
of 256 ns. The default value is set for just under 7 s. The minimum timeout is 256 ns. This register is  
loaded from serial EEPROM and is reset with PERST.  
PCI register offset:  
Register type:  
ECh  
Read/Write  
1Ah  
Default value:  
BIT NUMBER  
RESET STATE  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
1
0
4.3.63 General Slot Info Register  
This read/write register contains information that is used in the slot capabilities and control registers for the  
downstream port.  
PCI register offset:  
Register type:  
EEh  
Read/Write; Read Only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-84. Bit Descriptions – General Slot Info Register  
BIT  
FIELD NAME  
SLOT_NUM  
RSVD  
ACCESS  
DESCRIPTION  
Slot number. This field is used to program the Physical Slot Number field in the Slot Capabilities  
register. This field is loaded from EEPROM (if present) and reset with PERST.  
15:3  
2:0  
rw  
r
Reserved. When read, these bits return zeros.  
118  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
4.3.64 Advanced Error Reporting Capabilities ID Register  
This read-only register identifies the linked list item as the register for PCI Express Advanced Error  
Reporting Capabilities. The register returns 0001h when read.  
PCI register offset:  
Register type:  
100h  
Read only  
0001h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4.3.65 Next Capability Offset/Capability Version Register  
This read-only register returns the value 0000h to indicate that this extended capability block represents  
the end of the linked list of extended capability structures. The least significant four bits identify the  
revision of the current capability block as 1h.  
PCI register offset:  
Register type:  
102h  
Read only  
0000h  
Default value:  
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.3.66 Uncorrectable Error Status Register  
This register reports the status of individual errors as they occur. Software may clear these bits only by  
writing a 1 to the desired location.  
PCI register offset:  
Register type:  
104h  
Read Only, Cleared by a Write of one  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-85. Uncorrectable Error Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:21  
RSVD  
r
Reserved. Return zeros when read.  
Unsupported Request error. This bit is asserted when an Unsupported Request error is  
20  
UR_ERROR  
rcuh  
detected (i.e., when a request is received that results in the sending of a completion with an  
Unsupported Request status).  
19  
18  
ECRC_ERROR  
MAL_TLP  
rcuh  
rcuh  
Extended CRC error. This bit is asserted when an Extended CRC error is detected.  
Malformed TLP. This bit is asserted when a malformed TLP is detected.  
Receiver Overflow. This bit is asserted when the flow control logic detects that the  
transmitting device has illegally exceeded the number of credits that were issued.  
17  
16  
15  
14  
13  
RX_OVERFLOW  
UNXP_CPL  
rcuh  
rcuh  
rcuh  
rcuh  
rcuh  
Unexpected Completion. This bit is asserted when a completion packet is received that does  
not correspond to an issued request.  
Completer Abort. This bit is asserted when the completion to a pending request arrives with  
Completer Abort status.  
CPL_ABORT  
CPL_TIMEOUT  
FC_ERROR  
Completion Timeout. This bit is asserted when no completion has been received for an  
issued request before the timeout period.  
Flow Control error. This bit is asserted when a flow control protocol error is detected either  
during initialization or during normal operation.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
119  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-85. Uncorrectable Error Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Poisoned TLP. This bit is asserted when an outgoing packet (request or completion) has  
been poisoned by setting the poison bit and has inverted the extended CRC attached to the  
end of the packet.  
12  
PSN_TLP  
rcuh  
11:6  
5
RSVD  
SD_ERROR  
DLL_ERROR  
RSVD  
r
rcuh  
rcuh  
r
Reserved. Return zeros when read.  
Surprise Down error. See Surprise Down ECN for a description of this error condition.  
Data Link Protocol error. This bit is asserted if a data link layer protocol error is detected.  
Reserved. Return zeros when read.  
4
3:1  
0
Undefined  
r
This value read from this bit is undefined.  
4.3.67 Uncorrectable Error Mask Register  
The Uncorrectable Error Mask register controls the reporting of individual errors as they occur. When a bit  
is set to one, the error status bits are still affected, but the error is not logged and no error reporting  
message is sent upstream.  
PCI register offset:  
Register type:  
108h  
Read Only, Read/Write  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-86. Uncorrectable Error Mask Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:21  
RSVD  
r
Reserved. Return zeros when read.  
Unsupported Request error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Extended CRC error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Malformed TLP mask.  
20  
19  
18  
17  
16  
15  
14  
UR_ERROR_MASK  
ECRC_ERROR_MASK  
MAL_TLP_MASK  
rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
rwh  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Receiver Overflow mask.  
RX_OVERFLOW_MASK  
UNXP_CPL_MASK  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Unexpected Completion mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Completer Abort mask.  
CPL_ABORT_MASK  
CPL_TIMEOUT_MASK  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Completion Timeout mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
120  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-86. Uncorrectable Error Mask Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Flow Control error mask.  
13  
FC_ERROR_MASK  
rwh  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Poisoned TLP mask.  
12  
11:6  
5
PSN_TLP_MASK  
RSVD  
rwh  
r
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Reserved. Return zeros when read.  
Surprise Down error mask.  
SD_MASK  
rwh  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Data Link Protocol error mask.  
0 - Error condition is unmasked.  
1 - Error condition is masked.  
Reserved. Return zeros when read.  
4
DLL_ERROR_MASK  
rwh  
3:1  
0
RSVD  
r
r
Undefined  
This value read from this bit is undefined.  
4.3.68 Uncorrectable Error Severity Register  
The Uncorrectable Error Severity register controls the reporting of individual errors as ERR_FATAL or  
ERR_NONFATAL. When a bit is set, the corresponding error condition is identified as fatal. When a bit is  
clear, the corresponding error condition is identified as nonfatal.  
PCI register offset:  
Register type:  
10Ch  
Read Only, Read/Write  
0003 2030h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
Table 4-87. Uncorrectable Error Severity Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
Unsupported Request error severity.  
