TK10930VCMG [TOKO]

AM/FM IF DETECTOR; AM / FM IF探测器
TK10930VCMG
型号: TK10930VCMG
厂家: TOKO, INC    TOKO, INC
描述:

AM/FM IF DETECTOR
AM / FM IF探测器

电信集成电路 电信电路 光电二极管
文件: 总16页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
Copyright © 1997, Power Innovations Limited, UK  
MARCH 1994 - REVISED SEPTEMBER 1997  
TELECOMMUNICATION SYSTEM SECONDARY PROTECTION  
Ion-Implanted Breakdown Region  
Precise and Stable Voltage  
D PACKAGE  
(TOP VIEW)  
Low Voltage Overshoot under Surge  
1
2
3
4
8
7
6
5
G
G
G
G
T
NC  
NC  
R
VDRM V(BO)  
DEVICE  
V
V
‘3072F3  
‘3082F3  
58  
66  
72  
82  
MDXXAE  
NC - No internal connection  
Planar Passivated Junctions  
Low Off-State Current < 10 µA  
P PACKAGE  
(TOP VIEW)  
Rated for International Surge Wave Shapes  
T
1
2
8
7
T
ITSP  
G
G
WAVE SHAPE  
STANDARD  
A
3
4
G
R
6
5
G
R
2/10 µs  
8/20 µs  
FCC Part 68  
ANSI C62.41  
FCC Part 68  
FCC Part 68  
RLM 88  
80  
70  
60  
45  
38  
50  
50  
50  
35  
MDXXAF  
10/160 µs  
10/560 µs  
0.5/700 µs  
Specified T terminal ratings require connection of pins 1 and 8.  
Specified R terminal ratings require connection of pins 4 and 5.  
FTZ R12  
SL PACKAGE  
(TOP VIEW)  
10/700 µs  
VDE 0433  
CCITT IX K17/K20  
REA PE-60  
10/1000 µs  
1
2
3
T
G
R
Surface Mount and Through-Hole Options  
PACKAGE  
Small-outline  
Small-outline taped  
and reeled  
PART # SUFFIX  
MDXXAG  
MD23AA  
D
DR  
device symbol  
Plastic DIP  
P
Single-in-line  
SL  
R
T
UL Recognized, E132482  
description  
These low voltage dual symmetrical transient  
voltage suppressor devices are designed to  
protect ISDN applications against transients  
caused by lightning strikes and a.c. power lines.  
Offered in two voltage variants to meet battery  
and protection requirements they are guaranteed  
to suppress and withstand the listed international  
lightning surges in both polarities. Transients are  
initially clipped by breakdown clamping until the  
voltage rises to the breakover level, which  
causes the device to crowbar. The high crowbar  
holding current prevents d.c. latchup as the  
current subsides.  
SD3XAA  
G
Terminals T, R and G correspond to the  
alternative line designators of A, B and C  
These monolithic protection devices are  
fabricated in ion-implanted planar structures to  
ensure precise and matched breakover control  
and are virtually transparent to the system in  
normal operation  
P R O D U C T  
I N F O R M A T I O N  
Information is current as of publication date. Products conform to specifications in accordance  
with the terms of Power Innovations standard warranty. Production processing does not  
necessarily include testing of all parameters.  
1
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
description (Continued)  
The small-outline 8-pin assignment has been carefully chosen for the TISP series to maximise the inter-pin  
clearance and creepage distances which are used by standards (e.g. IEC950) to establish voltage withstand  
ratings.  
absolute maximum ratings  
RATING  
SYMBOL  
VALUE  
± 58  
UNIT  
‘3072F3  
‘3082F3  
Repetitive peak off-state voltage (0°C < TJ < 70°C)  
VDRM  
V
± 66  
Non-repetitive peak on-state pulse current (see Notes 1, 2 and 3)  
1/2 µs (Gas tube differential transient, open-circuit voltage wave shape 1/2 µs)  
2/10 µs (FCC Part 68, open-circuit voltage wave shape 2/10 µs)  
120  
80  
8/20 µs (ANSI C62.41, open-circuit voltage wave shape 1.2/50 µs)  
