TK11347B [TOKO]

VOLTAGE REGULATOR WITH ON/OFF SWITCH; 带ON / OFF开关稳压器
TK11347B
型号: TK11347B
厂家: TOKO, INC    TOKO, INC
描述:

VOLTAGE REGULATOR WITH ON/OFF SWITCH
带ON / OFF开关稳压器

稳压器 开关
文件: 总13页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TK113xxB  
VOLTAGE REGULATOR WITH ON/OFF SWITCH  
APPLICATIONS  
FEATURES  
Battery Powered Systems  
Cellular Telephones  
High Voltage Precision at ± 2.0%  
Active Low On/Off Control  
Very Low Dropout Voltage 80 mV at 30 mA  
Very Low Noise  
Pagers  
Personal Communications Equipment  
Portable Instrumentation  
Portable Consumer Equipment  
Radio Control Systems  
Toys  
Very Small SOT-23L or SOT-89-5 Surface Mount  
Packages  
Internal Thermal Shutdown  
Short Circuit Protection  
Low Voltage Systems  
DESCRIPTION  
The TK113xxB is available in either 6 pin SOT-23L or 5 pin  
SOT-89-5 surface mount packages.  
The TK113xxB is a low dropout linear regulator with a built-  
in electronic switch. The device is in the ON state when the  
controlpinispulledtoalowlevel. Anexternalcapacitorcan  
be connected to the noise bypass pin to lower the output  
noise level to 30 µVrms.  
TK113XXB  
An internal PNP pass transistor is used to achieve a low  
dropout voltage of 80 mV (typ.) at 30 mA load current. The  
TK113xxB has a very low quiescent current of 170 µA at no  
load and 1 mA with a 30 mA load. The standby current is  
typically 100 nA. The internal thermal shutdown circuitry  
limits the junction temperature to below 150 °C. The load  
currentisinternallymonitoredandthedevicewillshutdown  
in the presence of a short circuit or overcurrent condition at  
the output.  
CONTROL  
GND  
1
2
3
6
5
4
V
IN  
20Q  
GND  
NOISE  
BYPASS  
V
OUT  
NOISE  
BYPASS  
1
6
V
OUT  
GND  
5
4
2
3
GND  
V
CONTROL  
IN  
ORDERING INFORMATION  
TK113  
B
C
Tape/Reel Code  
Package Code  
BLOCK DIAGRAM  
Voltage Code  
S
S
S
S
S
S
V
IN  
V
OUT  
THERMAL  
PROTECTION  
PACKAGE CODE  
M: SOT-23L  
TAPE/REEL CODE  
L : Tape Left  
VOLTAGE CODE  
37 = 3.7 V  
20 = 2.0 V  
S
38 = 3.8 V  
U: SOT-89-5  
(SOT-23L)  
21 = 2.1 V  
S
39 = 3.9 V  
22 = 2.2 V  
B : Tape Bottom  
(SOT-89-5)  
S
+
+
40 = 4.0 V  
23 = 2.3 V  
S
S
CONTROL  
41 = 4.1 V  
24 = 2.4 V  
S
42 = 4.2 V  
43 = 4.3 V  
44 = 4.4 V  
45 = 4.5 V  
46 = 4.6 V  
47 = 4.7 V  
48 = 4.8 V  
49 = 4.9 V  
50 = 5.0 V  
55 = 5.5 V  
60 = 6.0 V  
80 = 8.0 V  
25 = 2.5 V  
26 = 2.6 V  
27 = 2.7 V  
28 = 2.8 V  
29 = 2.9 V  
30 = 3.0 V  
31 = 3.1 V  
32 = 3.2 V  
33 = 3.3 V  
34 = 3.4 V  
35 = 3.5 V  
36 = 3.6 V  
S
S
S
S
BANDGAP  
REFERENCE  
S
S
S
GND  
NOISE BYPASS  
May, 1997 TOKO, Inc.  
Page 1  
TK113xxB  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ......................................................... 16 V  
Output Current .................................................... 260 mA  
Power Dissipation ............................................... (Note 1)  
SOT-23L......................................................... 600 mW  
SOT-89-5 ....................................................... 900 mW  
Reverse Bias............................................................ 10 V  