31:21  
RSVD  
r
20  
19  
18  
17  
UR_ERROR_SEVR  
ECRC_ERROR_SEVR  
MAL_TLP_SEVR  
rwh  
rwh  
rwh  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Extended CRC error severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Malformed TLP severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Receiver Overflow severity.  
RX_OVERFLOW_SEVR  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
121  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Table 4-87. Uncorrectable Error Severity Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Unexpected Completion severity.  
16  
UNXP_CPL_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Completer Abort severity.  
15  
14  
13  
CPL_ABORT_SEVR  
CPL_TIMEOUT_SEVR  
FC_ERROR_SEVR  
rwh  
rwh  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Completion Timeout severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Flow Control error severity.  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Poisoned TLP severity.  
12  
11:6  
5
PSN_TLP_SEVR  
RSVD  
rwh  
r
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Reserved. Return zeros when read.  
Surprise Down error severity.  
SD_ERROR_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Data Link Protocol error severity.  
4
DLL_ERROR_SEVR  
rwh  
0 - Error condition is signaled using ERR_NONFATAL.  
1 - Error condition is signaled using ERR_FATAL.  
Reserved. Return zeros when read.  
3:1  
0
RSVD  
r
r
Undefined  
This value read from this bit is undefined.  
4.3.69 Correctable Error Status Register  
The Correctable Error Status register reports the status of individual errors as they occur. Software may  
clear these bits only by writing a 1 to the desired location.  
PCI register offset:  
Register type:  
110h  
Read Only, Cleared by a Write of one  
0000 0000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-88. Correctable Error Status Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
31:14  
13  
RSVD  
r
Reserved. Return zeroes when read.  
Advisory nonfatal error status.  
ANFES  
rcuh  
Replay timer timeout. This bit is asserted when the replay timer expires for a pending request  
or completion that has not been acknowledged.  
12  
11:9  
8
REPLAY_TMOUT  
RSVD  
rcuh  
r
Reserved. Return zeroes when read.  
REPLAY_NUM rollover. This bit is asserted when the replay counter rolls over when a  
pending request of completion has not been acknowledged.  
REPLAY_ROLL  
rcuh  
122  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
Table 4-88. Correctable Error Status Register (continued)  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Bad DLLP error. This bit is asserted when an 8b/10n error is detected by the PHY during  
reception of a DLLP.  
7
BAD_DLLP  
rcuh  
Bad TLP error. This bit is asserted when an 8b/10b error is detected by the PHY during  
reception of a TLP.  
6
BAD_TLP  
rcuh  
5:1  
0
RSVD  
r
Reserved. Return zeros when read.  
RX_ERROR  
rcuh  
Receiver error. This bit is asserted when an 8b/10b error is detected by the PHY at any time.  
4.3.70 Correctable Error Mask Register  
The Correctable Error Mask register controls the reporting of individual errors as they occur. When a bit is  
set to one, error status bits are still affected, but the error is not logged and no error reporting message is  
sent upstream.  
PCI register offset:  
Register type:  
114h  
Read Only, Read/Write  
0000 2000h  
Default value:  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 4-89. Correctable Error Mask Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
31:14  
RSVD  
r
Advisory nonfatal error mask. This bit is set by default to enable compatibility with  
software that does not comprehend role-based error reporting.  
13  
ANFEM  
rwh  
Replay timer timeout mask.  
0 – Error condition is unmasked  
1 – Error condition is masked  
Reserved. Return zeros when read.  
REPLAY_NUM rollover mask.  
0 – Error condition is unmasked  
1 – Error condition is masked  
Bad DLLP error mask.  
12  
11:9  
8
REPLAY_TMOUT_MASK  
RSVD  
rwh  
r
REPLAY_ROLL_MASK  
rwh  
7
BAD_DLLP_MASK  
rwh  
0 – Error condition is unmasked  
1 – Error condition is masked  
Bad TLP error mask.  
6
5:1  
0
BAD_TLP_MASK  
RSVD  
rwh  
r
0 – Error condition is unmasked  
1 – Error condition is masked  
Reserved. Return zeros when read.  
Receiver error mask.  
RX_ERROR_MASK  
rwh  
0 – Error condition is unmasked  
1 – Error condition is masked  
4.3.71 Advanced Error Capabilities and Control Register  
The Advanced Error Capabilities and Control register allows the system to monitor and control the  
advanced error reporting capabilities.  
PCI register offset:  
118h  
Submit Documentation Feedback  
XIO3130 Configuration Register Space  
123  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
Register type:  
Default value:  
Read Only, Read/Write  
0000 00A0h  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
Table 4-90. Advanced Error Capabilities and Control Register  
BIT  
FIELD NAME  
ACCESS  
DESCRIPTION  
Reserved. Return zeros when read.  
31:9  
RSVD  
r
Extended CRC check enable.  
8
7
6
ECRC_CHK_EN  
rwh  
r
0 – Extended CRC checking is disabled  
1 – Extended CRC checking is enabled  
Extended CRC check capable. This read-only bit returns a value of ‘1’ indicating  
that the bridge is capable of checking extended CRC information.  
ECRC_CHK_CAPABLE  
ECRC_GEN_EN  
Extended CRC generation enable.  
rwh  
0 – Extended CRC generation is disabled  
1 – Extended CRC generation is enabled  
Extended CRC generation capable. This read-only bit returns a value of ‘1’  
indicating that the bridge is capable of generating extended CRC information.  
5
ECRC_GEN_CAPABLE  
FIRST_ERR  
r
First error pointer. This five-bit value reflects the bit position within the  
Uncorrectable Error Status register corresponding to the class of the first error  
condition that was detected.  
4:0  
rh  
4.3.72 Header Log Register  
The Header Log register stores the TLP header for the packet that lead to the most recently detected error  
condition. Offset 11Ch contains the first DWORD. Offset 128h contains the last DWORD (in the case of a  
4DW TLP header).  
