XLMH32401QWRGTRQ1 [TI]

汽车类可编程增益差分输出高速跨阻放大器 | RGT | 16 | -40 to 125;
XLMH32401QWRGTRQ1
型号: XLMH32401QWRGTRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类可编程增益差分输出高速跨阻放大器 | RGT | 16 | -40 to 125

放大器
文件: 总38页 (文件大小:2393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
LMH32401-Q1 车级 450MHz、可程增益、差分出跨阻放大器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准:  
LMH32401-Q1 是一款汽车级可编程增益、单端、输入  
转差分输出跨阻放大器,适用于光探测和测距 (LIDAR)  
应用。可以为 LMH32401-Q1 配置 2kΩ 20kΩ 增  
益。LMH32401-Q1 具有 1.5VPP 的输出摆幅,可驱动  
100Ω 负载。  
温度等级 1–40°C +125°CTA  
集成的可编程增益:2kΩ 20kΩ  
增益 = 2kΩCPD = 1pF 时的性能:  
带宽:450 MHz  
输入参考噪声:250nARMS  
上升和下降时间:0.8ns  
增益 = 20kΩCPD = 1pF 的性能:  
带宽:275 MHz  
LMH32401-Q1 具有集成的 100mA 电流钳位,可保  
护放大器,使其在出现过载输入时能迅速恢复正常。此  
外,LMH32401-Q1 还具有集成的环境光消除电路。为  
了节省布板空间并降低系统成本,可使用此电路代替光  
电二极管 (PD) 或雪崩光电二极管 (APD) 与放大器之间  
的交流耦合。当需要直流耦合时,可以禁用环境光消除  
电路。  
输入参考噪声:49nARMS  
上升和下降时间:1.3ns  
集成式环境光消除  
集成式 100mA 保护钳位  
为了在不使用放大器时节省功耗,可使用 EN 引脚将  
LMH32401-Q1 置于低功耗模式。当放大器处于低功耗  
模式时,输出引脚处于高阻抗状态。此功能允许多个  
LMH32401-Q1 放大器多路复用到单个 ADC 中,EN  
控制引脚将用作多路复用器选择功能。  
集成式输出多路复用器  
宽输出摆幅:1.5 V VPP  
静态电流:30mA  
封装:16 引脚可湿性侧面 VQFN  
2 应用  
封装信息(1)  
封装  
机械扫描激光雷达  
器件型号  
封装尺寸(标称值)  
固态扫描激光雷达  
工业机器人激光雷达  
智能弹药  
可湿性侧面 RGT  
VQFN16)  
LMH32401-Q1  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
3
0
GAIN  
VDD1  
VDD2  
EN  
1 k  
100-mA  
Clamp  
10 k  
IN  
Differential Output ADC  
Driver  
-3  
-6  
-9  
TIA  
10  
OUT  
Ambient Light  
Cancellation  
VBIAS  
IDC EN  
VOD  
+
2x  
VOCM  
OUT+  
-12  
Gain = 2 kW  
Gain = 20 kW  
Output Offset  
10  
-15  
10M  
100M  
Frequency [Hz]  
1G  
GND  
闭环跨阻带宽  
简化版方框图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAF0  
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics: Gain = 2 kΩ....................... 5  
6.6 Electrical Characteristics: Gain = 20 kΩ..................... 6  
6.7 Electrical Characteristics: Both Gains.........................7  
6.8 Electrical Characteristics: Logic Threshold and  
7.3 Feature Description...................................................20  
7.4 Device Functional Modes..........................................22  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application ................................................... 25  
8.3 Power Supply Recommendations.............................27  
8.4 Layout....................................................................... 27  
9 Device and Documentation Support............................29  
9.1 Device Support......................................................... 29  
9.2 Documentation Support............................................ 29  
9.3 接收文档更新通知..................................................... 29  
9.4 支持资源....................................................................29  
9.5 Trademarks...............................................................29  
9.6 静电放电警告............................................................ 29  
9.7 术语表....................................................................... 29  
10 Mechanical, Packaging, and Orderable  
Switching Characteristics.............................................. 9  
6.9 Typical Characteristics..............................................10  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
Information.................................................................... 30  
Tape and Reel Information..............................................30  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
VDD1  
IN  
1
2
3
4
12  
11  
10  
9
VOCM  
OUTœ  
OUT+  
VOD  
Thermal pad  
NC  
Not to scale  
5-1. RGT Package, 16-Pin VQFN With Wettable Flanks and Exposed Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Device enable pin.  
EN  
6
Input EN = logic low = normal operation (default)(1)  
EN = logic high = power-off mode.  
.
Gain setting.  
GAIN  
16  
1, 7  
5
Input GAIN = low = 2 kΩ (default)(1)  
GAIN = high = 20 kΩ.  
.
GND  
Input Amplifier ground  
Ambient light cancellation (ALC) loop enable.  
IDC_EN  
Input IDC_EN = logic low = enable dc current cancellation (default)(1)  
IDC_EN = logic high = disable dc current cancellation.  
.
IN  
3
Input Transimpedance amplifier input  
NC  
4, 8, 13, 15  
Do not connect  
Inverting amplifier output. When light is incident on the photodiode, the output pin transitions in a  
negative direction from the no-light condition (APD anode connected to negative bias).  
OUT–  
11  
Output  
Noninverting amplifier output. When light is incident on the photodiode, the output pin transitions in a  
positive direction from the no-light condition (APD anode connected to negative bias).  
OUT+  
VDD1  
VDD2  
10  
2
Output  
Input Positive power supply for the transimpedance amplifier stage  
Positive power supply for the differential amplifier stage. Tie VDD1 and VDD2 to the same power  
supply with independent power-supply bypassing.  
14  
Input  
VOCM  
VOD  
12  
9
Input Differential-amplifier common-mode output setting  
Input Differential-amplifier differential output offset setting  
Thermal  
pad  
Thermal  
pad  
Connect the thermal pad to GND or the most negative power supply of the device under test (DUT).  
(1) Drive a digital pin with a low-impedance source rather than leaving the pin floating because fast-moving transients can couple into the  
pin and inadvertently change the logic level.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得(除非另有说明)(1)  
最小值  
最大值  
3.65  
VDD  
VDD  
25  
单位  
V
(2)  
VDD1VDD2  
总电源电压,VDD  
输出引脚处的电压  
逻辑引脚处的电压  
IN 的持续输入电流  
持续输出电流  
结温  
0
V
-0.25  
V
IIN  
mA  
mA  
°C  
°C  
°C  
IOUT  
TJ  
35  
150  
125  
150  
TA  
自然通风工作温度  
贮存温度  
-40  
Tstg  
–65  
(1) 超出绝对最大额定值运行可能会对器件造成损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条件下  
能够正常运行。如果超出建议工作条件但在绝对最大额定值范围内使用,器件可能不会完全正常运行,这可能影响器件的可靠性、功能  
和性能,并缩短器件寿命。  
(2) VDD1 VDD2 连接到同一电源并使用单独的电源旁路电容器。  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±1500  
HBM ESD classification level 1C  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.45  
125  
UNIT  
V
VDD  
TA  
Total supply voltage  
3.3  
Operating free-air temperature  
–40  
°C  
6.4 Thermal Information  
LMH32401-Q1 (2)  
THERMAL METRIC(1)  
RGT (VQFN)  
16 PINS  
56.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67  
31.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.7  
ΨJB  
31.2  
RθJC(bot)  
15.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal information is applicable to packaged parts only.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
4
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
 
