XOPA2863QDRQ1 [TI]

汽车类双路低功耗 110MHz 12V RRIO 电压反馈放大器 | D | 8 | -40 to 125;
XOPA2863QDRQ1
型号: XOPA2863QDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双路低功耗 110MHz 12V RRIO 电压反馈放大器 | D | 8 | -40 to 125

放大器
文件: 总35页 (文件大小:2412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
OPAx863-Q1 低功耗、110MHz、轨至轨输入和输出汽车级放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
OPAx863-Q1 器件是单位增益稳定的低功耗、轨至轨  
输入/输出、电压反馈运算放大器需在 2.7V 12.6V  
的电源电压范围内运行。OPAx863-Q1 器件每通道仅  
700µA 的电流提供的增益带宽积50MHz、压  
摆率105V/µs电压噪声密度5.9nV/Hz。  
– 温度等140°C +125°CTA  
• 宽带宽  
– 单位增益带宽110MHz  
– 增益带宽积50 MHz  
• 低功耗  
轨到轨输入级使得 OPAx863-Q1 适用于电流检测和光  
电二极管接口等通用应用。轨到轨输入级可在整个输入  
共模电压范围内很好地适应增益带宽积和噪声从而在  
宽输入动态范围内实现出色的性能。  
– 静态电流700 µA/通道典型值)  
– 电源电压2.7V 12.6V  
• 输入电压噪声5.9 nV/Hz  
• 压摆率105 V/µs  
• 轨到轨输入和输出  
HD2/HD320 kHz (2VPP) 129dBc/–  
138dBc  
OPAx863-Q1 器件包括过载功率限制功能可限制输  
出饱和时 IQ 的增加从而避免功耗敏感型系统中出现  
过度功率耗散。输出级具有短路保护功能使得该器件  
适用于恶劣的环境。  
• 其他特性:  
– 过载功率限制  
– 输出短路保护  
封装信息(1)(2)  
封装尺寸标称值)  
器件型号  
封装  
OPA2863-Q1  
DSOIC8)  
4.90mm × 3.91mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 有关相关产品请参阅器件比较  
低侧电流检测  
直流/直流转换器  
逆变器和电机控制  
车载充电器和无线充电器  
HVAC 压缩机  
光电二极TIA 接口  
抬头显示  
-20  
HD2, VOUT = 2 VPP  
HD3, VOUT = 2 VPP  
HD2, VOUT = 4 VPP  
-40  
HD3, VOUT = 4 VPP  
-60  
-80  
-100  
-120  
-140  
-160  
CF  
LED  
Driver  
RF  
VCC  
ID  
OPAx863-Q1  
+
LED  
To  
ADC  
Photo-  
Diode  
VOUT  
GND  
VEE  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
–VBIAS  
Transimpedance Amplifier Circuit  
G = 1V/V 时的失真性能  
Switching  
Circuit  
RF  
ISH  
To comparator  
VCC  
OPAx863-Q1  
VOUT  
for fault detection  
RG  
+
RSH  
To MCU/  
ADC  
RG  
GND  
GND  
VREF  
Low-side Current Sensing  
采用以下器件的应用电路OPAx863-Q1  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAB2  
 
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Low-Side Current Sensing........................................19  
9.3 Front-End Gain and Filtering.....................................21  
9.4 Power Supply Recommendations.............................21  
9.5 Layout....................................................................... 22  
10 Device and Documentation Support..........................24  
10.1 Documentation Support.......................................... 24  
10.2 接收文档更新通知................................................... 24  
10.3 支持资源..................................................................24  
10.4 Trademarks.............................................................24  
10.5 静电放电警告.......................................................... 24  
10.6 术语表..................................................................... 24  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics: VS = ±5 V ..........................5  
7.6 Electrical Characteristics: VS = 3 V.............................6  
7.7 Typical Characteristics: VS = 10 V.............................. 8  
7.8 Typical Characteristics: VS = 3 V.............................. 12  
7.9 Typical Characteristics: VS = 3 V to 10 V..................14  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
Information.................................................................... 24  
11.1 Tape and Reel Information......................................28  
4 Revision History  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
5 Device Comparison Table  
VOLTAGE NOISE  
IQ / CHANNEL GBWP SLEW RATE  
DEVICE  
±VS (V)  
±6.3  
AMPLIFIER DESCRIPTION  
(mA)  
(MHz)  
(V/µs)  
(nV/Hz)  
OPAx863-Q1  
OPAx365-Q1  
0.70  
50  
105  
5.9  
4.5  
Unity-gain stable RRIO Bipolar Amplifier  
Unity-gain stable, zero-crossover RRIO  
CMOS amplifier  
±2.75  
4.6  
0.9  
1
50  
50  
25  
24  
Gain of 6V/V stable, NRI/RRO CMOS  
amplifier  
OPAx607-Q1  
OPAx836-Q1  
±2.75  
±2.75  
3.8  
4.6  
Unity-gain stable, low-power, NRI/RRO  
Bipolar Amplifier  
110  
560  
6 Pin Configuration and Functions  
VOUT1  
1
VS+  
8
7
6
5
VIN1-  
2
VOUT2  
VIN1+  
3
VIN2-  
VIN2+  
VS-  
4
6-1. D Package,  
8-Pin SOIC  
(Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
VIN1–  
VIN1+  
VIN2–  
VIN2+  
VOUT1  
VOUT2  
VS–  
NO.  
2
I
I
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 noninverting input pin  
Amplifier 1 output pin  
3
6
I
5
I
1
O
O
P
P
7
Amplifier 2 output pin  
4
Negative power-supply pin  
Positive power-supply pin  
VS+  
8
(1) I = input, O = output, and P = power.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA2863-Q1  
 
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
VSto VS+  
13  
1
Supply turn-on/off maximum dV/dt  
V/µs  
V
VI  
VID  
II  
Input voltage  
VS+ + 0.5  
±1  
VS0.5  
Differential input voltage  
Continuous input current(2)  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±30  
See Thermal Information  
150  
TJ  
°C  
°C  
°C  
TA  
125  
150  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diode. The differential input  
clamp diode limits the voltage across it to 1 V with this continuous input current flowing through it.  
(3) Long-term continuous current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
10  
MAX  
12.6  
125  
UNIT  
V
VS+ - VSTotal supply voltage  
TA Ambient temperature  
25  
°C  
40  
7.4 Thermal Information  
OPA2863-Q1  
D (SOIC)  
8 PINS  
120.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
63.3  
Junction-to-board thermal resistance  
63.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
17.2  
YJB  
62.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics: VS = ±5 V  
at G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-supply,  
input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1  
110  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 VPP  
17  
VOUT = 20 mVPP  
15  
SR  
105  
9
VOUT = 2V step, G = 1  
VOUT = 200mV step  
Rise, fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Overshoot/undershoot  
57  
ns  
%
VOUT = 2V step  
70  
1
VOUT = 2V step  
70  
G = 1, 0.5 V overdrive beyond supplies  
G = 1, 0.5 V overdrive beyond supplies  
Overdrive recovery time  
ns  
100  
129  
138  
107  
125  
5.9  
HD2  
HD3  
HD2  
HD3  
eN  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
f = 20 kHz, VOUT = 2 VPP  
f = 100 kHz, VOUT = 2 VPP  
dBc  
dBc  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 2 kHz  
f = 1 MHz  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.4  
Closed-loop output impedance  
Channel-to-channel crosstalk  
0.2  
Ω
f = 1 MHz, VOUT = 2 VPP  
dBc  
124  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
VOUT = ±2.5 V  
110  
1.3  
3.5  
128  
±0.4  
±1  
dB  
Input-referred offset voltage  
Input offset voltage drift  
1.3  
mV  
3.5 µV/°C  
0.73  
1.2  
1.6  
7.6 nA/°C  
TA = 40°C to +125°C, D package  
TA 25°C  
0.3  
Input bias current  
µA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Input bias current drift  
Input offset current  
±3  
-30  
±10  
30  
nA  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
100  
120  
650 || 0.8  
200 || 0.5  
dB  
VCM=VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
OUTPUT  
VS+0.14  
VS+0.2  
TA 25°C  
VOL  
Output voltage, low  
Output voltage, high  
V
V
VS+0.15 VS+0.22  
TA = 40°C to +125°C  
TA 25°C  
VS+0.2 VS+0.14  
VS+0.2 VS+0.15  
VOH  
TA = 40°C to +125°C  
Linear output drive (sourcing/  
sinking)  
VOUT = ±2.5 V, ΔVOS < 1 mV(2)  
25  
30  
45  
mA  
mA  
Short-circuit current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics: VS = ±5 V (continued)  
at G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-supply,  
input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
700  
970  
TA 25°C  
IQ  
Quiescent current per amplifier  
Power-supply rejection ratio  
µA  
dB  
1280  
TA = 40°C to +125°C  
ΔVS = ±2 V(1)  
PSRR  
100  
120  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
50  
6
MHz  
nV/Hz  
pA/Hz  
mV  
Input voltage noise  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 100 Hz  
Input current noise  
0.4  
Input-referred offset voltage  
±0.15  
0.2  
1.3  
0.6  
1.3  
1.3  
TA 25°C  
Input bias current  
µA  
0.2  
TA = 40°C to +125°C  
VCM = 4.1 V to 5.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
100  
100  
120  
120  
dB  
dB  
(1) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
(2) Change in input offset voltage from no-load condition.  
7.6 Electrical Characteristics: VS = 3 V  
at G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1 V, input and  
output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1  
97  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 1 VPP  
26  
VOUT = 20 mVPP  
10  
SR  
105  
10  
VOUT = 1V step, Gain = 1  
VOUT = 200mV step  
Rise, fall time  
Settling time to 0.1%  
Settling time to 0.01%  
Overshoot  
58  
ns  
%
VOUT = 1V step  
VOUT = 1V step  
90  
2
Undershoot  
16  
95  
G = 1, 0.5V overdrive beyond supplies  
Overdrive recovery time  
ns  
G = 1, 0.5V overdrive beyond supplies  
100  
123  
132  
109  
129  
6
HD2  
HD3  
HD2  
HD3  
eN  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
f = 20 kHz, VOUT = 1 VPP  
f = 100 kHz, VOUT = 1 VPP  
dBc  
dBc  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 2 kHz  
f = 1 MHz  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.4  
Closed-loop output impedance  
Channel-to-channel crosstalk  
0.2  
Ω
f = 1 MHz, VOUT = 1 VPP  
dBc  
127  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.6 Electrical Characteristics: VS = 3 V (continued)  
at G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1 V, input and  
output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
Input-referred offset voltage  
Input offset voltage drift  
VOUT = 1 V to 2 V  
104  
1.3  
3.5  
123  
±0.4  
±1  
dB  
1.3  
mV  
3.5 uV/°C  
0.73  
1.2  
1.56  
7.4 nA/°C  
TA = 40°C to +125°C, D package  
TA 25°C  
0.3  
Input bias current  
µA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Input bias current drift  
Input offset current  
±3  
-30  
±10  
30  
nA  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
94  
115  
360 || 0.9  
200 || 0.5  
dB  
VCM = VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
OUTPUT  
VS+ 0.13 VS+ 0.15  
VS+ 0.13 VS+ 0.16  
TA 25°C  
VOL  
Output voltage, low  
Output voltage, high  
V
V
TA = 40°C to +125°C  
TA 25°C  
VS+0.15 VS+0.13  
VS+0.15 VS+0.13  
VOH  
TA = 40°C to +125°C  
Linear output drive (sourcing/  
sinking)  
VOUT = ±0.7 V, ΔVOS < 1 mV(2)  
23  
33  
45  
mA  
mA  
Short-circuit current  
POWER SUPPLY  
690  
120  
910  
TA 25°C  
IQ  
Quiescent current per amplifier  
µA  
dB  
1180  
TA = 40°C to +125°C  
ΔVS = ±1 V(1)  
PSRR  
Power-supply rejection ratio  
100  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
50  
6
MHz  
nV/Hz  
pA/Hz  
mV  
Input voltage noise  
Flatband, 1/f corner at 25 Hz  
Flatband, 1/f corner at 100 Hz  
Input current noise  
0.4  
Input-referred offset voltage  
±0.15  
0.2  
1.3  
0.6  
1.2  
1.3  
TA 25°C  
Input bias current  
µA  
0.4  
TA = 40°C to +125°C  
VCM = 2.1 V to 3.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
100  
100  
120  
115  
dB  
dB  
(1) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
(2) Change in input offset voltage from no-load condition.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA2863-Q1  
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics: VS = 10 V  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
RL = 2 k  
RL = 500   
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 20 mVPP  
VOUT = 20 mVPP  
7-1. Small-Signal Frequency Response vs Gain  
7-2. Small-Signal Frequency Response vs Output Load  
6
1
3
0
0.5  
0
-3  
No CL  
CL = 2.2 pF  
-0.5  
-6  
CL =4.7 pF  
G = 1 V/V  
G = 2 V/V  
CL = 10 pF, Rs = 200  
CL = 10 pF, G = 2 V/V  
-9  
-1  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 20 mVPP  
VOUT = 20 mVPP  
7-4. Small-Signal Response Flatness vs Gain  
7-3. Frequency Response vs Load Capacitance  
3
6
3
0
0
-3  
-3  
-6  
VOUT = 20 mVPP  
VOUT = 200 mVPP  
VOUT = 500 mVPP  
VOUT = 1 VPP  
-6  
VOUT = 2 VPP  
VOUT = 4 VPP  
VOUT = 8 VPP  
TA = 25°C  
TA = 125°C  
TA = 45 °C  
-9  
-9  
100k  
-12  
1M  
1M  
10M  
100M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
.
VOUT = 20 mVPP  
7-6. Frequency Response vs Output Voltage  
7-5. Frequency Response vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-9  
-6  
G = 1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
-9  
TA = 25°C  
TA = 125 °C  
TA = 45 °C  
-12  
100k  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 2 VPP  
VOUT = 2 VPP  
7-7. Large-Signal Frequency Response vs Gain  
7-8. Frequency Response vs Ambient Temperature  
-20  
-20  
HD2, G = 1 V/V  
HD3, G = 1 V/V  
HD2, G = 2 V/V  
HD3, G = 2 V/V  
HD2, VOUT = 2 VPP  
HD3, VOUT = 2 VPP  
HD2, VOUT = 4 VPP  
HD3, VOUT = 4 VPP  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
G = 1 V/V  
VOUT = 2 VPP  
7-9. Harmonic Distortion vs Frequency  
7-10. Harmonic Distortion vs Gain  
0.15  
6
0.1  
0.05  
0
4
2
0
-0.05  
-0.1  
-0.15  
-2  
-4  
-6  
Time (200 ns/div)  
Time (50 ns/div)  
.
.
7-11. Small-Signal Transient Response  
7-12. Large-Signal Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
Input  
Output  
Input x -1 V/V  
Output  
Time (100 ns/div)  
Time (100 ns/div)  
Gain = 1 V/V  
Gain = -1 V/V  
7-13. Input Overdrive Recovery  
7-14. Output Overdrive Recovery  
1200  
900  
600  
300  
0
1000  
750  
500  
250  
0
-250  
-500  
-750  
-1000  
-300  
-600  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
-5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
Measured for 10 units  
.
7-15. Input Offset Voltage vs Input Common-Mode Voltage  
7-16. Input Bias Current vs Input Common-Mode Voltage  
6
50  
40  
30  
20  
4
2
10  
Sourcing  
Sourcing  
0
Sinking  
Sinking  
0
-10  
-20  
-30  
-40  
-50  
-2  
-4  
-6  
0
5
10  
15  
20  
25  
30  
35  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Output Current (mA)  
Ambient Temperature (°C)  
.
Output saturated and then short-circuited to opposite supply  
7-17. Output Voltage vs Load Current  
7-18. Output Short-Circuit Current vs Ambient Temperature  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics: VS = 10 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
20000  
9000  
18000  
8000  
16000  
7000  
14000  
6000  
12000  
5000  
10000  
4000  
8000  
3000  
6000  
2000  
4000  
1000  
2000  
0
0
Quiescent Current per Channel (A)  
μ= 678 μA, σ= 13 μA  
Input Bias Current (nA)  
μ= 251 nA, σ= 5.6 nA  
7-19. Quiescent Current Distribution  
7-20. Input Bias Current Distribution  
12000  
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (°C)  
μ
Input Offset Voltage ( V)  
35 units  
μ= 209 μV, σ= 193 μV  
7-22. Quiescent Current vs Ambient Temperature  
7-21. Input Offset Voltage Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics: VS = 3 V  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
0
-3  
-6  
-9  
-12  
G = 1 V/V  
-15  
-18  
-21  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
100k  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 20 mVPP  
VOUT = 1 VPP  
7-23. Small-Signal Frequency Response vs Gain  
7-24. Harmonic Distortion vs Frequency  
0.15  
1
0.1  
0.05  
0
0.5  
0
-0.05  
-0.1  
-0.5  
-0.15  
-1  
Time (200 ns/div)  
Time (50 ns/div)  
.
.
7-25. Small-Signal Transient Response  
7-26. Large-Signal Transient Response  
1000  
1000  
750  
800  
600  
400  
200  
0
500  
250  
0
-250  
-500  
-750  
-1000  
-200  
-400  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
Measured for 10 units  
.
7-27. Input Offset Voltage vs Input Common-Mode Voltage  
7-28. Input Bias Current vs Input Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
2.5  
2
Sourcing  
Sinking  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (mA)  
.
7-29. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 3 V to 10 V  
At VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
VS = 10 V  
VS = 5 V  
VS = 3 V  
VS = 10 V  
VS = 5 V  
VS = 3 V  
-12  
-12  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 20 mVPP  
VOUT = 1 VPP  
7-30. Frequency Response vs Supply Voltage  
7-31. Frequency Response vs Supply Voltage  
100  
10  
Main Stage  
Auxiliary Stage  
10  
1
1
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
Frequency (Hz)  
D401  
.
.
7-33. Input Current Noise Density vs Frequency  
7-32. Input Voltage Noise Density vs Frequency  
140  
140  
PSRR  
PSRR+  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
-20  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
.
.
7-34. Common-Mode Rejection Ratio vs Frequency  
7-35. Power Supply Rejection Ratio vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
7.9 Typical Characteristics: VS = 3 V to 10 V (continued)  
At VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
100  
80  
60  
40  
20  
0
135  
120  
105  
90  
210  
180  
150  
120  
90  
Magnitude  
Phase  
75  
60  
60  
45  
30  
30  
0
15  
-30  
-60  
-90  
0
-15  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
.
Small-signal response  
7-36. Open-Loop Output Impedance vs Frequency  
7-37. Open-Loop Gain and Phase vs Frequency  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 5 V  
HD3, VS = 5 V  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
VOUT = 2 VPP  
7-38. Harmonic Distortion vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx863-Q1 devices are low-power, 50 MHz, rail-to-rail input and output (RRIO) bipolar voltage-feedback  
operational amplifiers with a voltage noise density of 5.9 nV/Hz and 1/f noise corner at 25 Hz. The OPAx863-  
Q1 devices work in a wide-supply voltage range from 2.7 V to 12.6 V and consumes only 700 µA quiescent  
current. The OPAx863-Q1 devices operate with 2.7 V supply, are RRIO capable, consume low-power, and offer  
a power-down mode, which makes them ideal amplifiers for 3.3-V or lower voltage applications that need  
superior AC performance. The main and auxiliary input stages of the amplifier are matched for gain bandwidth  
product (GBW), noise and offset voltage suitable for applications which require wide dynamic input range and  
good SNR.  
The device includes an overload power limit feature which limits the increase in quiescent current with over-  
driven and saturated outputs to either of the supply rails. For more details of this overload power limit feature,  
see 8.3.2.1. The output of the amplifier is protected against short-circuit fault conditions.  
8.2 Functional Block Diagram  
PD  
VS+  
OPAx863-Q1  
Auxiliary  
NPN-  
+
Stage  
VIN+  
EN  
Output  
Short-Circuit  
Protection  
CC  
Main  
PNP-  
Stage  
VOUT  
+
Overload  
Power  
EN  
Limiting  
+
VIN–  
VS+ –1.6 V  
VS–  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input Stage  
The OPAx863-Q1 devices include a rail-to-rail input stage. The main stage differential pair using PNP bipolar  
transistors operates for common-mode input voltages from VS0.2 V till VS+ 1.6 V. The amplifier inputs  
transition into the auxiliary stage using NPN transistors for common-mode input voltages from VS+ 1.6 V till  
VS+ + 0.2 V. The PNP and NPN input stages offer a gain-bandwidth product of 50 MHz and a voltage noise  
density of 5.9 nV/Hz. The offset voltage for the two input stages is matched to lie within the device  
specifications. The NPN input stage does not use the slew boost circuit during large-signal transient response.  
The input bias current for the PNP and NPN input stages is opposite in polarity, which adds an additional offset  
based on the values of the gain-setting and feedback resistors. A common-mode input voltage transition  
between these input stages will cause a crossover distortion which needs to be considered in high-frequency  
applications requiring superior linearity. Limit the common-mode input voltage to VS+ 1.6 V (maximum) for  
main-stage operation across process and ambient temperature.  
Since the OPAx863-Q1 devices are bipolar amplifiers, the two inputs are protected with anti-parallel back-to-  
back diodes between them, which limits the maximum input differential voltage to 1 V. The amplifier is slew  
limited, and the two inputs are pulled apart up to 1 V when the anti-parallel diodes begin to conduct in very fast  
input or output transient conditions. Care must be taken to use gain-setting and feedback resistors large enough  
to limit the current through these diodes in such conditions.  
8.3.2 Output Stage  
The OPAx863-Q1 devices feature a rail-to-rail output stage with possible signal swing from VS+ 0.2 V to VS+–  
0.2 V. Violating the output headroom to either of the supplies will cause output signal clipping and introduce  
distortion.  
The OPAx863-Q1 devices integrate an output short-circuit protection circuit, which makes the device rugged for  
use in real-world applications.  
8.3.2.1 Overload Power Limit  
The OPAx863-Q1 devices include overload power limiting which limits the increase in device quiescent current  
with output saturated to either of the supplies. Typically, when the output of the amplifier saturates, the amplifiers  
two inputs are pulled apart which can enable the slew boost circuit. The input differential voltage is an error  
voltage in negative feedback, which the amplifier core nullifies by engaging the slew boost circuit and driving the  
output stage deeper into saturation. Once the input to an amplifier attains a value large enough to saturate its  
output, any further increase in this input excitation results in a finite input differential voltage. As the output stage  
transistor is pushed deeper into saturation, its hFE (base-to-collector current gain) drops with increase in its base  
and collector current, increasing the device quiescent current. This may cause a catastrophic failure in multi-  
channel, high-gain, high-density front-end designs and reduce operating lifetime in portable battery powered  
systems.  
The OPAx863-Q1 devices overload power limiting includes an intelligent output saturation detection circuit which  
limits the device's quiescent current to 2.2-mA per channel under DC overload conditions. This increase in  
quiescent current is smaller with AC input or output and output saturation duration for only a fraction of the  
overall signal time period. Table 8-1 provides a comparison of the increase in quiescent current with 50 mV input  
overdrive for OPAx863-Q1 devices and other voltage feedback amplifiers without overload power limit.  
8-1. Quiescent Current with Saturated Outputs  
Device  
Input Differential  
Voltage  
Quiescent Current  
Increase in IQ from  
steady-state  
condition  
OPAx863-Q1 with overload power limit  
50 mV  
50 mV  
1.1 mA  
1.57x  
3.43x  
Competitor amplifier without overload power limit  
1.96 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA2863-Q1  
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
8.3.3 ESD Protection  
As 8-1 shows, all device pins are protected with internal ESD protection diodes to the power supplies. These  
diodes provide moderate protection to input overdrive voltages above the supplies. The protection diodes can  
typically support 10-mA continuous input and output currents. Use series current limiting resistors if the input  
voltages exceeding the supply voltages occur at the amplifier inputs, which ensures the current through the ESD  
diodes remains within their rated value. Since OPAx863-Q1 is a bipolar amplifier, the two inputs are protected  
with anti-parallel back-to-back diodes between them which limits the maximum input differential voltage to  
approximately 1 V. Care must be taken to use gain-setting and feedback resistors large enough to limit the  
current through these diodes in fast slewing conditions.  
VS+  
Power Supply  
ESD Cell  
VIN+  
PD  
+
œ
VOUT  
VIN-  
VS-  
8-1. Internal ESD Protection  
8.4 Device Functional Modes  
The OPAx863-Q1 is operational with a supply voltage greater than 2.7 V (±1.35 V). The maximum  
recommended supply voltage is 12.6 V (±6.3 V). The OPAx863-Q1 can be used with unipolar, bipolar or  
asymmetric supplies.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.2 Low-Side Current Sensing  
Power converters use current-mode feedback control for superior transient response and multi-phase load  
sharing. Inverter stages control the phase currents for torque control in motor drives. Due to its simplicity and  
low-cost, many of these topologies use difference amplifier based low-side current sensing. 9-1 shows the  
use of OPAx863-Q1 in a difference amplifier circuit for low-side current sensing.  
300 V  
3.3 V  
Switching  
Circuit  
TLV3201  
VTH  
+
12 kΩ  
Interrupt  
ISH  
3.3 V  
3.3 V  
600 Ω  
600 Ω  
MCU  
OPAx863-Q1  
RSH  
ADS7056  
Digital I/O  
VOUT  
+
220 pF  
12 kΩ  
GND  
1.65 V  
9-1. Low-Side Current Sensing in Power Converters  
9.2.1 Design Requirements  
9-1. Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
Shunt resistor  
Input current  
10 mΩ  
15 APP  
Output voltage  
3 VPP  
50 kHz  
Switching frequency  
Data acquisition  
1 MSPS with 0.1% accuracy  
10 Vpk  
Input voltage due to ground bounce  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA2863-Q1  
 
 
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
In a difference amplifier circuit, the output voltage is given by:  
R
F
V =  
I
R
+ V  
REF  
(1)  
0
SH SH  
R
G
For lowest system noise, small values of RF and RG are preferred. The smallest value of RG is limited by the  
input transient voltage (10 V here) seen by the circuit, and is given by:  
V
max − V − V  
D S  
IN  
R
=
(2)  
G
I
max  
D
Where,  
VIN(maximum) is the maximum input transient voltage seen by the circuit  
VD is the forward voltage drop of ESD diodes at the amplifier input  
ID(maximum) is the maximum current rating of the ESD diodes at the amplifier input  
For a difference amplifier gain of 20 V/V, RF and RG of 12 kΩ and 600 Ω are used, respectively. With a clock  
frequency of 40 MHz and ADS7056 sampling at 1 MSPS, the available acquisition time for amplifier output  
settling is 550 ns. 9-1 provides the simulation results for the circuit in 9-1. The worst-case peak-to-peak  
input transient condition is simulated. The OPAx863-Q1 devices output settles to within 0.1% accuracy within  
543 ns. If use of a slower clock frequency with the ADC is desired, then the acquisition time reduces with the  
same sampling rate, which degrades measurement accuracy. Alternatively, the sampling rate may be reduced to  
recover the required acquisition time and 0.1% accuracy.  
9.2.3 Application Curves  
4
3.5  
3
1.2  
1.1  
1
2.5  
2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
0.5  
0
-0.5  
-1  
VIN x 20  
OPAx863-Q1 O/P  
S/H Voltage  
% Error  
-1.5  
-2  
Time (150 ns/div)  
9-2. 0.1% Settling Performance  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
9.3 Front-End Gain and Filtering  
C2  
D1  
RBIAS  
R2  
-VBIAS  
VS+  
C1  
D2  
R1  
RISO  
œ
VS+  
œ
+
CSH  
RP  
+
VS-  
VS-  
High-Gain Band Pass Filter  
High-Speed Peak Detector  
9-3. High-Gain Narrow Bandpass Filter and Peak Detector Circuit  
Ultrasonic signaling is used for proximity and obstacle detection, level sensing, sonars, and so forth. Such signal  
chains detect the amplitude of received ultrasonic signal at a particular center frequency. 9-3 shows a high-  
gain narrow bandpass filter and peak detector circuit using any of the OPAx863-Q1 devices. The signal at the  
frequency of interest is filtered out, gained, and peak detected to report the amplitude at the output of this circuit.  
The phase information is lost in this circuit. The OPAx863-Q1 devices are used with its 50-MHz GBW to add a  
single-stage gain, and the peak detection capability is easily made with the RRIO capability of these amplifiers.  
9.4 Power Supply Recommendations  
The OPAx863-Q1 devices are intended to operate on supplies ranging from 2.7 V to 12.6 V. The OPAx863-Q1  
devices may operate on single-sided supplies, split and balanced bipolar supplies, or unbalanced bipolar  
supplies. Operating from a single supply can have numerous advantages. The DC errors, due to the PSRR  
term, can be minimized with the negative supply at ground. Typically, AC performance improves slightly at 10-V  
operation with minimal increase in supply current. Minimize the distance (< 0.1 in) from the power supply pins to  
high-frequency, 0.01-µF decoupling capacitors. A larger capacitor (2.2 µF typical) is used along with a high-  
frequency, 0.01-µF supply-decoupling capacitor at the device supply pins. Only the positive supply has these  
capacitors for single-supply operation. Use these capacitors from each supply to ground when a split-supply is  
used. If necessary, place the larger capacitors further from the device and share these capacitors among several  
devices in the same area of the printed circuit board (PCB). An optional supply decoupling capacitor across the  
two power supplies (for split-supply operation) reduces second harmonic distortion.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA2863-Q1  
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
9.5 Layout  
9.5.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier (like the OPAx863-Q1 devices) require careful  
attention to board layout parasitics and external component types. The DEM-OPA-SO-2A Demonstration Fixture  
user's guide can be used as a reference when designing the circuit board. Recommendations that optimize  
performance include the following:  
1. Minimize parasitic capacitance to any AC ground for all of the signal I/O pins. Parasitic capacitance on the  
output and inverting input pins can cause instabilityon the noninverting input, it can react with the source  
impedance to cause unintentional band-limiting. Open a window around the signal I/O pins in all of the  
ground and power planes around those pins to reduce unwanted capacitance. Otherwise, ground and power  
planes must be unbroken elsewhere on the board.  
2. Minimize the distance (< 0.1 in) from the power-supply pins to high-frequency 0.01-µF decoupling  
capacitors. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
Larger (2.2-µF to 6.8-µF) decoupling capacitors, effective at lower frequency, must also be used on the  
supply pins. These capacitors can be placed somewhat farther from the device and shared among several  
devices in the same area of the PC board.  
3. Careful selection and placement of external components preserve the high frequency performance  
of the OPAx863-Q1 devices. Resistors must be a low reactance type. Surface-mount resistors work best  
and allow a tighter overall layout. Other network components, such as noninverting input termination  
resistors, must also be placed close to the package. Keep resistor values as low as possible and consistent  
with load driving considerations. Lowering the resistor values keep the resistor noise terms low and  
minimizes the effect of its parasitic capacitance. Lower resistor values, however, increases the dynamic  
power consumption because RF and RG become part of the amplifiers output load network.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
9.5.2 Layout Example  
VS+  
Representative schematic of a  
single channel  
CBYP  
RS  
+
t
CBYP  
VS-  
RF  
RG  
Ground and power plane exist on inner  
layers.  
Ground and power plane removed  
from inner layers. Ground fill on outer  
layers also removed  
CBYP  
RS  
Place series output resistors close  
to output pin to minimize  
parasitic capacitance  
1
8
7
RF  
RS  
Place bypass capacitors  
close to power pins  
2
3
RG  
RF  
Place gain and feedback resistors close  
to pins to minimize stray capacitance  
6
5
RG  
Place bypass capacitors  
close to power pins  
4
Remove GND and Power plane under  
output and inverting pins to minimize  
stray PCB capacitance  
CBYP  
9-4. Layout Recommendation for Dual-Channel D Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, DEM-OPA-SO-2A Demonstration Fixture user's guide  
Texas Instruments, Single-Supply Op Amp Design Techniques application report  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
 
 
 
 
 
 
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA2863-Q1  
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
OPA2863QR  
OPA2863QT  
SOIC  
SOIC  
D
D
8
8
2500  
250  
330.0  
180.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA2863-Q1  
 
OPA2863-Q1  
ZHCSQ66 FEBRUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2500  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
OPA2863QR  
OPA2863QT  
SOIC  
SOIC  
D
D
8
8
853.0  
210.0  
449.0  
185.0  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA2863-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XOPA2863QDRQ1  
ACTIVE  
SOIC  
D
8
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA2863-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2023  
Catalog : OPA2863  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XOPA3S2859MRTWREP

增强型产品双通道 900MHz、2.2nV/√Hz 可编程增益跨阻放大器 | RTW | 24 | -55 to 125
TI

XOPA4863IPWR

四路低功耗 110MHz RRIO 电压反馈放大器 | PW | 14 | -40 to 125
TI

XOPA593DNTR

85V、100µV、宽带宽 (10MHz)、高输出电流 (250mA) 精密运算放大器 | DNT | 12 | -40 to 125
TI

XOPL53

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53025UC

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53025UD

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53025UI

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53050UC

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53050UD

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53050UI

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53100UC

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ

XOPL53100UD

FACTORY PROGRAMMED OSCILLATORS
EUROQUARTZ