PCI register offset:  
Register type:  
11Ch – 128h  
Read only  
Default value:  
0000 0000h  
BIT NUMBER  
RESET STATE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT NUMBER  
RESET STATE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
124  
XIO3130 Configuration Register Space  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
5
PCI Hot Plug Implementation Overview  
5.1 PCI Hot Plug Architecture Overview  
The PCI Express architecture is designed to natively support both hot-add and hot-removal (collectively  
Hot-Plug) of adapters. The architecture also provides a ‘toolbox’ of mechanisms that allow different  
user/operator models to be supported using a self-consistent infrastructure. PCI Express defines the  
registers necessary to support the integration of a PCI Hot Plug controller within individual root and switch  
ports. Under PCI Hot-Plug software control, the PCI Hot-Plug controllers and the associated port interface  
within the root or switch port must control the card interface signals to ensure orderly power-down and  
power-up as cards are removed and replaced.  
Table 5-1. GPIO Matrix  
GPIO[#]  
0
1
2
3
4
5
6
7
6
4
8
9
10  
11  
12  
13  
14  
15  
16  
PRSNT1  
S
PWRON1  
PWRGD1  
CLKREQ1  
MRLSDET1  
ACTLED1  
PWRLED1  
ATNLED1  
ATNBTN1  
PWRFLT1  
EMILCTL1  
EMILENG1  
S
S
2
3
6
6
6
2
5
2
5
2
5
6
4
6
4
2
5
2
5
2
4
2
4
2
4
2
4
4
2
2
6
6
PRSNT2  
S
PWRON2  
PWRGD2  
CLKREQ2  
MRLSDET2  
ACTLED2  
PWRLED2  
ATNLED2  
ATNBTN2  
PWRFLT2  
EMILCTL2  
EMILENG2  
S
S
2
3
6
6
4
7
7
5
3
6
3
6
3
6
6
4
7
5
3
6
3
6
2
4
2
4
3
5
3
5
2
3
6
7
PRSNT3  
S
PWRON3  
PWRGD3  
CLKREQ3  
MRLSDET3  
ACTLED3  
PWRLED3  
ATNLED3  
ATNBTN3  
PWRFLT3  
EMILCTL3  
EMILENG3  
S
S
2
3
7
7
5
7
7
5
4
7
4
7
4
7
7
5
7
5
4
7
4
7
3
5
3
5
3
5
3
5
3
3
7
7
Submit Documentation Feedback  
PCI Hot Plug Implementation Overview  
125  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
In Table 2-11, S indicates a strapping option. If the appropriate DNn_DPSTRP pin is pulled high, the GPIO  
is mapped to this value and is no longer mapped by the GPIO Control register.  
Each downstream port of the XIO3130 is assigned one dedicated sideband pin, DNn_PERST. Three  
additional sideband pins may be dedicated to each port for PCI Hot Plug support. The DNn_DPSTRP pins  
are set for the corresponding ports to indicate support for PCI Hot Plug. When the DNn_DPSTRP pin  
strapping defines a GPIO pin as a PCI Hot Plug support pin, that pin is associated with the Slot Capability,  
Slot Status, and Slot Control registers of the corresponding downstream port. These registers are defined  
in sections Section 4.3.55, Section 4.3.56, and Section 4.3.57, respectively. When the DPSTRP[2:0] pin  
strapping defines a GPIO pin as a GPIO pin, that pin is mapped to a bit field in the GPIO Configuration  
registers and Data register. These registers are defined in section Section 4.2.61 through Section 4.2.65.  
Table 5-2. PCI Hot Plug Sideband Signals  
Signal  
I/O  
Function  
Dn_PERST  
O
Port n PE Reset. The PCI Hot Plug card or device is held in a reset state when this signal is low.  
Port n Present. A PCI Hot Plug card or device is attached to a port when this signal is low.  
PRSNTn  
I
This signal is reported in the PDC bit of the Slot Status register. When this signal is in a de-asserted high  
state, the DNn_PERST pin is asserted low, REFCLK is disabled, and PWRONn is de-asserted high.  
Port n Power On. Power is applied to the PCI Hot Plug card or device attached to the port when this  
signal is low.  
PWRONn  
PWRGDn  
O
I
Port n Power Good: The power to the PCI Hot Plug card or device is adequate and it is alright to enable  
REFCLK to the card or device and de-assert DNn_PERST. When this signal transitions to a low state, the  
XIO3130 switch asserts DNn_PERST low and turns off REFCLK.  
Additional GPIO pins may be allocated to PCI Hot Plug support via programming by assigning the pins to  
PCI Hot Plug pin functionality in the GPIO Control registers defined in sections Section 4.2.62 through  
Section 4.2.65.  
Table 5-3. Pins Assigned to GPIO Control Registers  
Signal  
CLKREQn  
I/O  
Function  
Port n CLK REQ. This signal is used to disable the clock during normal operation. If PWRONn is high or  
PRSNTn is high or PWRGDn is low, this signal is ignored by the XIO3130.  
I
Port n Activity. This pin toggles at anytime activity is detected on the port interface. Otherwise, this pin is  
high.  
ACT_LEDn  
O
PWR_LEDn  
ATN_LEDn  
ATN_BTNn  
O
O
I
Port n Power Indicator: See PI_CTL bit field in Slot Control register (section Section 4.3.56).  
Port n Attention Indicator: See AI_CTL bit field in Slot Control register (section Section 4.3.56).  
Port n Attention Push button: See ABP bit field in Slot Status register (section Section 4.3.57).  
Port n Manually-Operated Retention Latch (MRL): See MRLSS bit field in Slot Status register (section  
Section 4.3.57).  
MRLS_DETn  
EMIL_CTLn  
EMIL_ENGn  
I
O
I
Port n Electromechanical Interlock: See EMIL_CTL bit field in Slot Control register (section  
Section 4.3.56).  
Port n Electromechanical Interlock status: See EMIL_STAT bit field in Slot Status register (section  
Section 4.3.57).  
