XTPS56C230RJET [TI]

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RJE | 20;
XTPS56C230RJET
型号: XTPS56C230RJET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RJE | 20

转换器
文件: 总34页 (文件大小:3150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
TPS56C230 4.5V 18V12A 同步降压转换器  
1 特性  
3 说明  
1
输入电压范围:4.5V 18V  
TPS56C230 是一款配备集成 FET 的高效同步降压转  
换器。系统设计人员可将此器件用于各种 应用 ,因为  
它的待机电流低,需要的外部组件也较少。  
输出电压范围:0.6V 5.5V  
支持 12A 的连续输出电流  
D-CAP3™架构控制,可实现快速瞬态响应  
±1% 反馈电压精度 (25°C)  
TPS56C230 采用了 D-CAP3 控制,此控制方式只需  
内部补偿即可实现快速瞬态响应以及出色的线路和负载  
调整。该器件具有一个专用电路,可支持低等效串联电  
(ESR) 输出电容器(例如专用聚合物电容器和超低  
ESR 陶瓷电容器)。  
集成 17mΩ 5.9mΩ FET  
可选 Eco-mode™和强制连续导通模式 (FCCM)  
(通过 MODE 引脚)  
500kHz 开关频率  
可使用 TPS56C230 MODE 引脚来设置 Eco-mode  
FCCM 模式,以实现轻负载运行。Eco-mode 在轻  
负载运行期间可保持高效率,并且 FCCM 模式运行可  
在轻负载下保持低输出纹波。此器件同时支持内部和外  
部软启动时间选项。它具有 1.2ms 的内部固定软启动  
时间,但如果应用需要更长的软启动时间,则可以使用  
外部 SS 引脚,通过连接外部电容器来实现。  
可调软启动时间,默认为 1.2ms  
集成式电源正常状态指示器  
内置输出放电功能  
逐周期过流保护  
非锁存过压、欠压、过热以及欠压锁定保护功能  
运行结温范围:-40°C 125°C  
20 引脚 3.0mm × 3.0mm HotRod™VQFN 封装  
8A TPS568230 引脚对引脚兼容  
可使用 TPS56C230 并借助 WEBENCH® 电源设计  
创建定制设计方案  
TPS56C230 集成了电源正常状态指示器并具备输出放  
电功能。它提供包括 OVPUVPOCPOTP 和  
UVLO 在内的全面保护。该器件可采用 20 引脚  
3.0mm × 3.0mm HotRod 封装,额定结温范围为  
–40°C 125°C。  
2 应用  
数字电视和机顶盒  
PC 和工业 PC  
有线网络  
器件信息(1)  
器件型号  
TPS56C230  
封装  
VQFN (20)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
分布式电源系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
效率与输出电流 Eco-mode  
L
100  
95  
90  
85  
80  
75  
70  
65  
VIN  
VOUT  
R1  
SW  
VIN  
VCC  
TPS56C230  
BST  
EN  
CIN  
CBST  
COUT  
RM_H  
MODE  
PGOOD  
VCC  
FB  
SS  
PGOOD  
R2  
RM_L  
AGND  
PGND  
Css  
60  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
55  
VIN=12V, VOUT=5V  
1 10 15  
50  
0.01  
0.1  
I-Load (A)  
D013  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDE4  
 
 
 
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持 ............................................................... 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2019) to Revision A  
Page  
已更改 将销售状态从预告信息更改为生产数据”.................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RJE Package  
20-Pin VQFN  
Top View  
SW  
SW  
PGND VCC  
NC  
18  
17  
20  
16  
19  
1
15  
BST  
MODE  
3
3
2
14 FB  
VIN  
4
3
4
13  
PGND  
VIN  
AGND  
VIN  
4
12  
11  
EN  
SS  
VIN  
5
8
6
10  
7
9
NC  
PGOOD  
PGND PGND  
SW  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect the bootstrap capacitor between  
BST and SW, 0.1 uF is recommended.  
BST  
1
I
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN and  
PGND.  
VIN  
2,3,4,5  
P
Switching node connection to the inductor and bootstrap capacitor for buck. This pin voltage swings from a  
diode voltage below the ground up to input voltage of buck.  
SW  
6,19,20  
7,8,18,Pad  
9
O
G
O
PGND  
PGOOD  
Power GND terminal for the controller circuit and the internal circuitry.  
Open drain power good indicator. It is asserted low if output voltage is out of PG threshold, over voltage or  
if the device is under thermal shutdown, EN shutdown or during soft start.  
Soft-Start time selection pin. Connecting an external capacitor sets the soft-start time and if no external  
capacitor is connected, the soft-start time is about 1.2ms.  
SS  
11  
I
NC  
EN  
10,16  
12  
Not connect. Can be connected to GND plane for better thermal achieved.  
Enable input of buck converter  
I
AGND  
13  
G
Ground of internal analog circuitry. Connect AGND to GND plane with a short trace.  
Feedback sensing pin for Buck output voltage. Connect this pin to the resistor divider between output  
voltage and AGND.  
FB  
14  
15  
17  
I
I
Light load operation mode selection pin. Connect this pin to a resistor divider from VCC and AGND for  
different MODE options shown in 1  
MODE  
VCC  
The driver and control circuits are powered from this voltage. Decouple with a minimum 1 μF ceramic  
capacitor as close to VCC as possible.  
O
Copyright © 2019, Texas Instruments Incorporated  
3
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
20  
25  
6
UNIT  
V
VIN  
BST  
V
Input voltage  
BST-SW  
V
EN, MODE, FB, SS  
PGND, AGND,  
SW  
6
V
0.3  
20  
22  
6
V
V
Output voltage  
SW (10-ns transient)  
PGOOD  
–3  
V
–0.3  
–40  
–55  
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22- V C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
UNIT  
V
VIN  
4.5  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
BST  
23.5  
5.5  
5.5  
0.3  
18  
V
Input voltage  
BST-SW  
EN, MODE, FB, SS  
PGND, AGND  
SW  
V
V
V
V
Output voltage  
PGOOD  
–0.3  
5.5  
12  
V
IOUT  
TJ  
Output current  
A
Operating junction temperature  
–40  
125  
°C  
6.4 Thermal Information  
TPS56C230  
RJE (VQFN)  
20 PINS  
42.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (standard board)  
Junction-to-ambient thermal resistance (4-layer custom board)(2)  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA_effective  
RθJC(top)  
RθJB  
28.2  
26.2  
Junction-to-board thermal resistance  
13  
ψJT  
Junction-to-top characterization parameter  
1.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
(2) 70 mm x 70 mm, 4 layers, thickness: 1.5 mm. 2 oz. copper traces located on the top and bottom of the PCB. 4 thermal vias in the  
PowerPAD area under the device package.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
Thermal Information (continued)  
TPS56C230  
THERMAL METRIC(1)  
RJE (VQFN)  
20 PINS  
12.4  
UNIT  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
RθJC(bot)  
16.1  
6.5 Electrical Characteristics  
TJ =-40°C to 125°C, VVIN = 12 V, unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN  
Input voltage range  
4.5  
18  
V
IVIN  
Non-switching supply current  
Shutdown supply current  
No load, VEN=5V  
400  
2
μA  
μA  
IVINSDN  
VCC OUTPUT  
No load, VEN=0V  
VVIN>5.0V  
VVIN=4.5V  
4.85  
20  
5
5.15  
V
VCC  
ICC  
VCC output voltage  
VCC current limit  
4.5  
mA  
FEEDBACK VOLTAGE  
VFB FB voltage  
DUTY CYCLE and FREQUENCY CONTROL  
TJ = 25°C  
594  
591  
600  
600  
606  
609  
mV  
mV  
TJ = -40°C to 125°C  
FSW  
Switching frequency  
SW minumum on time  
SW minimum off time  
TJ = 25°C  
500  
60  
kHz  
ns  
tON(MIN)  
tOFF(MIN)  
TJ = 25°C  
TJ = 25°C, VFB = 0.5 V  
180  
ns  
MOSFET and DRIVERS  
RDS(ON)H High side switch resistance  
RDS(ON)L Low side switch resistance  
OUTPUT DISCHARGE and SOFT START  
TJ = 25°C  
TJ = 25°C  
17  
mΩ  
mΩ  
5.9  
RDIS  
tSS  
Discharge resistance  
Soft start time  
TJ=25°C, VEN=0V  
350  
1.2  
5
Ω
Internal soft-start time,SS floating  
ms  
μA  
ISS  
Soft start charge current  
POWER GOOD  
tPGDLY PGOOD start-up delay  
PGOOD from low to high  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
IOL =4mA  
1
ms  
%
%
%
%
V
85  
90  
VPGTH  
PGOOD threshold  
115  
110  
VPG_L  
IPGLK  
CURRENT LIMIT  
PGOOD sink current capability  
0.4  
1
PGOOD leak current  
VPGOOD =5.5V  
μA  
TJ = 25°C  
14  
13  
15  
15  
4
16  
A
A
A
IOCL  
Over current threshold (valley)  
Negative over current threshold  
TJ = -40°C to 125°C  
17.5  
INOCL  
LOGIC THRESHOLD  
VENH  
VENL  
IEN  
EN high-level input voltage  
1.2  
0.9  
1.3  
1.1  
2
1.4  
1.2  
V
V
EN low-level input voltage  
Enable internal pull down current  
VEN=0.8V  
µA  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ =-40°C to 125°C, VVIN = 12 V, unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
125  
120  
60  
MAX  
UNIT  
%
VOVP  
OVP trip threshold  
tOVPDLY  
VUVP  
tUVPDLY  
tUVPDEL  
OVP prop deglitch  
us  
UVP trip threshold  
%
UVP prop deglitch  
256  
1.5  
us  
Output Hiccup delay relative to SS time  
cycle  
Output Hiccup enable delay relative to SS  
time  
tUVPEN  
10.5  
cycle  
UVLO  
Wake up VIN voltage  
4.2  
3.7  
0.5  
4.4  
V
V
VUVLOVIN  
VIN UVLO threshold  
Shutdown VIN voltage  
Hysteresis VIN voltage  
3.6  
OVER TEMPERATURE PROTECTION  
TOTP  
OTP trip threshold(1)  
OTP hysteresis(1)  
Shutdown temperature  
Hysteresis  
150  
20  
°C  
°C  
TOTPHSY  
(1) Not production tested  
6
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
6.6 Typical Characteristics  
480  
460  
440  
420  
400  
380  
360  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
VEN = 5 V  
VEN = 0 V  
1. Supply Current vs Junction Temperature  
2. Shutdown Current vs Temperature  
615  
1.45  
1.4  
610  
605  
600  
595  
590  
585  
1.35  
1.3  
1.25  
1.2  
1.15  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
3. Feedback Voltage vs Junction Temperature  
4. Enable On Voltage vs Junction Temperature  
1.24  
1.2  
32  
28  
24  
20  
16  
12  
8
1.16  
1.12  
1.08  
1.04  
1
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
5. Enable Off Voltage vs Junction Temperature  
6. High-Side RDS(on) vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
12  
128  
127  
126  
125  
124  
123  
122  
10  
8
6
4
2
0
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D007  
D008  
7. Low-Side RDS(on) vs Junction Temperature  
8. OVP Threshold vs Junction Temperature  
64  
380  
370  
360  
350  
340  
330  
320  
63  
62  
61  
60  
59  
58  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
9. UVP Threshold vs Junction Temperature  
10. Discharge Resistor vs Junction Temperature  
22  
20  
18  
16  
14  
12  
10  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D011  
D012  
11. Valley Current Limit vs Junction Temperature  
12. Soft-Start Time vs Junction Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
0.01  
0.1  
1
10 15  
0.01  
0.1  
1
10 15  
I-Load (A)  
I-Load (A)  
D013  
D014  
13. Efficiency vs Load Current, Eco-mode  
14. Efficiency vs Load Current, FCCM  
700  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
0
1
2
3
4
5
6
I-Load (A)  
7
8
9
10 11 12  
0
1
2
3
4
5
6
I-Load (A)  
7
8
9
10 11 12  
D017  
D018  
15. Switching Frequency vs Load Current, Eco-mode  
16. Switching Frequency vs Load Current, FCCM  
版权 © 2019, Texas Instruments Incorporated  
9
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS56C230 is high density synchronous buck converter which operates from 4.5-V to 18-V input voltage  
(VIN), and the output voltage range is from 0.6 V to 5.5 V. It has 17-mΩ and 5.9-mΩ integrated MOSFETs that  
enable high efficiency up to 12 A. The device employs D-CAP3 mode control that enables low external  
component count, ease of design, optimization of the power design for cost, size and efficiency, and provides  
fast transient response with no external compensation components and an accurate feedback voltage. The  
control topology supports seamless transition between CCM mode at heavy load conditions and DCM operation  
at light load conditions. Eco-mode allows the TPS56C230 to maintain high efficiency at light load and FCCM  
mode keeps the output ripple small at light load. The TPS56C230 is able to adapt to both low equivalent series  
resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors.  
7.2 Functional Block Diagram  
PG high  
threshold  
PGOOD  
+
+
UV threshold  
OV threshold  
+
UV  
Delay  
PG low  
threshold  
+
OV  
VIN  
FB  
+
LDO  
VCC  
0.6 V  
VREGOK  
4.2 V /  
3.7 V  
+
+
PWM  
+
+
Control Logic  
BST  
VIN  
SS  
Ripple injection  
SW  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
TON Extension  
OVP/UVP/TSD  
Eco-mode/FCCM  
Soft-Start  
SW  
XCON  
Internal SS  
PGOOD  
SS  
PGND  
One shot  
+
OCL  
ZC  
EN threshold  
+
+
+
EN  
NOCL  
+
THOK  
150°C /20°C  
AGND  
Light load operation set  
Discharge control  
MODE  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3™ Control  
The main control loop of the buck is adaptive on-time pulse width modulation (PWM) controller that supports a  
proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with an internal  
compensation circuit for pseudo-fixed frequency and low external component count configuration with both low-  
ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The TPS56C230 also  
includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the converter output voltage, VOUT, and is  
inversely proportional to the input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage for emulating the output ripple, this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for D-CAP3 control topology.  
For any control topology that is compensated internally, there is a range of the output filter it can support. The  
output filter used with the TPS56C230 is a low-pass L-C circuit. This L-C filter has a double-pole frequency  
described in 公式 1.  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the internal output set-point resistor divider network and the  
internal gain of the TPS56C230. The low-frequency L-C double pole has a 180 degree drop in phase. At the  
output filter frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. The internal  
ripple generation network introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB  
per decade and increases the phase to 90 degree one decade above the zero frequency. The inductor and  
capacitor selected for the output filter must be such that the double pole is placed close enough to the high-  
frequency zero so that the phase boost provided by this high-frequency zero provides adequate phase margin for  
the stability requirement. The crossover frequency of the overall system should usually be targeted to be less  
than one-third of the switching frequency (FSW).  
7.3.2 Soft Start  
The TPS56C230 has an internal 1.2-ms soft-start time, and also an external SS pin is provided for setting longer  
soft start time if needed. When the EN pin becomes high, the soft-start function begins ramping up the reference  
voltage to the PWM comparator.  
If the application needs a longer soft start time, it can be set by connecting a capacitor on SS pin. When the EN  
pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor (CSS) connected  
between SS and AGND. The devices tracks the lower of the internal soft-start voltage or the external soft-start  
voltage as the reference. The equation for the soft-start time (TSS) is shown in 公式 2:  
%OO (J() × 84'( (8)  
6 (IO) =  
OO  
:
;
Q#  
+
OO  
(2)  
where  
VREF is 0.6 V and ISS is 5 μA  
7.3.3 Large Duty Operation  
The TPS56C230 can support large duty operation by its internal TON extension function. When VIN/VOUT < 1.6,  
and the VFB is lower than internal VREF, the TON will be extended to implement the large duty operation and also  
improve the performance of the load transient performance.  
7.3.4 Power Good  
The Power Good (PGOOD) pin is an open-drain output. Once the VFB is between 90% and 110% of the target  
output voltage, the PGOOD is de-asserted and floats after a 1-ms de-glitch time. A pullup resistor of 100 kΩ is  
recommended to pull the voltage up to VCC. The PGOOD pin is pulled low when:  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
the FB pin voltage is lower than 85% or greater than 115% of the target output voltage  
in an OVP, UVP, or thermal shutdown event  
during the soft-start period.  
7.3.5 Overcurrent Protection and Undervoltage Protection  
The TPS56C230 has the overcurrent protection and undervoltage protection. The output overcurrent limit (OCL)  
is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the  
OFF state by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch  
current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. When the load current is higher  
than the overcurrent threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the current is being limited, the output voltage tends to drop because the load demand is higher than what the  
converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, the output will shut off after a wait time of 256us and then re-start after the hiccup time (typically  
10.5*Tss). When the over current condition is removed, the output voltage is recovered.  
7.3.6 Overvoltage Protection  
The TPS56C230 has the overvoltage protection feature and have the same implementation. When the output  
voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high, the output will  
be discharged after a wait time of 120 µs. When the over voltage condition is removed, the output voltage will be  
recovered.  
7.3.7 Out-of-Bounds Operation  
The TPS56C230 has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much  
lower overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault,  
OOB protection operates as an early protection mechanism. During the OOB operation, the device operates in  
force PWM mode only by turning on the low-side FET. Turning on the low-side FET beyond the zero inductor  
current quickly discharges the output capacitor thus causing the output voltage to fall quickly towards the  
setpoint. During the operation, the cycle-by-cycle negative current limit is also activated to ensure the safe  
operation of the internal FETs.  
7.3.8 UVLO Protection  
The undervoltage lockout (UVLO) protection monitors the VCC pin voltage to protect the internal circuitry from  
low input voltages. When the voltage is lower than UVLO threshold voltage, the device shuts off and outputs are  
discharged to prevent mis-operation of the device. The converter begins operation again when the input voltage  
exceeds the threshold by a hysteresis of 500 mV (typical). This is a non-latch protection.  
7.3.9 Output Voltage Discharge  
The TPS56C230 has the discharge function by using internal MOSFET about 350, which is connected to the  
output terminal SW. The discharge is slow due to the lower current capability of the MOSFET.  
7.3.10 Thermal Shutdown  
The TPS56C230 monitors the internal die temperature. If the temperature exceeds the threshold value (typically  
150°C), the device shuts off and the output will be discharged. This is a non-latch protection, the device restarts  
switching when the temperature goes below the thermal shutdown threshold.  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
7.4 Device Functional Modes  
7.4.1 Light Load Operation  
TPS56C230 has a MODE pin that can setup two different states of operation for light load operation. The light  
load running includes Eco-mode and FCCM mode.  
7.4.2 Eco-mode™ Control  
The Eco-mode control schemes to maintain high light load efficiency. As the output current decreases from  
heavy load conditions, the inductor current is also reduced and eventually comes to a point where the rippled  
valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction  
modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current  
further decreases, the converter runs into discontinuous conduction mode. The on-time is kept almost the same  
as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with  
smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional  
to the load current, and keeps the light load efficiency high. The light load current where the transition to Eco-  
mode operation happens ( IOUT(LL) ) can be calculated from 公式 3.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(3)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(max) (peak current in the application). It is  
also important to select the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
7.4.3 Force CCM  
Force CCM(FCCM) mode keeps the converter to operate in continuous conduction mode during light-load  
conditions and allows the inductor current to become negative. During FCCM mode, the switching frequency  
(FSW) is maintained at an almost constant value over the full load range, which is suitable for applications  
requiring tight control of the switching frequency and output voltage ripple at the cost of lower efficiency under  
light load.  
7.4.4 Mode Selection  
The device reads the voltage on the MODE pin during start-up and latches onto one of the MODE options listed  
below in 1 . The voltage on the MODE pin recommended to be set by connecting this pin to the center tap of  
a resistor divider connected between VCC and AGND. A guideline for the top resistor (RM_H) and the bottom  
resistor (RM_L) as 1% resistors is shown in 1. It is recommended to choose the resistor to set the voltage at  
around 5%*VCC for Eco-mode or 15%*VCC for FCCM. It is important that the voltage for the MODE pin is  
derived from the VCC rail only since internally this voltage is referenced to detect the MODE option, and not to  
leave the mode pin floating. The MODE pin setting can be reset only by a VIN power cycling or EN toggle.  
1. MODE Pin Resistor Settings  
Recommended Resistor  
Voltage on MODE  
LIGHT LOAD OPERATION  
RM_H(kΩ)  
330  
RM_L (kΩ)  
(0~10%)*VCC  
15  
33  
Eco-mode  
FCCM  
(10%~20%)*VCC  
180  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
17 below shows the typical start-up sequence of the device once the enable signal crosses the EN turn on  
threshold. After the voltage on VCC crosses the rising UVLO threshold it takes about 500us to read the first  
mode setting and approximately 100us from there to finish the last mode setting. The output voltage starts  
ramping after the mode reading is done.  
EN threshold  
1.3V  
EN  
VCC UVLO  
4.2V  
VCC  
MODE2  
MODE1  
MODE  
500us  
tss  
100us  
VOUT  
1ms  
1.5*tss  
PGOOD  
17. Power-Up Sequence  
7.4.5 Standby Operation  
The TPS56C230 can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 2 µA when in standby condition. EN pin is pulled low internally, when floating, the part is disabled by  
default.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
8 Application and Implementation  
Information in the following application sections are not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 18 shows a typical application for TPS56C230 with 1.2-V output. This design converts an  
input voltage range of 4.5 V to 18 V down to 1.2 V with a maximum output current of 12 A.  
8.2 Typical Application  
C1  
U1  
VCC  
C2  
0.1uF  
17  
1
VCC  
L1  
1uF  
BST  
VIN = 4.5 - 18V  
VIN  
VOUT = 1.2V/12A  
VOUT  
GND  
2
3
4
5
6
19  
20  
SW  
VIN  
VIN  
VIN  
VIN  
SW  
SW  
SW  
680nH  
C3  
C4  
C5  
C6  
47uF  
C7  
47uF  
C8  
47uF  
C9  
47uF  
R1  
14  
22uF  
22uF  
0.1uF  
FB  
C10  
18nF  
10.0k  
11  
12  
15  
9
10  
16  
SS  
NC  
NC  
GND  
EN  
EN  
GND  
GND  
13  
7
8
18  
21  
R2  
10.0k  
AGND  
PGND  
PGND  
PGND  
PGND  
MODE  
MODE  
PGOOD  
R3  
VCC  
100k  
R4  
330k  
TPS56C230RJER  
GND  
R5  
GND  
15k  
GND  
18. 1.2-V, 12-A Reference Design  
8.2.1 Design Requirements  
2 lists the design parameters for this example.  
2. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.2  
12  
MAX  
UNIT  
V
VOUT  
IOUT  
Output voltage  
Output current  
A
ΔVOUT  
VIN  
Transient response  
Input voltage  
1.2A - 10.8A load step, 2.5A/us  
12A load  
±5% x VOUT  
12  
4.5  
18  
V
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Light load operating mode  
Ambient temperature  
2% x VOUT  
500  
kHz  
°C  
Eco-mode  
25  
TA  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS56C230 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Set Point  
To change the output voltage of the application, it is necessary to change the value of the upper feedback  
resistor. By changing this resistor the user can change the output voltage above 0.6 V. See 公式 4  
4722'4  
4.19'4  
8
176  
= 0.6 × (1 +  
)
(4)  
8.2.2.3 MODE Selection  
The light load running mode (Eco-mode or FCCM ) are set by a voltage divider from VCC to GND connected to  
the MODE pin. See 1 for possible MODE pin configurations. For this design example ,the switching frequency  
is about 500kHz, the light load running mode is Eco-mode and the output current is 12 A.  
8.2.2.4 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 3 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 公式 5 and 公式 6. It is important that  
the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(5)  
(6)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient and short-circuit conditions, the inductor current can increase up to the current limit of the  
device, so it is safe to choose an inductor with a saturation current higher than the peak current under current  
limit condition.  
8.2.2.5 Output Capacitor Selection  
After selecting the inductor, the output capacitor needs to be optimized. In D-CAP3, the regulator reacts within  
one cycle to the change in the duty cycle, so the good transient performance can be achieved without large  
amounts of output capacitance. The recommended output capacitance range is given in 3. Ceramic capacitors  
have very low ESR, otherwise the maximum ESR of the capacitor should be less than VOUT(ripple)/IOUT(ripple)  
.
3. Recommended Component Values  
RUPPER  
(kΩ)  
VOUT (V)  
RLOWER (kΩ)  
Fsw (kHz)  
LOUT (µH)  
COUT(min) (µF)  
COUT(max) (µF)  
CFF (PF)  
0.6  
1.2  
2.5  
3.3  
5.0  
10  
10  
20  
20  
15  
0
500  
500  
500  
500  
500  
0.47  
0.68  
1.2  
66  
66  
66  
66  
66  
330  
330  
330  
330  
330  
-
-
10  
63  
90  
1.5  
22-110  
22-110  
110  
1.8  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
8.2.2.6 Input Capacitor Selection  
The TPS56C230 requires input decoupling capacitors on power supply input VIN, and the bulk capacitors are  
needed depending on the application. The minimum input capacitance required is given in 公式 7.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(7)  
TI recommends using a high-quality X5R or X7R input decoupling capacitors of 40 µF on the input voltage pin  
VIN. The voltage rating on the input capacitor must be greater than the maximum input voltage. The capacitor  
must also have a ripple current rating greater than the maximum input current ripple of the application. The input  
ripple current is calculated by 公式 8:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(8)  
A 1-µF ceramic capacitor is needed for the decoupling capacitor on VCC pin.  
8.2.3 Application Curves  
19 through 34 apply to the circuit of 18. VIN = 12 V. TA = 25°C unless otherwise specified.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.6  
0.2  
-0.2  
-0.6  
-1  
VIN=4.5V, VOUT=1.2V  
VIN=7.4V, VOUT=1.2V  
VIN=12V, VOUT=1.2V  
VIN=18V, VOUT=1.2V  
VIN=4.5V, VOUT=1.2V  
VIN=7.4V, VOUT=1.2V  
VIN=12V, VOUT=1.2V  
VIN=18V, VOUT=1.2V  
0.01  
0.1  
1
10 15  
0.001  
0.01  
0.1  
I-Load (A)  
1
1015  
I-Load (A)  
D000  
D032  
19. Efficiency Curve  
20. Load Regulation  
800  
700  
600  
500  
400  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
VIN=4.5V, VOUT=1.2V  
VIN=7.4V, VOUT=1.2V  
VIN=12V, VOUT=1.2V  
VIN=18V, VOUT=1.2V  
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
0
1
2
3
4
5
6
I-Load (A)  
7
8
9
10 11 12  
D033  
D034  
IOUT = 12 A  
21. Switching Frequency vs Input Voltage  
22. Switching Frequency vs Output Load  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
D035  
D036  
IOUT=0.1A  
IOUT=12A  
23. Line Regulation  
24. Line Regulation  
EN=5V/div  
EN=5V/div  
Vout=1V/div  
IL=5A/div  
Vout=1V/div  
IL=5A/div  
800us/div  
800us/div  
IOUT = 6A  
IOUT = 6A  
25. Start-Up Through EN  
26. Shut-down Through EN  
Vin=10V/div  
Vout=1V/div  
Vin=10V/div  
Vout=1V/div  
IL=5A/div  
IL=5A/div  
800us/div  
800us/div  
IOUT = 6 A  
IOUT = 6 A  
27. Start Up Relative to VIN Rising  
28. Shut Down Relative to VIN Falling  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
Vout=20mV/div (AC coupled)  
Vout=20mV/div (AC coupled)  
SW=10V/div  
SW=10V/div  
20us/div  
2us/div  
IOUT = 0.1 A  
IOUT = 12 A  
29. Output Voltage Ripple  
30. Output Voltage Ripple  
Vout=100mV/div (AC coupled)  
Vout=100mV/div (AC coupled)  
Iout=10A/div  
Iout=10A/div  
200us/div  
Slew Rate=2.5A/us  
200us/div  
Slew Rate=2.5A/us  
1.2 A to 10.8 A  
0 A to 12 A  
31. Transient Response  
32. Transient Response  
Vout=1V/div  
Vout=1V/div  
SW=10V/div  
IL=10A/div  
SW=10V/div  
IL=10A/div  
100us/div  
10ms/div  
33. Normal Operation to Output Hard Short  
34. Output Hard Short Hiccup Protection  
版权 © 2019, Texas Instruments Incorporated  
19  
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS56C230 is intended to be powered by a well regulated DC voltage. The input voltage range is 4.5 V to  
18 V. TPS56C230 is a buck converter. The input supply voltage must be greater than the desired output voltage  
for proper operation. Input supply current must be appropriate for the desired output current. If the input voltage  
supply is located far from the TPS56C230 circuit, some additional input bulk capacitance is recommended.  
Typical values are 100 μF to 470 μF.  
20  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
10 Layout  
10.1 Layout Guidelines  
Recommend a four-layer PCB for good thermal performance and with maximum ground plane. 3-inch × 2.75-  
inch, two-layer PCB with 2-oz copper used as example.  
Place the decoupling capacitors right across VIN and VCC as close as possible.  
Place output inductors and capacitors with IC at the same layer, SW routing should be as short as possible to  
minimize EMI, and should be a width plane to carry big current, enough vias should be added to the GND  
connection of output capacitors and also as close to the output pin as possible.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane, >15 mil width trace  
is recommended to reduce line parasitic inductance.  
Feedback could be 20mil and must be routed away from the switching node, BST node or other high  
efficiency signal.  
VIN trace must be wide to reduce the trace impedance and provide enough current capability.  
Place multiple vias under the device near VIN and GND and near input capacitors to reduce parasitic  
inductance and improve thermal performance  
10.2 Layout Example  
35 shows the recommended top-side layout. Component reference designators are the same as the circuit  
shown in 18.  
Trace on the top layer  
Trace on the bottom layer  
C
VIN  
C
R
C
Additional Vias to  
the GND plane  
SW  
SW  
SW  
Trace on the bottom layer  
SW  
PGND  
PGND  
PGND  
GND  
VCC  
PGOOD  
R
Vias to the GND plane  
L
PGND  
NC  
NC  
VOUT  
R
R
Additional Vias to  
the GND plane  
R
R
Additional Vias to  
the GND plane  
C
C
0  
AGND  
PGND  
Additional Vias to  
the GND plane  
35. PCB Layout Recommendation Diagram  
版权 © 2019, Texas Instruments Incorporated  
21  
 
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
11.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS56C230 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
D-CAP3, Eco-mode, HotRod, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
22  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
23  
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RJE0020B  
PLASTIC QUAD FLATPACK- NO LEAD  
3.1  
2.9  
A
B
(45°X0.08) TYP  
(0.25)  
DETAIL A  
CHAMFERS ARE OPTIONAL  
TYPICAL  
3.1  
2.9  
PIN 1 INDEX AREA  
0.5  
0.3  
0.25  
0.15  
DETAIL B  
OPTIONAL PIN 1  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
C
2X 1.8  
PKG  
(0.1) TYP  
SEE TERMINAL  
DETAIL A  
10  
6
16X 0.45  
5
11  
(0.007)  
PKG  
2X  
1.8  
0.975 0.1  
21  
0.25  
0.15  
20X  
0.1  
C B A  
1
15  
0.05  
C
16  
20  
(0.123)  
PIN 1 ID  
DETAIL B  
0.5  
0.3  
20X  
0.926 0.1  
4224338 / B 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
24  
版权 © 2019, Texas Instruments Incorporated  
TPS56C230  
www.ti.com.cn  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
16X (0.45)  
21  
PKG  
(2.8)  
(0.975)  
11  
5
(R0.05) TYP  
6
10  
PKG  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224338 / B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2019, Texas Instruments Incorporated  
25  
TPS56C230  
ZHCSJH9A AUGUST 2019REVISED AUGUST 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
RJE0020B  
PLASTIC QUAD FLATPACK- NO LEAD  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
16X (0.45)  
PKG  
21  
(2.8)  
(0.975)  
5
11  
(R0.05) TYP  
10  
6
PKG  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 20X  
4224338 / B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
26  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56C230RJER  
XTPS56C230RJET  
ACTIVE  
VQFN-HR  
RJE  
RJE  
20  
20  
3000 RoHS & Green Call TI | SN | NIPDAU Level-2-260C-1 YEAR  
TBD Call TI Call TI  
-40 to 125  
56C230  
Samples  
OBSOLETE VQFN-HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56C230RJER  
TPS56C230RJER  
VQFN-  
HR  
RJE  
RJE  
20  
20  
3000  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
VQFN-  
HR  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS56C230RJER  
TPS56C230RJER  
VQFN-HR  
VQFN-HR  
RJE  
RJE  
20  
20  
3000  
3000  
346.0  
367.0  
346.0  
367.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RJE 20  
3 x 3, 0.45 mm pitch  
VQFN-HR - 1 mm max height  
QUAD FLATPACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224683/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
3.1  
2.9  
A
B
(45°X0.08) TYP  
(0.25)  
DETAIL A  
CHAMFERS ARE OPTIONAL  
TYPICAL  
3.1  
2.9  
PIN 1 INDEX AREA  
0.5  
0.3  
0.25  
0.15  
DETAIL B  
OPTIONAL PIN 1  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.8  
PKG  
(0.1) TYP  
SEE TERMINAL  
DETAIL A  
10  
6
16X 0.45  
11  
5
(0.007)  
PKG  
2X  
1.8  
0.975±0.1  
21  
0.25  
0.15  
20X  
0.1  
C B A  
1
15  
0.05  
C
16  
20  
(0.123)  
PIN 1 ID  
DETAIL B  
0.5  
0.3  
20X  
0.926±0.1  
4224338 / B 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
16X (0.45)  
21  
PKG  
(2.8)  
(0.975)  
11  
5
(R0.05) TYP  
6
10  
PKG  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224338 / B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
(0.975)  
16X (0.45)  
21  
PKG  
(2.8)  
5
11  
(R0.05) TYP  
10  
6
PKG  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 20X  
4224338 / B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XTPS61033DRLR

5-V, 5-A boost converter with power good, output discharge and PFM/PWM control | DRL | 8 | -40 to 125
TI

XTPS61299YBHR

95-nA low IQ 5.5-V boost converter with input current limit and fast transient performance | YBH | 6 | -40 to 125
TI

XTPS61322DBZT

6µA 静态电流 1.8A 开关电流升压转换器 | DBZ | 3
TI

XTPSM83100SIUR

具有集成电感器的 1.5A 高效降压/升压模块 | SIU | 8 | -40 to 125
TI

XTR100AM

Instrumentation Amplifier, 1 Func, 50uV Offset-Max, MDIP14,
BB

XTR100AP

Instrumentation Amplifier, 1 Func, 50uV Offset-Max, PDIP14,
BB

XTR100BM

Instrumentation Amplifier, 1 Func, 25uV Offset-Max, MDIP14,
BB

XTR100BP

Instrumentation Amplifier, 1 Func, 25uV Offset-Max, PDIP14,
BB

XTR101

Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER
TI

XTR101

Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER
BB

XTR101AG

Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER
TI