XIWR6432LQGAMF [TI]

单芯片低功耗 57GHz 至 64GHz 工业毫米波雷达传感器 | AMF | 102 | -40 to 105;
XIWR6432LQGAMF
型号: XIWR6432LQGAMF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单芯片低功耗 57GHz 至 64GHz 工业毫米波雷达传感器 | AMF | 102 | -40 to 105

雷达 传感器
文件: 总64页 (文件大小:2321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IWRL6432  
ZHCSRC3 DECEMBER 2022  
IWRL6432 单芯57GHz 64GHz 工业雷达传感器  
• 主机接口  
1 特性  
UART  
FMCW 收发器  
CAN-FD  
SPI  
– 集PLL、发送器、接收器、基带ADC  
57GHz - 64GHz 的覆盖范围7GHz 的连  
续带宽  
• 用于原ADC 样本采集RDIF雷达数据接口)  
• 为用户应用提供的其他接口  
3 个接收通道2 个发送通道  
– 短距离通常可25m)  
– 每Tx 的输出功率典型值11dBm  
12.5dB 典型噪声系数  
QSPI  
I2C  
JTAG  
GPIO  
1MHz 时的典型相位噪声-89dBc/Hz  
FMCW 运行  
PWM 接口  
• 内部存储器  
5MHz IF 带宽仅实Rx 通道  
– 基于分N PLL 的超精确线性调频脉冲引擎  
– 每个发送器二进制移相器  
1MB RAM  
– 用于雷达立方体的可配L3 共享存储器  
(512/640/768KB) 的数据和代RAM  
• 处理要素  
• 具12 x 12102 BGA 焊球FCCSP 封装  
• 符AEC Q-100 标准  
• 时钟源  
– 具有单精FPU (160MHz) Arm® M4F® 内核  
– 用FFT、对数幅度CFAR (80MHz) 的  
TI 雷达硬件加速(HWA 1.2)  
• 支持多个低功耗模式  
– 用于主时钟40.0MHz 晶体  
– 支持外部驱动、频率40.0 MHz 的时钟方波/  
正弦波)  
– 空闲模式和深度睡眠模式  
• 电源管理  
– 用于低功耗运行32kHz 内部振荡器  
1.8V 3.3V IO 支持  
• 支持工作温度范围  
– 内置LDO 网络可增PSRR  
BOM 优化模式和低功耗模式  
– 一个或两个电源轨适用1.8V IO 模式两个或  
三个电源轨适用3.3V IO 模式  
• 封装尺寸6.45mm × 6.45mm 器件  
• 内置校准和自检  
– 工作结温范围40°C 105°C  
– 内置的固(ROM)  
– 片上自包含校准系统  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS298  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
冰箱和冷冻柜  
扫地机器人  
割草机  
2 应用  
自动门  
家庭影院  
运动检测器  
占位检测/人员跟踪/人数统计  
可视门铃  
IP 网络摄像头  
恒温器  
空调  
PC/笔记本电脑  
便携式电子产品  
电视  
平板电脑  
3 说明  
IWRL6432 毫米波传感器器件是一款基于 FMCW 雷达技术的集成式单芯片毫米波传感器。该器件能够在 57GHz  
64GHz 频段内运行主要分为四个电源域:  
射频/模拟子系统该块包含发送和接收射频信号所需的所有射频和模拟元件。  
前端控制器子系(FECSS)FECSS 包含负责雷达前端配置、控制和校准的处理器。  
应用子系(APPSS)APPSS 该器件实现了一个用户可编程ARM Cortex M4允许自定义控制和  
汽车接口应用。顶部子系(TOPSS) APPSS 电源域的一部分包含时钟和电源管理子块。  
硬件加速(HWA)HWA 块通过卸载通用雷达处理FFT、恒定误报(CFAR)、缩放和压缩来对  
APPSS 进行补充。  
IWRL6432 专为上述每个电源域配备单独的旋钮可根据用例要求控制其状态上电或断电。该器件还具有运  
行各种低功耗状态如睡眠和深度睡眠的功能其中低功耗睡眠模式是通过时钟门控和关闭器件的内部 IP 块来  
实现的。该器件还提供了保留器件某些内容的选项例如在此类情况下保留的应用图像或射频配置文件。  
此外该器件采用 TI 的低功耗 45nm RF CMOS 工艺制造以超小的外形尺寸实现了出色的集成度。IWRL6432  
专为工业和个人电子产品领域的低功耗、自监控、超精确雷达系统而设计适用于楼宇/工厂自动化、商业/住  
宅安全、个人电子产品、存在/运动检测以及用于人机界面的手势检测/识别等应用  
封装信息  
器件型号(1)  
封装尺寸(2)  
托盘/卷带包装  
封装  
说明  
IWRL6432QGAMF  
FCCSP  
6.45mm x  
6.45mm  
托盘  
工业量产型号。以符合功能安全标准为目  
标。数量少。  
IWRL6432QGAMFR  
FCCSP  
6.45mm x  
6.45mm  
卷带包装  
工业量产型号。以符合功能安全标准为目  
标。数量多。  
(1) 如需更多信息请参阅12  
(2) 如需更多信息请参阅11.1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
4 功能方框图  
4-1. 功能方框图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.12 Timing and Switching Characteristics..................... 26  
9 Detailed Description......................................................46  
9.1 Overview...................................................................46  
9.2 功能方框图................................................................46  
9.3 Subsystems.............................................................. 47  
9.4 Other Subsystems.................................................... 52  
9.5 Memory Partitioning Options.....................................53  
9.6 Boot Modes...............................................................54  
10 Applications, Implementation, and Layout............... 55  
10.1 Application Information........................................... 55  
10.2 Reference Schematic..............................................55  
11 Device and Documentation Support..........................56  
11.1 Device Nomenclature..............................................56  
11.2 Tools and Software..................................................57  
11.3 Documentation Support.......................................... 57  
11.4 Support Resources................................................. 57  
11.5 Trademarks............................................................. 57  
11.6 Electrostatic Discharge Caution..............................58  
11.7 Glossary..................................................................58  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
6.1 Related Products........................................................ 7  
7 Terminal Configurations and Functions........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Signal Descriptions..................................................... 9  
8 Specifications................................................................ 17  
8.1 Absolute Maximum Ratings...................................... 17  
8.2 ESD Ratings............................................................. 17  
8.3 Power-On Hours (POH)............................................17  
8.4 Recommended Operating Conditions.......................18  
8.5 Power Supply Specifications.....................................19  
8.6 Power Save Modes...................................................21  
8.7 Peak Current Requirement per Voltage Rail.............23  
8.8 RF Specification........................................................24  
8.9 Supported DFE Features..........................................25  
8.10 CPU Specifications................................................. 26  
8.11 Thermal Resistance Characteristics for FCCSP  
Information.................................................................... 59  
Package [AMF0102A]................................................. 26  
5 Revision History  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
6 Device Comparison  
The following table compares the features of radar devices.  
6-1. Device Features Comparison  
FUNCTION  
IWRL6432  
IWR6843AOP  
IWR6843 IWR6443 IWR1843 IWR1642 IWR1443  
Antenna on Package (AOP)  
Number of receivers  
-
Yes  
4
-
-
-
-
-
4
4
4
4
4
3
Number of transmitters  
RF frequency range  
2
3
3
3
3(1)  
2
3
60 to 64 GHz  
60 to 64  
GHz  
60 to 64  
GHz  
76 to 81  
GHz  
76 to 81  
GHz  
76 to 81  
GHz  
57 to 64 GHz  
On-chip memory  
1.75MB  
10  
1.75MB  
10  
1.4MB  
10  
2MB  
10  
1.5MB  
5
576KB  
15  
1MB  
5
Max I/F (Intermediate  
Frequency) (MHz)  
Max real sampling rate (Msps)  
25  
25  
25  
25  
12.5  
6.25  
37.5  
12.5  
-
Max complex sampling rate  
(Msps)  
12.5  
12.5  
12.5  
12.5  
18.75  
Safety and Security  
Functional Safety -Compliance SIL-2 Targeted  
SIL-2  
Yes  
SIL-2  
Yes  
-
-
-
-
-
Device Security(2)  
Processors  
MCU  
-
Yes  
Yes  
Yes  
M4F  
-
R4F  
C674x  
Yes  
R4F  
C674x  
Yes  
R4F  
-
R4F  
C674x  
Yes  
R4F  
C674x  
-
R4F  
-
DSP  
HWA  
Yes  
Yes  
Yes  
Peripherals  
Serial Peripheral Interface  
(SPI) ports  
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
Yes  
1
2
2
Yes  
1
1
Yes  
1
Quad Serial Peripheral  
Interface (QSPI)  
Yes  
1
Inter-Integrated Circuit (I2C)  
interface  
Controller Area Network  
(DCAN) interface  
-
-
-
-
Yes  
Yes  
Yes  
-
Yes  
-
Controller Area Network (CAN-  
FD) interface  
Yes  
Yes  
Yes  
Yes  
Trace  
-
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
-
PWM  
Yes  
Yes  
DMM Interface  
Hardware In Loop (HIL/DMM)  
GPADC  
-
Yes  
RDIF  
2
Yes  
Yes  
LVDS  
2
Yes  
Yes  
LVDS  
2
Yes  
Yes  
LVDS  
2
Yes  
Yes  
LVDS  
2
Yes  
Yes  
LVDS  
2
-
Yes  
LVDS  
2
ADC Raw Data Capture  
UART  
1-V bypass mode  
JTAG  
N/A  
Yes  
2
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2
Yes  
Yes  
2
Number of TX that can be  
used simultaneously  
3
3
Per Chirp configurable TX  
phase shifter  
BPM only  
Yes(3)  
Yes(3)  
BPM only BPM only  
Yes(3)  
Yes(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
6-1. Device Features Comparison (continued)  
FUNCTION  
IWRL6432  
IWR6843AOP  
IWR6843 IWR6443 IWR1843 IWR1642 IWR1443  
Product Preview  
(PP), Advance  
Product  
Information (AI), or  
status  
AI  
PD(4)  
PD(4)  
PD(4)  
PD(4)  
PD(4)  
PD(4)  
Production Data  
(PD)  
(1) 3 Tx Simultaneous operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply needs to  
be fed on the VOUT PA pin.  
(2) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part  
variants as indicated by the Device Type identifier in Section 3, Device Information table.  
(3) 6 bits linear Phase Shifter.  
(4) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors  
TIs mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for Industrial applications.  
mmWave IWR  
The Texas Instruments IWRxxxx family of mmWave Sensors are highly integrated and  
built on RFCMOS technology operating in 57- to 64-GHz frequency band. The devices  