5.2 PCI Hot Plug Timing  
5.2.1 Power-Up Cycle  
The XIO3130 switch can be powered up numerous ways depending on the way the DPSTRP[2:0]  
strapping defines the port. The different power-up cycles are: nonPCI Hot Plug power-up cycle, PCI Hot  
Plug power-up cycle with PWRGDn feedback, and PCI Hot Plug power-up cycle without PWRGDn  
feedback.  
126  
PCI Hot Plug Implementation Overview  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
5.2.1.1 NonPCI Hot Plug Power-Up Cycle  
For nonPCI Hot Plug power-up cycles, there are no PWRONn, PWRGDn, or PRSNTn signals, and the  
Slot Control register is not used to power the port up. As soon as the REFCLKn output is stable on the  
port, the PERSTn signal is de-asserted high. If no device is detected on the port before Link Training  
times out, the PERSTn signal is asserted low and REFCLKn is disabled.  
PERST#  
PERSTn#  
REFCLKn  
Unstable  
Stable  
<100 ms  
Figure 5-1. NonPCI Hot Plug Power-Up Cycle  
5.2.1.2 PCI Hot Plug Power-Up Cycle With PWRGDn Feedback  
For PCI Hot Plug power up cycles with PWRGDn feedback, the PWRONn signal going low gates the  
power-up cycle. The XIO3130 switch asserts PWRONn and waits for the PWRGDn signal to transition  
high, indicating that power to the slot is now stable. When PWRGDn goes high, REFCLKn is enabled and  
a 100 ms time-out starts. After the 100 ms time-out completes, PERSTn is de-asserted. If the port has  
been programmed (see GPIO Control Registers in sections Section 4.2.61 through Section 4.2.64) to have  
a CLKREQn input when PERSTn de-asserts high, REFCLKn is disabled when CLKREQn is not low.  
PWRONn#  
PWRGDn  
CLKREQn#  
REFCLKn  
PERSTn#  
Unstable  
Stable  
>100 ms  
100 ms  
Figure 5-2. PCI Hot Plug Power-Up Cycle With PWFRDn Feedback  
5.2.1.3 PCI Hot Plug Power-Up Cycle With No PWRGDn Feedback  
This application requires the PWRGDn signal to be tied high. The PWRONn signal going low gates the  
power-up cycle. The XIO3130 switch asserts PWRONn and because the PWRGDn signal is tied high, the  
power-up cycle starts as soon as PWRONn is asserted. After 100 ms, REFCLKn is enabled, and a 100  
ms time-out starts. After the 100 ms time-out completes, PERSTn is de-asserted. If the port has been  
programmed (see GPIO Control registers in sections Section 4.2.61 through Section 4.2.64) to have a  
CLKREQn input when PERSTn de-asserts high, REFCLKn is disabled when CLKREQn is not low.  
Submit Documentation Feedback  
PCI Hot Plug Implementation Overview  
127  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
PWRONn#  
PWRGDn  
CLKREQn#  
REFCLKn  
PERSTn#  
Unstable  
Stable  
100 ms  
>100 ms  
100 ms  
Figure 5-3. PCI Hot Plug Power-Up Cycle With No PWGRDn Feedback  
5.2.2 Power-Down Cycles  
Various conditions cause the assertion of PERSTn, which also cause REFCLKn to stop a short time later.  
5.2.2.1 Normal Power-Down  
For PCI Hot Plug ports, other conditions may also power-down the port. Software can power the port  
down by de-asserting the PC_CTL bit in the Slot Control register. This invokes a normal power-down  
cycle, which is the same power-down cycle invoked by the upstream PERST being asserted.  
PWRONn#  
PWRGDn  
CLKREQn#  
Stable  
REFCLKn  
PERSTn#  
< 100 ms  
Figure 5-4. Normal Power-Down  
128  
PCI Hot Plug Implementation Overview  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
5.2.2.2 Surprise Removal  
Another PCI Hot Plug Port power-down condition occurs when the PRSNTn pin is de-asserted, indicating  
that the card or device has been removed without warning (i.e., surprise removal).  
PRSNTn#  
PWRONn#  
CLKREQn#  
Stable  
REFCLKn  
PERSTn#  
PWRGDn  
<500 ns  
<100 ms  
Figure 5-5. Surprise Removal  
In the case of surprise removal, the XIO3130 switch de-asserts PERST within 500 ns after a de-bounced  
PRSNTn de-asserted state exists. Then REFCLKn is disabled, and the PWRONn signal is de-asserted  
within 100 µs.  
5.2.2.3 PWRGDn De-Assertion  
Another situation that forces a PCI Hot Plug port to power-down is the de-assertion of PWRGDn. If  
PWRGDn is de-asserted, the XIO3130 switch disables REFCLKn but does not de-assert PWRONn.  
PWRGDn  
PWRONn#  
CLKREQn#  
REFCLKn  
PERSTn#  
Stable  
Unstable  
Stable  
<500 ns  
100 ms  
>100 ms  
Figure 5-6. Effect When PWFRGn Goes Low  
Note that once PERSTn goes low, it must remain low for at least 100 ms.  
5.2.3 PMI_Turn_Off and PME_To_Ack Messages  
For information on the PME_Turn_Off and PME_To_Ack messages, see section Section 3.2.6.  
Submit Documentation Feedback  
PCI Hot Plug Implementation Overview  
129  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
5.2.4 Debounce Circuits  
Integrated de-bounce circuits are provided for the following input pins:  
PRSNT[2:0] present detects for each downstream port; used with PCI Express or ExpressCard  
(formerly NEWCARD) slots.  
ATN_BTN[2:0], which are attention button inputs, are MUXed onto GPIO pins; de-bounce is only  
needed when the relevant GPIO pins are programmed to this mode.  
MRLS_DET[2:0], which are manual retention latch detection inputs, are MUXed onto GPIO pins;  
de-bounce is only needed when the relevant GPIO pins are programmed to this mode.  