Storage Temperature Range ................... -55 to +150 °C  
Operating Temperature Range ...................-30 to +80 °C  
Voltage Range ............................................ 1.8 to 14.5 V  
Junction Temperature ........................................... 150 °C  
TK113XXB ELECTRICAL CHARACTERISTICS  
Test conditions: T = 25 °C, unless otherwise specified.  
A
SYMBOL  
PARAMETER  
Quiescent Current  
TEST CONDITIONS  
= 0 mA, Except I  
MIN  
TYP  
MAX UNITS  
I
I
170  
250  
0.1  
µA  
µA  
V
Q
OUT  
CONT  
I
Standby Current  
Output Voltage  
Line Regulation  
Load Regulation  
V
= 8 V, at output off  
IN  
STBY  
V
I
= 30 mA  
See table 1  
3.0  
O
OUT  
Line Reg  
Load Reg  
V
I
5.5 V (Note 2)  
20  
mV  
O
= 1 mA 60 mA (Note 3)  
6
30  
90  
mV  
mV  
OUT  
I
= 1 mA 100 mA (Note 3)  
18  
OUT  
V
Dropout Voltage  
I
= 60 mA  
0.12  
0.24  
150  
V
DROP  
OUT  
I
Continuous Output Current  
I
when V drops 0.3 V  
OUT  
mA  
OUT  
OUT  
from V (typ) (Note 3)  
O
RR  
Ripple Rejection  
f = 400 Hz, C = 10 µF, C = 0.1 µF  
55  
30  
dB  
L
N
V
= V  
+ 1.5 V, I  
= 30 mA,  
IN  
OUT  
OUT  
(Note 4)  
10 Hz f 80 KHz,  
= V + 1.5 V, I = 60 mA,  
OUT  
V
Output Noise Voltage  
µVrms  
NO  
V
CN  
OUT  
CL = 10 µF, CN = 0.1 µF, (Notes 4,5)  
I
Pulse Output Current  
5 ms pulse, 12.5% duty cycle  
200  
35  
mA  
V
OUT (PULSE)  
V
Noise Bypass Terminal Voltage  
1.25  
12  
REF  
Control Terminal Specification  
I
Control Current  
Control Voltage  
Output on, V  
Output on  
Output off  
= 1.8 V  
CONT  
µA  
CONT  
V -1.8  
V
V
IN  
CONT  
V -0.6  
V
IN  
V /T  
Output Voltage Temperature  
Coefficient  
I = 10 mA  
OUT  
0.09  
mV/°C  
O
A
Note 1: When mounted as recommended. Derate at 4.8 mW/°C for SOT-23L and 6.4 mW/°C for SOT-89-5 packages when ambient  
temperatures are over 25 °C.  
Note 2: For Line Regulation VO > 5.6 V, Typ and Max values are 15 and 40 mV.  
Note 3: Refer to Definition of Terms.  
Note 4: Ripple Rejection and noise voltage are affected by the value and characteristics of the capacitor used.  
Note 5: Output noise voltage can be reduced by connecting a capacitor to a noise pass terminal.  
Gen. Note: Parameters with min. or max. values are 100% tested at TA = 25 °C.  
Page 2  
May, 1997 TOKO, Inc.  
TK113xxB  
TK113xxB ELECTRICAL CHARACTERISTICS (Table 1)  
Output  
Voltage  
Voltage  
Code  
VIN Max  
VOUT Max  
Test  
Voltage  
Output  
Voltage  
Voltage  
Code  
VIN Max  
VOUT Max  
Test  
Voltage  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.5  
6.0  
8.0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
55  
60  
80  
3.630  
3.725  
3.825  
3.920  
4.020  
4.120  
4.215  
4.315  
4.410  
4.510  
4.605  
4.705  
4.800  
4.900  
5.390  
5.880  
7.840  
3.770  
3.875  
3.975  
4.080  
4.180  
4.280  
4.385  
4.485  
4.590  
4.690  
4.795  
4.895  
5.000  
5.100  
5.610  
6.120  
8.160  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.5  
7.0  
9.0  
2.0 V  
2.1 V  
2.2 V  
2.3 V  
2.4 V  
2.5 V  
2.6 V  
2.7 V  
2.8 V  
2.9 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.4 V  
3.5 V  
3.6 V  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
1.94 V  
2.04 V  
2.14 V  
2.24 V  
2.34 V  
2.44 V  
2.54 V  
2.64 V  
2.74 V  
2.84 V  
2.94 V  
3.04 V  
3.14 V  
3.24 V  
3.335 V  
3.435 V  
3.535 V  
2.06 V  
2.16 V  
2.26 V  
2.36 V  
2.46 V  
2.56 V  
2.66 V  
2.76 V  
2.86 V  
2.96 V  
3.06 V  
3.16 V  
3.26 V  
3.36 V  
3.465 V  
3.565 V  
3.665 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.4 V  
3.5 V  
3.6 V  
3.7 V  
3.8 V  
3.9 V  
4.0 V  
4.1 V  
4.2 V  
4.3 V  
4.4 V  
4.5 V  
4.6 V  
May, 1997 TOKO, Inc.  
Page 3  
TK113xxB  
TEST CIRCUITS  
SOT-23L  
SOT-89-5  
I
IN  
I
V
V
IN  
V
O
O
IN  
S
S
S
S
S
S
A
A
V
V
+
_
+
IN  
IN  
+
+
+
+
V
I
O
I
1.0 µF  
V
2.2 µF  
2.2 µF  
V
V
O
OUT  
IN  
_
V
1 µF  
IN  
6
5
4
6
5
4
NOISE  
BYPASS  
1
2
3
1
2
3
CONT  
Noise Bypass  
0.1 µF  
I
CONT  
CONT  
V
0.1 µF  
CONT  
S
S
A
A
I
+
_
+
_
CONT  
V
V
V
CONT  
Transient Response  
•Connect pin 5 to  
ground for heat sink  
113XXB  
V
V
OUT  
IN  
Rs  
+
C
C
= 10 µF  
CONT  
+
P
L
to 0.22  
1 µF  
0.1 µF  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25 °C unless otherwise specified  
A
OUTPUT VOLTAGE RESPONSE  
LOAD REGULATION  
SHORT CIRCUIT CURRENT  
(OFFON)  
CL = 2.2 µF  
V
(5 mV/Div)  
O
5
4
3
2
1
0
Cn = 0.01 µF  
Cn = 0.1 µF  
I
= 30 mA  
600  
LOAD  
400  
T=0 200  
800  
0
50  
100  
0
150  
300  
I
(mA)  
I
(mA)  
OUT  
O
TIME (µS)  
OUTPUT CURRENT vs.  
DROPOUT VOLTAGE  
LINE REGULATION  
OUTPUT VOLTAGE vs. INPUT  
VOLTAGE  
50 mV/Div  
V
(25mV/Div)  
OUT  
0
-100  
-200  
-300  
-400  
V
TYP  
O
I
= 0 mA  
V
TYP  
O
O
I
= 30 mA  
O
I
= 50 mA  
O
I
= 90 mA  
O
V
= V  
V
(V)  
0
0
10  
(V)  
20  
0
100  
200  
IN  
OUT  
IN  
(50 mV/Div)  
V
I
(mA)  
IN  
O
Page 4  
May, 1997 TOKO, Inc.  
TK113xxB  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
T
= 25 °C unless otherwise specified  
A
VIN vs. QUIESCENT CURRENT  
(OFF MODE)  
OUTPUT CURRENT vs.  
QUIESCENT CURRENT  
REVERSE BIAS CURRENT  
(V = 0 V)  
IN  
100  
10  
500  
400  
1.9 V  
8
6
4
2
0
300  
200  
100  
0
50  
2.0 V  
1.3 V  
0
0
10  
(V)  
20  
0
100  
200  
0
10  
20  
V
I
(mA)  
V
(V)  
CC  
O
REV  
V
vs. QUIESCENT CURRENT  
(ON MODE)  
V
vs. QUIESCENT CURRENT  
(ON MODE)  
QUIESCENT CURRENT  
IN  
IN  
I
= 0 mA  
I
= 0 mA  
O
O
2
2
1
1.0  
0.5  
V
O
I
= 60 mA  
O
V
=
V
V
= 1.9 V  
O
O
3 V  
5 V  
1
0
4 V  
2 V  
I
= 30 mA  
0
O
V
= 1.3 to 1.8 V  
= 1.3 to 1.8 V  
O
O
0
0
0
5
10  
0
2.5  
5
-50  
50  
100  
V
(V )  
V
(V)  
IN  
TA (°C)  
IN  
CONTROL CURRENT  
DROPOUT VOLTAGE  
V
(V  
, ON POINT)  
CONT OUT  
RC = 0 V  
50  
40  
30  
20  
10  
0
500  
400  
300  
200  
100  
0
2.0  
V
= 5 V  
I
= 150 mA  
CONT  
O
1.0  
I
= 60 mA  
O
V
= 1.8 V  
I
= 30 mA  
CONT  
50  
O
0
-50  
0
100  
-50  
0
50  
100  
-50  
0
50  
100  
T
(°C)  
T
(°C)  
T
(°C)  
A
A
A
May, 1997 TOKO, Inc.  
Page 5  
TK113xxB  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
T = 25 °C unless otherwise specified  
A
MAXIMUM OUTPUT CURRENT  
OUTPUT VOLTAGE VARIATION  
LINE VOLTAGE STEP RESPONSE  
50 µs/Div  
V
+2  
280  
270  
O
V
= 2.7 V  
OUT  
V
+1  
O
10  
V
IN  
V
= 2 to 2.6 V  
2 V  