have a closed-loop PLL for precise and linear chirp synthesis. The devices have a very  
small-form factor, low power consumption, and are highly accurate. Industrial applications  
from short to ultra short range can be realized using these devices.  
Companion  
products for  
IWRL6432  
Review products that are similar to this product.  
Reference designs The IWRL6432 TI Designs Reference Design Library is a robust reference design library  
for IWRL6432  
spanning analog, embedded processor and connectivity. Created by TI experts to help  
you jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs, and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
7 Terminal Configurations and Functions  
7.1 Pin Diagrams  
12  
11  
10  
9
8
7
6
5
4
3
2
1
HOST_CLK  
_REQ  
M
L
VSS  
VIOIN  
VIOIN_18  
VDD_SRAM  
GPADC1  
VDDA_18BB VDDA_12RF VDDA_10RF  
VDDA_18BB VDDA_12RF VDDA_10RF  
VSSA  
VSSA  
UARTA_TX  
VIOIN_18  
UARTA_RTS  
NRESET  
VNWA  
VSS  
VIOIN_18  
GPADC2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX1  
NERROR  
_OUT  
K
J
VDD  
UARTA_RX  
GPIO_5  
GPIO_2  
VIN_18PM  
VBGAP  
VSSA  
RX2  
PMIC  
_CLKOUT  
H
G
F
VSS  
VDD  
VDD  
VSS  
VSS  
VOUT  
_14APLL  
VIOIN  
TDI  
RS232_RX  
TDO  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VSSA  
RX3  
VDDA  
_18VCO  
VSS  
VSS  
VSSA  
E
D
C
B
A
TMS  
RS232_TX  
SPIA_CLK  
VSSA_PM  
VSSA  
CLKP  
VSSA  
CLKM  
SPIA_CS0  
_N  
VOUT  
_14SYNTH  
VIOIN  
_18CLK  
TCK  
SPIA_MOSI  
VSS  
SPIA_MISO  
QSPI[0]  
VDD  
VIOIN_18  
QSPI[1]  
VPP  
QSPI[2]  
QSPI[3]  
VSS  
VSSA  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
VSSA  
TX1  
OSC_CLK  
_OUT  
QSPI_CLK  
QSPI_CS  
VSSA  
Not to scale  
7-1. BGA Pin Diagram (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
7.2 Signal Descriptions  
备注  
All digital IO pins of the device (except NRESET) are non-failsafe; hence, care needs to be taken that  
they are not driven externally without the VIO supply being present to the device.  
7-1. Analog Signal Descriptions  
SIGNAL NAME  
DESCRIPTION  
PIN TYPE  
BGA PIN  
CLKM  
XTAL CLKM pin  
XTAL CLKP pin  
GPADC input 1  
GPADC input 2  
NRESET input  
A
A
A
A
A
A
A
A
A
A
A
A
A
B1  
D1  
M6  
L6  
CLKP  
GPADC1  
GPADC2  
NRESET  
L10  
A7  
K1  
H1  
F1  
A3  
A5  
H5  
OSC_CLK_OUT  
RX1  
Oscillator Clock output  
RX channel 1  
RX2  
RX channel 2  
RX3  
RX channel 3  
TX1  
TX channel 1  
TX2  
TX channel 2  
VBGAP  
VDDA_10RF  
BandGap reference pin  
Internal LDO output for RF Supply of 1.0V. External  
Capacitor needed on this pin  
L3, M3  
VOUT_14APLL  
1.4V LDO output. External Capacitor is needed on this  
pin.  
A
A
G5  
VOUT_14SYNTH  
1.4V LDO output. External Capacitor is needed on this  
pin.  
D3  
7-2. CAN Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
CAN_FD_RX  
CAN_FD_TX  
CAN Receive Data  
I
J11  
L12  
CAN Transmit Data  
O
7-3. Clock Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
MCU_CLKOUT  
MCU clock output  
O
O
K11, M10  
H11  
PMIC_CLKOUT  
PMIC clock output.  
This also serves as a Sense On Power [Reset] Line.  
Impacts boot mode SOP1.  
RTC_CLK_IN  
RTC clock input  
I
B8, E12, H10, K11,  
L11  
7-4. EPWM Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
C11, D11, G11, L11  
B12, C12, D10, J10  
E10, E12, J10  
E12  
EPWMA  
EPWM Output A  
O
O
I
EPWMB  
EPWM Output B  
EPWM_SYNC_IN  
EPWM_SYNC_OUT  
EPWM Sync Input  
EPWM Sync output  
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
BGA PIN  
7-5. GPIO Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
B12  
C11  
H10  
J11  
K11  
J10  
L11  
M10  
7-6. I2C Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
I2C_SCL  
I2C Clock  
IO  
B10, D10, E10, L12,  
M10  
I2C_SDA  
I2C Data  
IO  
B9, D11, F11, H10,  
J11  
7-7. JTAG Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
TCK  
TDI  
JTAG Test Clock Input  
I
C12  
G11  
E11  
JTAG Test Data Input  
I
TDO  
JTAG Test Data Output.  
O
Also serves as a Sense On Power [Reset] Line Impacts  
boot mode SOP0.  
TMS  
JTAG Test Mode Select Input  
I
E12  
7-8. RDIF Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
RDIF_CLK  
PIN TYPE  
BGA PIN  
RDIF Clock  
O
O
O
O
O
O
L11  
H10  
J11  
RDIF_D0  
RDIF data 0  
RDIF_D1  
RDIF data 1  
RDIF_D2  
RDIF data 2  
L12  
K11  
M10  
RDIF_D3  
RDIF data 3  
RDIF_FRM_CLK  
RDIF Frame Clock  
7-9. Power Supply Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
VDD  
1.2V Core supply  
PWR  
C9, G7, G8, G9, H8,  
K7  
VDDA_12RF  
VDDA_18BB  
VDDA_18VCO  
VDD_SRAM  
VIN_18PM  
VIOIN  
1.2V RF Supply  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
L4, M4  
1.8V analog supply  
1.8V analog supply  
1.2V SRAM supply  
1.8V core supply  
1.8V analog supply  
1.8V analog supply  
1.8V analog supply  
L5, M5  
F3  
M7  
J5  
G12, M11  
C8, K12, L8, M8  
C6  
VIOIN_18  
VIOIN_18CLK  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
7-9. Power Supply Signal Descriptions (continued)  
SIGNAL NAME  
DESCRIPTION  
1.2V VNWA supply. Always connected to SRAM supply  
1.8V VPP supply  
PIN TYPE  
BGA PIN  
VNWA  
VPP  
PWR  
PWR  
GND  
L9  
A8  
VSS  
Ground  
A12, B7, E6, E7, E8,  
E9, F6, F7, F8, F9,  
H12, K9, M12  
VSSA  
Ground  
Ground  
GND  
GND  
A1, A2, A4, A6, B2,  
B3, B4, B5, B6, C1,  
C2, D2, E1, E2, F2,  
G1, G2, H2, J1, J2,  
K2, L1, L2, M1, M2  
VSSA_PM  
E5  
7-10. QSPI Signal Descriptions  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
BGA PIN  
QSPI Data bit 0  
QSPI Data bit 1  
QSPI Data bit 2  
QSPI Data bit 3  
QSPI clock  
IO  
I
B11  
B8  
QSPI_D0  
QSPI_D1  
QSPI_D2  
QSPI_D3  
QSPI_SCLK  
QSPI_CS  
I
B10  
B9  
I
IO  
O
A11  
A10  
QSPI Chip select  
7-11. RS232 Debug Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
RS232_RX  
RS232_TX  
Debug UART (Operates as Bus Main) - Receive Signal  
Debug UART (Operates as Bus Main) - Transmit Signal  
I
F11  
E10  
O
7-12. SPIA Signal Descriptions  
DESCRIPTION  
PIN TYPE  
BGA PIN  
SPIA_CLK  
SPIA Clock  
IO  
IO  
IO  
IO  
D10  
D11  
C11  
B12  
SPIA_CS0_N  
SPIA_MISO  
SPIA_MOSI  
SPIA Chip Select 0  
SPIA MISO  
SPIA MOSI  
7-13. SPIB Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
A11, D10  
SPIB_CLK  
SPIB Clock  
IO  
IO  
IO  
IO  
SPIB_CS0_N  
SPIB_MISO  
SPIB_MOSI  
SPIB Chip Select 0  
SPIB MISO  
A10, D11  
B8, C11  
SPIB MOSI  
B11, B12  
7-14. System Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
PIN TYPE  
BGA PIN  
HOST_CLK_REQ  
NERROR_OUT  
SYNC_IN  
Host clock request output  
NERROR output signal  
Sync input  
O
O
I
M10  
K11  
B9, E12, J10, J11,  
K11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
BGA PIN  
7-14. System Signal Descriptions (continued)  
SIGNAL NAME  
WARM_RESET_OUT  
WU_REQIN  
DESCRIPTION  
PIN TYPE  
Warm reset output  
O
I
E12, H10  
Wakeup Request input  
B10, H10, K11, L11,  
L12, M10  
7-15. UARTA Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
UARTA_RTS  
PIN TYPE  
BGA PIN  
UARTA RTS output  
O
I
L11  
J11  
L12  
UARTA_RX  
UARTA Receive Data  
UARTA_TX  
UARTA Transmit Data  
O
7-16. UARTB Signal Descriptions  
DESCRIPTION  
SIGNAL NAME  
UARTB_RX  
PIN TYPE  
BGA PIN  
F11, J11  
UARTB Receive Data  
I
UARTB_TX  
UARTB Transmit Data  
O
E10, L12  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
7-17. Pin Muxing Table  
BGA  
BALL  
PIN CNTL  
PULL UP/  
DOWN  
PINCNTL  
REGISTER  
MODE TYPE  
BALL STATE  
BALL STATE  
BALL NAME(2)  
SIGNAL NAME(3)  
REGISTER(4) ADDRESS(5)  
DURING RST(9) AFTER RST (10)  
(6)  
(7)  
NUMBER  
TYPE(8)  
(1)  
(11)  
H10  
GPIO_2  
GPIO_2  
PADAL_CFG_ 0x5A00  
0
1
2
3
4
5
6
7
IO  
I
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
002C  
LIN_RX  
WARM_RESET_OUT  
I2C_SDA  
O
IO  
IO  
I
SPIA_CS1_N  
WU_REQIN  
RTC_CLK_IN  
MDO_D0  
I
O
IO  
I
J10  
GPIO_5  
GPIO_5  
PADAV_CFG_ 0x5A00 0054 0  
REG  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
SYNC_IN  
1
LIN_RX  
2
3
4
5
I
EPWMB  
O
I
EPWM_SYNC_IN  
MDO_D3  
O
O
IO  
O
O
I
M10  
HOST_CLK_REQ HOST_CLK_REQ  
GPIO_7  
PADAX_CFG_ 0x5A00  
REG 005C  
0
1
2
3
4
5
6
8
9
PU/PD  
OFF/OFF/OFF  
OFF/SS/OFF  
MCU_CLKOUT  
LIN_TX  
WU_REQIN  
SPIB_MISO  
IO  
IO  
O
O
O
IO  
I
I2C_SCL  
MDO_D3  
MDO_FRM_CLK  
K11  
NERROR_OUT  
NERROR_OUT  
GPIO_4  
PADAU_CFG_ 0x5A00 0050 0  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
1
SYNC_IN  
2
SPIB_CS0_N  
WU_REQIN  
RTC_CLK_IN  
MCU_CLKOUT  
MDO_D3  
3
IO  
I
4
5
I