A timeout of approximately 10 ms is used.  
5.2.5 HP_INTX Pin  
The HP_INTX output signal is asserted when a PCI Hot Plug interrupt occurs within the switch, but only  
asserted due to PCI Hot Plug events. This signal is typically be connected on system boards to an SCI  
(System Control Interrupt) input, which invokes an interrupt service routine included in the system BIOS;  
other system implementations may connect HP_INTX to a PCI bus interrupt pin.  
130  
PCI Hot Plug Implementation Overview  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
6
Electrical Characteristics  
This chapter describes the electrical characteristics of the XIO3130.  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
VDDRC,  
VAUX33REF,  
–0.5 to 3.6  
V
VDD33REF  
Supply voltage range  
VDDAREF,  
VDDA, VDDD,  
VDD15  
–0.5 to 1.65  
V
PCI Express (PER)  
–0.6 to 0.6  
–0.5 to VDD_15  
–0.5 to VDD_33  
–0.5 to VDD_15  
–0.5 to VDD_15  
–0.5 to VDD_33  
±20  
V
V
VI  
Input voltage range  
Output voltage range  
PCI Express REFCKI (differential)  
Miscellaneous 3.3 – VIO  
PCI Express (PET)  
V
V
VO  
PCI Express REFCKO  
V
Miscellaneous 3.3 – VIO  
V
(2)  
Input clamp current, (VI < 0 or VI > VDD  
)
mA  
mA  
°C  
(3)  
Output clamp current, (VO < 0 or VO > VDD  
)
±20  
Tstg  
Storage temperature range  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) Applies to external input. VI < 0 or VI > VDD  
.
(3) Applies to external output. VO < 0 or VO > VDD  
.
6.2 Recommended Operating Conditions  
OPERATION  
MIN  
NOM  
MAX  
UNIT  
VDDD  
VDD15  
Supply voltage  
VDDAREF  
1.5 V  
1.35  
1.5  
1.65  
V
VDDA  
VDDRC  
VDD33  
Supply voltage  
VAUX33REF  
3.3 V  
3
3.3  
3.6  
V
VDD33REF  
TA  
TJ  
Operating ambient temperature range  
Virtual junction temperature(1)  
0
0
25  
25  
70  
°C  
°C  
115  
(1) The junction temperature reflects simulated conditions. The customer is responsible for verifying junction temperature.  
Submit Documentation Feedback  
Electrical Characteristics  
131  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
6.3 PCI Express Differential Transmitter Output Ranges  
PARAMETER  
TERMINALS  
MIN NOM  
MAX UNIT  
COMMENTS  
UI  
PETP,  
PETN  
Each UI is 400 ps ±300 ppm. UI does not account  
for SSC dictated variations.See  
399.88 400 400.12  
ps  
V
(1)  
Unit interval  
VTX-DIFFp-p  
Differential peak-to-peak output  
voltage  
PETP,  
PETN  
VTX-DIFFp-p = 2*|VTXP – VTXN|.  
0.8  
–3  
1.2  
(2)  
See  
This value is the ratio of the VTX-DIFFp-p of the  
second and following bits after a transition divided  
by the VTX-DIFFp-p of the first bit after a transition.  
VTX-DE-RATIO  
De-emphasized differential output  
voltage (ratio)  
PETP,  
PETN  
–3.5  
–4.0  
dB  
UI  
(2)  
See  
The maximum transmitter jitter can be derived as  
TTXMAX- JITTER = 1 – TTX-EYE = 0.25 UI.  
TTX-EYE  
Minimum TX eye width  
PETP,  
PETN  
0.75  
(2)(3)  
See  
Jitter is defined as the measurement variation of  
the crossing points (VTX-DIFFp-p = 0 V) in relation to  
recovered TX UI. A recovered TX UI is calculated  
over 3500 consecutive UIs of sample data. Jitter is  
measured using all edges of the 250 consecutive  
UIs in the center of the 3500 UIs that are used for  
TTX-EYE-MEDIAN-to-MAX-JITTER  
Maximum time between the jitter  
median and maximum deviation  
from the median  
PETP,  
PETN  
0.125  
UI  
(2)(3)  
calculating the TX UI. See  
TTX-RISE,  
TTX-FALL  
PETP,  
PETN  
(2)(4)  
0.125  
UI  
See  
Differential TX output rise/fall time  
VTX-CM-ACp  
RMS ac peak common mode output  
voltage  
VTX-CM-ACp = RMS(|VTXP + VTXN|/2 – VTX-CM-DC  
)
PETP,  
PETN  
20  
mV  
VTX-CM-DC = DC(avg) of |VTXP + VTXN|/2  
(2)  
See  
|VTX-CM-DC – VTX-CM-IDLE-DC| 100 mV  
VTX-CM-DC-ACTIVE-IDLE-DELTA  
Absolute delta of DC common mode  
voltage during L0 and electrical idle.  
VTX-CM-DC = DC(avg) of |VTXP + VTXN|/2 [during L0]  
VTX-CM-IDLE-DC = DC(avg) of |VTXP + VTXN|/2 [during  
electrical idle]  
PETP,  
PETN  
0
100  
mV  
mV  
(2)  
See  
|VTXP-CM-DC – VTXN-CM-DC| 25 mV when  
VTXP-CM-DC = DC(avg) of |VTXP|  
VTX-CM-DC-LINE-DELTA  
Absolute delta of DC common mode  
voltage between P and N  
PETP,  
PETN  
0
0
25  
VTXN-CM-DC = DC(avg) of |VTXN  
See  
|
(2)  
VTX-IDLE-DIFFp  
Electrical idle differential peak output  
voltage  
PETP,  
PETN  
VTX-IDLE-DIFFp = |VTXP-IDLE – VTXN-IDLE| 20 mV  
20  
mV  
mV  
(2)  
See  
VTX-RCV-DETECT  
The amount of voltage change  
allowed during receiver detection  
The total amount of voltage change that a  
transmitter can apply to sense whether a low  
impedance receiver is present.  