OUT  
4 V  
Cn = 0.001, CL = .22 µF  
260  
250  
240  
0
-10  
-20  
-30  
3 V  
5 V  
V
OUT  
10 mV/Div  
V
= 1.9 V  
= 1.3 V  
OUT  
V
Cn = 0.01, CL = 2.2 µF  
OUT  
-50  
0
50  
100  
-50  
0
50  
100  
T
(°C)  
T (°C)  
A
A
NOISE LEVEL vs. C  
N
LOAD CURRENT STEP  
RESPONSE  
NOISE SPECTRUM  
0
250  
200  
150  
100  
50  
50 µs/Div  
V
= 3 V  
O
100 mA  
I
= 60 mA  
O
I
50 mA  
OUT  
CL = 2.2 µF  
-50  
CL = 3.3 µF  
CL = 10 µF  
CL = 3.3 µF, Cn = None  
CL = 3.3 µF, Cn = 0.1 µF  
Cn = 0.01, CL = 2.2 µF  
50 mV/Div  
V
OUT  
Spectrum Analyzer Background Noise  
-100  
Cn = 0.1, CL = 10 µF  
0
0
500 k  
1 M  
1 pF 10  
100 1000 .01 µF .1  
Cn  
Frequency (Hz)  
Page 6  
May, 1997 TOKO, Inc.  
TK113xxB  
DEFINITION AND EXPLANATION OF TECHNICAL TERMS  
.
RIPPLE REJECTION RATIO  
OUTPUT VOLTAGE (V )  
O
Ripple rejection is the ability of the regulator to attenuate  
the ripple content of the input voltage at the output. It is  
specified with 100 mVrms, 400 Hz superimposed on the  
inputvoltage,whereV =V +1.5V. Theoutputdecoupling  
The output voltage is specified with V = (V  
+ 1 V)  
IN  
O(TYP)  
and I = 30 mA.  
O
DROPOUT VOLTAGE (V  
)
IN  
O
DROP  
capacitor is set to 10 µF, the noise bypass capacitor is set  
to 0.1 µF, and the load current is set to 30 mA. Ripple  
rejectionistheratiooftheripplecontentoftheoutputvs.the  
input and is expressed in dB.  
The dropout voltage is the difference between the input  
voltage and the output voltage at which point the regulator  
starts to fall out of regulation. Below this value, the output  
voltage will fall as the input voltage is reduced. It is  
dependent upon the load current and the junction tempera-  
ture.  
STANDBY CURRENT  
Standbycurrentisthecurrentwhichflowsintotheregulator  
when the output is turned off by the control function (V  
OUTPUT CURRENT (I MAX)  
CONT  
O
= V .) It is measured with V = 8 V (9 V for the 8 V output  
IN  
IN  
device.)  
The rated output current is specified under the condition  
where the output voltage drops 0.3 V below the value  
specified with I = 30 mA. The input voltage is set to V +1  
SENSOR CIRCUIT  
O
O
V, and the current is pulsed to minimize temperature effect.  
Over current sensor  
CONTINUOUS OUTPUT CURRENT (I )  
O
Theovercurrentsensorprotectsthedeviceintheevent  
that the output is shorted to ground.  
Normal operated output current. This is limited by package  
power dissipation.  
Thermal sensor  
PULSE OUTPUT CURRENT (I  
)
O (PULSE)  
The thermal sensor protects the device in the event  
that the junction temperature exceeds the safe value  
Max pulsewidth 5ms, Duty cycle 12.5%: pulse load only  
(T = 150 °C). This temperature rise can be caused by  
J
external heat, excessive power dissipation caused by  
largeinputtooutputvoltagedrops, orexcessiveoutput  
current. The regulator will shut off when the tempera-  
ture exceeds the safe value. As the junction tempera-  
tures decrease, the regulator will begin to operate  
again. Under sustained fault conditions, the regulator  
output will oscillate as the device turns off then resets.  