6
O
O
O
O
IO  
O
IO  
IO  
O
I
7
H11  
PMIC_CLKOUT  
PMIC_CLKOUT  
LIN_TX  
PADAK_CFG_ 0x5A00 0028 0  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
1
SPIA_CS1_N  
MDO_FRM_CLK  
QSPI[0]  
2
3
B11  
B8  
QSPI[0]  
QSPI[1]  
PADAC_CFG_ 0x5A00 0008 0  
PU/PD  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
SPIB_MOSI  
MDO_D0  
1
2
QSPI[1]  
PADAD_CFG_ 0x5A00  
REG 000C  
0
1
2
3
SPIB_MISO  
RTC_CLK_IN  
MDO_D3  
IO  
I
O
I
B10  
QSPI[2]  
QSPI[2]  
PADAE_CFG_ 0x5A00 0010 0  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
I2C_SCL  
1
IO  
I
WU_REQIN  
MDO_D1  
2
3
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
BALL STATE  
7-17. Pin Muxing Table (continued)  
BGA  
PIN CNTL  
PULL UP/  
DOWN  
BALL  
PINCNTL  
REGISTER  
MODE TYPE  
BALL STATE  
BALL NAME(2)  
NUMBER  
SIGNAL NAME(3)  
REGISTER(4) ADDRESS(5)  
DURING RST(9) AFTER RST (10)  
(6)  
(7)  
TYPE(8)  
(1)  
(11)  
B9  
QSPI[3]  
QSPI[3]  
PADAF_CFG_ 0x5A00 0014 0  
I
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
I2C_SDA  
1
IO  
I
SYNC_IN  
MDO_D2  
2
3
O
IO  
IO  
O
O
IO  
O
I
A11  
A10  
F11  
QSPI_CLK  
QSPI_CS  
RS232_RX  
QSPI_CLK  
SPIB_CLK  
MDO_CLK  
QSPI_CS  
SPIB_CS0_N  
MDO_FRM_CLK  
RS232_RX  
I2C_SDA  
PADAA_CFG_ 0x5A00 0000 0  
REG  
PU/PD  
PU/PD  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/UP  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/UP  
1
2
PADAB_CFG_ 0x5A00 0004 0  
REG  
1
2
PADAP_CFG_ 0x5A00  
REG 003C  
0
1
2
3
4
5
IO  
I
UARTB_RX  
LIN_RX  
I
MDO_D2  
O
IO  
O
IO  
O
O
I
SPIB_MISO  
RS232_TX  
I2C_SCL  
E10  
RS232_TX  
PADAO_CFG_ 0x5A00 0038 0  
REG  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFFI  
1
UARTB_TX  
LIN_TX  
2
3
EPWM_SYNC_IN  
MDO_D1  
4
5
O
IO  
IO  
O
IO  
IO  
O
IO  
O
IO  
IO  
O
IO  
IO  
O
IO  
O
IO  
IO  
O
IO  
O
I
SPIB_CS1_N  
SPIA_CLK  
EPWMB  
6
D10  
D11  
C11  
B12  
C12  
SPIA_CLK  
SPIA_CS0_N  
SPIA_MISO  
SPIA_MOSI  
TCK  
PADAG_CFG_ 0x5A00 0018 0  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
1
I2C_SCL  
2
3
4
SPIB_CLK  
MDO_CLK  
SPIA_CS0_N  
EPWMA  
PADAH_CFG_ 0x5A00  
REG 001C  
0
1
2
3
4
I2C_SDA  
SPIB_CS0_N  
MDO_D3  
SPIA_MISO  
GPIO_1  
PADAJ_CFG_ 0x5A00 0024 0  
REG  
1
EPWMA  
2
SPIB_MISO  
MDO_D2  
3
4
SPIA_MOSI  
GPIO_0  
PADAI_CFG_ 0x5A00 0020 0  
REG  
1
EPWMB  
2
3
4
SPIB_MOSI  
MDO_D1  
TCK  
PADAT_CFG_ 0x5A00  
REG 004C  
0
1
2
3
4
OFF/OFF/DOWN OFF/OFF/DOWN  
EPWMB  
O
IO  
IO  
O
SPIB_CS1_N  
SPIB_MOSI  
MDO_D0  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
7-17. Pin Muxing Table (continued)  
BGA  
BALL  
PIN CNTL  
PULL UP/  
DOWN  
PINCNTL  
REGISTER  
MODE TYPE  
BALL STATE  
BALL STATE  
BALL NAME(2)  
SIGNAL NAME(3)  
REGISTER(4) ADDRESS(5)  
DURING RST(9) AFTER RST (10)  
(6)  
(7)  
NUMBER  
TYPE(8)  
(1)  
(11)  
G11  
TDI  
TDI  
PADAR_CFG_ 0x5A00 0044 0  
I
PU/PD  
OFF/OFF/DOWN OFF/OFF/DOWN  
REG  
EPWMA  
1
O
IO  
O
O
I
SPIB_CS0_N  
TDO  
2
E11  
E12  
TDO  
TMS  
PADAS_CFG_ 0x5A00 0048 0  
REG  
PU/PD  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/UP  
OFF/OFF/OFF  
OFF/OFF/UP  
MDO_FRM_CLK  
TMS  
1
PADAQ_CFG_ 0x5A00 0040 0  
REG  
WARM_RESET_OUT  
SPIA_CS1_N  
SYNC_IN  
1
O
IO  
I
2
3
SPIB_MISO  
SPIB_CLK  
RTC_CLK_IN  
EPWM_SYNC_IN  
EPWM_SYNC_OUT  
UART_RTS  
GPIO_6  
4
IO  
IO  
I
5
6
7
I
8
O
O
IO  
O
IO  
I
L11  
J11  
L12  
UARTA_RTS  
UARTA_RX  
UARTA_TX  
PADAW_CFG_ 0x5A00 0058 0  
PU/PD  
PU/PD  
PU/PD  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
OFF/OFF/OFF  
REG  
1
LIN_TX  
2
SPIB_CLK  
WU_REQIN  
EPWMA  
3
4
5
O
I
RTC_CLK_IN  
MDO_CLK  
UARTA_RX  
GPIO_3  
6
7
O
I
PADAM_CFG_ 0x5A00 0030 0  
REG  
1
IO  
I
LIN_RX  
2
CAN_FD_RX  
SYNC_IN  
3
I
4
I
UARTB_RX  
I2C_SDA  
5
I
6
IO  
O
O
O
O
IO  
I
MDO_D1  
7
UARTA_TX  
LIN_TX  
PADAN_CFG_ 0x5A00 0034 0  
REG  
1
CAN_FC_TX  
SPIB_MOSI  
WU_REQIN  
UARTB_TX  
I2C_SCL  
2
3
4
5
6
7
O
IO  
O
MDO_D2  
(1) BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
(2) BALL NAME: Mechanical name from package device (name is taken from muxmode 0).  
(3) SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).  
(4) PINCNTL_REGISTER: APPSS Register name for PinMux Control  
(5) PINCNTL ADDRESS: APPSS Address for PinMux Control  
(6) MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode  
column has bit range value.  
(7) TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
(8) PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be  
enabled or disabled via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
An empty box means No pull.  
(9) BALL STATE DURING RST: State of Ball during reset in the format of RX/TX/Pull Status  
(10) BALL STATE AFTER RST: State of Ball after reset in the format of RX/TX/Pull Status  
(11) Pin Mux Control Value maps to lower 4 bits of register.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
PARAMETERS(1) (2)  
1.2 V digital power supply  
MIN  
MAX  
UNIT  
VDD  
1.4  
V
0.5  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os operate  
on the same VIOIN voltage level  
VIOIN  
3.8  
V
0.5  
VIOIN_18  
VIN_18CLK  
VIN_18BB  
VIN_18VCO supply  
RX1-3  
1.8 V supply for CMOS IO  
2
V
V
0.5  
0.5  
0.5  
0.5  
1.8 V supply for clock module  
2
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
2
V
2
V
Externally applied power on RF inputs  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
10  
10  
dBm  
dBm  
TX1-2  
VIOIN + 0.3  
VIOIN + 20% up to  
0.3V  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
2
V
0.5  
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
20  
mA  
20  
TJ  
Operating junction temperature range  
105  
150  
°C  
°C  
40  
55  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/  
ESDA/JEDEC JS-001 (1)  
All Pins  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
All Pins  
±500  
±750  
Charged-device model (CDM), per ANSI/  
ESDA/JEDEC JS-002 (1)  
Corner Pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
8.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
CONDITION  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
(1)  
105°C Tj  
50% RF duty cycle  
1.2  
100,000  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.4 Recommended Operating Conditions  
MIN  
1.14  
3.135  
1.71  
1.71  
1.71  
1.71  
1.71  
1.17  
2.25  
NOM  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
1.8  
MAX  
UNIT  
VDD  
1.2 V digital power supply  
1.26  
3.465  
1.89  
1.89  
1.89  
1.89  
1.89  
V
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
VIN_18CLK  
VIN18BB  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
V
V
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
mV  
mV  
VIOIN 450  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[1:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.5 Power Supply Specifications  
8.5.1 Power Optimized 3.3V I/O Topology  
8-1 describes the power rails from an external power supply block to the device via a 3.3V I/O topology.  
8-1. Power Supply Rails Characteristics: Power Optimized 3.3V I/O Topology  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOs IN THE DEVICE  
3.3 V  
1.8 V  
Digital I/Os  
Input: VIOIN  
Input: VDDA_18VCO, VIOIN_18CLK, VDDA_18BB,  
VIOIN_18, VIN_18PM  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC  
Input: VDD, VNWA, VDD_SRAM, VDDA_12RF  
LDO Output: VDDA_10RF  
1.2 V  
Core Digital and SRAMs, RF  
8.5.2 BOM Optimized 3.3V I/O Topology  
8-2 describes the power rails from an external power supply block to the device via a BOM Optimized 3.3V  
I/O Topology.  
8-2. Power Supply Rails Characteristics: BOM Optimized 3.3V I/O Topology  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOs IN THE DEVICE  
3.3V  
1.8V  
Digital I/Os  
Input: VIOIN  
Input: VIN_18VCO, VIOIN_18CLK, VIN_18BB,  
VIOIN_18, VIN_18PM  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC  
LDO Output: VOUT_14SYNTH, VDDA_10RF,  
VDD_SRAM, VOUT_14APLL, VDDA_12RF, VDD  
8.5.3 Power Optimized 1.8V I/O Topology  
8-3 describes the power rails from an external power supply block to the device via a power optimized 1.8V  
I/O topology.  
8-3. Power Supply Rails Characteristics: Power Optimized 1.8V I/O Topology  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOs IN THE DEVICE  
Input: VIOIN, VIN_18PM, VIN_18VCO, VIOIN_18CLK,  
VIN_18BB, VIOIN_18  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC  
1.8 V  
1.2 V  
Input: VDD, VDD_SRAM, VNWA  
LDO Output: VDDA_10RF  