 
 
 
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics: Gain = 2 kΩ  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, VGAIN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA = 25℃  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
Large-signal bandwidth  
Rise and fall time  
VOUT = 100 mVPP  
450  
450  
0.8  
MHz  
MHz  
ns  
VOUT = 1 VPP  
VOUT = 100 mVPP, pulse duration = 10 ns  
VOUT = 1 VPP, pulse duration = 10 ns  
IIN = 10 mA, pulse duration = 10 ns  
f = 500 MHz  
Slew rate(2)  
1100  
4
V/µs  
ns  
Overload pulse extension(3)  
iN  
Integrated input current noise  
250  
nARMS  
DC PERFORMANCE  
Z21  
Small-signal transimpedance gain(4)  
Differential output offset voltage  
(VOUT– – VOUT+  
1.75  
–12  
2
3.5  
2.25  
12  
kΩ  
mV  
VOD  
)
ΔVOD/ΔTA Differential output offset voltage drift  
±5.5  
µV/°C  
INPUT PERFORMANCE  
RIN  
Input resistance  
60  
100  
2.47  
1.1  
120  
Ω
V
VIN  
Default input bias voltage  
Default input bias voltage drift  
DC input current range  
Input pin floating  
2.42  
2.52  
ΔVIN/ΔTA  
IIN_LIN  
Input pin floating  
mV/°C  
µA  
Z21 < 3-dB degradation from IIN = 50 µA  
600  
705  
(1) Input capacitance of photodiode.  
(2) Average of rising and falling slew rate.  
(3) Pulse duration extension measured at 50% of pulse height of a square wave.  
(4) Gain measured at the amplifier output pins when driving a 100-Ω resistive load. At higher resistor loads, the gain increases.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.6 Electrical Characteristics: Gain = 20 kΩ  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, VGAIN = 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and TA = 25℃  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
Large-signal bandwidth  
Rise and fall time  
VOUT = 100 mVPP  
275  
275  
1.3  
700  
4
MHz  
MHz  
ns  
VOUT = 1 VPP  
VOUT = 100 mVPP, pulse duration = 10 ns  
VOUT = 1 VPP, pulse duration = 10 ns  
IIN = 10 mA, pulse duration = 10 ns  
f = 250 MHz  
Slew rate(2)  
V/µs  
ns  
Overload pulse extension(3)  
iN  
Integrated input current noise  
49  
nARMS  
DC PERFORMANCE  
Z21  
Small-signal transimpedance gain(4)  
Differential output offset voltage  
(VOUT– – VOUT+  
17  
20  
5
22.5  
20  
kΩ  
mV  
VOD  
–20  
)
ΔVOD/ΔTA Differential output offset voltage drift  
±17.5  
µV/°C  
INPUT PERFORMANCE  
RIN  
Input resistance  
270  
350  
2.47  
1.1  
410  
Ω
V
VIN  
Default input bias voltage  
Default input bias voltage drift  
DC input current range  
Input pin floating  
2.42  
2.52  
ΔVIN/ΔTA  
IIN_LIN  
Input pin floating  
mV/°C  
µA  
Z21 < 3-dB degradation from IIN = 5 µA  
60  
72  
(1) Input capacitance of photodiode.  
(2) Average of rising and falling slew rate.  
(3) Pulse duration extension measured at 50% of pulse height of a square wave.  
(4) Gain measured at the amplifier output pins when driving a 100-Ω resistive load. At higher resistor loads, the gain increases.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
6
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: Both Gains  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, VGAIN = 0 V or 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and  
TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT PERFORMANCE  
Single-sided output voltage swing (high)  
VOH  
VOL  
TA = 25°C  
Single-sided output voltage swing (low)(2) TA = 25°C  
2.87  
2.9  
0.36  
26.6  
V
V
(2)  
0.39  
32  
TA = 25°C, IIN = 500 µA, gain = 2 kΩ,  
RL = 25 Ω  
24  
TA = –40°C, IIN = 500 µA, gain = 2 kΩ,  
RL = 25 Ω  
IOUT_LIN Linear output drive (sink and source)  
27.1  
25.1  
mA  
TA = 125°C, IIN = 500 µA, gain = 2 kΩ,  
RL = 25 Ω  
ISC  
Output short-circuit current (differential) (3)  
DC output impedance (differential)  
70  
21  
mA  
Ω
amplifier enabled  
18  
24  
ZOUT  
amplifier in shutdown  
2.8  
3.3  
kΩ  
OUTPUT COMMON-MODE CONTROL (VOCM) PERFORMANCE  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
VOCM = 100 mVPP at VOCM pin  
VOCM = 1 VPP at VOCM pin  
285  
85  
MHz  
MHz  
f = 10 MHz, 1-nF capacitor to GND on VOCM  
pin  
eN  
Output common-mode noise  
17.8  
nV/√Hz  
V/V  
Gain, (ΔVOCM / ΔVVOCM  
)
IN floating, VVOCM = 1.1 V (driven)  
1
0.5%  
±1%  
17  
AV  
TA = 25°C, VVOCM = 0.7 V to 2.3 V  
–2%  
0
2%  
20  
Gain error  
TA = –40°C to +125°C, VVOCM = 0.7 V to 2.3 V  
Input impedance  
kΩ  
VOCMOS VOCM pin default offset from 1.1 V  
VOCM floating, (VVOCM measured –1.1 V)  
Gain = 20 kΩ, VOCM driven to 1.1 V  
10  
mV  
ΔVOCM  
ΔIIN  
/
VOCM error vs Input current  
–15  
1.1  
75  
µV/µA  
V
Output common-mode voltage,  
(VOUT+ + VOUT–) / 2  
VOCM  
TA = 25°C, VOCM pin floating  
1.05  
1.15  
Output common-mode voltage drift,  
(ΔVOCM / ΔTA)  
TA = –40°C to +125°C, VOCM pin floating  
TA = 25°C, VOCM pin driven to 1.1 V  
µV/°C  
V
Output common-mode voltage,  
(VOUT+ + VOUT–) / 2  
VOCM  
1.05  
1.1  
–14  
1.15  
Output common-mode voltage drift,  
(ΔVOCM / ΔTA)  
TA = –40°C to +125°C,  
VOCM pin driven to 1.1 V  
µV/°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: Both Gains (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, VGAIN = 0 V or 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and  
TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT DIFFERENTIAL OFFSET (VOD) PERFORMANCE  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
Differential output offset,  
VOD = 100 mVPP at VOD pin  
45  
14  
MHz  
MHz  
VOD = 1 VPP  
VOS_D  
VOS_D  
AV  
IN floating, VVOD = 0.5 V  
490  
490  
510  
0.03  
510  
530  
530  
mV  
mV/℃  
mV  
VOUT = (VOUT– – VOUT+  
)
Differential output offset drift,  
ΔVOS_D / ΔTA  
IN floating, VVOD = 0.5 V  
IN floating, VOD floating  
Differential output offset,  
VOUT = (VOUT– – VOUT+  
)
Differential output offset drift,  
ΔVOS_D / ΔTA  
IN floating, VOD floating  
0.04  
1.01  
mV/℃  
V/V  
Gain, (ΔVOUT / ΔVVOD), where  
IN floating, VVOCM = 1.1 V (driven)  
VOUT = (VOUT– – VOUT+  
)
TA = 25, VVOD = 0 V to 1.2 V  
–5%  
–1%  
±1.5%  
2.5  
5%  
Gain error  
TA = –40to +125, VVOD = 0 V to 1.2 V  
Input impedance  
kΩ  
AMBIENT LIGHT CANCELLATION PERFORMANCE (IDC_EN = 0 V) (4)  
IIN = 0 µA → 100 µA, gain = 2 kΩ  
18  
2.5  
35  
IIN = 0 µA → 10 µA, gain = 20 kΩ  
IIN = 100 µA → 0 µA, gain = 2 kΩ  
IIN = 10 µA → 0 µA, gain = 20 kΩ  
Settling time (within VOD limit)  
µs  
13  
Differential output offset (VOUT– – VOUT+) shift  
from IDC = 10 µA < ±10 mV  
Ambient light current cancellation range  
2
3
mA  
POWER SUPPLY  
TA = 25°C  
TA = 125°C  
TA = –40°C  
24  
30  
32  
27  
33.5  
IQ  
Quiescent current, total  
mA  
dB  
Positive power-supply rejection ratio,  
VDD1 = VDD2  
PSRR+  
54  
66  
SHUTDOWN  
TA = 25°C  
TA = –40°C  
TA = 125°C  
TA = 25°C  
2.4  
3.3  
2.75  
5.2  
4.2  
Quiescent current, amplifier disabled  
(EN = VDD  
IQ  
mA  
µA  
)
Enable pin input bias current  
(1) Input capacitance of photodiode.  
75  
120  
(2) Output levels achieved by adjusting VOCM, VOD, and input current.  
(3) Device cannot withstand continuous short-circuit between the differential outputs.  
(4) Enabling the ambient light cancellation loop adds noise to the system.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
