XXX3490 [TI]

3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS; 3.3 V全双工RS - 485驱动器和接收
XXX3490
型号: XXX3490
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
3.3 V全双工RS - 485驱动器和接收

驱动器
文件: 总28页 (文件大小:835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RHL (QFN)  
D-8 (SOIC)  
D-14 (SOIC)  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS  
Each driver and receiver has separate input and  
1
FEATURES  
output pins for full-duplex bus communication  
designs. They are designed for balanced  
transmission lines and inter-operation with ANSI  
TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11 and ISO  
8482:1993 standard-compliant devices.  
1/8 Unit-Load Option Available (Up to  
256 Nodes on the Bus)  
Bus-Pin ESD Protection Exceeds 15 kV HBM  
Optional Driver Output Transition Times for  
Signaling Rates(1) of 1 Mbps, 5 Mbps and  
26 Mbps  
The SN65HVD30, SN65HVD31, SN65HVD32,  
SN65HVD36 and SN65HVD37 are fully enabled with  
no external enabling pins.  
Low-Current Standby Mode: < 1 µA  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
The SN65HVD33, SN65HVD34, SN65HVD35,  
SN65HVD38, and SN65HVD39 have active-high  
driver enables and active-low receiver enables. A low,  
less than 1µA, standby current can be achieved by  
disabling both the driver and receiver.  
5-V Tolerant Inputs  
Bus Idle, Open, and Short Circuit Failsafe  
Driver Current Limiting and Thermal Shutdown  
All devices are characterized for ambient  
temperatures from –40°C to 85°C. Low power  
dissipation allows operation at temperatures up to  
105°C or 125°C, depending on package option.  
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-485-A and RS-422 Compatible  
5-V Devices available, SN65HVD50-59  
(1)  
Line Signaling Rate is the number of voltage transitions made  
per second expressed in units of bps (bits per second).  
The preview devices SN65HVD36 and SN65HVD38  
implement receiver equalization technology for  
improved jitter performance on differential bus  
applications with data rates up to 20 Mbps at cable  
lengths up to 160 meters.  
APPLICATIONS  
Utility Meters  
DTE/DCE Interfaces  
Industrial, Process, and Building Automation  
Point-of-Sale (POS) Terminals and Networks  
The preview devices SN65HVD37 and SN65HVD39  
implement receiver equalization technology for  
improved jitter performance on differential bus  
applications with data rates in the range of 1 to 5  
Mbps at cable lengths up to 1000 meters.  
DESCRIPTION  
The SN65HVD3X devices are 3-state differential line  
drivers and differential-input line receivers that  
operate with 3.3-V power supply.  
IMPROVED REPLACEMENT FOR:  
Part Number  
Replace with  
xxx3491  
xxx3490  
SN65HVD33:  
SN65HVD30:  
Better ESD protection (15kV vs 2kV or not specified) Higher Signaling Rate (26Mbps vs 20Mbps)  
Fractional Unit Load (64 Nodes vs 32)  
MAX3491E  
MAX3490E  
SN65HVD33:  
SN65HVD30:  
Higher Signaling Rate (26Mbps vs 12Mbps) Fractional Unit Load (64 Nodes vs 32)  
Higher Signaling Rate (26Mbps vs 16Mbps) Lower Standby Current (1 µA vs 10 µA)  
Higher Signaling Rate (5Mbps vs 500kbps) Lower Standby Current (1 µA vs 10 µA)  
Higher Signaling Rate (1Mbps vs 250kbps) Lower Standby Current (1 µA vs 10 µA)  
MAX3076E  
MAX3077E  
SN65HVD33:  
SN65HVD30:  
MAX3073E  
MAX3074E  
SN65HVD34:  
SN65HVD31:  
MAX3070E  
MAX3071E  
SN65HVD35:  
SN65HVD32:  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2008, Texas Instruments Incorporated  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
SN65HVD30, SN65HVD31, SN65HVD32,  
SN65HVD36, SN65HVD37  
SN65HVD33, SN65HVD34, SN65HVD35,  