Core Digital and SRAMs, RF, VNWA  
8.5.4 BOM Optimized 1.8V I/O Topology  
8-4 describes the power rails from an external power supply block to the device via a BOM optimized 1.8V I/O  
topology.  
8-4. Power Supply Rails Characteristics: BOM Optimized 1.8V I/O Topology  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOs IN THE DEVICE  
Input: VIOIN, VIN_18VCO, VIOIN_18CLK, VIN_18BB,  
VIOIN_18, VDDA_18BB, VIN_18PM, VDDA_18VCO  
LDO Output: VDD, VDD_SRAM, VDDA_10RF,  
VDDA_12RF, VOUT_14APLL, VOUT_14SYNTH  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, Digital I/Os  
1.8 V  
8.5.5 System Topologies  
The following the system topologies are supported.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: IWRL6432  
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
Topology 1: Autonomous mode, with ability to wake-up external MCU  
Topology 2: Peripheral mode, under control of external MCU  
8-1. System Topologies  
8.5.5.1 Power Topologies  
The device supports two unique power topologies for BOM optimized and Power Optimized modes. Above  
tables summarizes these options.  
8.5.5.1.1 BOM Optimized Mode  
In this mode the device can be powered using one 1.8V regulator OR using a 3.3V and a 1.8V regulator mode.  
The choice of one rail vs two rails is dependent on the IO voltages needed.  
8-2. BOM Optimized Mode Power Management (Left: 1.8V I/O Topology, Right: 3.3V I/O Topology)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.5.5.1.2 Power Optimized Mode  
This mode is for applications needing ultra-low power applications. The device can either be powered using two  
rails (1.8 V and 1.2 V) or with three rails (3.3 V, 1.8 V and 1.2 V).  
8-3. Power Optimized Mode Power Management (Left: 1.8V I/O Topology, Right: 3.3V I/O Topology)  
8.5.6 Noise and Ripple Specifications  
The 1.8-V power supply ripple specifications mentioned in 8-5 are defined to meet a target spur level of 105  
dBc (RF Pin = 15 dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship, for example, a 1-  
dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted are peak-peak levels for a  
sinusoidal input applied at the specified frequency. These values are being optimized and are subject to change.  
8-5. Noise and Ripple Specifications  
NOISE SPECIFICATION  
RIPPLE SPECIFICATION  
FREQ (kHZ)  
1.8 V (mVpp)  
1.2V (mVpp)1  
1.996  
1.8 V (µV/Hz)  
1.2V (µV/Hz)1  
44.987  
26.801  
28.393  
9.559  
10  
100  
6.057  
2.677  
2.388  
0.757  
0.419  
0.179  
0.0798  
0.0178  
0.035  
0.760  
0.955  
0.504  
0.379  
0.153  
0.079  
0.017  
2.233  
200  
3.116  
500  
1.152  
1000  
2000  
5000  
10000  
1.182  
0.532  
1.256  
0.561  
0.667  
0.297  
0.104  
0.046  
1. 1.2V noise/ripple specification is only for power optimized supply configurations.  
8.6 Power Save Modes  
8-6 lists the supported power states.  
8-6. Device Power States  
Power State  
Details  
Active  
Active Power State is when RF/chirping activity is ongoing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-6. Device Power States (continued)  
Details  
Power State  
Processing  
Processing Power State is when data is being processed RF turned off(1)  
Idle  
Idle Power State is during inter-frame/inter-burst/inter-chirp idle time  
Lowest possible power state of the device where the contents of the device can be retained (Application  
Image, Chirp Profile etc) and device need not boot from scratch again.  
Deep Sleep  
Device can enter this state after the frame processing is complete in order to save power significantly.  
Deep sleep exit can be through a number of external wakeup sources and internal timing maintenance.  
(1) The power consumed here also includes the Hardware Accelerator Power Consumption.  
8.6.1 Typical Power Consumption Numbers  
8-7 lists the typical power consumption for each power save modes in different power topologies and antenna  
configurations.  
Below quoted power numbers in 8-7, 8-8 and 8-9 are based on initial silicon measurements and might  
be subjected to change/improvement pertaining to further characterization  
8-7. Estimated Power Consumed in 3.3-V IO Mode  
Power Consumption (mW)(1)  
Power Mode  
Power Optimized Mode  
BOM Optimized Mode  
Active (2TX, 3RX)  
Active (2TX, 2RX)  
Active (1TX, 2RX)  
987  
874  
707  
1334  
1271  
1049  
Sampling: 12.5 MSps,  
Continuous Streaming Mode  
(CW) mode  
Freq =60 GHz  
TX Power = 10dBm  
RX gain = 30 dB  
Active (1TX, 1RX)  
Processing  
655  
159  
986  
233  
APPSS CM4 = 20MHz, FECSS,  
HWA powered off, SPI Interface  
active  
Idle  
13.80  
1.38  
23.13  
1.34  
Deep sleep  
Memory Retained = 114KB  
(1) The Power consumption numbers are for a typical usecase i.e. for a Nominal device at 25C ambient temperature and nominal voltage  
conditions.  
8-8. Estimated Power Consumed in 1.8-V IO Mode  
Power Consumption (mW)  
Power Mode  
Power Optimized Mode  
BOM Optimized Mode  
Deep Sleep  
0.640  
0.780  
8-9. Use-Case Power Consumed in 3.3-V Power Optimized Topology  
Parameter  
Condition  
Typical (mW)  
RF Front End Configuration : 2TX, 3RX  
5MHz Sampling Rate  
Num of ADC samples = 64  
Ramp End time = 19us  
Chirp Idle Time = 6us  
Average Power Consumption  
(Presence Detection -Minor  
Motion)  
1Hz Update Rate  
2.52  
Chirp Slope = 32MHz/us  
Number of chirps per burst = 8  
Burst Periodicity = 300us  
Number of bursts per frame = 1  
Device configured to go to deep sleep state after active  
operation. Memory Retained in deep sleep = 900KB  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.7 Peak Current Requirement per Voltage Rail  
8-10 provides the max split rail current numbers.  
8-10. Maximum Peak Current per Voltage Rail  
Maximum Current  
Mode(1)  
IO Voltage(3)  
(mA)  
(2)  
1.2 V: total current drawn 1.8 V: total current drawn 3.3 V: total current drawn  
by all nodes driven by  
1.2V rail  
by all nodes driven by  
1.8V rail  
by all nodes driven by  
3.3V rail  
BOM Optimized  
BOM Optimized  
Power Optimized  
Power Optimized  
3.3 V  
1.8V  
NA  
NA  
1360  
1450  
270  
90  
NA  
90  
3.3 V  
1.8 V  
1100  
1100  
270  
NA  
(1) Exercise full functionality of device, including 2TX, 3RX simultaneous operation, HWA, M4F and various host comm/interface  
peripherals active (CAN, I2C, GPADC), test across full temperature range  
(2) The specified current values are at typical supply voltage level.  
(3) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: IWRL6432  
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.8 RF Specification  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
12.5  
9  
40  
MAX UNIT  
Noise figure  
57 to 64 GHz  
dB  
dBm  
dB  
1-dB compression point (Out Of Band)(1)  
Maximum gain  
Gain range  
10  
dB  
Receiver  
Gain step size  
2
dB  
IF bandwidth(2)  
5
MHz  
ADC sampling rate (real)  
ADC resolution  
12.5 Msps  
Bits  
12  
11  
26  
Output Power  
dBm  
Transmitter  
Power backoff range  
Frequency range  
Ramp rate  
dB  
57  
64 GHz  
Clock  
subsystem  
400 MHz/µs  
dBc/Hz  
Phase noise at 1-MHz offset  
57 to 64 GHz  
89  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone well below the lowest HPF cut-off frequency.  
(2) The analog IF stages include high-pass filtering, with configurable first-order high-pass corner frequency. The set of available HPF  
corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
175, 350, 700, 1400  
The filtering performed by the digital baseband chain is targeted to provide less than ±0.5 dB pass-band ripple/droop.  
8-4 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.  
8-4. Noise Figure, In-band P1dB vs Receiver Gain  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.9 Supported DFE Features  
TX output back-off  
From 0 dB to 26dB TX back-off in steps of 1dB is supported  
Binary Phase Modulation supported on each TX  
RX gain  
Real RX channels  
Total RX gain range of 30 dB to 40 dB, in 2 dB steps  
VCO  
Single VCO covering entire RF sweep bandwidth up to 7 GHz.  
High-pass filter  
Supports corner frequency options 175 KHz, 350 KHz, 700 KHz, 1400 KHz  
First-order high pass filter only  
Low-pass filter  
Max IF bandwidth supported is 5 MHz  
40 dB stopband rejection, two filtering options supported  
80% visibility IF bandwidth is 80% of Nyquist and is 30% faster due to quicker settling time, compared  
with 90% visibility  