8
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: Logic Threshold and Switching Characteristics  
at VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, VGAIN = 0 V or 3.3 V, IDC_EN = 3.3 V, RL = 100 Ω, and  
TA = 25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC THRESHOLD PERFORMANCE  
High-gain enable, threshold voltage  
Low-gain enable, threshold voltage  
Enabled when greater than this voltage  
Enabled when less than this voltage  
Disabled when greater than this voltage  
Enabled when less than this voltage  
Disabled when greater than this voltage  
Enabled when less than this voltage  
1.8  
1
2
2
2
V
V
V
V
V
V
0.8  
0.8  
0.8  
EN control, disable threshold voltage  
EN control, enable threshold voltage  
IDC_EN control, disable threshold voltage  
IDC_EN control, enable threshold voltage  
GAIN CONTROL TRANSIENT PERFORMANCE  
1.8  
1
1.8  
1
High-gain to low-gain transition time,  
(1% settling)  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP (initial condition), IDC = 0 µA  
90  
ns  
ns  
Low-gain to high-gain transition time,  
(1% settling)  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP (final condition), IDC = 0 µA  
750  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP (initial condition),  
IDC = 100 µA  
High-gain to low-gain transition time,  
(1% settling)  
4
4
µs  
µs  
Low-gain to high-gain transition time,  
(1% settling)  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP (final condition), IDC = 100 µA  
EN CONTROL TRANSIENT PERFORMANCE  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 0 µA, gain = 2 kΩ  
Enable transition time (1% settling)  
125  
3
ns  
ns  
ns  
ns  
µs  
ns  
µs  
ns  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 0 µA, gain = 2 kΩ  
Disable transition time (1% settling)  
Enable transition time (1% settling)  
Disable transition time (1% settling)  
Enable transition time (1% settling)  
Disable transition time (1% settling)  
Enable transition time (1% settling)  
Disable transition time (1% settling)  
(1) Input capacitance of photodiode.  
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 0 µA, gain = 20 kΩ  
850  
3
Ambient loop disabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 0 µA, gain = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 100 µA, gain = 2 kΩ  
10  
3.5  
4
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 100 µA, gain = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 100 µA, gain = 20 kΩ  
Ambient loop enabled, fIN = 25 MHz,  
VOUT = 1 VPP, IDC = 100 µA, gain = 2 kΩ  
3
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
CIN = PCB only  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CIN = PCB only  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
10M  
100M  
Frequency [Hz]  
1G  
1G  
1G  
10M  
100M  
Frequency [Hz]  
1G  
1G  
1G  
Gain = 2 kΩ, VOUT = 100 mVPP  
Gain = 20 kΩ, VOUT = 100 mVPP  
6-1. Small-Signal Response vs Input Capacitance  
6-2. Small-Signal Response vs Input Capacitance  
69  
89  
66  
63  
60  
86  
83  
80  
CIN = PCB only  
57  
CIN = PCB only  
77  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CIN = 0.5 pF  
CIN = 1 pF  
CIN = 2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
54  
74  
51  
10M  
71  
10M  
100M  
Frequency [Hz]  
100M  
Frequency [Hz]  
Gain = 2 kΩ, VOUT = 1 VPP  
Gain = 20 kΩ, VOUT = 1 VPP  
6-3. Large-Signal Response vs Input Capacitance  
6-4. Large-Signal Response vs Input Capacitance  
69  
89  
66  
63  
60  
57  
86  
83  
80  
77  
54  
74  
CIN = 0.5 pF, CLOAD = open  
CIN = 0.5 pF, CLOAD = 2.7 pF  
51  
CIN = 0.5 pF, CLOAD = open  
CIN = 0.5 pF, CLOAD = 2.7pF  
71  
10M  
100M  
Frequency [Hz]  
10M  
100M  
Frequency [Hz]  
Gain = 2 kΩ, VOUT = 100 mVPP  
Gain = 20 kΩ, VOUT = 100 mVPP  
6-5. Small-Signal Response vs Load Capacitance  
6-6. Small-Signal Response vs Load Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
10  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
10M  
100M  
Frequency [Hz]  
1G  
10M  
100M  
Frequency [Hz]  
1G  
Gain = 2 kΩ, CIN = PCB  
Gain = 20 kΩ, CIN = PCB  
6-7. Small-Signal Response vs Ambient Temperature  
6-8. Small-Signal Response vs Ambient Temperature  
3
10k  
Amplifier Enabled  
Amplifier Disabled  
0
-3  
-6  
-9  
1k  
100  
10  
ALC Disabled  
ALC Enabled, Gain = 2 kW  
ALC Enabled, Gain = 20 kW  
-12  
-15  
10k  
100k  
1M  
Frequency [Hz]  
10M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
IDC_IN = 100 µA  
Gain = 2 kΩ  
6-9. Low-side Frequency Response vs Ambient-Light  
6-10. Closed-Loop Output Impedance vs Frequency  
Cancellation  
20  
10  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 3 pF  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 3 pF  
10  
5
10k  
1
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-11. Input Noise Density vs Input Capacitance  
6-12. Input Noise Density vs Input Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
20  
10  
5
5
CLOAD = open  
CLOAD = 2.7 pF  
CLOAD = open  
CLOAD = 2.7 pF  
1
10k  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-13. Input Noise Density vs Load Capacitance  
100  
6-14. Input Noise Density vs Load Capacitance  
50  
IDC = 0 mA  
IDC = 0 mA  
IDC = 10 mA  
IDC = 100 mA  
IDC = 1 mA  
IDC = 10 mA  
IDC = 100 mA  
IDC = 1 mA  
10  
10  
5
1
10k  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-15. Input Noise Density vs Ambient-Light DC Current  
6-16. Input Noise Density vs Ambient-Light DC Current  
10  
200  
TA = 125èC  
TA = 25èC  
TA = -40èC  
Differential Noise  
Single-Ended Noise  
100  
1
0.5  
10k  
10  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Gain = 20 kΩ  
Gain = 20 kΩ  
6-17. Input Noise Density vs Ambient Temperature  
6-18. Output Noise Density vs Output Configuration  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
12  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
1.75  
1.5  
1.75  
1.5  
0.1 VPP  
1 VPP  
1.5 VPP  
0.1 VPP  
1 VPP  
1.5 VPP  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-19. Pulse Response vs Output Swing  
6-20. Pulse Response vs Output Swing  
1.5  
1.5  
IIN = 500 mA  
IIN = 1 mA  
IIN = 50 mA  
IIN = 1 mA  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-21. Overloaded Pulse Response  
6-22. Overloaded Pulse Response  
3.5  
3.5  
3
EN  
Differential Output  
EN  
Differential Output  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
Time (25 ns/div)  
Time (25 ns/div)  
Gain = 2 kΩ  
Gain = 20 kΩ  
6-23. Turn-On Time  
6-24. Turn-On Time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
EN  
Differential Output  
EN  
Differential Output  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
Time (1 ns/div)  
Time (1 ns/div)  
Gain = 2 kΩ, VVOD = 0.5 V  
Gain = 20 kΩ, VVOD = 0.5 V  
6-25. Turn-Off Time  
6-26. Turn-Off Time  
0.15  
0.125  
0.1  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0.075  
0.05  
0.025  
0
-0.12  
-0.14  
-0.16  
-0.025  
Time (5 ms/div)  
Time (5 ms/div)  
Gain = 2 kΩ, IDC_IN = 0 µA → 100 µA 1  
Gain = 2 kΩ, IDC_IN = 100 µA → 0 µA1  
6-27. Ambient Loop Cancellation Settling Time  
6-28. Ambient Loop-Cancellation Settling Time  
1.6  
1.4  
1.2  
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
Time (1 ms/div)  
Time (2 ms/div)  
Gain = 20 kΩ, IDC_IN = 0 µA → 100 µA1  
Gain = 20 kΩ, IDC_IN = 100 µA → 0 µA1  
6-29. Ambient Loop-Cancellation Settling Time  
6-30. Ambient Loop-Cancellation Settling Time  
1
Current due to ambient light transitions at the lowest displayed value of the time axis.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
14  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
5
50  
125 èC  
-40 èC  
25 èC  
1
10  
5
125 èC  
-40 èC  
25 èC  
0.5  
-1000 -750 -500 -250  
0
250  
500  
750 1000  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
Input Current (mA)  
Input Current (mA)  
Gain = 2 kΩ, positive current is sinking current into the  
photodiode cathode  
Gain = 20 kΩ, positive current is sinking current into the  
photodiode cathode  
6-31. Transimpedance Gain vs Input Current  
6-32. Transimpedance Gain vs Input Current  
2040  
2020  
2000  
1980  
1960  
1940  
21000  
20500  
20000  
19500  
19000  
18500  
18000  
Unit 1  
Unit 2  
Unit 3  
Unit 1  
Unit 2  
Unit 3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
Gain = 20 kΩ  
Gain = 2 kΩ  
6-34. Transimpedance Gain vs Ambient Temperature  
6-33. Transimpedance Gain vs Ambient Temperature  
2.5  
2.25  
2
2.6  
2.55  
2.5  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.45  
Unit 1  
Unit 2  
Unit 3  
2.4  
-40  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Supply Voltage (V)  
3
3.3  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Gain = 20 kΩ  
6-35. Input Bias Voltage vs Supply Voltage  
6-36. Input Bias Voltage vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
34  
32  
30  
28  
26  
35  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
125 èC  
-40 èC  
25 èC  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
Supply Voltage (V)  
2
2.5  
3
3.5  
Temperature (èC)  
6-37. Quiescent Current vs Ambient Temperature  
6-38. Quiescent Current vs Supply Voltage  
1.8  
1.2  
1.1  
1
1.7  
1.6  
1.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Vout- (V)  
Vout+ (V)  
Vout- (V)  
Vout+ (V)  
1.4  
1.3  
1.2  
1.1  
1
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Current (mA)  
Input Current (mA)  
VVOD = 0.75 V, VVOCM = 1.4 V  
6-39. High-side Swing vs Input Current  
VVOD = 0.75 V, VVOCM = 0.8 V  
6-40. Low-side Swing vs Input Current  
1.5  
1.2  
0.9  
0.6  
0.3  
0
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
125 èC  
-40 èC  
25 èC  
0
0.3  
0.6  
Differential Output Offset Set (V)  
0.9  
1.2  
1.5  
1.8  
2
0.5  
1
1.5  
2
Input Current (mA)  
2.5  
3
3.5  
6-41. Differential Output Offset Gain  
6-42. Ambient Light Cancellation Range vs Ambient  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
3500  
3000  
2500  
2000  
1500  
1000  
500  
125 èC  
-40 èC  
25 èC  
0
0
25  
26  
27  
28  
29  
30  
31  
32  
33  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Enable Voltage (EN) (V)  
3
3.3  
Quiescent Current (mA)  
Logic switching demonstrated using EN pin.  
IDC_EN and gain pins behave similarly.  
6-43. Logic Threshold vs Ambient Temperature  
6-44. Quiescent Current Distribution  
2500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
0
17500  
1750  
1850  
1950  
2050  
2150  
2250  
18500  
19500  
20500  
Gain (W)  
21500  
22500  
Gain (W)  
Gain = 20 kΩ  
6-46. Transimpedance Gain (High) Distribution  
6-45. Transimpedance Gain (Low) Distribution  
4500  
3000  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
0
0
1
1.05  
1.1  
1.15  
1.2  
1.25  
450 460 470 480 490 500 510 520 530 540 550  
Output Common Mode Voltage (V)  
Differential Output Voltage(mV)  
6-47. Output Common-Mode Voltage (VOCM) Distribution  
6-48. Differential Output Offset Voltage (VOD) Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω (differential  
load between OUT+ and OUT–), and TA = 25°C (unless otherwise noted)  
2000  
1500  
1000  
500  
0
3000  
2500  
2000  
1500  
1000  
500  
0
17.5  
18.25  
19  
19.75  
20.5  
21.25  
22  
2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
Differential Output Impedance (W)  
Differential Output Impedance (kW)  
Amplifier enabled  
Amplifier disabled  
6-49. Differential Output Impedance (ZOUT) Distribution  
6-50. Differential Output Impedance (ZOUT) Distribution  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
18  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH32401-Q1 device is a single-channel, differential output, high-speed transimpedance amplifier (TIA)  
that features several integrated functions geared towards light detection and ranging (LIDAR) and pulsed time-  
of-flight (ToF) systems. The LMH32401-Q1 is designed to work with photodiode (PD) configurations that can  
source or sink current. When the photodiodesinks the photocurrent (the anode is biased to a negative voltage  
and the cathode is tied to the amplifier input), the fast recovery clamp activates when the amplifier input is  
overloaded. When the photodiode sources the photocurrent (the cathode is biased to a positive voltage and the  
anode is tied to the amplifier input), a soft clamp activates when the amplifier input is overloaded. When the soft  
clamp activates, the amplifier requires more time to recover. The recovery time depends on the level of input  
overload. The LMH32401-Q1 is offered in a space-saving 3-mm × 3-mm, 16-pin VQFN package and is rated  
over the temperature range of –40°C to +125°C.  
7.2 Functional Block Diagram  
GAIN  
VDD1  
1 k  
VDD2  
EN  
100-mA  
Clamp  
IDC + ISIG  
IN  
10 k  
Differential Output ADC Driver  
ISIG  
R
2.4 × R  
10  
OUT  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
OUT+  
VOCM  
IDC EN  
R
2.4 × R  
10  
VDD  
VREF  
VDD  
Voltage-to-Current Converter  
17 k  
50.4 k  
VOD  
3 k  
25 k  
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Switched Gain Transimpedance Amplifier  
The LMH32401-Q1 features a programmable gain transimpedance amplifier (TIA) stage followed by a fixed-gain,  
single-ended input to differential output amplifier stage. The closed-loop bandwidth and noise of a TIA are  
affected by the transimpedance gain and photodiode capacitance. For a given value of photodiode capacitance,  
the LMH32401-Q1 has higher bandwidth in the device low-gain configuration compared to the high-gain  
configuration. Increasing the gain of the TIA stage by a factor of X increases the output signal by a factor  
X, but the noise contribution from the resistor only increases by √X. The input-referred noise density of the  
low-gain configuration is therefore higher than the input-referred noise density of the high-gain configuration.  
The gain of the TIA stage is controlled by the GAIN pin. Setting this pin low places the TIA in the low-gain  
configuration; whereas, setting the pin high places the TIA in a high-gain configuration. The LMH32401-Q1  
defaults to the low-gain configuration when the GAIN pin is left floating.  
7.3.2 Clamping and Input Protection  
The LMH32401-Q1 is designed to work with photodiode (PD) configurations that can source or sink current;  
however, the LMH32401-Q1 is optimized for a sinking-current configuration. The LMH32401-Q1 is usually used  