PETP,  
PETN  
600  
VTX-DC-CM  
The TX DC common mode voltage  
PETP,  
PETN  
The allowed DC common mode voltage under any  
condition  
0
3.6  
90  
V
ITX-SHORT  
TX short circuit current limit  
PETP,  
PETN  
The total current that the transmitter can provide  
when shorted to its ground.  
mA  
Minimum time that a transmitter must be in  
electrical Idle. The receiver uses this value to start  
looking for an electrical idle exit after successfully  
receiving an electrical idle ordered set.  
TTX-IDLE-MIN  
Minimum time spent in electrical idle  
PETP,  
PETN  
50  
UI  
UI  
After sending an electrical idle ordered set, the  
transmitter must meet all electrical idle  
specifications within this time. This is considered a  
de-bounce time for the transmitter to meet  
electrical idle after transitioning from L0.  
TTX-IDLE-SET-to-IDLE  
Maximum time to transition to a valid  
electrical idle after sending an  
electrical idle ordered set  
PETP,  
PETN  
20  
(1) No test load is necessarily associated with this value.  
(2) Specified at the measurement point into a timing and voltage compliance test load and measured over any 250 consecutive TX UIs.  
(3) A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.25 UI for the transmitter  
collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median  
and the maximum deviation from the median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It  
must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter  
points on either side is approximately equal as opposed to the averaged time value.  
(4) Measured between 20% and 80% at transmitter package terminals into a test load for both VTX-D+ and VTX-D–.  
132  
Electrical Characteristics  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
PCI Express Differential Transmitter Output Ranges (continued)  
PARAMETER  
TERMINALS  
MIN NOM  
MAX UNIT  
COMMENTS  
Maximum time to meet all TX specifications when  
transitioning from electrical idle to sending  
differential data. This value is considered a  
de-bounce time for the TX to meet all TX  
specifications after leaving electrical idle.  
TTX-IDLE-to-DIFF-DATA  
Maximum time to transition to valid  
TX specifications after leaving an  
electrical idle condition  
PETP,  
PETN  
20  
UI  
RLTX-DIFF  
Differential return loss  
PETP,  
PETN  
Measured over 50 MHz to 1.25 GHz.  
See  
10  
6
dB  
dB  
(5)  
RLTX-CM  
Common mode return loss  
PETP,  
PETN  
Measured over 50 MHz to 1.25 GHz.  
(5)  
See  
ZTX-DIFF-DC  
DC differential TX impedance  
PETP,  
PETN  
80  
40  
75  
100  
120  
200  
TX DC differential mode low impedance  
ZTX-DC  
PETP,  
PETN  
Required TX-D+ as well as TX-D– DC impedance  
during all states  
Transmitter DC impedance  
CTX  
PETP,  
PETN  
All transmitters are AC-coupled and capacitors are  
required on the PWB.  
nF  
AC coupling capacitor  
(5) The transmitter input impedance results in a differential return loss greater than or equal to 12 dB and a common mode return loss  
greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input  
levels. The reference impedance for return loss measurements is 50 to ground for both the P and N lines. Note that the series  
capacitors CTX is optional for the return loss measurement.  
6.4 PCI Express Differential Receiver Input Ranges  
PARAMETER  
TERMINALS  
MIN NOM  
MAX UNIT  
COMMENTS  
VRX-DIFFp-p  
Differential input peak-to-peak  
voltage  
PERP,  
PERN  
VRX-DIFFp-p = 2*|VRX-D+ – VRX-D–|  
See  
0.175  
1.2  
V
(1)  
The maximum interconnect media and transmitter  
jitter that can be tolerated by the Receiver is  
derived as TRX-MAX- JITTER = 1 - TRX-EYE = .6 UI  
TRX-EYE  
Minimum receiver eye width  
PERP, PERN  
0.4  
UI  
(1)(2)(3)  
See  
Jitter is defined as the measurement variation of  
the crossing points (VRX-DIFFp-p = 0 V) in relation to  
recovered TX UI. A recovered TX UI is calculated  
over 3500 consecutive unit intervals of sample  
data. Jitter is measured using all edges of the 250  
consecutive UI in the center of the 3500 UI used  
for calculating the TX UI.  
TRX-EYE-MEDIAN-to-MAX-JITTER  
Maximum time between the jitter  
median and maximum deviation  
from the median.  
PERP,  
PERN  
0.3  
UI  
(1)(2)  
See  
VRX-CM-ACp = RMS( |VRX-D+ + VRX-D–| / 2 –  
VRX-CM-DC)  
VRX-CM-ACp  
AC peak common mode input  
voltage  
PERP,  
PERN  
150  
mV  
VRX-CM-DC = DC(avg) of |VRX-D+ + VRX-D-| / 2  
(1)  
See  
(1) Specified at the measurement point and measured using the clock recovery function specified in PCI Express™ Base Specification  
Revision 1.1, Section 4.3.3.2. The test load in Figure 4-25 should be used as the RX device when taking measurements (also refer to  
the Receiver compliance eye diagram shown in Figure 4-26 of the specification). If the clocks to the RX and TX are not derived from the  
same reference clock, the TX UI recovered using the clock recovery function specified in Section 4.3.3.2 must be used as a reference  
for the eye diagram.  
(2) The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the  
median is less than half of the total 0.64. It should be noted that the median is not the same as the mean. The jitter median describes  
the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. The RX  
UI recovered using the clock recovery function specified in Section 4.3.3.2 must be used as the reference for the eye diagram. This  
parameter is measured with the equivalent of a zero jitter reference clock. The TRX-EYE measurement is to be met at the target bit error  
rate. The TRX-EYE-MEDIAN-to-MAX-JITTER specification is to be met using the compliance pattern at a sample size of 1,000,000 UI.  
(3) See the PCI Express Jitter and BER white paper for more details on the Rx-Eye measurement.  
Submit Documentation Feedback  
Electrical Characteristics  
133  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
PCI Express Differential Receiver Input Ranges (continued)  
PARAMETER  
TERMINALS  
MIN NOM  
MAX UNIT  
COMMENTS  
Measured over 50 MHz to 1.25 GHz with the P  
and N lines biased at +300 mV and –300 mV,  
respectively.  
RLRX-DIFF  
Differential return loss  
PERP,  
PERN  
10  
dB  
(4)  
See  
Measured over 50 MHz to 1.25 GHz with the P  
and N lines biased at +300 mV and –300 mV,  
RLRX-CM  
Common mode return loss  
PERP,  
PERN  
6
dB  
respectively.  
(4)  
See  
.
ZRX-DIFF-DC  
DC differential input impedance  
PERP,  
PERN  
RX DC differential mode impedance.  
80  
40  
100  
50  
120  
60  
(5)  
See  
.
Required RX-D+ as well as RX-D– DC impedance  
ZRX-DC  
DC input impedance  
PERP,  
PERN  
(50 Ω ±20% tolerance).  
(5)  
See (1) and  
.
Required RX-D+ as well as RX-D– DC impedance  
ZRX-HIGH-IMP-DC  
Powered-down DC input impedance  
PERP,  
PERN  
200K  
65  
when the receiver terminations do not have power.  
(6)  
See  
.
VRX-IDLE-DET-DIFFp-p  
Electrical idle detect threshold  
PERP,  
PERN  
VRX-IDLE-DET-DIFFp-p = 2 * |VRX-D+ – VRX-D–  
|
175  
10  
mV  
measured at the receiver package pins  
An unexpected electrical idle (VRX-DIFFp-p  
<
TRX-IDLE-DET-DIFF-ENTER-TIME  
Unexpected electrical idle enter  
detect threshold integration time  
VRX-IDLE-DET-DIFFp-p) must be recognized no longer  
than  
TRX-IDLE-DET-DIFF-ENTER-TIME to signal an  
unexpected idle condition.  
PERP,  
PERN  
ms  
(4) The Receiver input impedance shall result in a differential return loss greater than or equal to 10 dB with a differential test input signal of  
no less than 200 mV (peak value, 400 mV differential peak to peak) swing around ground applied to D+ and D– lines and a common  
mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance  
requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 to ground for both the  
D+ and D– line (i.e., as measured by a Vector Network Analyzer with 50 probes; see Figure 4-25 in the specification). Note that the  
series capacitors CTX is optional for the return loss measurement.  
(5) Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) there is a 5  
ms transition time before receiver termination values must be met on all unconfigured lanes of a port.  
(6) The RX DC common mode impedance that exists when no power is present or Fundamental Reset is asserted. This helps ensure that  
the Receiver Detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 200 mV  
above the RX ground.  
6.5 PCI Express Differential Reference Clock Input Ranges(1)  
PARAMETER  
TERMINALS  
MIN NOM  
MAX UNIT  
COMMENTS  
fIN-DIFF  
REFCKIp  
REFCKIn  
The input frequency is 100 MHz +300 ppm and  
–2800ppm including SSC-dictated variations.  
100  
MHz  
Differential input frequency  
VRX-DIFFp-p  
Differential input peak-to-peak  
voltage  
REFCKIp  
REFCKIn  
0.175  
1.2  
V
VRX-DIFFp-p = 2*|VREFCKp – VREFCKn|  
VRX-CM-ACp  
AC peak common mode input  
voltage  
VRX-CM-ACp = RMS(|VREFCKp + VREFCKn|/2 –  
VRX-CM-DC)  
VRX-CM-DC = DC(avg) of |VREFCKp + VREFCKn|/2  
REFCKIp  
REFCKIn  
140  
mV  
REFCKIp  
REFCKIn  
Duty cycle  
40%  
60%  
Differential waveform input duty cycle  
ZRX-DIFF-DC  
DC differential input impedance  
REFCKIp  
REFCKIn  
REFCKIp/ REFCKIn DC differential mode  
impedance  
20  
kΩ  
(1) The XIO3130 is compliant with the defined system jitter models for a PCI Express reference clock and associated TX/RX link. These  
system jitter models are described in the PCI Express Jitter Modeling, Revision 1.0RD document. Any usage of the XIO3130 in a  
system configuration that does not conform to the defined system jitter models requires the system designer to validate the system jitter  
budgets.  
134  
Electrical Characteristics  
Submit Documentation Feedback  
XIO3130  
www.ti.com  
SLLS693CMAY 2007REVISED JUNE 2008  
6.6 PCI Express Reference Clock Output Requirements  
100-MHz INPUT  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
MIN  
0.6  
MAX  
(2)  
Rise Edge Rate Rising edge rate  
Fall Edge Rate Falling edge rate  
4
4
V/ns  
V/ns  
mV  
See (1) and  
See (1) and  
.
(2)  
0.6  
.
(1)  
VIH  
Differential input high voltage  
150  
See  
See  
.
.
(1)  
VIL  
Differential input low voltage  
–150  
550  
mV  
(3)  
(5)  
(6)  
VCROSS  
RCROSS DELTA  
Absolute crossing point voltage  
250  
mV  
See Notes  
,
(4), and  
(4), and  
.
Variation of VCROSS over all rising  
clock edges  
(3)  
140  
100  
mV  
See Notes  
,
.
(7)  
(7)  
VRB  
Ring-back voltage margin  
Time before VRB is allowed  
Average clock period accuracy  
–100  
500  
mV  
ps  
See (1) and  
See (1) and  
See Notes  
.
.
TSTABLE  
(1)  
(9)  
TPERIOD AVG  
TPERIOD ABS  
–300  
2800  
ppm  
,
(8), and  
.
Absolute period (including jitter and  
spread spectrum)  
(10)  
9.847 10.203  
ns  
See (1) and  
.