90% visibility IF bandwidth is 90% of Nyquist (has longer setting time due to larger filter length)  
Supported ADC sampling rates  
1.0, 1.25, 1.5625, 2.0, 2.5, 3.125, 4.0, 5.0, 6.25, 8.333, 10.0, 12.5Msps  
Timing Engine  
Support for chirps, bursts and frames  
Larger idle times can give more power saving  
Chirp accumulation (averaging) possible across closely spaced chirps to reduce memory requirement  
Provision for per-chirp dithering of parameters  
8-5. Chip Profile Supported by Timing Engine  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.10 CPU Specifications  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TYP  
UNIT  
Application  
Subsystem (M4F  
Family)  
Clock Speed  
160  
512  
256  
256  
MHz  
Tightly Coupled Memory - A (Program + Data)  
Shared L3 Memory(1)  
KB  
KB  
KB  
Shared Memory  
L3 Memory dedicated for HWA  
(1) L3 memory is configurable  
8.11 Thermal Resistance Characteristics for FCCSP Package [AMF0102A]  
THERMAL METRICS(1) (4)  
°C/W(2) (3)  
8.5  
Junction-to-case  
RΘJC  
RΘJB  
RΘJA  
PsiJC  
PsiJB  
6.2  
Junction-to-board  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
24.7  
0.36  
6.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) Test Condition: Power=1.305W at 25°C  
8.12 Timing and Switching Characteristics  
8.12.1 Power Supply Sequencing and Reset Timing  
The IWRL6432device expects all external voltage rails to be stable before reset is deasserted. 8-6 describes  
the device wake-up sequence.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
A. MCU_CLK_OUT in autonomous mode, where IWRL6432 application is booted from the serial flash,  
MCU_CLK_OUT is not enabled by default by the device bootloader.  
8-6. Device Wake-up Sequence  
8.12.2 Synchronized Frame Triggering  
The IWRL6432 device supports a hardware based mechanism to trigger radar frames. An external host can  
pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the  
external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional  
programmable delay that the user can set to control the frame start time.  
Tactive_frame  
SYNC_IN  
(Hardware  
Trigger)  
Radar  
Frames  
Tpulse  
Tlag  
Frame-2  
Frame-1  
8-7. Sync In Hardware Trigger  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-11. Frame Trigger Timing  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Tactive_frame  
Active frame duration  
User defined  
ns  
< Tactive_frame or  
4000  
Tpulse  
25  
8.12.3 Input Clocks and Oscillators  
8.12.3.1 Clock Specifications  
The IWRL6432 requires external clock source (that is, a 40-MHz crystal or external oscillator to CLKP) for initial  
boot and as a reference for an internal APLL hosted in the device. An external crystal connected to the device  
pins 8-8 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
8-8. Crystal Implementation  
备注  
The load capacitors, Cf1 and Cf2 in 8-8, should be chosen such that 方程式 1 is satisfied. CL in the  
equation is the load specified by the crystal manufacturer. All discrete components used to implement  
the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and  
CLKM pins.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
8-12 lists the electrical characteristics of the clock crystal.  
8-12. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
40  
8
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
CL  
Crystal load capacitance  
Crystal ESR  
5
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
105  
°C  
40  
Frequency  
Crystal frequency tolerance(1) (2) (3)  
tolerance  
200  
200  
ppm  
µW  
200  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) Crystal tolerance affects radar sensor accuracy.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. 8-13 lists  
the electrical characteristics of the external clock signal.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-13. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MAX  
MIN  
TYP  
Frequency  
40  
MHz  
AC-Amplitude  
700  
0.00  
1.6  
1200  
0.20  
1.95  
132  
143  
152  
153  
65  
mV (pp)  
ns  
DC-Vil  
DC-Vih  
ns  
Input Clock:  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
External AC-coupled sine wave or DC-  
coupled square wave Phase Noise  
referred to 40 MHz  
35  
Freq Tolerance  
-50  
50  
ppm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.4 MultiChannel buffered / Standard Serial Peripheral Interface (McSPI)  
The McSPI module is a multichannel transmit/receive, controller/peripheral synchronous serial bus  
8.12.4.1 McSPI Features  
The McSPI modules include the following main features:  
Serial clock with programmable frequency, polarity, and phase for each channel  
Wide selection of SPI word lengths, ranging from 4 to 32 bits  
Up to four channels in controller mode, or single channel in receive mode  
Controller multichannel mode:  
Full duplex/half duplex  
Transmit-only/receive-only/transmit-and-receive modes  
Flexible input/output (I/O) port controls per channel  
Programmable clock granularity  
Per channel configuration for clock definition, polarity enabling, and word width  
Single interrupt line for multiple interrupt source events  
Enable the addition of a programmable start-bit for McSPI transfer per channel (start-bit mode)  
Supports start-bit write command  
Supports start-bit pause and break sequence  
Programmable shift operations (1-32 bits)  
Programmable timing control between chip select and external clock generation  
Built-in FIFO available for a single channel  
8.12.4.2 SPI Timing Conditions  
8-14 presents timing conditions for McSPI  
8-14. McSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.12.4.3 SPIController Mode  
8.12.4.3.1 Timing and Switching Requirements for SPI - Controller Mode  
8-15 and 8-15 present timing requirements for SPI - Controller Mode.  
8-15. SPI Timing Requirements - Controller Mode  
NO.(1)  
MODE  
MIN  
MAX UNIT  
(8)  
SM4 tsu(MISO-SPICLK)  
SM5 th(SPICLK-MISO)  
Setup time, SPI_D[x] valid before SPI_CLK active edge  
ns  
5
(1)  
Hold time, SPI_D[x] valid after SPI_CLK active edge (1)  
3
ns  
8-16. SPI Switching Characteristics - Controller Mode  
NO.(1)  
MODE  
MIN  
MAX UNIT  
(8)  
SM1 tc(SPICLK)  
SM2 tw(SPICLKL)  
Cycle time, SPI_CLK (1) (2)  
24.6(3)  
-1 +  
ns  
ns  
Typical Pulse duration, SPI_CLK low (1)  
0.5P(3)  
(4)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-16. SPI Switching Characteristics - Controller Mode (continued)  
NO.(1)  
MODE  
MIN  
MAX UNIT  
(8)  
SM3 tw(SPICLKH)  
Typical Pulse duration, SPI_CLK high (1)  
-1 +  
ns  
0.5P(4)  
SM6 td(SPICLK-SIMO)  
Delay time, SPI_CLK active edge to SPI_D[x] transition  
-2  
ns  
5
(1)  
SM7 tsk(CS-SIMO)  
SM8 td(SPICLK-CS)  
Delay time, SPI_CS[x] active to SPI_D[x] transition  
Delay time, SPI_CS[x] active to SPI_CLK first edge  
ns  
ns  
5
Controller_PHA0_POL -4 + B(6)  
0;  
Controller_PHA0_POL  
1;(5)  
Controller_PHA1_POL -4 + A(7)  
0;  
Controller_PHA1_POL  
1;(5)  
ns  
ns  
ns  
SM9 td(SPICLK-CS)  
Delay time, SPI_CLK last edge to SPI_CS[x] inactive  
Controller_PHA0_POL -4 + A(7)  
0;  
Controller_PHA0_POL  
1;(5)  
Controller_PHA1_POL -4 + B(6)  
0;  
Controller_PHA1_POL  
1; (5)  
SM11 Cb  
Capacitive load for each bus line  
3
15  
pF  
(1) P = This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are being used to drive output data  
and capture input data  
(2) Related to the SPI_CLK maximum frequency  
(3) 20 ns cycle time = 50 MHz  
(4) P = SPICLK period  
(5) SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register  
(6) B = (TCS + .5) × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.  
(7) When P = 20.8 ns, A = (TCS + 1) × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.  
When P > 20.8 ns, A = (TCS + 0.5) × Fratio × TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.  
(8) The IO timings provided in this section are applicable for all combinations of signals for SPI1 and SPI2. However, the timings are only  
valid for SPI3 and SPI4 if signals within a single IOSET are used. The IOSETs are defined in the following tables.  
This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are being used to  
drive output data and capture input data  
备注  
Supported frequency of Radar SPI Peripheral mode is 40MHz in full cycle and 20MHz in Half cycle  
mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: IWRL6432  
 