with a PD that is configured with the device cathode tied to the amplifier input and the device anode tied to a  
negative supply voltage.  
The LMH32401-Q1 features two internal clamps: fast-recovery and soft. The fast-recovery clamp is the active  
clamp when the photodiode is sinking a photocurrent. The soft clamp is the active clamp when the photodiode  
is sourcing a photocurrent. Stray reflections from nearby objects with high reflectivity can produce large output  
current pulses from the PD. The linear input range of the LMH32401-Q1 is approximately 65 µA in the high-gain  
configuration and 650 µA in the low-gain configuration (PD sinking the photocurrent).  
Input currents in excess of the linear current range cause the internal nodes of the amplifier to saturate, which  
increases the amplifier recovery time. The end result is a broadening of the output pulse, leading to blind zones  
in the system response. To protect against this condition, the LMH32401-Q1 features an integrated clamp that  
absorbs and diverts the excess current to the positive supply (VDD1) when the amplifier detects the device nodes  
entering a saturated condition. The integrated clamp minimizes the pulse extension to less than a few ns for  
input pulses up to 100 mA. The power-supply pins (VDD1 and VDD2) must each have bypass capacitors to  
prevent large input pulses from affecting the differential output stage. When the amplifier is in low-power mode,  
the clamp circuitry is still active, thereby protecting the TIA input.  
7.3.3 ESD Protection  
All LMH32401-Q1 pins have an internal electrostatic discharge (ESD) protection diode to the positive and  
negative supply rails to protect the amplifier from ESD events.  
7.3.4 Differential Output Stage  
The differential output stage of the LMH32401-Q1 performs the following two functions, which are common  
across all differential amplifiers:  
1. Converts the single-ended output from the TIA stage to a differential output.  
2. Performs a common-mode output shift to match the specified ADC input common-mode voltage.  
The differential output stage has two 10-Ω series resistors on the output to isolate the amplifier output stage  
transistors from the package bond-wire inductance and printed circuit board (PCB) capacitance. The net gain  
of the LMH32401-Q1 (TIA + output stage) is 2 kΩ (low gain) and 20 kΩ (high gain) when driving an external  
100Ω resistor. When the external load resistor is increased above 100 Ω, the effective gain from the IN pin to  
the differential output pin increases. Conversely, when the external load resistor is decreased to less than 100 Ω,  
the effective gain from the IN pin to the differential output pin decreases as a result of the larger voltage drop  
across the two internal 10-Ω resistors. When there is no load resistor between the OUT+ and OUT– pins, the  
effective gain of the LMH32401-Q1 in the low-gain configuration is 2.4 kΩ, and in the high-gain configuration is  
24 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
20  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
The output common-mode voltage of the LMH32401-Q1 is set externally through the VOCM pin. A resistor  
divider internal to the amplifier (between VDD2 and ground) sets the default voltage to 1.1 V. The internal  
resistors generate common-mode noise that is typically rejected by the CMRR of the subsequent ADC stage. To  
maximize the amplifier signal-to-noise ratio (SNR), place an external noise bypass capacitor to ground on the  
VOCM pin. In single-ended signal chains, such as ToF systems that use time-to-digital converters (TDCs), only  
a single output of the LMH32401-Q1 is required. In such situations, terminate the unused differential output in  
the same manner as the used output to maintain balance and symmetry. The signal swing of the single-ended  
output is half of the available differential output swing. Additionally, the common-mode noise of the output stage,  
which is typically rejected by the differential input ADC, is now added to the total noise, and further degrades  
SNR.  
The output stage of the LMH32401-Q1 has an additional VOD input that sets the differential output between  
OUT– and OUT+. 7-1 shows how each output pin of the LMH32401-Q1 is at the voltage set by the VOCM  
pin (default = 1.1 V) when the photodiode output current is zero and the VOD input is set to 0 V. When the VOD  
pin is driven to a voltage of X volts, the two output pins are separated by X volts when the photodiode current is  
zero. The average voltage is still equal to VOCM. For example, 7-2 shows that if VOCM is set to 1.1 V and  
VOD is set to 0.4 V, then OUT– = 1.1 V + 0.2 V = 1.3 V and OUT+ = 1.1 V – 0.2 V = 0.9 V.  
The VOD pin is functional only when the LMH32401-Q1 is used with a PD that sinks the photocurrent.  
Set VOD = 0 V when the LMH32401-Q1 is interfaced with a PD that sources the photocurrent. The VOD  
output offset feature is included in the LMH32401-Q1 because the output current of a photodiode is unipolar.  
Depending on the reverse bias configuration, the photodiode can either sink or source current, but cannot do  
both simultaneously. With the anode connected to a negative bias and the cathode connected to the TIA stage  
input, the photodiode can only sink current, which implies that the TIA stage output swings in a positive direction  
greater than the default input bias voltage (2.47 V). Subsequently, OUT– only swings less than VOCM, and  
OUT+ only swings greater than VOCM. 7-1 shows how the LMH32401-Q1 device only uses half of the output  
swing range (VOUT = VOUT+ – VOUT–) when VOD = 0 V because one output never swings less than VOCM and  
the other output never exceeds VOCM. The signal dynamic range in this case is 0.4 VPP – 0 V = 0.4 VPP  
.
7-2 shows how the VOD pin voltage allows OUT– to be level-shifted to greater than VOCM, and OUT+ to be  
level-shifted below VOCM to maximize the output swing capabilities of the amplifier. The signal dynamic range in  
this case is 0.4 VPP – (–0.4 VPP) = 0.8 VPP  
.
VOUT = 0.4 VPP  
APD Excited  
VOUT = 0.4 VPP  
APD Excited  
VOUTÞ  
VOUT+  
VOUTÞ  
VOUT+  
1.3 V  
1.3 V  
VOD = 0 V  
VOCM = 1.1 V  
VOD = 0.4 V  
VOCM = 1.1 V  
0.9 V  
0.9 V  
VOUT = 0 VPP  
No output from APD  
VOUT = Þ0.4 VPP  
No output from APD  
7-1. Individual Single-ended Outputs With  
7-2. Individual Single-Ended Outputs With  
VOD = 0 V  
VOD = 0.4 V  
When the LMH32401-Q1 device drives a 100Ω load, the voltage set at the VOD pin is equal to the differential  
output offset (VOUT = VOUT+ – VOUT–) when the input signal current is zero. Use 方程式 1 to calculate the  
differential output offset under other load conditions.  
R
L
+ 20Ω  
V
= 1.2 × V  
×
VOD  
R
(1)  
OD  
L
Where:  
VVOD = Voltage applied at pin 9  
VOD = (VOUT– – VOUT+  
RL = External load resistance  
)
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Ambient Light Cancellation (ALC) Mode  
The LMH32401-Q1 has an integrated, dc, ambient light cancellation (ALC) loop that cancels any voltage offsets  