SN65HVD38, SN65HVD39  
D PACKAGE (TOP VIEW)  
NC  
R
VCC  
VCC  
A
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
R
1
2
3
4
8
7
6
5
A
B
Z
Y
RE  
D
DE  
B
GND  
D
Z
GND  
GND  
Y
8
7
8
NC  
2
A
R
NC - No internal connection  
B
5
6
3
Y
Z
D
SN65HVD33  
RHL PACKAGE (TOP VIEW)  
VCC VCC  
NC  
R
NC  
A
2
3
19  
18  
17  
16  
15  
14  
13  
12  
1
20  
RE  
NC  
DE  
B
4
5
18  
A
17  
B
3
4
NC  
Z
R
RE  
DE  
6
7
D
NC  
NC  
Y
6
7
NC  
14  
Y
15  
Z
8
9
D
10  
11  
NC  
GND  
NC - No internal connection  
GND  
2
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
AVAILABLE OPTIONS  
SIGNALING  
RATE  
RECEIVER  
EQUALIZATION  
BASE  
UNIT LOADS  
ENABLES  
SOIC MARKING  
PART NUMBER  
26 Mbps  
5 Mbps  
1 Mbps  
26 Mbps  
5 Mbps  
1 Mbps  
26 Mbps  
5 Mbps  
26 Mbps  
5 Mbps  
No  
No  
No  
No  
SN65HVD30  
SN65HVD31  
SN65HVD32  
SN65HVD33  
SN65HVD34  
SN65HVD35  
SN65HVD36  
SN65HVD37  
SN65HVD38  
SN65HVD39  
VP30  
1/8  
1/8  
VP31  
No  
No  
VP32  
No  
Yes  
Yes  
Yes  
No  
65HVD33  
65HVD34  
65HVD35  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
1/8  
1/8  
No  
No  
Yes  
Yes  
Yes  
Yes  
1/8  
1/8  
No  
Yes  
Yes  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
(2)  
UNIT  
VCC  
Supply voltage range  
–0.3 V to 6 V  
–9 V to 14 V  
–50 to 50 V  
V(A), V(B), V(Y), V(Z)  
Voltage range at any bus terminal (A, B, Y, Z)  
Voltage input, transient pulse through 100 . See Figure 12 (A, B, Y, Z)(3)  
V(TRANS)  
VI  
PD(cont)  
IO  
Input voltage range (D, DE, RE)  
-0.5 V to 7 V  
Internally limited(4)  
11 mA  
Continuous total power dissipation  
Output current (receiver output only, R)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) This tests survivability only and the output state of the receiver is not specified.  
(4) The thermal shutdown protection circuit internally limits the continuous total power dissipation. Thermal shutdown typically occurs when  
the junction temperature reaches 165°C.  
DISSIPATION RATINGS  
JEDEC THERMAL  
MODEL  
TA < 25°C  
RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
RATING  
TA = 105°C  
RATING  
TA = 125°C  
RATING  
PACKAGE  
Low k  
High k  
Low k  
High k  
High k  
625 mW  
1000 mW  
765 mW  
5 mW/°C  
8 mW/°C  
325 mW  
520 mW  
400 mW  
705 mW  
890 mW  
SOIC (D) 8 pin  
360 mW  
275 mW  
485 mW  
6150 mW  
6.1 mW/°C  
10.8 mW/°C  
13.7 mW/°C  
SOIC (D) 14 pin  
1350 mW  
1710 mW  
270 mW  
340 mW  
QFN (RHL) 20 pin  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range unless otherwise noted  
MIN NOM  
MAX UNIT  
VCC  
Supply voltage  
3
7(1)  
3.6  
V
VI or VIC  
Voltage at any bus terminal (separately or common mode)  
12  
SN65HVD30, SN65HVD33, SN65HVD36, SN65HVD38  
26  
1/tUI  
Signaling rate  
SN65HVD31, SN65HVD34, SN65HVD37, SN65HVD39  
SN65HVD32, SN65HVD35  
5
1
Mbps  
RL  
Differential load resistance  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
54  
2
60  
VIH  
VIL  
VID  
D, DE, RE  
D, DE, RE  
VCC  
0.8  
12  
0
V
–12  
–60  
–8  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
60  
8
IOL  
TJ  
Low-level output current  
Junction temperature  
mA  
Receiver  
–40  
150  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
ELECTROSTATIC DISCHARGE PROTECTION  
PARAMETER  
TEST CONDITIONS  
Bus terminals and GND  
MIN TYP(1)  
MAX UNIT  
Human body model  
Human body model(2)  
Charged-device-model(3)  
±16  
±4  
All pins  
All pins  
kV  
±1  
(1) All typical values at 25°C with 3.3-V supply.  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(3) Tested in accordance with JEDEC Standard 22, Test Method C101.  
4
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
–1.5  
MAX UNIT  
VI(K)  
Input clamp voltage  
II = –18 mA  
V
IO = 0  
2.5  
VCC  
RL = 54 , See Figure 1 (RS-485)  
RL = 100 , See Figure 1 ,(2) (RS-422)  
Vtest = –7 V to 12 V, See Figure 2  
1.5  
2
2
|VOD(SS)  
|
Steady-state differential output voltage  
V
2.3  
1.5  
Change in magnitude of steady-state  
differential output voltage between  
states  
Δ|VOD(SS)  
|
RL = 54 , See Figure 1 and Figure 2  
–0.2  
0.2  
V
V
Differential Output Voltage overshoot  
and undershoot  
RL = 54 , CL = 50 pF, See Figure 5 and  
Figure 3  
VOD(RING)  
10%(3)  
HVD30, HVD33,  
HVD36, HVD38  
0.5  
Peak-to-peak  
common-mode  
output voltage  
VOC(PP)  
See Figure 4  
V
V
HVD31, HVD34,  
HVD37, HVD39,  
HVD32, HVD35  
0.25  
Steady-state common-mode output  
voltage  
VOC(SS)  
1.6  
2.3  
0.05  
90  
See Figure 4  
Change in steady-state common-mode  
output voltage  
ΔVOC(SS)  
–0.05  
VCC = 0 V, VZ or VY = 12 V,  
Other input at 0 V  
HVD30, HVD31,  
HVD32, HVD36,  
HVD37  
VCC = 0 V, VZ or VY = –7 V,  
Other input at 0 V  
–10  
IZ(Z) or  
IY(Z)  
High-impedance  
state output current  
HVD33, HVD34,  
HVD35, HVD38,  
HVD39  
µA  
VCC = 3 V or 0 V, DE = 0 V  
VZ or VY = 12 V  
90  
Other input  
at 0 V  
VCC = 3 V or 0 V, DE = 0 V  
VZ or VY = –7 V  
–10  
VZ or VY = –7 V  
VZ or VY = 12 V  
–250  
–250  
0
250  
250  
100  
IZ(S) or  
IY(S)  
Other input  
at 0 V  
Short Circuit output Current  
mA  
II  
Input current  
D, DE  
µA  
C(OD)  
Differential output capacitance  
VOD = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
16  
pF  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) VCC is 3.3 Vdc ± 5%  
(3) 10% of the peak-to-peak differential output voltage swing, per TIA/EIA-485  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
low-to-high-level output  
4
25  
10  
38  
18  
65  
tPLH  
tPHL  
tr  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
120  
4
175  
9
305  
18  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Propagation delay time,  
high-to-low-level output  
25  
38  
65  
120  
2.5  
20  
175  
5
305  
12  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Differential output signal rise  
time  
RL = 54 , CL = 50 pF,  
See Figure 5  
37  
60  
120  
2.5  
20  
185  
5
300  
12  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Differential output signal fall  
time  
tf  
35  
60  
120  
180  
0.6  
2.0  
5.1  
300  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
tsk(p)  
tPZH1  
tPHZ  
tPZL1  
tPLZ  
tPZH2  
tPZL2  
Pulse skew (|tPHL – tPLH|)  
HVD33, HVD38  
45  
235  
490  
25  
Propagation delay time,  
high-impedance-to-high-level  
output  
HVD34, HVD39  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z  
See Figure 6  
HVD35  
HVD33, HVD38  
Propagation delay time,  
high-level-to-high-impedance  
output  
HVD34, HVD39  
65  
HVD35  
165  
35  
HVD33, HVD38  
Propagation delay time,  
high-impedance-to-low-level  
output  
HVD34, HVD39  
190  
490  
30  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y  
See Figure 7  
HVD35  
HVD33, HVD38  
Propagation delay time,  
low-level-to-high-impedance  
output  
HVD34, HVD39  
120  
290  
HVD35  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z  
See Figure 6  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
4000  
4000  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y  
See Figure 7  
(1) All typical values are at 25°C and with a 3.3-V supply.  
6
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
Positive-going differential input threshold  
voltage  
VIT+  
VIT-  
IO = –8 mA  
IO = 8 mA  
–0.02  
V
Negative-going differential input threshold  
voltage  
–0.20  
Vhys Hysteresis voltage (VIT+ - VIT-  
)
50  
mV  
V
VIK  
Enable-input clamp voltage  
II = –18 mA  
–1.5  
2.4  
VID = 200 mV, IO = –8 mA, See Figure 8  
VID = –200 mV, IO = 8 mA, See Figure 8  
VO = 0 or VCC, RE at VCC  
VA or VB = 12 V  
VO  
Output voltage  
V
0.4  
IO(Z) High-impedance-state output current  
HVD31, HVD32,  
–1  
1
0.1  
0.1  
µA  
0.05  
0.06  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
Other input at  
0V  
HVD34, HVD35,  
HVD37, HVD39  
mA  
–0.10 –0.04  
–0.10 –0.03  
0.20  
VA or VB = -7 V, VCC = 0 V  
VA or VB = 12 V  
IA or  
IB  
Bus input current  
0.35  
0.4  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
0.24  
HVD30, HVD33,  
HVD36, HVD38  
Other input at  
0V  
mA  
–0.35 –0.18  
–0.25 –0.13  
–60  
VA or VB = -7 V, VCC = 0 V  
VIH = 0.8 V or 2 V  
IIH  
Input current, RE  
µA  
CID  
Differential input capacitance  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
pF  
(1) All typical values are at 25°C and with a 3.3-V supply.  
SUPPLY CURRENT CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
HVD30  
2.1  
6.4  
7.9  
1.8  
2.2  
3.8  
HVD31, HVD32  
D at 0 V or VCC and No Load  
mA  
HVD36, HVD37  
HVD33  
RE at 0 V, D at 0 V or VCC, DE at 0 V,  
No load (Receiver enabled and driver disabled)  
HVD34, HVD35  
HVD38, HVD39  
mA  
RE at VCC, D at VCC, DE at 0 V,  
No load (Receiver disabled and driver  
disabled)  
HVD33, HVD34, HVD35,  
HVD38, HVD39  
0.022  
1
µA  
ICC  
Supply current  
HVD33  
2.1  
6.5  
3.5  
8
HVD34, HVD35  
HVD38  
RE at 0 V, D at 0 V or VCC, DE at VCC  
No load (Receiver enabled and driver enabled)  
,
HVD39  
mA  
HVD33  
1.8  
6.2  
2.5  
7
HVD34, HVD35  
HVD38  
RE at VCC, D at 0 V or VCC, DE at VCC  
No load (Receiver disabled and driver enabled)  
HVD39  
(1) All typical values are at 25°C and with a 3.3-V supply.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
low-to-high-level output  
26  
45  
tPLH  
tPHL  
tsk(p)  
HVD31, HVD32, HVD34, HVD35,  
HVD37, HVD39  
47  
29  
49  
70  
45  
70  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
high-to-low-level output  
HVD31, HVD32, HVD34, HVD35,  
HVD37, HVD39  
VID = -1.5 V to 1.5 V,  
CL = 15 pF, See Figure 9  
HVD30, HVD33, HVD36, HVD37,  
HVD38, HVD39  
7
Pulse skew (|tPHL – tPLH|)  
HVD31, HVD34, HVD32, HVD35  
10  
ns  
5
tr  
Output signal rise time  
Output signal fall time  
tf  
6
20  
tPHZ  
tPZH1  
tPZH2  
tPLZ  
tPZL1  
tPZL2  
Output disable time from high level  
DE at 3 V  
DE at 0 V  
DE at 3 V  
DE at 0 V  
CL = 15 pF,  
See Figure 10  
Output enable time to high level  
20  
Propagation delay time, standby-to-high-level output  
Output disable time from low level  
4000  
20  
CL = 15 pF,  
See Figure 11  
Output enable time to low level  
20  
Propagation delay time, standby-to-low-level output  
4000  
(1) All typical values are at 25°C and with a 3.3-V supply  
RECEIVER EQUALIZATION CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
DEVICE  
MIN  
TYP(1)  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
MAX UNIT  
0 m  
HVD36, HVD38  
HVD33(2)  
100 m  
HVD36, HVD38  
HVD33(2)  
25 Mbps  
150 m  
200 m  
200 m  
250 m  
300 m  
500 m  
HVD36, HVD38  
HVD33(2)  
HVD36, HVD38  
HVD33(2)  
HVD36, HVD38  
HVD33(2)  
Pseudo-random NRZ code  
with a bit pattern length of  
216–1, Belden 3105A cable  
10 Mbps  
Peak-to-peak  
eye-pattern jitter  
tj(pp)  
HVD36, HVD38  
HVD33(2)  
ns  
HVD36, HVD38  
HVD34(2)  
5 Mbps  
3 Mbps  
1 Mbps  
HVD37, HVD39  
HVD33(2)  
HVD34(2)  
500 m  
HVD36, HVD38  
HVD37, HVD39  
HVD34(2)  
1000 m  
HVD37, HVD39  
(1) All typical values are at VCC = 5 V, and temperature = 25°C.  
(2) The HVD33 and the HVD34 do not have receiver equalization but are specified for comparison.  
8
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
DEVICE POWER DISSIPATION – PD  
PARAMETER  
TEST CONDITIONS  
JEDEC Low-K model  
VALUE  
231  
135  
163  
92  
UNITS  
SOIC-8  
JEDEC High-K model  
JEDEC Low-K model  
JEDEC High-K model  
θJA  
Junction-to-Ambient Thermal Resistance  
Junction-to- Board Thermal Resistance  
°C/W  
SOIC-14  
QFN-20  
73  
SOIC-8  
44  
θJB  
SOIC-14  
QFN-20  
61  
°C/W  
°C/W  
mW  
SOIC-8  
43  
59  
14  
θJC  
Junction-to-Case Thermal Resistance  
Power Dissipation  
Driver and receiver enabled, 50% duty cycle  
square-wave signal at signaling rate:  
HVD30,33 at 25 Mbps,  
SOIC-14  
QFN-20  
HVD30,33  
HVD31,34  
HVD32,35  
HVD30,33  
HVD31,34  
HVD32,35  
VCC = 3.3V, TJ = 25°C, RL = 60 ,  
CL = 50 pF (driver),  
CL = 15 pF (receiver)  
Typical  
PD  
HVD31,34 at 5 Mbps,  
HVD32,35 at 1 Mbps  
VCC = 3.6V, TJ = 140°C, RL = 54  
, CL = 50 pF (driver),  
CL = 15 pF (receiver)  
197  
213  
248  
170  
Worst-case  
mW  
TSD  
Thermal Shut-down Junction Temperature  
°C  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
DE  
Y
Z
I
I
Y
Z
V
OD  
RL  
0 or 3 V  
I
V
I
V
Z
V
Y
Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions  
375 ±1%  
V
CC  
DE  
Y
Z
D
V
OD  
60 ±1%  
0 or 3 V  
+
_
−7 V < V  
< 12 V  
(test)  
375 ±1%  
Figure 2. Driver VOD With Common-Mode Loading Test Circuit  
V
OD(SS)  
V
OD(RING)  
0 V Differential  
V
OD(RING)  
-V  
OD(SS)  
Figure 3. VOD(RING) Waveform and Definitions  
VOD(RING) is measured at four points on the output waveform, corresponding to overshoot and undershoot from  
the VOD(H) and VOD(L) steady state values.  
V
Y
Y
V
CC  
27 Ω ± 1%  
27 Ω ± 1%  
V
DE  
Z
Z
Y
Z
D
V
OC(PP)  
∆V  
Input  
OC(SS)  
V
OC  
V
C
L
= 50 pF ±20%  
OC  
C
L
Includes Fixture and  
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50 Ω  
O
r
f
Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
10  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
Y
Z
»
»
W
W
W
Figure 5. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
D
S1  
Y
3 V  
0 V  
1.5 V  
Z
1.5 V  
Y
Z
VI  
S1  
D
0 V  
VO  
0.5 V  
tPZH(1 & 2)  
VOH  
DE  
RL = 110 W  
1ꢀ  
VO  
2.3 V  
CL = 50 pF  
20ꢀ  
~ 0 V  
Input  
Generator  
VI 50 W  
tPHZ  
Generator: PRR = 50 kHz, 50ꢀ Duty Cycle, t  
= 50 W  
r < 6 ns, tf  
< 6 ns, Z0  
CL Includes Fixture and Instrumentation Capacitance  
Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
VCC  
D
3 V  
0 V  
S1  
Z
Y
R
= 110 Ω  
3 V  
L
± 1%  
Y
V
I
1.5 V  
1.5 V  
S1  
D
V
O
0 V  
Z
t
t
PZL(1&2)  
PLZ  
DE  
50 Ω  
VCC  
C
L
= 50 pF ±20%  
Input  
V
I
0.5 V  
Generator  
V
O
2.3 V  
V
OL  
Generator: PRR = 50 kHz, 50% Duty Cycle, t  
= 50 W  
r < 6 ns, tf  
< 6 ns, Z0  
CL Includes Fixture and Instrumentation Capacitance  
Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
I
A
A
B
I
O
R
V
A
V
I
ID  
V
B
V
IC  
V
O
B
V
A
+ V  
B
RE  
2
I
I
V
I
Figure 8. Receiver Voltage and Current Definitions  
A
3 V  
0 V  
V
O
R
Input  
1.5 V  
1.5 V  
V
I
V
I
50 Ω  
Generator  
B
1.5 V  
0 V  
C
L
= 15 pF  
t
t
PHL  
PLH  
±20%  
RE  
V
OH  
OL  
90% 90%  
V
O
1.5 V  
10%  
1.5 V  
10%  
CL Includes Fixture and Instrumentation Capacitance  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
V
t
t
r
f
o
r
f
Figure 9. Receiver Switching Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
1.5 V  
0 V  
V
A
B
S1  
1 kW ±1ꢀ  
V
R
O
V
1.5V  
1.5V  
I
B
C
= 15 pF  
L
±±0ꢀ  
0V  
V
RE  
t
t
PHZ  
PZH(1 & ±)  
Input  
Generator  
OH  
50 W  
I
1.5 V  
0.5V  
~0 V  
V
C
Includes Fixture and  
O
L
Instrumentation Capacitance  
Generator: PRR = 50 kHz, 50ꢀ Duty Cycle, t  
= 50 W  
r < 6 ns, tf  
< 6 ns, Z0  
Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
0 V  
1.5 V  
V
A
S1  
1 k W ±1ꢀ  
V
R
O
V
1.5V  
1.5V  
I
B
C
= 15 pF  
L
±±0ꢀ  
B
0V  
V
RE  
t
PZL(1 & ±)  
t
PLZ  
Input  
Generator  
CC  
50 W  
I
1.5 V  
V
0.5V  
O
C
Includes Fixture  
L
V
and Instrumentation  
Capacitance  
OL  
Generator: PRR = 50 kHz, 50ꢀ Duty Cycle, t  
= 50 W  
r < 6 ns, tf  
< 6 ns, Z0  
Figure 11. Receiver Enable Time From Standby (Driver Disabled)  
12  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
0 V or 3 V  
DE  
A
B
Y
D
R
Z
100 W  
1ꢀ  
100 W  
1ꢀ  
RE  
Pulse Generator  
15 ms duration  
1ꢀ Duty Cycle  
tr, tf £ 100 ns  
0 V or 3 V  
+
-
+
-
Figure 12. Test Circuit, Transient Over Voltage Test  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
DEVICE INFORMATION  
LOW-POWER STANDBY MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in standby mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against  
inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this  
state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most  
internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the  
receiver is re-enabled, the internal circuitry becomes active.  
12  
A
2
R
11  
B
3
RE  
Low-Power  
Standby  
4
DE  
9
Y
5
D
10  
Z
Figure 13. Low-Power Standby Logic Diagram  
If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after  
the enable times given by tPZH2 and tPZL2 in the driver switching characteristics. If the D input is open when the  
driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.  
If only the receiver is re-enabled (RE transitions to low) the receiver output is driven according to the state of the  
bus inputs (A and B) after the enable times given by tPZH2 and tPZL2 in the receiver switching characteristics. If  
there is no valid state on the bus the receiver responds as described in the failsafe operation section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state  
of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the  
active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver  
outputs are valid.  
14  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
FUNCTION TABLES  
SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38,  
SN65HVD39 DRIVER  
INPUTS  
OUTPUTS  
D
H
DE  
Y
H
L
Z
L
H
L
H
L or open  
H
H
Z
H
X
Z
L
Open  
SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38,  
SN65HVD39 RECEIVER  
DIFFERENTIAL INPUTS  
VID = V(A) - V(B)  
ENABLE  
RE  
OUTPUT  
R
VID ≤ −0.2 V  
0.2 V < VID < 0.02 V  
0.02 V VID  
X
L
L
?
L
L
H
Z
H
H
H
H or open  
Open Circuit  
L
L
L
Idle circuit  
Short Circuit, V(A) = V(B)  
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36,  
SN65HVD37 DRIVER  
OUTPUTS  
INPUT  
D
Y
Z
H
L
H
L
L
L
H
H
Open  
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36,  
SN65HVD37 RECEIVER  
DIFFERENTIAL INPUTS  
VID = V(A) - V(B)  
OUTPUT  
R
V
ID ≤ −0.2 V  
L
?
0.2 V < VID < 0.02 V  
0.02 V VID  
H
H
H
H
Open Circuit  
Idle circuit  
Short Circuit, V(A) = V(B)  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
RE Input  
D and DE Input  
VCC  
VCC  
130 kW  
470 W  
470 W  
Input  
Input  
9 V  
9 V  
125 kW  
A Input  
B Input  
R1  
VCC  
VCC  
R1  
22 V  
R3  
22 V  
R3  
Input  
Input  
R2  
22 V  
R2  
22 V  
R Output  
Y and Z Outputs  
VCC  
VCC  
16 V  
5 W  
Output  
9 V  
Output  
16 V  
R1/R2  
R3  
SN65HVD30, SN65HVD33, SN65HVD36, SN65HVD38  
9 kΩ  
45 kΩ  
SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35 SN65HVD37,  
SN65HVD38, SN65HVD39  
36 kΩ  
180 kΩ  
16  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
TYPICAL CHARACTERISTICS  
HVD30, HVD33  
HVD31, HVD34  
RMS SUPPLY CURRENT  
vs  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
55  
60  
55  
50  
45  
40  
35  
30  
TA =25°C RL = 54 W  
TA =25°C RL = 54 W  
RE = VCC CL = 50 pF  
DE = VCC  
RE = VCC CL = 50 pF  
DE = VCC  
50  
45  
40  
35  
30  
VCC = 3.3 V  
VCC = 3.3 V  
0
5
10  
15  
Signaling Rate - Mbps  
Figure 14.  
20  
25  
0
1
2
3
Signaling Rate - Mbps  
Figure 15.  
4
5
HVD32, HVD35  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
60  
55  
50  
45  
40  
35  
TA =25°C RL = 54 W  
RE = VCC CL = 50 pF  
DE = VCC  
VCC = 3.3 V  
30  
0
0.2  
0.4  
0.6  
Signaling Rate - Mbps  
Figure 16.  
0.8  
1
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
TYPICAL CHARACTERISTICS (continued)  
HVD30, HVD33  
BUS INPUT CURRENT  
vs  
HVD31, HVD32, HVD34, HVD35  
BUS INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
250  
200  
150  
100  
50  
60  
40  
20  
0
TA = 25°C  
TA = 25°C  
RE = 0 V  
DE = 0 V  
RE = 0 V  
DE = 0 V  
VCC = 3.3 V  
VCC = 3.3 V  
0
-50  
-20  
-40  
-60  
-100  
-150  
-200  
-7  
-4  
-1  
2
5
8
11  
14  
-7  
-4  
-1  
2
5
8
11  
14  
VI - Bus Input Voltage - V  
VI - Bus Input Voltage - V  
Figure 17.  
Figure 18.  
DRIVER LOW-LEVEL OUTPUT CURRENT  
DRIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.01  
-0.01  
-0.03  
-0.05  
-0.07  
-0.09  
-0.11  
-0.13  
0.14  
0.12  
0.1  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VOL - Low-Level Output Voltage - V  
VOH - High-Level Output Voltage - V  
Figure 19.  
Figure 20.  
18  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
TYPICAL CHARACTERISTICS (continued)  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
DRIVER OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2.5  
2.4  
40  
35  
30  
25  
20  
15  
10  
5
TA = 25°C  
3.6 V  
RL = 60 W  
RL = 54 W  
D = VCC  
2.3  
2.2  
DE = VCC  
3.3 V  
2.1  
2
1.9  
3 V  
1.8  
1.7  
1.6  
1.5  
0
-60  
-40  
-20  
0
20  
40  
60  
80 90  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
TA − Free-Air Temperature − oC  
VCC Supply Voltage - V  
Figure 21.  
Figure 22.  
HVD30, HVD33  
HVD30, HVD33  
DRIVER PROPAGATION DELAY  
vs  
DRIVER RISE/FALL TIME  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
14  
13  
12  
11  
10  
9
5
4.5  
4
3 V  
3 V  
3.6 V  
3.6 V  
3.5  
3
8
2.5  
2
7
6
-60  
-40  
-20  
0
20  
40  
60  
80 90  
-60  
-40  
-20  
0
20  
40  
60  
80 90  
TA − Free-Air Temperature − oC  
TA − Free-Air Temperature − oC  
Figure 23.  
Figure 24.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
TYPICAL CHARACTERISTICS (continued)  
RECEIVER THRESHOLD  
vs  
AMBIENT TEMPERATURE  
RECEIVER THRESHOLD  
vs  
COMMON-MODE VOLTAGE  
0.00  
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−0.12  
−0.14  
−0.16  
−0.18  
−0.20  
0.00  
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−0.12  
−0.14  
−0.16  
−0.18  
−0.20  
V
V
IT+  
IT+  
V
IT−  
V
IT−  
−50  
−25  
0
25  
50  
75  
100  
125  
−7 −5 −3 −1  
1
3
5
7
9
11  
T − Ambient Temperature − °C  
A
V
CM  
− Common-Mode Voltage − V  
Figure 25.  
Figure 26.  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
ENABLE TIME  
vs  
COMMON-MODE VOLTAGE (SEE Figure 29)  
1.4  
800  
700  
600  
500  
400  
1.2  
1
3.6 V  
HVD35  
HVD34  
3 V  
0.8  
0.6  
0.4  
300  
200  
Static,  
No Load  
HVD33  
0.2  
0
100  
0
-7  
-2  
3
8
13  
-60  
-40  
-20  
0
20  
40  
60  
80 90  
TA − Free-Air Temperature − oC  
V
− Common-Mode Voltage − V  
(TEST)  
Figure 27.  
Figure 28.  
20  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
SN65HVD30 SN65HVD39  
www.ti.com  
SLLS665ESEPTEMBER 2005REVISED MARCH 2008  
TYPICAL CHARACTERISTICS (continued)  
375 W ± 1%  
Y
-7 V < V(TEST) < 12 V  
D
60 W  
± 1%  
VOD  
0 or 3 V  
Z
DE  
375 W ± 1%  
Input  
Generator  
V
50 W  
50%  
tpZH(diff)  
VOD (high)  
1.5 V  
0 V  
tpZL(diff)  
-1.5 V  
VOD (low)  
Figure 29. Driver Enable Time From DE to VOD  
The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :SN65HVD30 – SN65HVD39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Feb-2008  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD30D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD30DG4  
SN65HVD30DR  
SN65HVD30DRG4  
SN65HVD31D  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD31DG4  
SN65HVD31DR  
SN65HVD31DRG4  
SN65HVD32D  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD32DG4  
SN65HVD32DR  
SN65HVD32DRG4  
SN65HVD33D  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD33DG4  
SN65HVD33DR  
SN65HVD33DRG4  
SN65HVD34D  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD34DG4  
SN65HVD34DR  
SN65HVD34DRG4  
SN65HVD35D  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD35DG4  
SN65HVD35DR  
SN65HVD35DRG4  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Feb-2008  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN65HVD30DR  
SN65HVD31DR  
SN65HVD32DR  
SN65HVD33DR  
SN65HVD34DR  
SN65HVD35DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
16.4  
16.4  
16.4  
6.4  
6.4  
6.4  
6.5  
6.5  
6.5  
5.2  
5.2  
5.2  
9.0  
9.0  
9.0  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8
14  
14  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD30DR  
SN65HVD31DR  
SN65HVD32DR  
SN65HVD33DR  
SN65HVD34DR  
SN65HVD35DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
29.0  
29.0  
29.0  
33.0  
33.0  
33.0  
8
14  
14  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

XXX3491

3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

XXXAA1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXAB1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXAC1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXBA1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXBB1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXBC1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXCA1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXCB1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXCC1

2mm X 2.5mm 4 Pads Ceramic Package
MMD

XXXCXXSXXN-M71RC

HEADER MALE .100ITCH, RA
ETC

XXXCXXXSXXN-M71RC

HEADER MALE .100.PITCH, RA
ETC