Damage may occur to the device under extreme fault  
conditions.  
LINE REGULATION (LINE REG)  
Line Regulation is the ability of the regulator to maintain a  
constant output voltage as the input voltage changes. The  
line regulation is specified as the input voltage is changed  
from V = V + 1V to V = V + 6V.  
IN  
O
IN  
O
LOAD REGULATION (LOAD REG)  
Load regulation is the ability of the regulator to maintain a  
constant output voltage as the load current changes. It is  
a pulsed measurement to minimize temperature effects  
with the input voltage set to V = V +1 V. The load  
regulation is specified under two output current step condi-  
tions of 1 mA to 60 mA and 1 mA to 100 mA.  
Reverse Voltage Protection  
Reverse voltage protection prevents damage due to  
the output voltage being higher than the input voltage.  
This fault condition can occur when the output capaci-  
tor remains charged and the input is reduced to zero,  
or when an external voltage higher than the input  
voltage is applied to the output side.  
IN  
O
QUIESCENT CURRENT (IQ)  
The quiescent current is the current which flows through  
the ground terminal under no load conditions (I = 0 mA)  
O
May, 1997 TOKO, Inc.  
Page 7  
TK113xxB  
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)  
CONTROL FUNCTION  
SOT-23L  
SOT-89-5  
V
IN  
V
IN  
6
5
4
3
6
4
SW  
1
2
1
2
3
R c  
SW  
R c  
C
NP  
C
NP  
If the control function is not used, connect the control terminal to ground When the control function is used, the  
.
control current can be reduced by inserting a series resistor (Rc) between the control terminal and V . The value of  
IN  
this resitor should be determined from the graph below.  
CONTROL PIN VOLTAGE vs.  
CURRENT  
50  
40  
30  
20  
10  
0
V
OUT  
RC =100k  
RC = 0  
0
1
2
3
4
5
V
(V)  
CONT  
Page 8  
May, 1997 TOKO, Inc.  
TK113xxB  
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)  
ON/OFF RESPONSE WITH CONTROL AND LOAD TRANSIENT RESPONSE  
The turn on time depends upon the value of the output capacitor and the noise bypass capacitor. The turn on time will  
increase with the value of either capacitor. The graph below shows the relationship between turn on time and load  
capacitance. If the value of these capacitors is reduced, the load and line regulation will suffer and the noise voltage will  
increase. If the value of these capacitors is increased, the turn on time will increase.  
OUTPUT VOLTAGE RESPONSE  
OUTPUT VOLTAGE RESPONSE  
LOAD CURRENT STEP  
R
(OFFON)  
(OFFON)  
200 mV/DIV  
B
C
C
= 0.1 µF  
N
1.0 µF  
CL = 0.33  
CL = 0.33 µF  
1.5 µF  
A
0.47 µF  
C
= 0.1 µF  
600  
N
-5  
5
LOAD  
15  
= 10 mA, C  
25  
35  
45  
0
I
200  
400  
800  
-5  
5
15  
25  
35  
45  
I
= 1000 pF  
= 30 mA, C = 2.2 µF  
NP  
LOAD  
L
TIME (µS)  
I
LOAD  
A = 0 to 30, B = 5 to 35, C = 30 to 60 mA  
REDUCTION OF OUTPUT NOISE  
Although the architecture of the Toko regulators is designed to minimize semiconductor noise, further reduction can be  
achieved by the selection of external components. The obvious solution is to increase the size of the output capacitor.  
A more effective solution would be to add a capacitor to the noise bypass terminal. The value of this capacitor should be  
0.1 µf or higher (higher values provide greater noise reduction). Although stable operation is possible without the noise  
bypass capacitor, this terminal has a high impedance and care should be taken to avoid a large circuit area on the printed  
circuitboardwhenthecapacitorisnotused. Pleasenotethatseveralparametersareaffectedbythevalueofthecapacitors  
and bench testing is recommended when deviating from standard values.  
May, 1997 TOKO, Inc.  
Page 9  
TK113xxB  
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)  
INPUT-OUTPUT CAPACITORS  
Linear regulators require an output capacitor in order to maintain regulator loop stability. This capacitor should be selected  
to insure stable operation over the desired temperature and load range. The graphs below show the effects of capacitance  
value and equivalent series resistance (ESR) on the stable operation area.  
113xxB  
2.0 V  
C
L
3.0 V  
5.0 V  
C = 3.3 µF  
C = 1 µF  
C = 2.2 µF  
C = 10 µF  
L
L
L
L
1000  
100  
1000  
100  
1000  
100  
1000  
100  
10  
1
10  
1
10  
1
10  
1
STABLE  
OPERATION  
AREA  
STABLE  
OPERATION  
AREA  
STABLE  
OPERATION  
AREA  
STABLE  
OPERATION  
AREA  
0.1  
0.1  
0.1  
0.1  
0 .01  
0.01  
0.01  
0.01  
Q 1  
Q 1  
Q 1  
Q 1  
150  
150  
150  
150  
100  
(mA)  
100  
(mA)  
100  
(mA)  
100  
(mA)  
50  
50  
50  
50  
I
I
I
I
OUT  
OUT  
OUT  
OUT  
In general, the capacitor should be at least 1 µF (Aluminum electrolytic) and be rated for the actual ambient operating  
temperaturerange. Thetablebelowshowstypicalcharacteristicsforseveraltypesandvaluesofcapacitance. Pleasenote  
that the ESR varies widely depending upon manufacturer, type, size, and material.  
ESR  
ESR  
Tantalum  
Aluminum  
Ceramic  
Capacitor  
Capacitor  
Capacitor  
Capacitance  
ESR  
1.0 µF  
2.2  
3.3  
10.0  
2.4 Ω  
2.0 Ω  
4.6 Ω  
1.4 Ω  
2.3 Ω  
1.9 Ω  
1 .0 Ω  
0.5 Ω  
0.14 Ω  
0.059 Ω  
0.049 Ω  
0.025 Ω  
ES  
Note: ESR is measured at 10 KHz.  
Page 10  
May, 1997 TOKO, Inc.  
TK113xxB  
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)  
PACKAGE POWER DISSIPATION (P )  
D
This is the power dissipation level at which the thermal sensor is activated. The IC contains an internal thermal sensor  
which monitors the junction temperature. When the junction temperature exceeds the monitor threshold of 150 °C, the  
IC is shutdown. The junction temperature rises as the difference between the input power (V X I ) and the output power  
IN  
IN  
(V  
X I  
) increases. The rate of temperature rise is greatly affected by the mounting pad configuration on the PCB,  
OUT  
OUT  
the board material, and the ambient temperature. When the IC mounting has good thermal conductivity, the junction  
temperature will be low even if the power dissipation is great. When mounted on the recommended mounting pad, the  
power dissipation of the SOT-23L is increased to 600 mW. For operation at ambient temperatures over 25 °C, the power  