as a result of incidental ambient light. ALC mode only works when the PD is sinking the photocurrent. To enable  
ALC mode, set IDC_EN low. Incidental ambient light on a photodiode produces a dc current that results in  
an offset voltage at the output of the LMH32401-Q1 TIA stage. 7.2 shows how the ALC loop senses the  
low-frequency dc offset at the output of the TIA stage and compares the offset against the internal reference  
voltage (VREF). The ALC loop then outputs an opposing dc current (IDC) to compensate for the differential offset  
voltage at the device input. The ALC loop has a high-pass cutoff frequency of 100 kHz. ALC mode is disabled  
when the amplifier is placed in power-down mode.  
The shot noise current introduced by the ALC loop increases the overall amplifier noise; therefore, if the  
ambient-light level is negligible, disable the loop to improve SNR. The ALC loop helps save PCB space and  
system costs by eliminating the need for external ac-coupling, passive components. Additionally, the extra trace  
inductance and PCB capacitance introduced by using external ac-coupling components degrade the LMH32401-  
Q1 dynamic performance.  
7.4.2 Power-Down Mode (Multiplexer Mode)  
To place the LMH32401-Q1 into a power-down mode, and thus help save system power, set EN high. Power-  
down mode puts the outputs of the LMH32401-Q1 internal amplifiers, including the differential outputs, into a  
high-impedance state. If a system consists of several photodiode and amplifier channels multiplexed to a single  
ADC channel, 7-3 shows how this device feature can further save board space and cost by eliminating the  
need for a discrete high-speed multiplexer. The disabled channel outputs are not an ideal open circuit; therefore,  
as the number of multiplexed channels increases, the disabled channels begin to load the enabled channel.  
Multiplexing more than four channels in parallel degrades the performance of the enabled channel. When the  
amplifier is in power-down mode, the clamp circuitry is still active, thereby protecting the TIA input. The ALC  
loop is disabled when the amplifier is placed in power-down mode. When the LMH32401-Q1 is brought out of  
power-down operation, the ALC loop requires several time constants to settle. 6-9 shows the low-frequency  
loop response, which in turn determines the time constant required for the loop to settle.  
1 k  
DISABLED AMPLIFIER  
100-mA  
Clamp  
10 k  
IN  
10  
RISO  
TIA  
OUT  
Ambient Light  
Cancellation  
VBIAS  
+
IDC EN  
VOD  
OUT+  
RISO  
Output Offset  
10  
RADC_IN  
VEN = 3.3 V  
ADC12QJ1600  
CFILT  
VOCM  
RADC_IN  
1 k  
ENABLED AMPLIFIER  
100-mA  
Clamp  
IN  
10 k  
10  
RISO  
TIA  
OUT  
Ambient Light  
Cancellation  
VBIAS  
+
IDC EN  
VOD  
OUT+  
RISO  
Output Offset  
10  
VEN = 0 V  
7-3. Configuring Two LMH32401-Q1 Devices in Multiplexer Mode to Drive a Single ADC  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The differential outputs of the LMH32401-Q1 can directly drive a high-speed differential input ADC. 8-1 shows  
the LMH32401-Q1 differential outputs directly driving the ADC12QJ1600. The effective signal gain between the  
TIA input and the ADC input is 2 kΩ or 20 kΩ when driving an ADC with a 100-Ω differential input impedance  
(RADC_IN = 50 Ω). 方程式 2 gives the effective signal gain between the TIA input and the ADC input when driving  
an ADC with any other value of differential input impedance (RADC_IN ≠ 50 Ω).  
GAIN  
VDD1  
VDD2  
1 k  
100-mA  
Clamp  
IN  
10 k  
Differential Output  
ADC Driver  
OUT  
TIA  
10  
RADC_IN  
Ambient Light  
Cancellation  
VBIAS  
+
VOCM  
RADC_IN  
ADC12QJ1600  
IDC EN  
VOD  
10  
Output Offset  
OUT+  
GND  
EN  
8-1. LMH32401-Q1 to ADC Interface  
2 × R  
ADC_IN  
A = 2 kΩ or 20 kΩ × 1.2 ×  
(2)  
Z
2 × R  
ADC  
IN  
+ 20 Ω  
Where:  
AZ = Differential gain from the TIA input to the ADC input  
RADC_IN = Input resistance of the ADC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8-2 shows a matching resistor network between the LMH32401-Q1 output and the ADC12QJ1600 input. The  
matching network is needed to prevent signal reflections when the signal path between the LMH32401-Q1 and  
ADC is very long. 方程式 3 gives the effective gain from the TIA input to the ADC input when using a matching  
resistor network.  
GAIN  
VDD1  
VDD2  
1 k  
100-mA  
Clamp  
IN  
10 k  
Differential Output  
ADC Driver  
OUT  
10  
TIA  
RISO  
RADC_IN  
Ambient Light  
Cancellation  
VBIAS  
+
ADC12QJ1600  
VOCM  
RADC_IN  
IDC EN  
RISO  
VOD  
Output Offset  
10  
OUT+  
GND  
EN  
8-2. LMH32401-Q1 to ADC Interface With a Matching Resistor Network  
2 × R  
ADC_IN  
A = 2 kΩ or 20 kΩ × 1.2 ×  
(3)  
Z
2 × R  
ADC_IN  
+ 2 × R + 20 Ω  
ISO  
Where:  
AZ = Gain from the TIA input to the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
方程式 4 gives the voltage to be applied at VOD (pin 9) if a certain differential offset voltage (VOD) is needed at  
the ADC input for the circuit in 8-2.  
2 × R  
ADC_IN  
+ 2 × R + 20 Ω  
ISO  
1
1.2  
V
= V  
×
OD  
×
(4)  
VOD  
2 × R  
ADC_IN  
Where:  
VVOD = Voltage applied at pin 9  
VOD = Desired differential offset voltage at the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
24  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8.2 Typical Application  
This section demonstrates the performance of the LMH32401-Q1 device when the input current flows into the  
IN pin. 8-3 shows the circuit used to test the LMH32401-Q1 device with a voltage source. This configuration  
demonstrates the use case when the photodiode anode is tied to the amplifier input and the photodiode cathode  
is tied to a positive voltage greater than 2.47 V.  
GAIN  
VDD1  
VDD2  
100-mA  
Clamp  
1 k  
10 k  
IN  
2 k  
Differential Output ADC Driver  
50- Measurement  
Instrument  
ISIG  
R
2.4 × R  
10  
OUT  
50  
TIA  
CAPD  
25  
1 μF  
1 μF  
IDC  
+
+
CLOAD  
2.47 V  
Ambient Light  
Cancellation  
25  
GND  
IDC EN  
R
2.4 × R  
10  
VDD  
OUT+  
VREF  
VDD  
Voltage-to-Current Converter  
17 k  
50.4 k  
VOCM  
VOD  
3 k  
25 k  
GND  
EN  
8-3. LMH32401-Q1 Test Circuit  
8.2.1 Design Requirements  
The objective is to design a low-noise, wideband differential output transimpedance amplifier. The design  
requirements are as follows:  
Amplifier supply voltage: 3.3 V  
Transimpedance gain: 2 kΩ and 20 kΩ  
Input capacitance: CPCB 1 pF  
Target bandwidth: > 250 MHz  
Differential output offset (VOD): 0 V  
Ambient light cancellation (IDC_EN): 3.3 V (disabled)  
8.2.2 Detailed Design Procedure  
8-3 shows the test circuit used to measure the LMH32401-Q1 bandwidth and transient pulse response. The  
voltage source is dc biased close to the input bias voltage of the LMH32401-Q1 (approximately 2.47 V). The  
internal design of the LMH32401-Q1 is optimized to only source current out of the input pin (pin 3), and all  
the data shown previously are with the current flowing out of the pin. When the voltage input from the source  
exceeds 2.47 V, the LMH32401-Q1 input sinks the current. Set VVOD = 0 V when the input must sink the current  
from the photodiode, or in this case, the voltage source. Set the dc bias so that sum of the input ac and dc  