 
 
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.4.3.2 Timing and Switching Characteristics for SPI Output TimingsController Mode  
PHA=0  
EPOL=1  
SPI_CS[x] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SM5  
SM5  
SM4  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[x] (OUT)  
SPI_SCLK (OUT)  
SM2  
SM1  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SM5  
SM4  
SM5  
Bit n-2  
SM4  
Bit n-1  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_02  
8-9. SPI Timing -Controller Mode Receive  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM7  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM2  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM6  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
SM6  
Bit 1  
Bit0  
SPRSP08_TIMING_McSPI_01  
8-10. SPI Timing- Controller Mode Transmit  
8.12.4.4 SPIPeripheral Mode  
8.12.4.4.1 Timing and Switching Requirements for SPI - Peripheral Mode  
8-17 and 8-18 present timing requirements for SPI -Peripheral Mode.  
8-17. SPI Timing Requirements - Peripheral Mode  
NO.(1) (3) PARAMETER  
DESCRIPTION  
MIN  
24.6  
MAX  
UNIT  
ns  
SS1  
SS2  
SS3  
SS4  
tc(SPICLK)  
Cycle time, SPI_CLK  
tw(SPICLKL)  
tw(SPICLKH)  
tsu(SIMO-SPICLK)  
Typical Pulse duration, SPI_CLK low  
Typical Pulse duration, SPI_CLK high  
Setup time, SPI_D[x] valid before SPI_CLK active edge  
0.45*P(2)  
0.45*P(2)  
ns  
ns  
ns  
3
SS5  
th(SPICLK-SIMO)  
Hold time, SPI_D[x] valid after SPI_CLK active edge  
ns  
1
5
5
1
SS8  
SS9  
tsu(CS-SPICLK)  
th(SPICLK-CS)  
sr  
Setup time, SPI_CS[x] valid before SPI_CLK first edge  
Hold time, SPI_CS[x] valid after SPI_CLK last edge  
Input Slew Rate for all pins  
ns  
ns  
ns  
SS10  
SS11  
3
Cb  
Capacitive load on D0 and D1  
2
15  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-18. SPI Switching Characteristics Peripheral Mode  
DESCRIPTION  
NO.  
PARAMETER  
MIN  
MAX  
5.77  
UNIT  
SS6  
td(SPICLK-SOMI)  
Delay time, SPI_CLK active edge to McSPI_somi transition  
0
ns  
SS7  
tsk(CS-SOMI)  
Delay time, SPI_CS[x] active edge to McSPI_somi transition  
ns  
5.77  
(1) P = This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(2) P = SPICLK period.  
(3) PHA = 0; SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register.  
8.12.4.4.2 Timing and Switching Characteristics for SPI Output TimingsSecondary Mode  
PHA=0  
EPOL=1  
SPI_CS[x] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS5  
SS4  
SS5  
Bit n-2  
SS4  
Bit n-1  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[x] (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SPI_SCLK (IN)  
SS1  
SS3  
SS4  
SS5  
SS4  
SS5  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_04  
8-11. SPI Timing - Peripheral mode Receive  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
PHA=0  
EPOL=1  
SPI_CS[x] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SPI_SCLK (IN)  
SS1  
SS2  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS7  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[x] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SS1  
SS3  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS6  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
SS6  
Bit 1  
Bit 0  
SPRSP08_TIMING_McSPI_03  
8-12. SPI Timing - Peripheral mode Transmit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.5 RDIF Interface Configuration  
The supported Radar Data InterFace (RDIF) is developed as a debug interface (for example: to capture raw  
ADC data) and not as a production interface. The RDIF has four data lanes, one Bit Clock lane, and one Frame  
Clock lane. From this interface, high-speed data is sent out for debug purposes. The RDIF interface supports the  
following data rates(1):  
400 Mbps  
320 Mbps  
200 Mbps  
160 Mbps  
100 Mbps  
1. Aggregated data rate over four data lanes.  
8.12.5.1 RDIF Interface Timings  
8-13. RDIF Timing Requirements  
8-19. Timing Requirements for RDIF Interface  
PARAMETER  
DESCRIPTION  
MIN  
MAX UNIT  
No.  
MODE  
Bit Interval, RDIF_d[x]  
SM1  
SM2  
Tb (RDIF_D[x])  
Internal Clock  
9.6  
ns  
Tvb  
Data valid time, RDIF_d[x]  
and RDIF_frm_clk valid  
before RDIF_clk active  
edge  
(RDIF_D[x] - RDIF_CLK)  
Internal Clock  
Internal Clock  
4.8  
4.8  
ns  
ns  
Tva  
SM3  
SM4  
Data valid time, RDIF_d[x]  
valid after RDIF_clk active  
edge  
(RDIF_CLK - RDIF_D[x])  
Cb  
Capacitive load for each  
bus line  
pF  
3
15  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.5.2 RDIF Data Format  
8-14. RDIF Data Format  
The samples are sent one channel by one channel as shown in the diagram above. All the 12-bits of one  
channel are sent on 4 data lanes in 3 DDR_CLK edges, followed by next RX channel.  
The frame clock (FRM_CLK) spans 12 DDR_CLK edges and 48 bits are sent in 1 FRM_CLK  
The FRM_CLK can have gaps in between. This is required as the interface rate is greater than the incoming  
rate  
DDR_CLK is continuous.  
DDR_CLK is generated from 400MHz ADC CLK (one of the ADC CLKs) - selected for the DFE. It is the same  
400MHz clock selected for DFE.  
New sample always starts at the rise edge of the DDR_CLK  
The FRM_CLK is valid for the entire data bit and is meets the Tsu/Th wrt DDR_CLK.  
8.12.6 General-Purpose Input/Output  
8.12.6.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
8-20 lists the switching characteristics of output timing relative to load capacitance.  
8-20. Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1) (2)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
tr  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
tf  
Max fall time  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8-20. Switching Characteristics for Output Timing versus Load Capacitance (CL) (continued)  
PARAMETER(1) (2)  
TEST CONDITIONS  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
CL = 20 pF  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 1  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
tf  
Max fall time  
ns  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.7 Controller Area Network - Flexible Data-rate (CAN-FD)  
The CAN-FD module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications.  
CAN FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD  
devices can coexist on the same network without any conflict.  
The CAN-FD has the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1  
Full CAN FD support (up to 64 data bytes per frame)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated Transmit Buffers  
Configurable Transmit FIFO, up to 32 elements  
Configurable Transmit Queue, up to 32 elements  
Configurable Transmit Event FIFO, up to 32 elements  
Up to 64 dedicated Receive Buffers  
Two configurable Receive FIFOs, up to 64 elements each  
Up to 128 11-bit filter elements  
Internal Loopback mode for self-test  
Mask-able interrupts, two interrupt lines  
Two clock domains (CAN clock / Host clock)  
Parity / ECC support - Message RAM single error correction and double error detection (SECDED)  
mechanism  
Full Message Memory capacity (4352 words).  
8.12.7.1 Dynamic Characteristics for the CANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(CAN_FD_tx)  
td(CAN_FD_rx)  
Delay time, transmit shift register to CAN_FD_tx  
pin(1)  
15  
ns  
Delay time, CAN_FD_rx pin to receive shift  
register(1)  
15  
ns  
(1) These values do not include rise/fall times of the output buffer.  
8.12.8 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Supports full- or half-duplex operation  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions in compatibility mode  
Supports two individually enabled interrupt lines: level 0 and level 1  
Configurable frame format of 3 to 13 bits per character based on the following:  
Data word length programmable from one to eight bits  
Additional address bit in address-bit mode  
Parity programmable for zero or one parity bit, odd or even parity  
Stop programmable for one or two stop bits  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Two multiprocessor communication formats allow communication between more than two devices  
Sleep mode is available to free CPU resources during multiprocessor communication and then wake up to  
receive an incoming message  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Five error flags and Seven status flags provide detailed information regarding SCI events  
Two external pins: RS232_RX and RS232_TX  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
Multi-buffered receive and transmit units  
8.12.8.1 SCI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
TBD  
kHz  
8.12.9 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multi-controller communication module providing an interface  
between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an  
I2C-bus™. This module will support any target or controller I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
Bit/Byte format transfer  
7-bit and 10-bit device addressing modes  
START byte  
Multi-controller transmitter/ target receiver mode  
Multi-controller receiver/ target transmitter mode  
Combined controller transmit/receive and receive/transmit mode  
Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
备注  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the target address second byte every  
time it sends the target address first byte)  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.9.1 I2C Timing Requirements  
STANDARD MODE(1)  
FAST MODE  
UNIT  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
8-15. I2C Timing Diagram  
备注  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period  
(tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode I2C-  
bus system, but the requirement tsu(SDA-SCLH) 250 ns must then be met. This will automatically  
be the case if the device does not stretch the LOW period of the SCL signal. If such a device does  
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max +  
tsu(SDA-SCLH)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.10 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad read  
access to external SPI devices. This module has a memory mapped register interface, which provides a direct  
interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI  
works as a controller only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash  
memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
8.12.10.2 and 8.12.10.3 assume the operating conditions stated in 8.12.10.1.  
8.12.10.1 QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.12.10.2 Timing Requirements for QSPI Input (Read) Timings  
MIN(1) (2)  
5
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
1
ns  
5 P(3)  
1 + P(3)  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
ns  
ns  
(1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-  
standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.10.3 QSPI Switching Characteristics  
NO.  
Q1  
Q2  
Q3  
PARAMETER  
Cycle time, sclk  
MIN  
12.5  
TYP  
MAX  
UNIT  
ns  
tc(SCLK)  
Y*P 3(1) (2)  
Y*P 3(1) (2)  
tw(SCLKL)  
tw(SCLKH)  
td(CS-SCLK)  
Pulse duration, sclk low  
ns  
Pulse duration, sclk high  
ns  
M*P 1(2)  
M*P + 2.5(2)  
Delay time, sclk falling edge to cs active edge  
ns  
Q4  
Q5  
(3)  
(3)  
td(SCLK-CS)  
Delay time, sclk falling edge to cs inactive edge  
N*P + 2.5(2)  
ns  
N*P 1(2) (3)  
(3)  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
td(SCLK-D1)  
Delay time, sclk falling edge to d[1] transition  
Enable time, cs active edge to d[1] driven (lo-z)  
Disable time, cs active edge to d[1] tri-stated (hi-z)  
ns  
ns  
ns  
ns  
Q6  
Q7  
Q8  
4
P +1(2)  
P +1(2)  
2  
P 4(2)  
P 4(2)  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
2 P(2)  
4P(2)  
Q9  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
5
1
ns  
ns  
ns  
Setup time, final d[3:0] bit valid before final falling  
sclk edge  
5 P(2)  
Q14  
Q15  
th(SCLK-D)  
Hold time, final d[3:0] bit valid after final falling sclk  
edge  
ns  
1 + P(2)  
(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals  
(DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle  
distortion. All required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.  
(2) P = SCLK period in ns.  
(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
8-16. QSPI Read (Clock Mode 0)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: IWRL6432  
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
8-17. QSPI Write (Clock Mode 0)  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
8.12.11 JTAG Interface  
8.12.11.2 and 8.12.11.3 assume the operating conditions stated in 8.12.11.1.  
8.12.11.1 JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.12.11.2 Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
20  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
20  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
2.5  
2.5  
18  
ns  
3
4
ns  
ns  
18  
ns  
8.12.11.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
15  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
8-18. JTAG Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The IWRL6432 device is a complete SOC which include mmWave front end, customer programmable MCU and  
analog baseband signal chain for two transmitters and three receivers. This device is applicable as a radar-on-a-  
chip in use-cases with quality provision for memory, processing capacity and application code size. Use-cases  