(1)  
TCCJITTER  
VMAX  
Cycle-to-cycle jitter  
150  
1.15  
–0.3  
ps  
V
See  
.
(11)  
(12)  
Absolute maximum input voltage  
Absolute minimum input voltage  
Duty cycle  
See (3) and  
See (3) and  
.
.
VMIN  
V
(1)  
Duty Cycle  
40  
40  
60  
20  
60  
%
See  
.
Rise-Fall  
Matching  
Rising edge rate (REFCKOp) to  
falling edge rate (REFCKOn)  
matching  
(13)  
(14)  
%
See (3) and  
See (3) and  
.
ZC-DC  
Clock source DC impedance  
.
(1) Measurement taken from differential waveform.  
(2) Measured from –150 mV to +150 mV on the differential waveform (derived from REFCKOp minus REFCKOn). The signal must be  
monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero  
crossing.  
(3) Measurement taken from single-ended waveform.  
(4) Measured at crossing point where the instantaneous voltage value of the rising edge of REFCKOp equals the falling edge of REFCKOn.  
(5) Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing  
points for this measurement.  
(6) Defined as the total variation of all crossing voltages of rising REFCKOp and falling REFCKOn. This is the maximum allowed variance in  
VCROSS for any particular system.  
(7) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after rising/falling edges before it is  
allowed to droop back into the VRB ±100 mV differential range.  
(8) Refer to Section 4.3.2.1 of the PCI Express Base Specification, Revision 1.1 for information regarding PPM considerations.  
(9) PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly  
or 100 Hz. For 300 PPM then we have a error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a  
frequency counter with measurement window set to 100 ms or greater. The ±300 PPM applies to systems that do not employ Spread  
Spectrum or that use common clock source. For systems employing Spread Spectrum there is an additional 2500 PPM nominal shift in  
maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2800 PPM.  
(10) Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and  
spread spectrum modulation.  
(11) Defined as the maximum instantaneous voltage including overshoot.  
(12) Defined as the minimum instantaneous voltage including undershoot.  
(13) Matching applies to rising edge rate for REFCKOp and falling edge rate for REFCKOn. It is measured using a ±75 mV window centered  
on the median cross point where REFCKOp rising meets REFCKOn falling. The median cross point is used to calculate the voltage  
thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCKOp should be compared to the Fall  
Edge Rate of REFCKOn, the maximum allowed difference should not exceed 20% of the slowest edge rate.  
(14) System board compliance measurements must use the recommended test load card. REFCKOp and REFCKOn are to be measured at  
the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single  
ended probes with math or differential probe can be used for differential measurements. Test load CL = 2 pF.  
Submit Documentation Feedback  
Electrical Characteristics  
135  
XIO3130  
SLLS693CMAY 2007REVISED JUNE 2008  
www.ti.com  
6.7 3.3-V I/O Electrical Characteristics(1)  
PARAMETER  
OPERATIONS  
TEST CONDITIONS  
MIN  
MAX  
VDD33  
UNIT  
V
(2)  
VIH  
VIL  
VI  
High-level input voltage (See  
Low-level input voltage (See(2)  
)
VDD33  
VDD33  
0.7 VDD33  
)
0
0
0
0
0.3 VDD33  
VDD33  
V
Input voltage  
V
(3)  
VO  
tπ  
Output voltage (See  
)
VDD33  
V
Input transition time (trise and tfall)  
25  
ns  
V
(4)  
Vhys  
VOH  
VOL  
IOZ  
Input hysteresis (See  
)
0.13 VDD33  
High-level output voltage  
VDD33  
VDD33  
VDD33  
IOH = –4 mA  
IOL = 4 mA  
0.8 VDD33  
V
Low-level output voltage  
0.22 VDD33  
V
(3)  
High-impedance, output current (See  
)
VI = 0 to VDD33  
±20  
µA  
High-impedance, output current with internal  
IOZP  
II  
VDD33  
VDD33  
VI = 0 to VDD33  
VI = 0 to VDD33  
±100  
±1  
µA  
µA  
(5)  
pullup or pulldown resistor (See  
)
(6)  
Input current (See  
)
(1) This table applies to PERST, WAKE, REFCLK_SEL, GRST, and GPIO18:0.  
(2) Applies to external inputs and bidirectional buffers.  
(3) Applies to external outputs and bidirectional buffers.  
(4) Applies to PERST and GRST.  
(5) Applies to GRST (pullup resistor) and most GPIO (pullup resistor).  
(6) Applies to external input buffers.  
6.8 POWER CONSUMPTION(1)  
PARAMETER  
MIN  
NOM(2)  
MAX(3)  
20.61  
UNIT  
mA  
I3.3V  
11.21  
578.7  
36.99  
868.05  
5.28  
I1.5V  
725.8  
mA  
P3.3V  
P1.5V  
68.01  
mW  
mW  
mA  
1088.7  
(4)  
IAUX  
(1) Measurements taken at 25°C with nominal power supply, 3.3 V and 1.5 V.  
(2) Nominal conditions are defined as switch only power, no devices downstream, and downstream clocks not running.  
(3) Maximum power conditions are defined as three downstream devices constantly running traffic and downstream clocks running.  
(4) Measurement performed with three devices downstream, system in S5.  
136  
Electrical Characteristics  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jul-2008  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
XIO3130ZHC  
ACTIVE  
BGA MI  
CROSTA  
R
ZHC  
196  
126 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

XIO3130ZHC

XIO3130 switch is a PCI Express x1 3-port fanout switch
TI

XIO3130_0808

XIO3130 switch is a PCI Express ´1 3-port fanout switch
TI

XIO3130_10

Data Manual
TI

XISO6720BQDRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6720FBQDRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6720FQDWVRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6720QDWVRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6721BQDRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6721FBQDRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6721FQDWVRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6721QDWVRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

XISO6740FQDWRQ1

ISO674x-Q1 General-Purpose Reinforced Quad-Channel Automotive Digital Isolators with Robust EMC
TI