component is always greater than the input voltage (2.47 V) when testing the LMH32401-Q1 with a network  
analyzer or sinusoidal source.  
8-4 and 8-5 shows the bandwidth of the LMH32401-Q1 when the device input is sinking the current.  
The input current range of the LMH32401-Q1 is reduced when the device input is sinking the current. This  
effect is seen by the decrease in bandwidth as the output swing increases and is more pronounced in a gain  
configuration of 20 kΩ. Compare 8-4 with 6-1 and 6-3 to see the effect of current direction and input  
range in a 2-kΩ gain configuration. In a similar way, compare 8-5 with 6-2 and 6-4 to see the effect of  
current direction and input range in a gain of 20 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8-6 and 8-7 show the pulsed-output response of the LMH32401-Q1 when the input current is increased  
past the amplifier linear input range. When the input is sinking current, a soft clamp aids in fast recovery;  
however, the pulse stretches slightly as the input current overrange increases. Compare 8-6 with 6-21 to  
see the pulse extension effect in a gain of 2 kΩ. Compare 8-7 with 6-22 to see the pulse extension effect  
in a gain of 20 kΩ. Knowledge of the pulse extension is used to determine the approximate input current, even  
under overrange situations that can occur because of the presence of retro-reflectors in the environment. As 图  
7-1 shows, each half of the differential output pulse swings greater than or less than the VOCM voltage, and the  
resulting maximum differential output swing is 0.75 VPP because VOD is set to 0 V. Consequently, only half of  
the total ADC range is used in this photodiode configuration.  
8.2.3 Application Curves  
69  
66  
63  
60  
57  
54  
51  
89  
86  
83  
80  
77  
74  
71  
VOUT = 0.1 VPP  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
VOUT = 0.1 VPP  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
10M  
100M  
Frequency [Hz]  
1G  
10M  
100M  
Frequency [Hz]  
1G  
8-4. Bandwidth vs Output Swing  
8-5. Bandwidth vs Output Swing  
(Gain = 2 kΩ)  
(Gain = 20 kΩ)  
1
1
IIN = 500 mA  
IIN = 1 mA  
IIN = 2.5 mA  
IIN = 50 mA  
IIN = 100 mA  
IIN = 500 mA  
IIN = 1 mA  
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.25  
Time (5 ns/div)  
Time (5 ns/div)  
8-6. Pulse Response vs Input Current  
8-7. Pulse Response vs Input Current  
(Gain = 2 kΩ)  
(Gain = 20 kΩ)  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The LMH32401-Q1 operates on 3.3-V supplies. The VDD1 and VDD2 pins must always be driven from the  
same supply source and individually bypassed. A low power-supply source impedance must be maintained  
across frequency. Therefore, use multiple bypass capacitors in parallel. Place the bypass capacitors as close  
as possible to the supply pins. Place the smallest capacitor on the same side of the PCB as the LMH32401-Q1  
device. If possible, place the larger-valued bypass capacitors on the same side of the PCB. However, if space  
constraints are an issue, then the capacitors can be moved to the opposite side of the PCB using multiple vias to  
reduce the series inductance resulting from the vias. To operate the LMH32401-Q1 on bipolar supplies, connect  
pins 1 and 7 to the negative supply. Always connect the thermal pad to the most negative supply. The digital pin  
threshold voltages must be appropriately level shifted because the pins are connected to voltages at pins 1 and  
7.  
8.4 Layout  
8.4.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier, such as the LMH32401-Q1, requires careful  
attention to board layout parasitics and external component types. Recommendations that optimize performance  
include the following:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output pins can cause instability; whereas, parasitic capacitance on the input pin reduces the amplifier  
bandwidth. To reduce unwanted capacitance, cut out the power and ground traces under the signal input and  
output pins. Otherwise, ground and power planes must be unbroken elsewhere on the board.  
Minimize the distance from the power-supply pins to high-frequency bypass capacitors. Use high-  
quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage ratings at least three times  
greater than the amplifiers maximum power supplies. Place the smallest-value capacitors on the same side  
as the DUT. If space constraints force the larger-value bypass capacitors to be placed on the opposite  
side of the PCB, then use multiple vias on the supply and ground side of the capacitors. This configuration  
provides a low-impedance path to the amplifiers power-supply pins across the amplifiers gain bandwidth  
specification. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower frequency  
must be used on the supply pins. Place these decoupling capacitors further from the device. Share the  
decoupling capacitors among several devices in the same area of the printed circuit board (PCB).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
8.4.2 Layout Example  
GND  
Place bypass capacitors close to VDD  
and GND pins on the same side as  
DUT. Use multiple vias to connect to  
power and ground planes  
GAIN  
16  
NC  
15  
VDD2 NC  
13  
14  
VOCM  
Optional capacitor to  
reduce VOCM noise from  
internal resistors  
GND  
VDD1  
IN  
1
12  
11  
10  
9
GND  
OUT  
OUT+  
VOD  
2
3
4
Remove ground and power  
planes near output pins to  
minimize parasitic PCB  
capacitance. Add resistors  
to further isolate parasitics.  
Remove ground and power  
planes between IN and APD to  
minimize parasitic capacitance  
Thermal Pad  
Optional capacitor to  
reduce VOD noise from  
internal resistors  
NC  
VBIAS  
GND  
5
6
7
8
Optional isolation resistor to dampen  
resonance due to bond wire  
inductances and component  
capacitances  
IDC_EN  
EN  
NC  
GND  
8-8. Layout Recommendation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
28  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
For development support on this product, see the following:  
Texas Instruments, LMH32401 Transimpedance Amplifier Evaluation Module.  
Texas Instruments, Optical Front-End System Reference Design design guide.  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters  
design guide.  
Texas Instruments, LIDAR Pulsed Time of Flight Reference Design design guide.  
9.2 Documentation Support  
9.2.1 Related Documentation  
Texas Instruments, LMH32401IRGT Evaluation Module user's guide.  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report.  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers – Part 1 blog.  
Texas Instruments, An Introduction to Automotive LIDAR.  
Texas Instruments, Maximizing the Dynamic Range of Analog Front Ends Having a Transimpedance  
Amplifier.  
Texas Instruments, Time of Flight and LIDAR – Optical Front End Design.  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers – Part 2 blog.  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits.  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow.  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model.  
9.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
 