include cost-effective industrial radar sensing applications. Examples are:  
Industrial-level sensing  
Industrial automation sensor fusion with radar  
Traffic intersection monitoring with radar  
Industrial radar-proximity monitoring  
People counting  
Gesturing  
In terms of scalability, the IWRL6432 device could be paired with a low-end external MCU to address more  
complex applications that might require additional memory for a larger application software footprint and faster  
interfaces.  
9.2 功能方框图  
9-1. 功能方框图  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9.3 Subsystems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The two TX can be  
operated simultaneously for beam forming in BPM mode or individually in TDM mode. Similarly, the device  
allows configuring the number of receive channels based on application and power requirements. For system  
power saving, RF and analog subsystems can be put into low power mode configuration.  
9.3.2 Clock Subsystem  
The IWRL6432 clock subsystem generates 57 to 64 GHz from an input reference from a crystal. It has a built-in  
oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF synthesizer is  
then processed by an X3 multiplier to create the required frequency in the 57 to 64 GHz spectrum. The RF  
synthesizer output is modulated by the timing engine block to create the required waveforms for effective sensor  
operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
9-2 describes the clock subsystem.  
9-2. Clock Subsystem  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9.3.3 Transmit Subsystem  
The IWRL6432 transmit subsystem consists of two parallel transmit chains, each with independent phase and  
amplitude control. The device supports binary phase modulation for MIMO radar, TX Beam forming application,  
and interference mitigation.  
The transmit chains also support programmable backoff for system optimization.  
9-3 describes the transmit subsystem.  
9-3. Transmit Subsystem (Per Channel)  
9.3.4 Receive Subsystem  
The IWRL6432 receive subsystem consists of three parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, ADC conversion, and decimation. All three receive channels can either operate  
simultaneously OR can be powered down individually based on system power needs and application design.  
The IWRL6432 device supports a real baseband architecture, which uses real mixer, single IF and ADC chains  
to provide output for each receiver channel. The device is targeted for fast chirp systems. The band-pass IF  
chain has configurable lower cutoff frequencies above 175 kHz and can support bandwidths up to 5 MHz.  
9-4 describes the receive subsystem.  
9-4. Receive Subsystem (Per Channel)  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9.3.5 Processor Subsystem  
9-5. Processor Subsystem  
9-5 shows the block diagram for customer programmable processor subsystems in the IWRL6432 device. At  
a high level there are two customer programmable subsystems, as shown separated by a dotted line in the  
diagram. The left hand side shows the HWA, a high-bandwidth interconnect for high performance (64-bit,  
80MHz), and associated peripherals data transfer. RDIF interface for Measurement data output, L3 Radar data  
cube memory, the ADC buffers, the CRC engine, and data handshake memory (additional memory provided on  
interconnect).  
The right side of the diagram shows the Main Subsystem. The Main Subsystem is the brain of the device and  
controls all the device peripherals and house-keeping activities of the device. The Main Subsystem contains  
Cortex-M4F processor and associated peripherals and house-keeping components such as DMAs, CRC and  
Peripherals (I2C, UART, SPIs, CAN, PMIC clocking module, PWM, and others) connected to Main Interconnect  
through Peripheral Central Resource (PCR interconnect).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9.3.6 Host Interface  
The host interface can be provided through a SPI, UART, or CAN-FD interface. In some cases the serial  
interface for industrial applications is transcoded to a different serial standard.  
The IWRL6432 device communicates with the host radar processor over the following main interfaces:  
Reference Clock Reference clock available for host processor after device wakeup  
Control 4-port standard SPI (peripheral) for host control . All radio control commands (and response) flow  
through this interface.  
Reset Active-low reset for device wakeup from host.  
Host Interrupt - an indication that the mmWave sensor needs host interface  
Error Used for notifying the host in case the radio controller detects a fault  
9.3.7 Main Subsystem Cortex-M4F  
The main system includes an ARM Cortex M4F processor clocked with a maximum operating frequency of 160  
MHz. User applications executing on this processor control the overall operation of the device, including radar  
control through well-defined API messages, radar signal processing (assisted by the radar hardware  
accelerator), and peripherals for external interfaces.  
See the Technical Reference Manual for a complete description and memory map.  
9.3.8 Hardware Accelerator (HWA1.2) Features  
Fast FFT computation, with programmable 2N sizes, up to 1024-point complex FFT  
Internal FFT bit-width of 24 bits (each for I and Q) for good Signal-to-Quantization-Noise Ratio (SQNR)  
performance  
Fully programmable butterfly scaling at every radix-2 stage for user flexibility  
Built-in capabilities for pre-FFT processing Ex: DC estimation and subtraction  
DC estimation & subtraction, Interference estimation & zero-out, Real window, Complex pre-multiplication  
Magnitude (absolute value) and Log-magnitude computation  
Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and  
transpose accesses  
Chaining and looping mechanism to sequence a set of operations one after another with minimal intervention  
from the main processor  
Peak detection CFAR (CFAR-CA, CFAR-OS) detector  
Basic statistics, including Sum and 1D Max  
Compression engine for radar cube memory optimization  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9-6. HWA 1.2 Functional Block Diagram  
9.3.8.1 Hardware Accelerator Feature Differences Between HWA1.1 and HWA1.2  
HWA1.0, HWA1.1  
(xWR1843, xWR6843)  
HWA1.2  
(xWRL6432)  
Feature  
FFT sizes  
1024, 512, 256, ...  
24-bit I, 24-bit Q  
1024, 512, 256, ...  
Internal bit-width  
24-bit I, 24-bit Q  
FFT features  
Configurable butterfly scaling at  
each stage  
Configurable butterfly scaling at  
each stage  
FFT stitching  
up to 4096 point  
up to 4096 point  
1312 clock cycles  
1320 clock cycles  
FFT benchmark for four 256-pt FFTs  
(6.56 µs at 200 MHz)  
(16.5 µs at 80 MHz)  
No. of parameter-sets  
Local memory  
16  
32  
64KB  
64KB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
HWA1.0, HWA1.1  
(xWR1843, xWR6843)  
HWA1.2  
(xWRL6432)  
Feature  
A and B-dim addressing of  
local memory  
A and B-dim addressing of  
local memory  
Input and Output formatter  
Programmable scaling  
Programmable scaling  
DC estimation and  
subtraction  
Interference zero out with  
fixed threshold, based on  
magnitude  
Interference zero out with  
adaptive statistics, based on  
mag, mag-diff. Interference  
count indication.  
Pre-FFT processing  
Complex multiplication (7  
modes)  
Complex multiplication (7  
modes)  
Real window coefficients  
Real window coefficients  
Log-magnitude (0.06 dB  
accuracy)  
Post-FFT processing  
Log-magnitude (0.3 dB accuracy)  
Not available in HWA1.0  
Compression and De-compression support  
(xWR1843), Available in HWA1.1 Available  
(xWR6843)  
CFAR-CA (linear and log  
modes)  
Detection  
Statistics  
CFAR-CA (linear and log modes)  
1D Sum, 1D Max  
CFAR-OS (window size up to  
32 on each side)  
1D Sum, 1D Max  
9.4 Other Subsystems  
9.4.1 GPADC Channels (Service) for User Application  
The IWRL6432 device includes provision for an ADC service for user application, where the GPADC engine  
present inside the device can be used to measure up to two external voltages. The GPADC1, and GPADC2 pins  
are used for this purpose.  
GPADC itself is controlled by TI firmware running inside the FEC subsystem and access to it for customers  
external voltage monitoring purpose is via APPSScalls routed to the FEC subsystem. This API could be  
linked with the user application running on MSS M4F.  
Device Firmware package (DFP) provides APIs to configure and measure these signals. The API allows  
configuring the settling time (number of ADC samples to skip) and number of consecutive samples to take. At  
the end of a frame, the minimum, maximum and average of the readings will be reported for each of the  
monitored voltages.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9-7. GPADC Path  
GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these  
measurements is ±7°C.  
9.4.2 GPADC Parameters  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
V
0 1.8  
0.4 1.3  
8
V
bits  
ADC offset error  
ADC gain error  
ADC DNL  
±5  
±5  
LSB  
LSB  
LSB  
LSB  
Ksps  
1/+2.5  
±2.5  
ADC INL  
ADC sample rate(2)  
831  
ADC sampling time(2)  
300  
10  
2
ns  
pF  
pF  
uA  
ADC internal cap  
ADC buffer input capacitance  
ADC input leakage current  
3
(1) Outside of given range, the buffer output will become nonlinear.  
(2) GPADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
9.5 Memory Partitioning Options  
IWRL6432 devices will have a total memory of 1MB. The L3 memory has two memory banks and can be  
associated with radar cube memory or with the Cortex-M4F RAM.  
9-1. Memory Partition Options  
Config 1  
Config 2  
Config 3  
Includes data cube,  
detection matrix, heatmap  
Radar data memory* (L3)  
256KB  
384kB  
512KB  
Application  
Includes drivers,  
mmWavelink, BIOS  
768KB  
640KB  
512KB  
(M4F program + data)  
Total memory  
1024KB  
1024KB  
1024KB  
The entire RAM is retainable. Additionally, each memory cluster can be independently turned off (if needed). The  
clusters are defined as below  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
9-2. Memory Retention Options  
RAM_1  
RAM_2  
RAM_3  
Shared  
HWA  
256KB  
128KB  
128KB  
256KB  
256KB  
BANK #1(1)  
Cluster #3  
BANK #2  
Cluster #2  
16KB  
BANK #3  
Cluster #5  
Cluster #1  
64kB  
Cluster #4  
128KB  
Cluster #6  
256KB  
64KB  
112KB  
128KB  
256KB  
(1) Retention memories have power switches. These Banks represent memory configurations.  
9.6 Boot Modes  
As soon as device reset is de-asserted, the processor of the APPSS starts executing its bootloader from an on-  
chip ROM memory.  
The bootloader operates in three basic modes and these are specified on the user hardware (Printed Circuit  
Board) by configuring what are termed as "Sense on power" (SOP) pins. These pins on the device boundary are  
scanned by the bootloader firmware and choice of mode for bootloader operation is made.  
9-3 enumerates the relevant SOP combinations and how these map to bootloader operation.  
9-3. SOP Combinations  
SOP1  
SOP0  
BOOTLOADER MODE AND OPERATION  
0
0
Flashing Mode  
Device Bootloader spins in loop to allow flashing of user application (or device  
firmware patch - Supplied by TI) to the serial flash.  
0
1
1
1
Functional Mode  
Device Bootloader loads user application from QSPI Serial Flash to internal  
RAM and switches the control to it.  
Debug Mode  
Bootloader is bypassed and M4F processor is halted. This allows user to  
connect emulator at a known point.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
备注  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
Application information can be found on IWR Application web page.  
10.2 Reference Schematic  
Please check the device product page for latest Hardware design information under Design Kits - typically, at  
Design and Development  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB  
Altium IWRL6432 EVM Design Files  
IWRL6432 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: IWRL6432  
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, IWRL6432). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ABL0161), the temperature range (for example, blank is the default commercial temperature  
range). 11-1 provides a legend for reading the complete device name for any IWRL6432 device.  
For orderable part numbers of IWRL6432 devices in the ABL0161 package types, see the Package Option  
Addendum of this document (when available), the TI website (www.ti.com), or contact your TI sales  
representative.  
For additional description of the device nomenclature markings on the die, see the IWRL6432 Device Errata .  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
11-1. Device Nomenclature  
11.2 Tools and Software  
Models  
IWRL6432 BSDL model Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IWRL6432 IBIS model IO buffer information model for the IO buffers of the device. For simulation on a circuit  
board, see IBIS Open Forum.  
11.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the peripherals, and other technical collateral follows.  
Errata  
IWRL6432 device errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design helpstraight from  
the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
E2Eis a trademark of Texas Instruments.  
Arm® and M4F® are registered trademarks of Arm Limited.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: IWRL6432  
 
 
 
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, see the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: IWRL6432  
 
 
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
AMF0102A  
FCCSP - 0.97 mm max height  
S
C
A
L
E
2
.
0
0
0
FLIP CHIP CHIP SCALE PACKAGE  
6.55  
6.35  
B
A
BALL A1  
CORNER  
6.55  
6.35  
0.15 C  
0.2 C  
0.97 MAX  
C
SEATING PLANE  
0.08 C  
0.338  
0.150  
(0.475)  
PKG  
M
L
(0.475)  
K
J
H
G
F
PKG  
5.5 TYP  
E
D
C
0.36  
102X  
NOTE 4  
B
A
0.26  
0.15  
0.05  
C A B  
1
2
3
4
5
6
7
8
9
10  
11  
12  
C
0.5 TYP  
0.5 TYP  
4228614/A 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.  
4. Dimension is measured at the maximum solder ball diameter, post reflow, parallel to primary datum C.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
AMF0102A  
FCCSP - 0.97 mm max height  
FLIP CHIP CHIP SCALE PACKAGE  
(0.5) TYP  
102X ( 0.25)  
3
4
6
7
8
9
10  
11  
1
2
5
12  
A
(0.5) TYP  
B
C
D
E
F
PKG  
G
H
J
K
L
M
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.25)  
(
0.25)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228614/A 03/2022  
NOTES: (continued)  
5. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: IWRL6432  
IWRL6432  
ZHCSRC3 DECEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
AMF0102A  
FCCSP - 0.97 mm max height  
FLIP CHIP CHIP SCALE PACKAGE  
(0.5) TYP  
102X ( 0.25)  
(0.5) TYP  
3
4
6
7
8
9
10  
11  
1
2
5
12  
A
B
C
D
E
F
PKG  
G
H
J
K
L
M
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 15X  
4228614/A 03/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: IWRL6432  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XIWR6432LQGAMF  
ACTIVE  
FCCSP  
AMF  
102  
1
TBD  
Call TI  
Call TI  
-40 to 105  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

XJ106

Transistor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CALOGIC

XJ108

Small Signal Field-Effect Transistor, 1-Element, N-Channel, Silicon, Junction FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CALOGIC

XJ108-110

N-Channel JFET Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CALOGIC

XJ413T

SENSOR PIR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XJ602

OUTLINE & USAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINCHESTER

XJ603

OUTLINE & USAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINCHESTER

XJ604

OUTLINE & USAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINCHESTER

XJ605

OUTLINE & USAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINCHESTER

XJ606

OUTLINE & USAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINCHESTER

XJ8

Header Plugs / Jumpers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OMRON