10/160 µs (FCC Part 68, open-circuit voltage wave shape 10/160 µs)  
5/200 µs (VDE 0433, open-circuit voltage wave shape 2 kV, 10/700 µs)  
0.5/310 µs (RLM 88, open-circuit voltage wave shape 1.5 kV, 0.5/700 µs)  
5/310 µs (CCITT IX K17/K20, open-circuit voltage wave shape 2 kV, 10/700 µs)  
5/310 µs (FTZ R12, open-circuit voltage wave shape 2 kV, 10/700 µs)  
10/560 µs (FCC Part 68, open-circuit voltage wave shape 10/560 µs)  
10/1000 µs (REA PE-60, open-circuit voltage wave shape 10/1000 µs)  
70  
60  
ITSP  
50  
A
38  
50  
50  
45  
35  
Non-repetitive peak on-state current (see Notes 2 and 3)  
50 Hz, 1 s  
D Package  
4
P Package  
ITSM  
6
6
A rms  
SL Package  
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 38 A  
diF/dt  
TJ  
250  
A/µs  
°C  
Junction temperature  
-40 to +150  
-40 to +150  
Storage temperature range  
Tstg  
°C  
NOTES: 1. Further details on surge wave shapes are contained in the Applications Information section.  
2. Initially the TISP must be in thermal equilibrium with 0°C < TJ <70°C. The surge may be repeated after the TISP returns to its initial  
conditions.  
3. Above 70°C, derate linearly to zero at 150°C lead temperature.  
electrical characteristics for the T and R terminals, T = 25°C  
J
TISP3072F3  
TISP3082F3  
PARAMETER  
TEST CONDITIONS  
VD = ±2VDRM, 0°C < TJ < 70°C  
UNIT  
MIN  
MAX  
MIN  
MAX  
Repetitive peak off-  
state current  
IDRM  
ID  
±10  
±10  
mA  
Off-state current  
VD = ±50 V  
±10  
150  
±10  
150  
µA  
f = 100 kHz, Vd = 100 mV VD = 0,  
D Package  
P Package  
SL Package  
50†  
65†  
30†  
50†  
65†  
30†  
Coff  
Off-state capacitance  
Third terminal voltage = -50 V to +50 V  
(see Notes 4 and 5)  
200  
100  
200  
100  
fF  
NOTES: 4. These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The third terminal is  
connected to the guard terminal of the bridge.  
5. Further details on capacitance are given in the Applications Information section.  
Typical value of the parameter, not a limit value.  
electrical characteristics for the T and G or the R and G terminals, T = 25°C  
J
TISP3072F3  
TISP3082F3  
PARAMETER  
TEST CONDITIONS  
VD = ±VDRM, 0°C < TJ < 70°C  
UNIT  
MIN  
MAX  
MIN  
MAX  
Repetitive peak off-  
state current  
IDRM  
±10  
±10  
mA  
P R O D U C T  
I N F O R M A T I O N  
2
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
electrical characteristics for the T and G or the R and G terminals, T = 25°C (Continued)  
J
TISP3072F3  
TISP3082F3  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
dv/dt = ±250 V/ms,  
V(BO) Breakover voltage  
±72  
±82  
V
Source Resistance = 300 W  
dv/dt = ±1000 V/µs, di/dt < 20 A/µs  
Impulse breakover volt-  
V(BO)  
age  
±86†  
±96†  
V
A
Source Resistance = 50 W  
dv/dt = ±250 V/ms,  
I(BO)  
Breakover current  
±0.15  
±0.6  
±3  
±0.15  
±0.6  
±3  
Source Resistance = 300 W  
IT = ±5 A, tW = 100 µs  
di/dt = -/+30 mA/ms  
VT  
IH  
On-state voltage  
Holding current  
V
A
±0.15  
±5  
±0.15  
±5  
Linear voltage ramp,  
Critical rate of rise of  
off-state voltage  
dv/dt  
ID  
kV/µs  
Maximum ramp value < 0.85V(BR)MIN  
VD = ±50 V  
Off-state current  
±10  
140  
85  
±10  
140  
85  
µA  
pF  
pF  
pF  
f = 100 kHz, Vd = 100 mV  
Third terminal voltage = -50 V to +50 V  
(see Notes 6 and 7)  
VD = 0,  
82†  
49†  
25†  
82†  
49†  
25†  
Coff  
Off-state capacitance  
VD = -5 V  
VD = -50 V  
40  
40  
NOTES: 6 These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The third terminal is  
connected to the guard terminal of the bridge.  
7. Further details on capacitance are given in the Applications Information section.  
PARAMETER MEASUREMENT INFORMATION  
+i  
Quadrant I  
ITSP  
Switching  
Characteristic  
ITSM  
IT  
V(BO)  
VT  
I(BO)  
IH  
V(BR)  
I(BR)  
V(BR)M  
IDRM  
VDRM  
VD  
ID  
+v  
-v  
ID  
VD  
VDRM  
I(BR)  
V(BR)  
IDRM  
V(BR)M  
IH  
I(BO)  
VT  
V(BO)  
IT  
ITSM  
Quadrant III  
ITSP  
Switching  
Characteristic  
-i  
PMXXAA  
Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR ANY PAIR OF TERMINALS  
P R O D U C T  
I N F O R M A T I O N  
3
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
Typical value of the parameter, not a limit value.  
thermal characteristics  
MIN  
TYP  
MAX  
PARAMETER  
UNIT  
D Package  
P Package  
SL Package  
160  
100  
105  
RqJA  
Junction to free air thermal resistance  
°C/W  
TYPICAL CHARACTERISTICS  
T and G, or R and G terminals  
OFF-STATE CURRENT  
vs  
NORMALISED BREAKDOWN VOLTAGES  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
TC3LAF  
TC3LAI  
100  
10  
1
Normalised to V(BR)  
I(BR) = 100 µA and 25°C  
1.2  
1.1  
1.0  
0.9  
Positive Polarity  
VD = 50 V  
V(BR)M  
0·1  
VD = -50 V  
V(BO)  
V(BR)  
0·01  
0·001  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
Figure 2.  
Figure 3.  
P R O D U C T  
I N F O R M A T I O N  
4
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
T and G, or R and G terminals  
NORMALISED BREAKDOWN VOLTAGES  
ON-STATE CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
ON-STATE VOLTAGE  
TC3LAJ  
TC3LAL  
100  
10  
1
Normalised to V(BR)  
1.2  
1.1  
1.0  
0.9  
I(BR) = 100 µA and 25°C  
Negative Polarity  
V(BR)M  
V(BO)  
V(BR)  
150°C  
25°C  
-40°C  
-25  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
7
8 9 10  
TJ - Junction Temperature - °C  
VT - On-State Voltage - V  
Figure 4.  
Figure 5.  
HOLDING CURRENT & BREAKOVER CURRENT  
vs  
JUNCTION TEMPERATURE  
TC3LAH  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
I(BO)  
0.4  
0.3  
IH  
0.2  
0.1  
-25  
0
25  
50  
75  
100  
125  
150  
T
J
- Junction Temperature - °C  
Figure 6.  
P R O D U C T  
I N F O R M A T I O N  
5
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
T and G, or R and G terminals  
NORMALISED BREAKOVER VOLTAGE  
OFF-STATE CAPACITANCE  
vs  
vs  
TERMINAL VOLTAGE  
RATE OF RISE OF PRINCIPLE CURRENT  
TC3LAE  
TC3LAB  
1.3  
1.2  
1.1  
1.0  
100  
Positive Bias  
Negative Bias  
Positive  
Negative  
10  
0·1  
0·001  
0·01  
0·1  
1
10  
100  
1
10  
50  
di/dt - Rate of Rise of Principle Current - A/µs  
Terminal Voltage - V  
Figure 7.  
Figure 8.  
OFF-STATE CAPACITANCE  
vs  
JUNCTION TEMPERATURE  
TC3LAD  
500  
100  
Terminal Bias = 0  
Terminal Bias = 50 V  
Terminal Bias = -50 V  
10  
-25  
0
25  
50  
75  
100  
125  
150  
TJ - Junction Temperature - °C  
Figure 9.  
P R O D U C T  
I N F O R M A T I O N  
6
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
T and G, or R and G terminals  
SURGE CURRENT  
vs  
DECAY TIME  
TC3LAA  
1000  
100  
10  
2
10  
100  
1000  
Decay Time - µs  
Figure 10.  
TYPICAL CHARACTERISTICS  
T and R terminals  
OFF-STATE CURRENT  
vs  
NORMALISED BREAKDOWN VOLTAGES  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
TC3LAG  
TC3LAK  
100  
10  
VD = ±50 V  
Normalised to V(BR)  
I(BR) = 100 µA and 25°C  
1.2  
1.1  
1.0  
0.9  
Both Polarities  
1
0·1  
V(BR)M  
V(BO)  
V(BR)  
0·01  
0·001  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
Figure 11.  
Figure 12.  
P R O D U C T  
I N F O R M A T I O N  
7
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
T and R terminals  
NORMALISED BREAKOVER VOLTAGE  
OFF-STATE CAPACITANCE  
vs  
vs  
TERMINAL VOLTAGE  
RATE OF RISE OF PRINCIPLE CURRENT  
TC3XAA  
TC3LAC  
1.3  
1.2  
1.1  
1.0  
100  
90  
80  
P Package  
D Package  
70  
60  
50  
40  
30  
SL Package  
20  
Both Voltage Polarities  
10  
0·1  
0·001  
0·01  
0·1  
1
10  
100  
1
10  
50  
di/dt - Rate of Rise of Principle Current - A/µs  
Terminal Voltage - V  
Figure 13.  
Figure 14.  
THERMAL INFORMATION  
MAXIMUM NON-RECURRING 50 Hz CURRENT  
vs  
THERMAL RESPONSE  
CURRENT DURATION  
TI3MAA  
TI3LAA  
VGEN = 250 Vrms  
100  
10  
1
RGEN = 10 to 150 W  
SL Package  
10  
D Package  
P Package  
P Package  
SL Package  
D Package  
1
0·1  
0·0001 0·001 0·01  
0·1  
1
10  
100  
1000  
1
10  
100  
1000  
t - Power Pulse Duration - s  
t - Current Duration - s  
Figure 15.  
Figure 16.  
P R O D U C T  
I N F O R M A T I O N  
8
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
APPLICATIONS INFORMATION  
electrical characteristics  
The electrical characteristics of a TISP are strongly dependent on junction temperature, T . Hence a  
J
characteristic value will depend on the junction temperature at the instant of measurement. The values given  
in this data sheet were measured on commercial testers, which generally minimise the temperature rise  
caused by testing. Application values may be calculated from the parameters’ temperature curves, the power  
dissipated and the thermal response curve (Z ).  
q
lightning surge  
wave shape notation  
Most lightning tests, used for equipment verification, specify a unidirectional sawtooth waveform which has an  
exponential rise and an exponential decay. Wave shapes are classified in terms of peak amplitude (voltage  
or current), rise time and a decay time to 50% of the maximum amplitude. The notation used for the wave  
shape is amplitude, rise time/decay time. A 50A, 5/310 µs wave shape would have a peak current value of  
50 A, a rise time of 5 µs and a decay time of 310 µs. The TISP surge current graph comprehends the wave  
shapes of commonly used surges.  
generators  
There are three categories of surge generator type, single wave shape, combination wave shape and circuit  
defined. Single wave shape generators have essentially the same wave shape for the open circuit voltage  
and short circuit current (e.g. 10/1000 µs open circuit voltage and short circuit current). Combination  
generators have two wave shapes, one for the open circuit voltage and the other for the short circuit current  
(e.g. 1.2/50 µs open circuit voltage and 8/20 µs short circuit current) Circuit specified generators usually  
equate to a combination generator, although typically only the open circuit voltage waveshape is referenced  
(e.g. a 10/700 µs open circuit voltage generator typically produces a 5/310 µs short circuit current). If the  
combination or circuit defined generators operate into a finite resistance the wave shape produced is  
intermediate between the open circuit and short circuit values.  
current rating  
When the TISP switches into the on-state it has a very low impedance. As a result, although the surge wave  
shape may be defined in terms of open circuit voltage, it is the current wave shape that must be used to  
assess the required TISP surge capability. As an example, the CCITT IX K17 1.5 kV, 10/700 µs surge is  
changed to a 38 A, 5/310 µs waveshape when driving into a short circuit. Thus the TISP surge current  
capability, when directly connected to the generator, will be found for the CCITT IX K17 waveform at 310 µs  
on the surge graph and not 700 µs. Some common short circuit equivalents are tabulated below:  
STANDARD  
OPEN CIRCUIT  
VOLTAGE  
SHORT CIRCUIT  
CURRENT  
CCITT IX K17  
CCITT IX K20  
RLM88  
VDE 0433  
FTZ R12  
1.5 kV, 10/700 µs  
1 kV, 10/700 µs  
1.5 kV, 0.5/700 µs  
2.0 kV, 10/700 µs  
2.0 kV, 10/700 µs  
38 A, 5/310 µs  
25 A, 5/310 µs  
38 A, 0.2/310 µs  
50 A, 5/200 µs  
50 A, 5/310 µs  
Any series resistance in the protected equipment will reduce the peak circuit current to less than the  
generators’ short circuit value. A 2 kV open circuit voltage, 50 A short circuit current generator has an  
effective output impedance of 40 W (2000/50). If the equipment has a series resistance of 25 W then the  
surge current requirement of the TISP becomes 31 A (2000/65) and not 50 A.  
P R O D U C T  
I N F O R M A T I O N  
9
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
APPLICATIONS INFORMATION  
protection voltage  
The protection voltage, (V  
), increases under lightning surge conditions due to thyristor regeneration. This  
(BO)  
increase is dependent on the rate of current rise, di/dt, when the TISP is clamping the voltage in its  
breakdown region. The V value under surge conditions can be estimated by multiplying the 50 Hz rate  
(BO)  
V
(250 V/ms) value by the normalised increase at the surge’s di/dt (Figure 6.) . An estimate of the di/dt  
(BO)  
can be made from the surge generator voltage rate of rise, dv/dt, and the circuit resistance.  
As an example, the CCITT IX K17 1.5 kV, 10/700 µs surge has an average dv/dt of 150 V/µs, but, as the rise  
is exponential, the initial dv/dt is higher, being in the region of 450 V/µs. The instantaneous generator output  
resistance is 25 W. If the equipment has an additional series resistance of 20 W, the total series resistance  
becomes 45 W. The maximum di/dt then can be estimated as 450/45 = 10 A/µs. In practice the  
measured di/dt and protection voltage increase will be lower due to inductive effects and the finite slope  
resistance of the TISP breakdown region.  
capacitance  
off-state capacitance  
The off-state capacitance of a TISP is sensitive to junction temperature, T , and the bias voltage, comprising  
J
of the dc voltage, V , and the ac voltage, V . All the capacitance values in this data sheet are measured with  
D
d
an ac voltage of 100 mV. The typical 25°C variation of capacitance value with ac bias is shown in Figure 17  
When V >> V the capacitance value is independent on the value of V . The capacitance is essentially  
D
d
d
constant over the range of normal telecommunication frequencies.  
NORMALISED CAPACITANCE  
vs  
RMS AC TEST VOLTAGE  
AIXXAA  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
Normalised to Vd = 100 mV  
DC Bias, VD = 0  
0.75  
0.70  
1
10  
100  
1000  
Vd - RMS AC Test Voltage - mV  
Figure 17.  
P R O D U C T  
I N F O R M A T I O N  
10  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
APPLICATIONS INFORMATION  
longitudinal balance  
Figure 18 shows a three terminal TISP with its equivalent "delta" capacitance Each capacitance, C  
, C  
TG  
RG  
and C , is the true terminal pair capacitance measured with a three terminal or guarded capacitance  
TR  
bridge. If wire R is biased at a larger potential than wire T then C > C . Capacitance C is equivalent to  
TG  
RG  
TG  
a capacitance of C  
in parallel with the capacitive difference of (C - C ). The line capacitive unbalance  
RG  
TG RG  
is due to (C - C ) and the capacitance shunting the line is C + C /2 .  
TG  
RG  
TR  
RG  
Figure 18.  
All capacitance measurements in this data sheet are three terminal guarded to allow the designer to  
accurately assess capacitive unbalance effects. Simple two terminal capacitance meters (unguarded third  
terminal) give false readings as the shunt capacitance via the third terminal is included.  
P R O D U C T  
I N F O R M A T I O N  
11  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
MECHANICAL DATA  
D008  
plastic small-outline package  
This small-outline package consists of a circuit mounted on a lead frame and encapsulated within a plastic  
compound. The compound will withstand soldering temperature with no deformation, and circuit performance  
characteristics will remain stable when operated in high humidity conditions. Leads require no additional  
cleaning or processing when used in soldered assembly.  
D008  
Designation per JEDEC Std 30:  
PDSO-G8  
5,00 (0.197)  
4,80 (0.189)  
8
7
6
5
6,20 (0.244)  
5,80 (0.228)  
4,00 (0.157)  
3,81 (0.150)  
1
2
3
4
7° NOM  
3 Places  
1,75 (0.069)  
1,35 (0.053)  
5,21 (0.205)  
4,60 (0.181)  
0,50 (0.020)  
0,25 (0.010)  
x 45°NOM  
0,203 (0.008)  
0,102 (0.004)  
7° NOM  
4 Places  
0,51 (0.020)  
0,36 (0.014)  
8 Places  
4° ± 4°  
0,79 (0.031)  
0,28 (0.011)  
Pin Spacing  
1,27 (0.050)  
(see Note A)  
6 Places  
0,229 (0.0090)  
0,190 (0.0075)  
1,12 (0.044)  
0,51 (0.020)  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
MDXXAA  
NOTES: A. Leads are within 0,25 (0.010) radius of true position at maximum material condition.  
B. Body dimensions do not include mold flash or protrusion.  
C. Mold flash or protrusion shall not exceed 0,15 (0.006).  
D. Lead tips to be planar within ±0,051 (0.002).  
P R O D U C T  
I N F O R M A T I O N  
12  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
MECHANICAL DATA  
P008  
plastic dual-in-line package  
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic  
compound. The compound will withstand soldering temperature with no deformation, and circuit performance  
characteristics will remain stable when operated in high humidity conditions The package is intended for  
insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted,  
sufficient tension is provided to secure the package in the board during soldering. Leads require no  
additional cleaning or processing when used in soldered assembly.  
P008  
Designation per JEDEC Std 30:  
PDIP-T8  
10,2 (0.400) MAX  
8
7
6
5
Index  
Dot  
C
C
L
L
7,87 (0.310)  
7,37 (0.290)  
T.P.  
1
2
3
4
6,60 (0.260)  
6,10 (0.240)  
1,78 (0.070) MAX  
4 Places  
5,08 (0.200)  
MAX  
Seating  
Plane  
105°  
90°  
8 Places  
0,51 (0.020)  
MIN  
3,17 (0.125)  
MIN  
0,36 (0.014)  
0,20 (0.008)  
8 Places  
2,54 (0.100) T.P.  
6 Places  
(see Note A)  
0,533 (0.021)  
0,381 (0.015)  
8 Places  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position  
MDXXABA  
P R O D U C T  
I N F O R M A T I O N  
13  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
MECHANICAL DATA  
SL003  
3-pin plastic single-in-line package  
This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic  
compound. The compound will withstand soldering temperature with no deformation, and circuit performance  
characteristics will remain stable when operated in high humidity conditions. Leads require no additional  
cleaning or processing when used in soldered assembly.  
SL003  
4,57 (0.180)  
MAX  
10,2 (0.400) MAX  
6,60 (0.260)  
6,10 (0.240)  
8,31 (0.327)  
MAX  
Index  
Dot  
12,9 (0.492)  
MAX  
4,267 (0.168)  
MIN  
1
2
3
Pin Spacing  
2,54 (0.100) T.P.  
(see Note A)  
2 Places  
0,356 (0.014)  
0,203 (0.008)  
3 Places  
1,854 (0.073) MAX  
0,711 (0.028)  
0,559 (0.022)  
3 Places  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
MDXXAD  
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.  
B. Body molding flash of up to 0,15 (0.006) may occur in the package lead plane.  
P R O D U C T  
I N F O R M A T I O N  
14  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
MECHANICAL DATA  
D008  
tape dimensions  
D008 Package (8 pin SOIC) Single-Sprocket Tape  
4,10  
3,90  
1,60  
1,50  
8,05  
7,95  
2,05  
1,95  
0,40  
0,8 MIN.  
5,55  
5,45  
12,30  
11,70  
Cover  
Tape  
6,50  
6,30  
0 MIN.  
ø 1,5 MIN.  
Carrier Tape  
Embossment  
2,2  
2,0  
Direction of Feed  
ALL LINEAR DIMENSIONS IN MILLIMETERS  
NOTES: A. Taped devices are supplied on a reel of the following dimensions:-  
MDXXAT  
Reel diameter:  
Reel hub diameter:  
Reel axial hole:  
330 +0,0/-4,0 mm  
100 ±2,0 mm  
13,0 ±0,2 mm  
B. 2500 devices are on a reel.  
P R O D U C T  
I N F O R M A T I O N  
15  
TISP3072F3, TISP3082F3  
DUAL SYMMETRICAL TRANSIENT  
VOLTAGE SUPPRESSORS  
MARCH 1994 - REVISED SEPTEMBER 1997  
IMPORTANT NOTICE  
Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any  
semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the  
information being relied on is current.  
PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI  
deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except as mandated by government requirements.  
PI accepts no liability for applications assistance, customer product design, software performance, or infringement  
of patents or services described herein. Nor is any license, either express or implied, granted under any patent  
right, copyright, design right, or other intellectual property right of PI covering or relating to any combination,  
machine, or process in which such semiconductor products or services might be or are used.  
PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE  
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.  
Copyright © 1997, Power Innovations Limited  
P R O D U C T  
I N F O R M A T I O N  
16  

相关型号:

TK10930VCTL

AM/FM IF DETECTOR
TOKO

TK10930VCTR

AM/FM IF DETECTOR
TOKO

TK10930VCTX

AM/FM IF DETECTOR
TOKO

TK10931V

NARROW BAND FM/AM IF SYSTEM
TOKO

TK10931VTL

NARROW BAND FM/AM IF SYSTEM
TOKO

TK10931VTL-G

Audio Single Chip Receiver, PDSO24, LEAD FREE, TSSOP-24
AKM

TK10A

Topstek Current Transducer
TOPSTEK

TK10A50D

TRANSISTOR 10 A, 500 V, 0.72 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, 2-10U1B, SC-67, 3 PIN, FET General Purpose Power
TOSHIBA

TK10A50W

Power MOSFET Nch (Single)
TOSHIBA

TK10A50W,S5X

Power Field-Effect Transistor
TOSHIBA

TK10A55D

Bipolar Small-Signal Transistors
TOSHIBA

TK10A60D

Switching Regulator Applications
TOSHIBA