 
 
 
 
 
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
XLMH32401QWRGTRQ1  
VQFN  
RGT  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAF0  
30  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
 
 
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
XLMH32401QWRGTRQ1  
Package Type  
Package Drawing Pins  
RGT 16  
SPQ  
Length (mm) Width (mm)  
367.0 367.0  
Height (mm)  
VQFN  
3000  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
RGT0016K  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.66 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
5
8
12X 0.5  
4
9
(0.16)  
TYP  
4X  
SYMM  
A
A
17  
1.5  
1
12  
0.3  
0.2  
16X  
PIN 1 ID  
(OPTIONAL)  
16  
13  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4229414/A 02/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RGT0016K  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.66)  
SYMM  
16  
13  
16X (0.6)  
1
12  
16X (0.25)  
SYMM  
17  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4229414/A 02/2023  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
LMH32401-Q1  
ZHCSS23 – APRIL 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RGT0016K  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.51)  
16  
13  
16X (0.6)  
1
12  
16X (0.25)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
84% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4229414/A 02/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMH32401-Q1  
English Data Sheet: SBOSAF0  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XLMH32401QWRGTRQ1  
ACTIVE  
VQFN  
RGT  
16  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMH32401-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
Catalog : LMH32401  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XLMH34400IDRLR

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器 | DRL | 6 | -40 to 125
TI

XLMO12W

LED ORANGE CLEAR T-1 3/4 T/H
SUNLED

XLMYK11D14V

LED YELLOW DIFFUSED T-1 T/H
SUNLED

XLMYK11W

LED YELLOW CLEAR T-1 T/H
SUNLED

XLN15010-GL

PWR SUPP PROGRAM DC 5-150V 1560W
ETC

XLN30052

PWR SUPP PROGRAM DC 5-300V 1560W
ETC

XLN30052-GL

PWR SUPP PROGRAM DC 5-300V 1560W
ETC

XLN310

IDT XO LVPECL Crystal Oscillator
IDT

XLN315

IDT XO LVPECL Crystal Oscillator
IDT

XLN316

IDT XO LVPECL Crystal Oscillator
IDT

XLN318

IDT XO LVPECL Crystal Oscillator
IDT

XLN31V

IDT XO LVPECL Crystal Oscillator
IDT