dissipation of the SOT-23L device should be derated at 4.8 mW/°C. The power dissipation of the SOT-89-5 package is  
900 mW when mounted as recommended. Derate the power dissipation at 7.2 mW/°C for operation above 25 °C. To  
determine the power dissipation for shutdown when mounted, attach the device on the actual PCB and deliberately  
increase the output current (or raise the input voltage) until the thermal protection circuit is activated. Calculate the power  
dissipation of the device by subtracting the output power from the input power. These measurements should allow for the  
ambient temperature of the PCB. The value obtained from PD/(150 °C - T ) is the derating factor. The PCB mounting  
A
pad should provide maximum thermal conductivity in order to maintain low device temperatures. As a general rule, the  
lower the temperature, the better the reliability of the device. The Thermal resistance when mounted is expressed as  
follows:  
T = 0 X P + T  
A
J
JA  
D
For Toko ICs, the internal limit for junction temperature is 150 °C. If the ambient temperature, T is 25 °C, then:  
A
150 °C = 0 X P + 25 °C  
JA  
D
0
0
X P = 125 °C  
JA  
JA  
D
= 125 °C/ P  
D
P isthevaluewhenthethermalsensorisactivated. AsimplewaytodeterminePDistocalculateV XI whentheoutput  
D
IN  
IN  
side is shorted. Input current gradually falls as temperature rises. You should use the value when thermal equilibrium is  
reached.  
The range of currents usable can also be found from the graph below.  
(mW)  
3
P
D
6
D
pd  
4
5
Procedure:  
1.) Find P  
25  
50  
75  
T (°C)  
150  
D
2.) P is taken to be P X (0.8 ~ 0.9)  
D1  
D
3.) Plot P against 25 °C  
D1  
4.) Connect P  
to the point corresponding to the 150 °C with a straight line.  
D1  
5.) In design, take a vertical line from the maximum operating temperature (e.g. 75 °C) to the derating curve.  
6.) Read off the value of P against the point at which the vertical line intersects the derating curve. This is taken as the  
D
maximum power dissipation, D  
.
PD  
May, 1997 TOKO, Inc.  
Page 11  
TK113xxB  
The maximum operating current is:  
I
= (D /(V  
- V  
).  
OUT  
OUT  
PD  
IN(MAX)  
V
V
IN  
O
V
V
O
IN  
+
+
+
+
ON/OFF  
ON/OFF  
GND  
SOT-89-5 Board Layout  
SOT-23L Board Layout  
1.0  
750  
600  
450  
300  
150  
Mounted as  
shown  
0.8  
0.6  
0.4  
Mounted as shown  
Unmounted  
0.2  
0
Unmounted  
0
0
0
50  
100  
150  
50  
100  
150  
T
(°C)  
T
(°C)  
A
A
SOT-23L Power Dissipation Curve  
SOT-89-5 Power Dissipation Curve  
APPLICATION HINTS  
Copper pattern should be as large as possible. Power dissi-  
pation is 600 mW for SOT-23L and 900 mV for SOT-89-5. A  
low ESR capacitor is recommended. For low temperature  
operation, select a capacitor with a low ESR at the lowest  
operating temperature to prevent oscillation, degradation of  
ripple rejection and increase in noise. The minimum recom-  
mended capacitance is 2.2 µF.  
Page 12  
May, 1997 TOKO, Inc.  
TK113xxB  
PACKAGE OUTLINE  
+ 0.15  
-
0.05  
Marking Information  
SOT-23L  
0.4  
0.1  
M
0.6  
Product Code  
Q
5
6
4
Marking  
Voltage Code  
TK11320B  
TK11321B  
TK11322B  
TK11323B  
TK11324B  
TK11325B  
TK11326B  
TK11327B  
TK11328B  
TK11329B  
TK11330B  
TK11331B  
TK11332B  
TK11333B  
TK11334B  
TK11335B  
TK11336B  
TK11337B  
TK11338B  
TK11339B  
TK11340B  
TK11341B  
TK11342B  
TK11343B  
TK11344B  
TK11345B  
TK11346B  
TK11347B  
TK11348B  
TK11349B  
TK11350B  
TK11355B  
TK11360B  
TK11380B  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
55  
60  
80  
Product Code  
Voltage Code  
+ 0.15  
0.05  
1
2
3
-
5-0.32  
0.1  
M
e 0.95 e 0.95  
Recommended Mount Pad  
e
e
0.95  
0.95  
(Pin 2 and pin 5 should be  
grounded for heat dissipation)  
+ 0.3  
0.1  
3.4 -  
0.2  
±
2.2  
0.2  
0.4±  
0.3  
3.3±  
4.5  
1.6  
0.44max  
SOT-89-5  
0.49max  
6
0.49max 0.49max  
4
5
Voltage Code  
Product Code  
0.44max  
1
3
2
0.49max  
0.49max  
0.54max  
0.7max  
0.7max  
1.0  
e
e
1.5  
1.5  
e'  
3.0  
45fl  
2.0  
e
e
1.5  
1.5  
Recommended Mount Pad  
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of  
its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other  
rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.  
TOKO AMERICA REGIONAL OFFICES  
Western Regional Office  
Toko America, Inc.  
Eastern Regional Office  
Toko America, Inc.  
Semiconductor Technical Support  
Toko Design Center  
Midwest Regional Office  
Toko America, Inc.  
1250 Feehanville Drive  
Mount Prospect, Il 60056  
Tel: (847) 297-0070  
2480 North First Street, Suite 260 107 Mill Plain Road  
4755 Forge Road  
Colorado Springs, CO 80907  
Tel: (719) 528-2200  
San Jose, CA 95131  
Tel: (408) 432-8281  
Fax: (408) 943-9790  
Danbury, CT 06811  
Tel: (203) 748-6871  
Fax: (203) 797-1223  
Fax: (719) 528-2375  
Fax: (847) 699-7864  
IC-214-TK113B  
0597O2500  
http://www.tokoam.com  
May, 1997 TOKO, Inc.  
© 1997 Toko, Inc.  
All rights reserved  
Printed in the USA  
Page 13  

相关型号:

TK11347BMBX

Fixed Positive LDO Regulator, 4.7V, 0.24V Dropout, PDSO6, SOT-23L, 6 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMC

Fixed Positive LDO Regulator, 4.7V, 0.39V Dropout, PDSO6, SOT-23L, 6 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMCB

VOLTAGE REGULATOR WITH ON/OFF SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMCL

VOLTAGE REGULATOR WITH ON/OFF SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMI

Fixed Positive LDO Regulator, 4.7V, 0.4V Dropout, PDSO6, SOT-23L, 6 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMIB

VOLTAGE REGULATOR WITH ON/OFF SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMIL

VOLTAGE REGULATOR WITH ON/OFF SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMM

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BMTL

Fixed Positive LDO Regulator, 4.7V, 0.24V Dropout, PDSO6, SOT-23L, 6 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BUBX

Fixed Positive LDO Regulator, 4.7V, 0.24V Dropout, PDSO5, SOT-89, 5 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BUC

Fixed Positive LDO Regulator, 4.7V, 0.39V Dropout, PDSO5, SOT-89, 5 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO

TK11347BUCB

VOLTAGE REGULATOR WITH ON/OFF SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKO