XTR305IRGWR [TI]

工业模拟电流/电压输出驱动器 | RGW | 20 | -55 to 125;
XTR305IRGWR
型号: XTR305IRGWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

工业模拟电流/电压输出驱动器 | RGW | 20 | -55 to 125

驱动 驱动器
文件: 总40页 (文件大小:2156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
XTR305  
ZHCSHO6 FEBRUARY 2018  
XTR305 工业模拟电流或电压输出驱动器  
1 特性  
3 说明  
1
用户可选:电流或电压输出  
OUT±10V(电源电压为 ±20V 时高达 ±17.5V)  
OUT±20mA(线性电流高达 ±24mA)  
XTR305 是一个完整的输出驱动器,适用于成本敏感型  
工业和过程控制 应用供电的绝佳器件。数字 I/V 选择  
引脚可将输出配置为电流或电压。无需外部分流电阻  
器。只需要外部增益设置电阻器和环路补偿电容器。  
V
I
40V 电源电压  
诊断 特性:  
独立的驱动器和接收器通道可提供灵活性。仪表放大器  
(IA) 可用于远程电压传感或用作高电压、高阻抗测量通  
道。在电压输出模式下,提供输出电流的副本,允许计  
算负载电阻。  
短路或开路故障指示灯引脚  
热保护  
过流保护  
无需电流分流  
利用数字输出选择功能、错误标志以及监控器引脚,可  
进行远程配置和故障排除。输出和 IA 输入的故障条件  
以及过热情况由错误标志指示。监控引脚提供有关负载  
功率或阻抗的持续反馈。为了获得额外的保护,最大输  
出电流是受限的,并提供过热保护。  
适用于单输入模式的输出禁用  
独立驱动器和接收器通道  
专为可测试性而设计  
2 应用  
电机驱动器模式输出:电流为 4-20mA,电压为  
±10V  
XTR305 具有 40°C +85°C 的额定工业温度范围,  
电源电压最高可达 40V,并可在 55°C +125°C 的  
扩展温度范围内正常运行。  
PLC 输出可编程驱动器  
工业交叉连接器  
器件信息(1)  
工业高电压 I/O  
器件型号  
XTR305  
封装  
VQFN (20)  
封装尺寸(标称值)  
3 线传感器电流或电压输出  
±10V 2 线和 4 线电压输出  
美国专利号7,427,8987,425,848 7,449,873  
5.00mm × 5.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用  
CC  
V-  
Current Copy  
ICOPY  
V+  
XTR305  
IMON  
RIMON  
1 kΩ  
IDRV  
Input Signal  
(Optional)  
VIN  
DRV  
IAIN+  
OPA  
SET  
ROS  
RSET  
IIA  
RG1  
RG2  
RGAIN  
Load  
IA  
GND1  
VREF  
IAIN-  
IAOUT  
GND2  
EFCM  
EFLD  
EFOT  
RIA  
OD  
M1  
M2  
1 kΩ  
Digital  
Error  
Control  
Flags  
GND3  
DGND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS913  
 
 
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagrams ..................................... 16  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Application ................................................. 21  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: Voltage Output Mode....... 5  
6.6 Electrical Characteristics: Current Output Mode....... 6  
8
9
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 30  
10.3 VQFN Package and Heat Sinking......................... 31  
10.4 Power Dissipation ................................................. 32  
11 器件和文档支持 ..................................................... 33  
11.1 文档支持 ............................................................... 33  
11.2 接收文档更新通知 ................................................. 33  
11.3 社区资源................................................................ 33  
11.4 ....................................................................... 33  
11.5 静电放电警告......................................................... 33  
11.6 Glossary................................................................ 33  
12 机械、封装和可订购信息....................................... 33  
6.7 Electrical Characteristics: Operational Amplifier  
(OPA) ......................................................................... 7  
6.8 Electrical Characteristics: Instrumentation Amplifier  
(IA) ............................................................................. 8  
6.9 Electrical Characteristics: Current Monitor................ 9  
6.10 Electrical Characteristics: Power and Digital .......... 9  
6.11 Typical Characteristics.......................................... 10  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 2 月  
*
初始发行版  
2
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
5 Pin Configuration and Functions  
RGW Package  
20-Pin VQFN With Thermal Pad  
Top View  
20 19 18 17 16  
1
15  
V+  
M2  
M1  
Exposed  
Thermal  
Die Pad  
on  
2
3
4
5
14  
13  
12  
11  
NC  
DRV  
NC  
V-  
VIN  
Underside  
(must be  
connected  
to V-)  
SET  
IMON  
6
7
8
9
10  
Pad  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
M2  
I
I
Mode input  
Mode input  
2
M1  
3
VIN  
I
Noninverting signal input  
4
SET  
IMON  
IAOUT  
IAIN–  
IAIN+  
RG1  
RG2  
V–  
I
Input for gain setting; inverting input  
Current monitor output  
5
O
O
I
6
Instrumentation amplifier signal output  
7
Instrumentation amplifier inverting input  
Instrumentation amplifier noninverting input  
Instrumentation amplifier gain resistor  
Instrumentation amplifier gain resistor  
Negative power supply  
8
I
9
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Pad  
I
-
NC  
-
No internal connection  
DRV  
NC  
O
-
Operational amplifier output  
No internal connection  
V+  
-
Positive power supply  
DGND  
EFCM  
EFLD  
EFOT  
OD  
-
Ground for digital I/O  
O
O
O
I
Error flag for common mode over range, active low  
Error flag for load error, active low  
Error flag for over temperature, active low  
Output disable, disabled low  
Exposed Pad  
-
Exposed thermal pad must be connected to V  
Copyright © 2018, Texas Instruments Incorporated  
3
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
+44  
UNIT  
V
Supply voltage, VVSP  
Voltage(2)  
Signal input terminals  
Current(2)  
(V) 0.5  
(V+) + 0.5  
±25  
V
mA  
mA  
DGND  
±25  
Output short circuit(3)  
Operating temperature  
Junction temperature  
Storage temperature, Tstg  
Continuous  
–55  
–55  
125  
150  
125  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must  
be current limited. DRV pin allows a peak current of 50 mA. See the Output Protection section in Application and Implementation.  
(3) See Driver Output Disable in Application and Implementation for thermal protection.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
40  
55  
NOM  
MAX  
85  
125(1)  
UNIT  
°C  
Specified temperature range  
Operating temperature range  
°C  
(1) EFOT not connected with OD.  
6.4 Thermal Information  
XTR305  
THERMAL METRIC(1)  
RGW (VQFN)  
20 PINS  
32.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
25.1  
12.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
12.6  
RθJC(bot)  
3.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
6.5 Electrical Characteristics: Voltage Output Mode  
All specifications at TA = 25°C, VS = ±20 V, RLOAD = 800 Ω, RSET = 2 kΩ, ROS = 2 kΩ, VREF = 4 V, RGAIN = 10 kΩ, input signal  
span 0 V to 4 V, and CC = 100 pF, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOS  
Offset voltage, RTI  
±0.4  
±1.6  
±0.2  
±2.5  
±10  
±10  
mV  
dVOS/dT  
PSRR  
Offset voltage vs temperature  
Offset voltage vs power supply  
TA = –40°C to 85°C  
μV/°C  
μV/V  
VS = ±5 V to ±22 V  
INPUT VOLTAGE RANGE  
Nominal setup for ±10-V output  
See Figure 35  
Input voltage for linear operation  
(V) + 3  
(V+) 3  
V
NOISE  
Voltage noise, f = 0.1 Hz to 10 Hz,  
RTI  
3
μVPP  
Voltage noise density, f = 1 kHz,  
RTI  
en  
40  
nV/Hz  
OUTPUT  
Voltage output swing from rail  
Gain nonlinearity  
I
DRV 15 mA, TA = –40°C to 85°C  
(V) +3  
(V+) 3  
±0.2  
±1  
V
±0.01  
±0.1  
±0.04  
±0.2  
7
%FS  
Gain nonlinearity vs temperature  
Gain error  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
ppm/°C  
%FS  
IB  
±0.2  
±1  
Gain error vs temperature  
Output impedance, dVDRV/dIDRV  
ppm/°C  
mΩ  
Output leakage current while output  
disabled  
OD pin = L(1), TA = –40°C to 85°C  
30  
nA  
ISC  
Short-circuit current  
Capacitive load drive  
TA = –40°C to 85°C  
CC = 10 nF, RC = 15(2)  
±15  
±20  
1
±24  
mA  
CLOAD  
μF  
Rejection of voltage difference  
between GND1 and GND2, RTO  
130  
dB  
FREQUENCY RESPONSE  
Bandwidth(3)  
3 dB, G = 5  
300  
1
kHz  
SR  
Slew rate(2)  
V/μs  
CC = 10 nF, CLOAD = 1 μF, RC = 15 Ω  
0.015  
8
Settling time(2)(4), 0.1%, small signal VDRV = ±1 V  
Overload recovery time 50% overdrive  
(1) Output leakage includes input bias current of INA.  
μs  
μs  
12  
(2) Refer to Driving Capacitive Loads and Loop Compensation section in Application and Implementation.  
(3) Small signal with no capacitive load.  
(4) 8 μs plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling  
Time section.  
Copyright © 2018, Texas Instruments Incorporated  
5
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
6.6 Electrical Characteristics: Current Output Mode  
All specifications at TA = 25°C, VS = ±20 V, RLOAD = 800 Ω, RSET = 2 kΩ, ROS = 2 kΩ, VREF = 4 V, input signal span 0 V to 4 V,  
and CC = 100 pF, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOS  
Input offset voltage  
Output current < 1 μA  
±0.4  
±1.5  
±0.2  
±2.5  
±10  
±10  
mV  
μV/°C  
μV/V  
dVOS/dT  
PSRR  
Input offset voltage vs temperature  
Input offset voltage vs power supply VS = ±5 V to ±22 V  
INPUT VOLTAGE RANGE  
Nominal setup for ±20-mA output  
See Figure 36  
Maximum input voltage for linear  
operation  
(V) + 3  
(V+) 3  
V
NOISE  
Voltage noise, f = 0.1Hz to 10Hz,  
RTI  
3
μVPP  
en  
Voltage noise density, f = 1kHz, RTI  
33  
nV/Hz  
OUTPUT  
Compliance voltage swing from rail  
IDRV = ±24 mA  
(V) +3  
(V+) 3  
V
Output conductance (dIDRV/dVDRV  
)
dVDRV = ±15 V, dIDRV = ±24 mA  
See transfer function in Figure 36  
IDRV = ±24 mA  
0.7  
μA/V  
Transconductance  
Gain error  
±0.04  
±3.6  
±0.2  
±10  
±0.2  
±10  
%FS  
ppm/°C  
%FS  
Gain error vs temperature  
Linearity error  
IDRV = ±24 mA  
IB  
IDRV = ±24 mA  
±0.01  
±1.5  
Linearity error vs temperature  
IDRV = ±24 mA  
ppm/°C  
Output leakage current while output  
disabled  
OD pin = L  
0.6  
nA  
ISC  
Short-circuit current  
Capacitive load drive(1)(2)  
±24.5  
±32  
1
±38.5  
mA  
CLOAD  
μF  
FREQUENCY RESPONSE  
Bandwidth  
Slew rate(2)  
3 dB  
160  
1.3  
kHz  
SR  
mA/μs  
Settling time(2)(3), 0.1%, Small  
Signal  
IDRV = ±2 mA  
8
1
μs  
μs  
Overload recovery time  
CLOAD = 0, 50% overdrive  
(1) Refer to Driving Capacitive Loads and Loop Compensation section in Application and Implementation.  
(2) With capacitive load, the slew rate can be limited by the short circuit current and the load error flag can trigger during slewing.  
(3) 8 μs plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling  
Time section.  
6
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
6.7 Electrical Characteristics: Operational Amplifier (OPA)  
All specifications at TA = 25°C, VS = ±20 V, and RLOAD = 800 Ω, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±2.5  
UNIT  
VOS  
Offset voltage, RTI  
IDRV = 0 A  
±0.4  
±1.5  
±0.2  
mV  
μV/°C  
μV/V  
dVOS/dT  
PSRR  
Offset voltage drift  
TA = –40°C to 85°C  
VS = ±5 V to ±22 V  
Offset voltage vs power supply  
±10  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
(V) + 3  
(V+) 3  
V
CMRR  
(V) + 3 V < VCM < (V+) 3 V  
95  
126  
dB  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±20  
±35  
±10  
nA  
nA  
IOS  
±0.3  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
108 || 5  
108 || 5  
Ω || pF  
Ω || pF  
(V) + 3 V < VDRV < (V+) 3 V,  
IDRV = ±24 mA  
AOL  
Open-loop voltage gain  
95  
126  
dB  
OUTPUT  
Voltage output swing from rail  
Short-circuit current  
IDRV = ±24 mA  
M2 = high  
(V) + 3  
±25.5  
±16  
(V+) 3  
±38.5  
±24  
V
ILIMIT  
ILIMIT  
±32  
±20  
mA  
mA  
M2 = low  
Output leakage current while output  
disabled  
ILEAK_DRV  
OD pin = L  
10  
pA  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
Slew rate  
G = 1  
2
1
MHz  
V/μs  
Copyright © 2018, Texas Instruments Incorporated  
7
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
6.8 Electrical Characteristics: Instrumentation Amplifier (IA)  
All specifications at TA = 25°C, VS = ±20 V, RIA = 2 kΩ, and RGAIN = 2 kΩ, unless otherwise noted. See Figure 37.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOS  
Offset voltage, RTI  
IDRV = 0 A  
±0.7  
±2.4  
±0.8  
±2.7  
±10  
±10  
mV  
μV/°C  
μV/V  
dVOS/dT  
PSRR  
Offset voltage vs temperature  
Offset voltage vs power supply  
TA = –40°C to 85°C  
VS = ±5 V to ±22 V  
INPUT VOLTAGE RANGE  
VCM  
Input voltage range  
Common-mode rejection ratio  
(V) + 3  
(V+) 3  
V
CMRR  
RTI  
100  
130  
dB  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±20  
±1  
±35  
±10  
nA  
nA  
IOS  
INPUT IMPEDANCE  
Differential  
105 || 5  
105 || 5  
Ω || pF  
Ω || pF  
Common-mode  
TRANSCONDUCTANCE (Gain)(1)  
IAOUT = ±2.4 mA, (V) + 3 V <  
VIAOUT < (V+) 3 V  
Transconductance error  
±0.04  
±0.2  
±0.1  
±0.1  
%FS  
Transconductance error vs  
temperature  
TA = –40°C to 85°C  
ppm/°C  
Linearity error  
Input bias current to G1, G2  
Input offset current to G1, G2(2)  
OUTPUT  
(V) + 3 V < VIAOUT < (V+) 3 V  
±0.01  
±20  
±1  
%FS  
nA  
nA  
Output swing to the rail  
Output impedance  
IAOUT = ±2.4 mA  
IAOUT = ±2.4 mA  
M2 = High  
(V) + 3  
(V+) 3  
V
600  
±7.2  
±4.5  
mΩ  
mA  
mA  
ILIMIT  
Short-circuit current  
M2 = Low  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
G = 1, RGAIN = 10 kΩ, RIA = 5 kΩ  
G = 1, RGAIN = 10 kΩ, RIA = 5 kΩ  
1
1
MHz  
Slew rate  
V/μs  
IAOUT = ±40 μA, RGAIN = 10 kΩ,  
RIA = 5 kΩ, CL = 100 pF  
Settling time(3), 0.1%  
6
μs  
μs  
RGAIN = 10 kΩ, RIA = 15 kΩ,  
CL = 100 pF  
Overload recovery time, 50%  
10  
(1) Use equation: IAOUT = 2 (IAIN+ IAIN) / RGAIN  
(2) See typical characteristics curve (Figure 3).  
(3) 6 μs plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling  
Time.  
8
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
6.9 Electrical Characteristics: Current Monitor  
All specifications at TA = 25°C and VS = ±20 V, unless otherwise noted. See Figure 37.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
IOS  
Offset current  
IDRV = 0 A  
±30  
±0.05  
±0.1  
±100  
nA  
nA/°C  
nA/V  
V
dIOS/dT  
PSRR  
Offset current drift  
TA = –40°C to 85°C  
VS = ±5 V to ±22 V  
IMON = ±2.4 mA  
Offset current vs power supply  
Monitor output swing to the rail  
Monitor output impedance  
±10  
(V) + 3  
(V+) 3  
IMON = ±2.4 mA  
200  
MΩ  
MONITOR CURRENT GAIN(1)  
Current gain error  
IDRV = ±24 mA  
±0.04  
±3.6  
±0.12  
±0.1  
%FS  
ppm/°C  
%FS  
Current gain error vs temperature  
IDRV = ±24 mA, TA = –40°C to 85°C  
IDRV = ±24 mA  
Linearity error  
±0.01  
±1.5  
Linearity error vs temperature  
IDRV = ±24 mA, TA = –40°C to 85°C  
ppm/°C  
(1) Use equation: IMON = IDRV / 10  
6.10 Electrical Characteristics: Power and Digital  
All specifications at TA = 25°C and VS = ±20 V, unless otherwise noted. See Figure 37.  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS  
Specified voltage range  
Operating voltage range  
Quiescent current  
±5  
±5  
±20  
±22  
2.3  
2.8  
V
V
IQ  
IDRV = IAOUT = 0 A  
1.8  
mA  
mA  
Quiescent current over temperature TA = –40°C to 85°C  
THERMAL FLAG (EFOT) OUTPUT  
Alarm (EFOT pin LOW)  
140  
125  
°C  
°C  
Return to normal operation (EFOT  
pin HIGH)  
DIGITAL INPUTS (M1, M2, OD)  
VIL low-level input voltage  
VIH high-level input voltage  
Input current  
0.8  
> 1.4  
±1  
V
V
μA  
DIGITAL OUTPUTS (EFLD, EFCM, EFOT  
)
IOH high-level leakage current (open-  
drain)  
1.2  
μA  
VOL low-level output voltage  
VOL low-level output voltage  
IOL = 5 mA  
0.8  
0.4  
V
V
IOL = 2.8 mA  
DIGITAL GROUND PIN(1)  
M1 = M2 = L, OD = H, all digital  
outputs H  
Current input  
25  
μA  
(1) Use equation: (V) DGND (V+) 7 V  
Copyright © 2018, Texas Instruments Incorporated  
9
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
6.11 Typical Characteristics  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
15  
20  
25  
30  
35  
40  
45  
Temperature (°C)  
Total Supply Voltage (V)  
Figure 1. Quiescent Current vs Temperature  
Figure 2. Quiescent Current vs Supply Voltage  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
IDRV = +24mA  
IDRV = -24mA  
-5  
-10  
-15  
-20  
-25  
-30  
IDRV = +20mA  
IDRV = +10mA  
IDRV = -10mA  
IDRV = -20mA  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
(VIN, SET, IAIN+, IAIN, RG1, RG2)  
Figure 3. Input Bias Current vs Temperature  
Figure 4. OPA Output Swing to Rail vs Temperature  
80  
60  
0
180  
160  
140  
120  
100  
80  
0
RGAIN = 10kW  
-20  
-45  
-40  
RIA = 500kW  
RIA = 50kW  
-60  
40  
-90  
Phase  
-80  
20  
-135  
-100  
-120  
-140  
-160  
-180  
-200  
RIA = 10kW  
60  
0
-180  
40  
RIA = 5kW  
Gain  
20  
-20  
-40  
-225  
RIA = 1kW  
Gain  
Phase  
0
-270  
10M  
-20  
1
10  
100  
1k  
10k  
100k  
1M  
0.001 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 6. IA Gain and Phase vs Frequency  
Figure 5. OPA Gain and Phase vs Frequency  
10  
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Typical Characteristics (continued)  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
160  
140  
120  
100  
80  
140  
120  
PSRR+  
CMRR  
100  
PSRR-  
80  
PSRR-  
60  
60  
PSRR+  
40  
40  
CMRR  
20  
20  
0
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 7. OPA CMRR and PSRR vs Frequency  
Figure 8. IA CMRR and PSRR vs Frequency  
IOUT = ±200mA  
G = 8  
IOUT = ±20mA  
G = 8  
CL = 100nF || RL = 800W  
CC = 4.7nF  
CL = 100nF || RL = 800W  
CC = 4.7nF  
RSET = 1kW  
RSET = 1kW  
RGAIN = 10kW  
See Figure 3  
RGAIN = 10kW  
See Figure 3  
200ms/div  
200ms/div  
Figure 9. Small-Signal Step Response  
Current Mode  
Figure 10. Large-Signal Step Response  
Current Mode  
G = 5  
G = 5  
CL = 100nF || RL = 800W  
CC = 4.7nF  
CL = 100nF || RL = 800W  
CC = 4.7nF  
RSET = 1kW  
RSET = 1kW  
RGAIN = 10kW  
See Figure 2  
RGAIN = 10kW  
See Figure 2  
200ms/div  
200ms/div  
Figure 11. Small-Signal Step Response  
Voltage Mode  
Figure 12. Large-Signal Step Response  
Voltage Mode  
Copyright © 2018, Texas Instruments Incorporated  
11  
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
1M  
G = 5  
100k  
10k  
1k  
100  
10  
1
1s/div  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 13. Input-Referred Noise Spectrum  
Voltage Output Mode  
Figure 14. Input-Referred 0.1-Hz to 10-Hz Noise  
Voltage Output Mode  
1M  
100k  
10k  
1k  
G = 10  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1s/div  
Frequency (Hz)  
Figure 15. Input-Referred Noise Spectrum  
Current Output Mode  
Figure 16. Input-Referred 0.1-Hz to 10-Hz Noise  
Current Output Mode  
1M  
100k  
10k  
1k  
G = 20  
100  
10  
1
1s/div  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 18. IA Input-Referred 0.1-Hz to 10-Hz Noise  
Figure 17. IA Input-Referred Noise Spectrum  
12  
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Typical Characteristics (continued)  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
18  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
6
4
2
0
0
Offset Voltage (mV)  
Offset Voltage (mV)  
Figure 19. OPA Offset Voltage Distribution  
Figure 20. IA Offset Voltage Distribution  
60  
40  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
Offset Voltage Drift (mV/°C)  
Offset Voltage Drift (mV/°C)  
Figure 21. OPA Offset Voltage Drift Distribution  
Figure 22. IA Offset Voltage Drift Distribution  
40  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
Gain Error (ppm)  
Gain Error (ppm)  
Figure 24. Current Mode Gain Error Distribution  
Figure 23. Voltage Mode Gain Error Distribution  
Copyright © 2018, Texas Instruments Incorporated  
13  
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
Nonlinearity (ppm)  
Nonlinearity (ppm)  
Figure 26. Current Mode Nonlinearity Distribution  
Figure 25. Voltage Mode Nonlinearity Distribution  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
Gain Error Drift (ppm/°C)  
Gain Error Drift (ppm/°C)  
Figure 28. Current Mode Gain Error Drift Distribution  
Figure 27. Voltage Mode Gain Error Drift Distribution  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Nonlinearity Drift (ppm/°C)  
Nonlinearity Drift (ppm/°C)  
Figure 30. Current Mode Nonlinearity Drift Distribution  
Figure 29. Voltage Mode Nonlinearity Drift Distribution  
14  
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Typical Characteristics (continued)  
at TA = 25°C and V+ = ±20 V, unless otherwise noted  
36  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-36  
34  
Voltage Mode  
32  
Current Mode  
30  
28  
26  
24  
Voltage Mode  
22  
20  
18  
16  
Current Mode  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 31. Positive Current Limit vs Temperature  
Figure 32. Negative Current Limit vs Temperature  
0.025  
0.025  
-55°C  
+25°C  
+25°C  
-55°C  
0
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.025  
-0.050  
-0.075  
-0.100  
+85°C  
+125°C  
+85°C  
+125°C  
-24 -20 -16 -12 -8 -4  
0
4
8
12 16 20 24  
-24 -20 -16 -12 -8 -4  
0
4
8
12 16 20 24  
Output Current (mA)  
Output Current (mA)  
(±24-mA End Point Calibration)  
Figure 33. Nonlinearity vs Output Current  
(±20-mA End Point Calibration)  
Figure 34. Nonlinearity vs Output Current  
Copyright © 2018, Texas Instruments Incorporated  
15  
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
Built on a robust high-voltage BiCMOS process, the XTR305 is designed to interface the 5-V or 3-V supply  
domain used for processors, signal converters, and amplifiers to the high-voltage and high-current industrial  
signal environment. The device is specified for up to ±20-V supply, but can also be powered asymmetrically (for  
example, +24 V and 5 V). It is designed to allow insertion of external circuit protection elements and drive large  
capacitive loads.  
7.2 Functional Block Diagrams  
CC  
V-  
V+  
XTR305  
IMON  
Current Copy  
RIMON  
1 kΩ  
ICOPY  
IDRV  
Input Signal  
VIN = 0 V to 4.0 V  
GND3  
VIN  
DRV  
IAIN+  
OPA  
SET  
Transfer Function:  
ROS  
RSET  
IIA  
RGAIN  
VIN  
VIN - VREF  
ROS  
RG1  
RG2  
VOUT  
=
+
(
)
RGAIN  
Load  
IA  
2
RSET  
VREF = 4.0 V  
IAIN-  
IAOUT  
OD  
EFCM  
EFLD  
EFOT  
H
L
L
M1  
M2  
Digital  
Error  
Control  
Flags  
DGND  
DVGND  
GND2  
GND1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. Standard Circuit for Voltage Output Mode  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Functional Block Diagrams (continued)  
CC  
V-  
Current Copy  
ICOPY  
V+  
XTR305  
IMON  
IDRV  
Input Signal  
VIN = 0 V to 4.0 V  
VIN  
DRV  
IAIN+  
OPA  
SET  
Transfer Function:  
VIN  
VIN - VREF  
ROS  
IOUT = 10  
+
ROS  
RSET  
(
IIA  
RSET  
RG1  
RG2  
IA  
VREF = 4.0 V  
IAIN-  
IAOUT  
IOUT  
EFCM  
EFLD  
EFOT  
OD  
M1  
M2  
H
Digital  
Control  
Error  
L
H
Flags  
DGND  
GND1  
GND2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 36. Standard Circuit for Current Output Mode  
Copyright © 2018, Texas Instruments Incorporated  
17  
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
Functional Block Diagrams (continued)  
Feedback  
Network  
V-  
Current Copy  
ICOPY  
V+  
XTR305  
IMON  
IDRV  
GND3  
VIN  
DRV  
IAIN+  
Input Signal  
OPA  
SET  
RSET  
IIA  
RG1  
RG2  
RGAIN  
IA  
GND1  
IAIN-  
IAOUT  
OD  
EFCM  
EFLD  
EFOT  
RIA  
H
M1  
M2  
Digital  
Control  
Error  
Flags  
DGND  
GND3  
Copyright © 2017, Texas Instruments Incorporated  
Figure 37. Standard Circuit for Externally Configured Mode  
7.3 Feature Description  
7.3.1 Functional Features  
The XTR305 provides two basic functional blocks: an instrumentation amplifier (IA) and a driver that is a unique  
operational amplifier (OPA) for current or voltage output. This combination represents an analog output stage  
which can be digitally configured to provide either current or voltage output to the same terminal pin.  
Alternatively, it can be configured for independent measurement channels.  
Three open collector error signals are provided to indicate output related errors such as overcurrent or open-load  
(EFLD) or exceeding the common-mode input range at the IA inputs (EFCM). An overtemperature flag (EFOT) can  
be used to control output disable to protect the circuit. The monitor outputs (IMON and IAOUT) and the error flags  
offer optimal testability during operation and configuration. The IMON output represents the current flowing into the  
load in voltage output mode, while the IAOUT represents the voltage across the connectors in current output  
mode. Both monitor outputs can be connected together when used in current or voltage output mode because  
the monitor signals are multiplexed accordingly.  
7.3.2 Current Monitor  
In current output mode (M2 = high), the XTR305 provides high output impedance. A precision current mirror  
generates an exact 1/10th copy of the output current and this current is either routed to the summing junction of  
the OPA to close the feedback loop (in the current output mode) or to the IMON pin for output current monitoring in  
other operating modes.  
The high accuracy and stability of this current split results from a cycling chopper technique. This design  
eliminates the need for a precise shunt resistor or a precise shunt voltage measurement, which would require  
high common-mode rejection performance.  
18  
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Feature Description (continued)  
During a saturation condition of the DRV output (the error flag is active), the monitor output (IMON) shows a  
current peak because the loop opens. Glitches from the current mirror chopper appear during this time in the  
monitor signal. This part of the signal cannot be used for measurement.  
7.3.3 Error Flags  
The XTR305 is designed for testability of its proper function and allows observation of the conditions at the load  
connection without disrupting service.  
If the output signal is not in accordance to the transfer function, an error flag is activated (limited by the dynamic  
response capabilities). These error flags are in addition to the monitor outputs, IMON and IAOUT, which allow the  
momentary output current (in voltage mode) or output voltage (in current mode) to be read back.  
This combination of error flag and monitor signal allows easy observation of the XTR305 for function and working  
condition, providing the basis for not only remote control, but also for remote diagnosis.  
All error flags of the XTR305 have open collector outputs with a weak pullup of approximately 1 μA to an internal  
5 V. External pullup resistors to the logic voltage are required when driving 3-V or 5-V logic.  
The output sink current should not exceed 5 mA. This is just enough to directly drive optical-couplers, but a  
current-limiting resistor is required.  
There are three error flags:  
1. IA Common-Mode Over Range (EFCM): goes low as soon as the inputs of the IA reach the limits of the  
linear operation for the input voltage. This flag shows noise from the saturated current mirrors which can be  
filtered with a capacitor to GND.  
2. Load Error (EFLD): indicates fault conditions driving voltage or current into the load. In voltage output mode  
it monitors the voltage limits of the output swing and the current limit condition caused from short or low load  
resistance. In current output mode it indicates a saturation into the supply rails from a high load resistance or  
open load.  
3. Overtemperature Flag (EFOT): a digital output that goes low if the chip temperature reaches a temperature  
of 140°C and resets as soon as it cools down to 125°C. It does not automatically shut down the output; it  
allows the user system to take action on the situation. If desired, this output can be connected to output  
disable (OD) which disables the output and therefore removes the source of power. This connection acts like  
an automatic shut down, but requires a 2.2-kΩ external pullup resistor to safely override the internal current  
sources. The IA channel is not affected, which allows continuous observation of the voltage at the output.  
7.3.4 Power On/Off Glitch  
When power is turned on or off, most analog amplifiers generate some glitching of the output because of internal  
circuit thresholds and capacitive charges. Characteristics of the supply voltage, as well as its rise and fall time,  
directly influence output glitches. Load resistance and capacitive load also affect the amplitude.  
The output disable control (OD) cannot fully suppress glitches during power-on and power-off, but reduces the  
energy significantly. The glitch consists of a small amount of current and capacitive charge (voltage) that reacts  
with the resistive and capacitive load. The bias current of the IA inputs that are normally connected to the output  
also generate a voltage across the load.  
Copyright © 2018, Texas Instruments Incorporated  
19  
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
Figure 38 indicates no glitches when transitioning between disable and enable. This measurement is made with  
a load resistance of 1 kΩ and tested in the circuit configuration of Figure 40.  
Output  
0.5V/div  
OD  
2.0V/div  
Time (10ms/div)  
Figure 38. Output Signal During Toggle of OD  
When the power is off or with low supply, the output is diode clamped to the momentary supply voltage, but can  
float while output disabled within those limits unless terminated. Only an external switch (relays or opto-relays)  
can isolate the output under such conditions. Refer to Figure 39 for an illustration of this configuration. The same  
consideration applies if low impedance zero output is required, even during power off.  
CC  
VEN_OPTO  
47 nF  
0 V to 5 V  
RLED  
5 kW  
XTR305  
RC  
15 W  
CPC1017N  
+
SOUT  
DRV  
4
3
1
2
OPA  
œ
C4  
100 nF  
ILED  
0 mA to 1  
mA  
R6  
2.2 kW  
IAIN+  
RG1  
+
RGAIN  
10 kW  
C5  
10 nF  
IA  
R7  
2.2 kW  
RG2  
IAINœ  
œ
RLOAD  
1 kW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 39. Example for Opto-Relay Output Isolation  
7.4 Device Functional Modes  
The XTR305 has a three functional modes: voltage output mode as shown in Figure 35, current output mode as  
shown in Figure 36, and externally configured mode as shown in Figure 37.  
20  
Copyright © 2018, Texas Instruments Incorporated  
 
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following sections provide details regarding the typical application of the XTR305 using three different  
functional modes: voltage output mode as shown in Figure 35, current output mode as shown in Figure 36, and  
externally configured mode as shown in Figure 37.  
8.2 Typical Application  
V-  
GND  
V+  
C2  
100 nF  
C3  
100 nF  
CC  
47 nF  
GND1  
Thermal  
Pad(2)  
V-  
V+  
XTR305  
IMON  
Current Copy  
ICOPY  
IMON  
R3  
IDRV  
1 kΩ  
VIN  
RC  
External Load  
SIN  
OS  
15 Ω  
DRV  
ROS  
OPA  
2 kΩ  
C4  
SET  
100 nF R6  
2.2 kΩ  
IAIN+  
RG1  
RG2  
GND1  
RIMON  
1 kΩ  
RSET  
2 kΩ  
CLOAD  
RLOAD  
IIA  
RGAIN  
10 kΩ  
C5  
SG  
IA  
R7  
10 nF  
GND1  
2.2 kΩ  
IAO  
IAIN-  
IAOUT  
OD  
GND2  
EFCM  
EFLD  
EFOT  
RIA  
Logic Supply  
M1  
M2  
Digital  
Error  
1 kΩ  
(+2.7 V to +5 V)  
Control  
Flags  
(1)  
DGND  
GND3  
Pull-up Resistors  
(10 kΩ)  
GND4  
Copyright © 2017, Texas Instruments Incorporated  
(1) See the Electrical Characteristics: Power and Digital and Digital I/O and Ground Considerations section for operating  
limits of DGND.  
(2) Connect thermal pad to V.  
Figure 40. Standard Circuit Configuration  
Copyright © 2018, Texas Instruments Incorporated  
21  
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
8.2.1 Design Requirements  
Consider the following information during XTR305 circuit configuration:  
Recommended bypassing: 100 nF or more for supply bypassing at each supply.  
RIMON can be in the kΩ range or short-circuited if not used. Do not leave this current output unconnected — it  
would saturate the internal current source. The current at this IMON output is IDRV / 10. Therefore, VIMON  
RIMON (IDRV /1 0).  
=
R3 is not required but can match RSET (or RSET||ROS) to compensate for the bias current.  
RIA can be short-circuited if not used. Do not leave this current output unconnected. RGAIN is selected to 10  
kΩ to match the output of 10 V with 20 mA for the equal input signal.  
RC ensures stability for unknown load conditions and limits the current into the internal protection diodes. C4  
helps protect the device. Overvoltage clamp diodes (standard 1N4002) might be necessary to protect the  
output.  
R6, R7, and C5 protect the IA.  
RLOAD and CLOAD represent the load resistance and load capacitance.  
RSET defines the transfer gain. It can be split to allow a signal offset and, therefore, allow a 5-V single-supply  
digital-to-analog converter (DAC) to control a ±10-V or ±20-mA output signal.  
The XTR305 can be used with asymmetric supply voltages; however, the minimum negative supply voltage must  
be equal to or more negative than 3 V (typically 5 V). This supply value ensures proper control of 0 V and 0  
mA with wire resistance, ground offsets, and noise added to the output. For positive output signals, the current  
requirement from this negative voltage source is less than 5 mA.  
GND1 through GND4 must be selected to fulfill specified operating ranges. DGND must be in the range of (V) ≤  
DGND (V+) 7 V.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Voltage Output Mode  
In voltage output mode (M1 and M2 are connected low or left unconnected), the feedback loop through the IA  
provides high impedance remote sensing of the voltage at the destination, compensating the resistance of a  
protection circuit, switches, wiring, and connector resistance. The output of the IA is a current that is proportional  
to the input voltage. This current is internally routed to the OPA summing junction through a multiplexer, as  
shown in Figure 41.  
A 1:10 copy of the output current of the OPA can be monitored at the IMON pin. This output current and the  
known output voltage can be used to calculate the load resistance or load power.  
During an output short-circuit or an overcurrent condition the XTR305 output current is limited and EFLD (load  
error, active low) flag is activated.  
22  
Copyright © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
CC  
V-  
Current Copy  
ICOPY  
V+  
XTR305  
IMON  
RIMON  
GND3  
IDRV  
Input Signal  
VIN  
DRV  
IAIN+  
OPA  
SET  
RSET  
IIA  
RG1  
RG2  
RGAIN  
Load  
IA  
GND1  
IAIN-  
IAOUT  
OD  
EFCM  
EFLD  
EFOT  
GND2  
M1  
M2  
Digital  
Error  
L
Control  
Flags  
L
DGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 41. Simplified Voltage Output Mode Configuration  
Applications not requiring the remote sense feature can use the OPA in stand-alone operation (M1 = high). In  
this case, the IA is available as a separate input channel.  
The IA gain can be set by two resistors, RGAIN and RSET (Equation 1):  
RGAIN  
VOUT  
=
VIN  
2RSET  
(1)  
or when adding an offset, VREF, to get bidirectional output with a single-ended input shown in Equation 2:  
VIN  
V
IN - VREF  
RGAIN  
2
+
VOUT  
=
(
(
RSET  
ROS  
(2)  
The RSET resistor is also used in current output mode. Therefore, it is useful to define RSET for the current mode,  
then set the ratio between current and voltage span with RGAIN  
.
8.2.2.2 Current Output Mode  
The XTR305 does not require a shunt resistor for current control because it uses a precise current mirror  
arrangement.  
In current output mode (M1 connected low, or left unconnected and M2 connected high), a precise copy of 1/10th  
of the output is internally routed back to the summing junction of the OPA through a multiplexer, closing the  
control loop for the output current.  
The OPA driver can deliver more than ±24 mA within a wide output voltage range. An open-output condition or  
high-impedance load that prevents the flow of the required current activates the EFLD flag and the IA can become  
overloaded and draw greater than 7-mA saturation current.  
While in current output mode, a current (IIA) that is proportional to the voltage at the IA input is routed to IAOUT  
and can be used to monitor the load voltage. A resistor converts this current into voltage. This arrangement  
makes level shifting easy.  
Copyright © 2018, Texas Instruments Incorporated  
23  
 
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
Alternatively, the IA can be used as an independent monitoring channel. If this output is not used, connect it to  
GND to maintain proper function of the monitor stage, as shown in Figure 42.  
V-  
V+  
XTR305  
IMON  
Current Copy  
ICOPY  
IDRV  
Input Signal  
VIN  
DRV  
IAIN+  
OPA  
SET  
RSET  
IIA  
RG1  
RG2  
RGAIN  
Load  
IA  
GND1  
IAIN-  
IAOUT  
OD  
GND2  
EFCM  
EFLD  
EFOT  
RIA  
M1  
M2  
Digital  
Error  
L
Control  
Flags  
H
DGND  
GND3  
Copyright © 2017, Texas Instruments Incorporated  
Figure 42. Simplified Current Output Mode Configuration  
The transconductance (gain) can be set by the resistor, RSET, according to Equation 3:  
10  
IOUT  
=
VIN  
RSET  
(3)  
(4)  
or when adding an offset VREF to get bidirectional output with a single-ended input shown in Equation 4:  
VIN  
VIN - VREF  
+
IOUT = 10  
(
RSET  
ROS  
24  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
8.2.2.3 Input Signal Connection  
It is possible to drive the XTR305 with a unidirectional input signal and still get a bidirectional output by adding an  
additional resistor, ROS, and an offset voltage signal, VREF. It can be a mid-point voltage or a signal to shift the  
output voltage to a desired value.  
This design is illustrated in Figure 43a, Figure 43b, and Figure 43c. As with a normal operational amplifier, there  
are several options for offset-shift circuits. The input can be connected for inverting or noninverting gain. Unlike  
many op amp input circuits, however, this configuration uses current feedback, which removes the voltage  
relationship between the noninverting input and output potential because there is no feedback resistor.  
a) Noninverting Input  
XTR305  
VIN  
(0 to VOFFSET  
)
OPA  
VREF  
ROS  
RSET  
2 kΩ  
2 kΩ  
IFeedback  
b) Noninverting Input  
XTR305  
VIN  
( VMIDSCALE  
)
OPA  
VMIDSCALE  
RSET  
1 kΩ  
IFeedback  
c) Inverting Input (VREF = VOFFSET  
)
XTR305  
VOFFSET  
OPA  
VIN  
( VOFFSET  
)
RSET  
1 kΩ  
IFeedback  
Copyright © 2017, Texas Instruments Incorporated  
Figure 43. Circuit Options for Op Amp Output Level Shifting  
The input bias current effect on the offset voltage can be reduced by connecting a resistor in series with the  
positive input that matches the approximate resistance at the negative input. This resistor placed close to the  
input pin acts as a damping element and makes the design less sensitive to RF noise. See R3 in Figure 40.  
8.2.2.4 Externally-Configured Mode: OPA and IA  
It is possible to use the precision of the operational amplifier (OPA) and instrumentation amplifier (IA)  
independently from each other by configuring the digital control pins (M1 high). In this mode, the IA output  
current is routed to IAOUT and the copy of the OPA output current is routed to IMON, as shown in Figure 37.  
This mode allows external configuration of the analog signal routing and feedback loop.  
The current output IA has high input impedance, low offset voltage and drift, and very high common-mode  
rejection ratio. An external resistor (RIA) can be used to convert the output current of the IA (IIA) to an output  
voltage. The gain is given by Equation 5:  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
2
2RIA  
IIA =  
VIN or VIA =  
VIN  
RGAIN  
RGAIN  
(5)  
The OPA provides low drift and high voltage output swing that can be used like a common operational amplifier  
by connecting a feedback network around it. In this mode, the copy of the output current is available at the IMON  
pin (it includes the current into the feedback network). It provides an output current limit for protection, which can  
be set between two ranges by M2. The error flag indicates an overcurrent condition, as well as indicating driving  
the output into the supply rails.  
Alternatively, the feedback can be closed through the IMON pin to create a precise voltage-to-current converter.  
8.2.2.5 Driver Output Disable  
The OPA output (DRV) can be switched to a high-impedance mode by driving the OD control pin low. This input  
can be connected to the overtemperature flag, EFOT, and a pullup resistor to protect the IC from over-  
temperature by disconnecting the load.  
The output disable mode can be used to sense and measure the voltage at the IA input pins without loading from  
the DRV output. This mode allows testing of any voltage present at the I/O connector. However, consider the  
bias current of the IA input pins.  
The digital control inputs, M1 and M2, set the four operation modes of the XTR305 as shown in Table 1. When  
M1 is asserted low, M2 determines voltage or current mode and the corresponding appropriate current limit (ISC  
)
setting. When M1 is high, the internal feedback connections are opened; IAOUT and IMON are both connected to  
the output pins; and M2 only determines the current limit (ISC) setting.  
M1 and M2 are pulled low internally with 1 μA. Terminate these two pins to avoid noise coupling. Output disable  
(OD) is internally pulled high with approximately 1 μA. When connecting OD to EFOT, a 2.2-kΩ pullup resistor is  
recommended.  
Table 1. Summary of Configuration Modes(1)  
M1  
L
M2  
L
MODE  
VOUT  
IOUT  
DESCRIPTION  
Voltage output mode, ISC = 20 mA  
Current output mode, ISC = 32 mA  
IA and IMON on external pins, ISC = 20 A  
L
H
H
L
Ext  
IA and IMON on external pins, ISC = 32  
mA  
H
H
Ext  
(1) OD is a control pin independent of M1 or M2.  
8.2.2.6 Driving Capacitive Loads and Loop Compensation  
For normal operation, the driver OPA and the IA are connected in a closed loop for voltage output. In current  
output mode, the current copy closes the loop directly.  
In current output mode, loop compensation is not critical, even for large capacitive loads. However, in voltage  
output mode, the capacitive load, together with the source impedance and the impedance of the protection  
circuit, generates additional phase lag. The IA input might also be protected by a low-pass filter that influences  
phase in the closed loop.  
The loop compensation low-pass filter consists of CC and the parallel resistance of ROS and RSET. For loop  
stability with large capacitive load, the external phase shift has to be added to the OPA phase. With CC, the  
voltage gain of the OPA has to approach zero at the frequency where the total phase approaches 180° + 135°.  
The best stability for large capacitive loads is provided by adding a small resistor, RC (15 Ω). See the Output  
Protection section.  
An empirical method of evaluation is using a square wave input signal and observing the settling after transients.  
Use small signal amplitudes only—steep signal edges cause excessive current to flow into the capacitive load  
and may activate the current limit, which hides or prevents oscillation. A small-signal oscillation can be hidden  
from large capacitive loads, but observing the IMON output on an appropriate resistor (use a similar value like  
RSET||ROS) would indicate stability issues. Note that noise pulses at IMON during overload (EFLD active) are normal  
and are caused by cycling of the current mirror.  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
The voltage output mode includes the IA in the loop. An additional low-pass filter in the input reverses the phase  
and therefore increases the signal bandwidth of the loop, but also increases the delay. Again, loop stability has to  
be observed. Overloading the IA disconnects the closed loop and the output voltage rails.  
8.2.2.7 Internal Current Sources, Switching Noise, and Settling Time  
The accuracy of the current output mode and the DC performance of the IA rely on dynamically-matched current  
mirrors.  
Identical current sources are rotated to average out mismatch errors. It can take several clock cycles of the  
internal 100-kHz oscillator (or a submultiple of that frequency) to reach full accuracy. This may dominate the  
settling time to the 0.1% accuracy level and can be as much as 100 μs in current output mode or 40 μs in voltage  
output mode.  
A small portion of the switching glitches appear at the DRV output, and also at the IMON and IAMON outputs. The  
standard circuit configuration, with RC, C4, and CC, which are required for loop compensation and output  
protection, also helps reduce the noise to negligible levels at the signal output. If necessary, the monitor outputs  
can be filtered with a shunt capacitor.  
8.2.2.8 IA Structure, Voltage Monitor  
The instrumentation amplifier has high-impedance NPN transistor inputs that do not load the output signal, which  
is especially important in current output mode. The output signal is a controlled current that is multiplexed either  
to the SET pin (to close the voltage output loop) or to IAOUT (for external access).  
The principal circuit is shown in Figure 44. The two input buffer amplifiers reproduce the input difference voltage  
across RGAIN. The resulting current through this resistor is bidirectionally mirrored to the output. That mirroring  
results in the transfer function of Equation 6:  
(IAIN+ – IAIN-  
)
IIA = IAOUT = 2  
RGAIN  
(6)  
The accuracy and drift of RGAIN defines the accuracy of the voltage to current conversion. The high accuracy and  
stability of the current mirrors result from a cycling chopper technique.  
Current Mirror  
IR  
IR  
IAIN+  
A1  
Current Mirror  
Current Mirror  
IR  
RGAIN  
IR  
2IR  
2IR  
IIA  
A2  
IAIN-  
2IR  
2IR  
Current Mirror  
Copyright © 2017, Texas Instruments Incorporated  
Figure 44. IA Block Diagram  
Copyright © 2018, Texas Instruments Incorporated  
27  
 
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
The output current, IAOUT, of the instrumentation amplifier is limited to protect the internal circuitry. This current  
limit has two settings controlled by the state of M2 (see Electrical Characteristics: Instrumentation Amplifier (IA),  
Short-Circuit Current specification).  
NOTE  
If RSET is too small, the current output limitation of the instrumentation amplifier can disrupt  
the closed loop of the XTR305 in voltage output mode.  
With M2 = low, the nominal RGAIN of 10 kΩ allows an input voltage of 20 VPP, which produces an output current  
of 4 mAPP. When using lower resistors for RGAIN that can allow higher currents, the IA output current limitation  
must be taken into account.  
8.2.2.9 Digital I/O and Ground Considerations  
The XTR305 offers voltage output mode, current output mode, external configuration, and instrumentation mode  
(voltage input). In addition, the internal feedback mode can be disconnected and external loop connections can  
be made. These modes are controlled by M1 and M2 (see Table 1). The OD input pin controls enable or disable  
of the output stage (OD is active low).  
The digital I/O is referenced to DGND and signals on this pin must remain within 5 V of the DGND potential. This  
DGND pin carries the output low-current (sink current) of the logic outputs. DGND can be connected to a  
potential within the supply voltage but needs to be 8 V below the positive supply. Proper connection avoids  
current from the digital outputs flowing into the analog ground.  
CAUTION  
The DGND has normally reverse-biased diodes connected to the supply. Therefore,  
high and destructive currents could flow if DGND is driven beyond the supply rails by  
more than a diode forward voltage. Avoid this condition during power on and power off.  
8.2.2.10 Output Protection  
The XTR305 is intended to operate in a harsh industrial environment. Therefore, a robust semiconductor process  
was chosen for this design. However, some external protection is still required.  
The instrumentation amplifier inputs can be protected by external resistors that limit current into the protection  
cell behind the IC pins, as shown in Figure 45. This cell conducts to the power-supply connection through a  
diode as soon as the input voltage exceeds the supply voltage. The circuit configuration example shows how to  
arrange these two external resistors.  
The bias current is best cancelled if both resistors are equal. The additional capacitor reduces RF noise in the  
input signal to the IA.  
R6  
2.2 kΩ  
IAIN+  
RG1  
VSENSE+  
C5  
10 nF  
IA  
RGAIN  
R7  
RG2  
IAIN-  
2.2 kΩ  
VSENSE-  
Figure 45. Current-Limiting Resistors  
The load connection to the DRV output must be low impedance; therefore, external protection diodes may be  
necessary to handle excessive currents, as shown in Figure 46. The internal protection diodes start to conduct  
earlier than a normal external PN-type diode because they are affected by the higher die temperature. Therefore,  
either Schottky diodes are required, or an additional resistor (RC) can be placed in series with the input. An  
example of this protection is shown in Figure 46. Assuming the standard diodes limit the voltage to 1.4 V and the  
internal diodes clamp at 0.7 V, this resistor can limit the current into the internal protection diodes to 50 mA  
shown in Equation 7:  
28  
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
(1.4V – 0.7V)  
15W  
= 47mA  
(7)  
RC is also part of the recommended loop compensation. C4 helps protect the output against RFI and high-voltage  
spikes.  
CC  
V+  
47 nF  
D
XTR305  
1N4002  
RC  
15 Ω  
DRV  
I/V OUT  
OPA  
D
C4  
100 nF  
1N4002  
V-  
Copyright © 2017, Texas Instruments Incorporated  
Figure 46. Example for DRV Output Protection  
8.2.3 Application Curves  
The nonlinearity of the XTR305 when operating in current output mode is shown in Figure 47 and Figure 48.  
V-  
V+  
0.025  
0
+25°C  
-55°C  
L1  
L2  
10 µH  
10 µH  
-0.025  
-0.050  
-0.075  
-0.100  
CB1  
+85°C  
100 nF  
CB2  
100 nF  
CB3  
1 µF  
+125°C  
CB4  
1 µF  
-24 -20 -16 -12 -8 -4  
0
4
8
12 16 20 24  
Output Current (mA)  
(±24-mA End Point Calibration)  
V-  
V+  
XTR305  
Copyright © 2017, Texas Instruments Incorporated  
(±20-mA End Point Calibration)  
Figure 48. Nonlinearity vs Output Current  
Figure 47. Nonlinearity vs Output Current  
9 Power Supply Recommendations  
Built on a robust high-voltage BiCMOS process, the XTR305 is designed to interface the 5-V or 3-V supply  
domain used for processors, signal converters, and amplifiers to the high-voltage and high-current industrial  
signal environment. The device is specified for up to ±20-V supply, but can also be powered asymmetrically (for  
example, +24 V and 5 V). XTR305 is designed to allow insertion of external circuit protection elements and  
drive large capacitive loads.  
Copyright © 2018, Texas Instruments Incorporated  
29  
 
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Supply bypass capacitors must be close to the package and connected with low-impedance conductors. Avoid  
noise coupled into RGAIN, and observe wiring resistance. For thermal management, see the VQFN Package and  
Heat Sinking section.  
Layout for the XTR305 is not critical; however, its internal current chopping works best with good (low dynamic  
impedance) supply decoupling. Therefore, avoid through-hole contacts in the connection to the bypass  
capacitors or use multiple through-hole contacts. Switching noise from power supplies should be filtered enough  
to reduce influence on the circuit. Small resistors (2-Ω, for example) or damping inductors in series with the  
supply connection (between the DC-DC converter and the XTR circuit) act as a decoupling filter together with the  
bypass capacitor as shown in Figure 49.  
Resistors connected close to the input pins help dampen environmental noise coupled into conductor traces.  
Therefore, place the OPA input- and IA input-related resistors close to the package. Also, avoid additional wire  
resistance in series to RSET, ROS, and RGAIN (observe the reliability of the through-hole contacts), because this  
resistance could produce gain and offset error as well as drift; 1 Ω is already 0.1% of the 1-kΩ resistor.  
The exposed lead-frame die pad on the bottom of the package must be connected to V, pin 11 (see the VQFN  
Package and Heat Sinking section for more details).  
V-  
V+  
L1  
L2  
10 µH  
10 µH  
CB1  
100 nF  
CB2  
100 nF  
CB3  
1 µF  
CB4  
1 µF  
V-  
V+  
XTR305  
Copyright © 2017, Texas Instruments Incorporated  
Figure 49. Suggested Supply Decoupling for Noisy Chopper-Type Supplies  
10.2 Layout Example  
A detailed layout example can be found in the technical document XTR300EVM. This document is available for  
download at www.ti.com. The example layout is also shown in Figure 50.  
30  
Copyright © 2018, Texas Instruments Incorporated  
 
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
Layout Example (continued)  
Figure 50. Layout Example  
10.3 VQFN Package and Heat Sinking  
The XTR305 is available in a VQFN package. This leadless, near-chip-scale package maximizes board space  
and enhances thermal and electrical characteristics of the device through an exposed thermal pad.  
Packages with an exposed thermal pad are specifically designed to provide excellent power dissipation, but  
printed circuit board (PCB) layout greatly influences overall heat dissipation. The thermal resistance from  
junction-to-ambient (θJA) is specified for the packages with the exposed thermal pad soldered to a normalized  
PCB, as described in the technical brief PowerPAD™ Thermally-Enhanced Package. See also EIA/JEDEC  
Specifications JESD51-0 to 7, VQFN/SON PCB Attachment, and Quad Flatpack No-Lead Logic Packages.  
These documents are available for download at www.ti.com.  
NOTE  
All thermal models have an accuracy variation of ±20%.  
Component population, layout of traces, layers, and air flow strongly influence heat dissipation. Worst-case load  
conditions should be tested in the real environment to ensure proper thermal conditions. Minimize thermal stress  
for proper long-term operation with a junction temperature well below +125°C.  
The exposed lead-frame die pad on the bottom of the package must be connected to the Vpin.  
Copyright © 2018, Texas Instruments Incorporated  
31  
XTR305  
ZHCSHO6 FEBRUARY 2018  
www.ti.com.cn  
10.4 Power Dissipation  
Power dissipation depends on power supply, signal, and load conditions. It is dominated by the power dissipation  
of the output transistors of the OPA. For DC signals, power dissipation is equal to the product of output current,  
IOUT and the output voltage across the conducting output transistor (VS – VOUT).  
It is very important to note that the temperature protection does not shut the device down in overtemperature  
conditions, unless the EFOT pin is connected to the output enable pin OD; see the Driver Output Disable section.  
The power that can be safely dissipated in the package is related to the ambient temperature and the heat sink  
design and conditions. The VQFN package with an exposed thermal pad is specifically designed to provide  
excellent power dissipation, but board layout greatly influences the heat dissipation.  
To appropriately determine the required heat sink area, calculate required power dissipation; also consider the  
relationship between power dissipation and thermal resistance to minimize overheat conditions and allow for  
reliable long-term operation.  
The heat-sinking efficiency can be tested using the EFOT output signal. This output goes low at nominally 140°C  
junction temperature (assume 6% tolerance). With full power dissipation (for example, maximum current into a 0-  
Ω load), the ambient temperature can be slowly raised until the OT flag goes low. This flag would indicate the  
minimum heat sinking for the usable operation condition.  
The recommended landing pattern for the VQFN package is shown at the end of this data sheet.  
32  
版权 © 2018, Texas Instruments Incorporated  
XTR305  
www.ti.com.cn  
ZHCSHO6 FEBRUARY 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
如需相关文档,请参阅:  
PowerPAD™ 散热增强型封装》  
EIA/JEDEC 规范 JESD51-0 7、《VQFN/SON PCB 连接》  
《四方扁平无引线逻辑器件封装》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2018, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XTR305IRGWR  
XTR305IRGWT  
ACTIVE  
VQFN  
VQFN  
RGW  
20  
20  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
XTR  
305  
ACTIVE  
RGW  
NIPDAU  
XTR  
305  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGW 20  
5 x 5, 0.65 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227157/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.15±0.1  
2X 2.6  
(0.1) TYP  
10  
6
16X 0.65  
5
11  
SYMM  
21  
2X  
2.6  
15  
1
0.36  
0.26  
20X  
PIN1 ID  
(OPTIONAL)  
0.1  
C A B  
C
20  
16  
0.05  
SYMM  
0.65  
0.45  
20X  
4219039/A 06/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
3.15)  
(2.6)  
(
20  
16  
16X (0.65)  
15  
1
(1.325)  
21  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
(Ø0.2) VIA  
6
10  
TYP  
(1.325)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219039/A 06/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
4X ( 1.37)  
2X (0.785)  
16  
20  
16X (0.65)  
21  
1
15  
2X (0.785)  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
METAL  
TYP  
6
10  
SYMM  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219039/A 06/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

XTR305IRGWT

工业模拟电流/电压输出驱动器 | RGW | 20 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XTR446

Short-range business radio

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

XTR501

HIGH CURRENT BRIDGE DRIVER and 4-20mA Transmitter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BB

XTRA-GUARD1

Performance as tough as your application

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XTS3212

MOS管 场效应管

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XTSC0201-10NF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-100PF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-10NF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-1NF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-22NF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-33NF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

XTSC0402-470PF

Extreme Temperature Silicon Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS