TK14551V [TOKO]

FM IF DETECTOR/AMPLIFIER; FM IF检波器/放大器
TK14551V
型号: TK14551V
厂家: TOKO, INC    TOKO, INC
描述:

FM IF DETECTOR/AMPLIFIER
FM IF检波器/放大器

放大器
文件: 总32页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TK14551V  
FM IF DETECTOR/AMPLIFIER  
FEATURES  
APPLICATIONS  
Wide Band FSK Demodulation  
Wide Band FM Demodulation  
IF Input Frequency ~90 MHz (TYP)  
Balanced Input (IF)  
Includes Dual High Speed RSSI Outputs. One is for Video Signal Demodulation  
Wide Band ASK Demodulation  
ASK demodulation, another one is for carrier  
sensing.  
RSSI outputs are accurate with stable temperature  
characteristic and include buffer amplifiers.  
High Speed RSSI Comparator for Carrier Sensing  
HIgh Speed Data Comparator (~2 Mbps)  
Wide Band Demodulator (~1 MHz)  
Battery Save Function  
TK14551  
Low Voltage Operation: 3.0 ~ 5.5 V  
Very Small Package (TSSOP-24)  
IF DECOUPLE  
IF DECOUPLE  
IF INPUT (-)  
23 IF INPUT (+)  
22 IF GND  
DESCRIPTION  
IF OUTPUT  
21  
FM DEMODULATOR INPUT  
BATTERY SAVE  
IF V  
CC  
20 RSSI COMP BIAS  
The TK14551V is a wide band IF IC capable of operating  
up to 90 MHz. It includes an FM demodulator, RSSI, RSSI  
comparator and data comparator. These functions can  
perform high-speed operations. The TK14551V has a  
unique function that allows establishing the demodulation  
characteristicsbychangingtheexternalRCtimeconstant,  
and not changing the phase shifter constant. The RSSI  
output is individually trimmed, resulting in excellent  
accuracy, good linearity, and stable temperature  
characteristics. Because the TK14551V includes a dual  
high-speed RSSI output, it is possible to demodulate AM  
simply and to sense the carrier level at the same time.  
19 RSSI OUTPUT-1  
GND  
V
18 RSSI OUTPUT-2  
CC  
17 RSSI BUFFERED OUTPUT-1  
16 RSSI COMP OUTPUT  
15 RSSI COMP GND  
FM DEMODULATOR AMP INPUT  
FM DEMODULATOR AMP OUTPUT  
RSSI BUFFERED OUTPUT-2  
DATA COMP INPUT (-)  
DATA COMP INPUT (+)  
14 DATA COMP GND  
13 DATA COMP OUTPUT  
BLOCK DIAGRAM  
Therefore, the TK14551V is suitable for high-speed data  
communication and can be used for various applications.  
BIAS  
IF  
AMP  
RSSI  
The TK14551V is available in the very small TSSOP-24  
surface mount package.  
RSSI  
Comparator  
ORDERING INFORMATION  
Demodulator  
V
V
CC  
CC  
TK14551V  
BUFF2  
Tape/Reel Code  
TAPE/REEL CODE  
TL: Tape Left  
January 2000 TOKO, Inc.  
Page 1  
TK14551V  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ........................................................... 6 V  
Operating Voltage Range.............................. 3.0 to 5.5 V  
Power Dissipation (Note 1) ................................ 230 mW  
Storage Temperature Range ................... -55 to +150 °C  
Operating Temperature Range ...................-40 to +85 °C  
Operating Frequency Range............ 0.1 to 90 MHz (typ.)  
TK14551V ELECTRICAL CHARACTERISTICS  
Test conditions: VCC = 3 V, TA = 25 °C, unless otherwise specified.  
MEASUREMENT  
POINT (NOTE 2)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
Battery Save = OFF,  
Not including  
comparator output  
current.  
A1  
A1  
6
10  
15  
mA  
µA  
ICC  
Supply Current  
Battery Save = ON,  
Not including  
comparator output  
current.  
0.1  
5.0  
Voltage at Pin 21 for  
standby mode  
VSON  
Battery Save On  
Battery Save Off  
-0.1  
2.0  
0.2  
VCC  
VDC  
VDC  
Voltage at Pin 21 for  
operation mode  
VSOFF  
FM DEMODULATION (fIN = 10.7 MHz)  
-3 dB Point, 1 kHz ±  
100 kHz dev  
Limit  
Limiting Sensitivity  
VA  
VA  
-65  
-59  
dBm  
Demodulation Output  
Voltage  
VOUT(DET)  
60  
55  
1
100  
160  
2.0  
mVrms  
1 kHz ± 100kHz dev,  
-20 dBm input  
THD  
S/N  
Distortion  
VA  
VA  
0.5  
65  
%
Signal to Noise Ratio  
dB  
Remove capacitor  
between Pin 8 and  
Pin 9.  
Standard measured  
value at 1 kHz  
Demodulating  
Frequency Band  
fDB1  
VA  
1.5  
MHz  
Note 1: Power dissipation is 230 mW in free air. Derate at 1.84 mW/°C for operation above 25°C.  
Note 2: Refer to Test Circuit.  
Page 2  
January 2000 TOKO, Inc.  
TK14551V  
TK14551V ELECTRICAL CHARACTERISTICS  
Test conditions: VCC = 3 V, TA = 25 °C, unless otherwise specified.  
MEASUREMENT  
POINT (NOTE 2)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
RSSI OUTPUT (fIN = 40 MHz)  
No input, DC  
measurement  
VC  
VC  
0.00  
0.30  
0.10  
0.45  
0.30  
0.60  
VDC  
VDC  
-60 dBm non-  
modulated input,  
DC measurement  
VRSSI  
RSSI Output Voltage  
-30 dBm non-  
modulated input,  
DC measurement  
VC  
VC  
0.70  
1.05  
0.95  
1.35  
1.20  
1.65  
VDC  
0 dBm non-  
modulated input,  
DC measurement  
VDC  
fm = 2 MHz (sine  
wave),  
modulation = 80%,  
-40 dBm input  
AM Demodulating  
Output Voltage  
VOAM  
VDAM  
fDB2  
VB  
VB  
VB  
140  
230  
±1.5  
3
360  
±3  
mVP-P  
-60 ~ -15 dBm input,  
fm = 2 MHz (sine  
wave),  
AM Demodulating  
Output Voltage  
Deflection  
dB  
modulation = 80%  
-6 dB point,  
Demodulating  
Frequency Band  
modulation = 80%,  
Standard measured  
value at 100 kHz.  
2
MHz  
RSSI COMPARATOR  
TR1  
TF1  
Rise Time  
Fall Time  
VD  
VD  
25  
15  
50  
30  
ns  
ns  
IF no input,  
Pin 19 Input  
= 1 VDC, Pin 20  
Input = 100 kHz,  
0.1 VP-P, Square  
Wave  
(Duty Ratio = 50%,  
TR, TF < 10 ns),  
DC Offset = 1 VDC  
Propagation Delay  
Time (Low to High)  
tPD1  
VD  
55  
110  
ns  
Propagation Delay  
Time (High to Low)  
tPD2  
DR1  
VD  
VD  
55  
50  
110  
55  
ns  
%
Duty Ratio  
45  
DC measurement,  
Output Saturation  
Voltage = 0.3 V  
ISINK1  
Output Sink Current  
A2  
3.5  
5.0  
mA  
VDC  
Output Voltage High  
Level  
VOUTH1  
DC measurement  
VD  
2.70  
2.95  
3.00  
January 2000 TOKO, Inc.  
Page 3  
TK14551V  
TK14551V ELECTRICAL CHARACTERISTICS  
Test conditions: VCC = 3 V, TA = 25 °C, unless otherwise specified.  
MEASUREMENT  
POINT (NOTE 2)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
RSSI COMPARATOR (CONT.)  
DC measurement,  
Output Sink Current  
= 5 mA  
Output Voltage Low  
VOUTL1  
Level  
VD  
0.00  
0.30  
0.45  
VDC  
DATA COMPARATOR  
Input: DC Offset =  
1 VDC,  
Propagation Delay  
tPD3  
VE  
VE  
55  
55  
110  
110  
ns  
ns  
Time (Low to High)  
2 MHz, 0.2 VP-P  
,
Square Wave (Duty  
Ratio = 50%, TR, TF <  
10 ns)  
Propagation Delay  
tPD4  
Time (High to Low)  
TR2  
TF2  
DR2  
Rise Time  
Fall Time  
Duty Ratio  
VE  
VE  
VE  
25  
15  
50  
50  
30  
55  
ns  
ns  
%
Input: DC Offset =  
1 VDC,  
2 MHz, 0.2 VP-P  
Sine Wave  
,
45  
DC measurement,  
Output Saturation  
Voltage = 0.3 V  
ISINK2  
Output Sink Current  
A3  
VE  
VE  
3.5  
5.0  
mA  
VDC  
VDC  
Output Voltage High  
Level  
VOUTH2  
DC measurement  
2.70  
0.00  
2.95  
0.30  
3.00  
0.45  
DC measurement,  
Output Sink Current  
= 5 mA  
Output Voltage Low  
Level  
VOUTL2  
RSSI BUFFER AMPLIFIER 2  
IOUT  
Output Current  
DC measurement  
DC measurement  
A4  
VB  
±200  
130  
µA  
ZOUT  
Output Impedance  
Page 4  
January 2000 TOKO, Inc.  
TK14551V  
TEST CIRCUIT  
PG1  
PG1  
100 mV  
50  
100 kHz  
P-P  
T , T < 10 ns  
R
V4 = 1 V  
SW3  
DC = 1.0 V  
F
V5 = 1 V  
SW4  
V3 = 0.9 V  
SW2  
Comp V  
CC  
= 3 V  
5.6 K  
V1 = 0.2 V  
CL2  
10 pF  
10 µF  
0.01 µF  
1 k  
SW1  
CL1  
10 pF  
1 k  
V2 = 2.0 V  
SG1  
50  
SW6  
VE  
VD  
SW5  
2200 pF  
2200 pF  
A3  
A2  
5.6 K  
100 pF  
VC  
51  
~
V6 = 3V  
NOTE:  
V7 = 3V  
SG1  
FM: 10.7 MHz  
1 KHz ± 100 K dev  
AM: 40.0 MHz  
2 MHz 80% mod  
CL1 and CL2 simulate probe capacitance  
and stray capacitance.  
VD and VE are measured with low capacitance  
FET probe (Sony Tektronix P6201).  
SG2  
1000 pF  
1pF  
SW10  
2 MHz 200mVP-P  
Sine Wave  
22 K  
SW9  
SW8  
SW7  
2200 pF  
DC = 1.0 V  
0.01 µF 0.01 µF  
T1  
2200 pF  
50  
3 K  
SG2  
1000 pF  
0.01 µF  
FM IF Coil  
T1: 836BH-0268  
(TOKO)  
3 K  
2.2 K  
~
10 k  
VA  
10 µF  
0.01 µF  
A1  
A4  
V8  
VB  
V11 = 0.5 V  
CC = 3 V  
V9  
= 1 V  
V10 = 0.9 V  
V
CC  
47 µF  
V
Example of 40 MHz (= fIN) FM detection  
56 k  
1 pF  
2.2 k  
1000 pF  
22 pF  
A638AN-1346ETJ  
V
CC  
(TOKO)  
January 2000 TOKO, Inc.  
Page 5  
TK14551V  
TEST CIRCUIT (CONT.)  
Measurement of Battery Save Function:  
Battery Save ON: SW1 = 0.2 V position  
Battery Save OFF: SW1 = 2 V position  
Measurement of Comparator:  
SW3 is closed only for the measurement of the RSSI comparator response characteristics and output sink  
current, supplying 1 VDC to Pin 19.  
PG1 is connected only for the measurement of the RSSI comparator response. Input the pulse wave to Pin 20,  
and measure the output wave (VD) of Pin 16.  
ISINK1 (RSSI Comparator Output Current):  
No IF input. SW2 = V3 position (supplying 0.9 V to Pin 20). SW3 = ON (supplying 1 V to Pin  
19). SW5 = V6 position (supplying 3 V to Pin16). Measure the DC current to Pin 16 from  
V6.  
ISINK2 (Data Comparator Output Current):  
SW9 = V9 position(supplying 1 V Pin 11). SW10 = V10 position (supplying 0.9 V to Pin 12).  
SW6 = V7 position (supplying 3 V to Pin 13). Measure the DC current to Pin 13 from V7.  
Measurement of TR, TF, tPD (RSSI Comparator, Data Comparator):  
RSSI Comparator: No IF input. SW2 = PG1 position. SW3 = ON (supplying 1 V to Pin 19). SW5 = VD position.  
Measure the output wave (VD).  
Data Comparator: SW9 = 3 kposition. SW10 = 3 kposition. SW6 = VE position. Measure the output wave  
(VE).  
TR, TF: Measure the time between the 10% point and the 90% point of the output wave.  
tPD: Measure the time between the 50% point of the input wave and the 50% point of the output wave.  
Measurement of the Logarithmic Detection of RSSI Output:  
SW7 = OFF. SW8 = VB position. Input AM modulation signal SG1(fIN = 40 MHz, fm = 2 MHz, mod. = 80%, VIN  
= -60, -40, -15 dBm) to Pin 24. Measure the logarithmic detection output voltage of Pin 10.  
The AM demodulating output voltage deflection is standardizing the AM demodulating output voltage in the case  
of -40 dBm input, and calculated by the deflection by AM demodulating output voltage in the case of -60, -15  
dBm input.  
The measurement of demodulating frequency band is standardizing the AM demodulating output voltage of Pin  
10 in the case that VIN = -40 dBm, fIN = 40 MHz, fm = 100 kHz and 80% AM modulating output voltage at Pin 10,  
comparing it to the standard output voltage.  
Measurement of Output Current of RSSI Buffer Amplifier 2:  
SW7 = OFF. SW8 = V8 position. No IF input. SW4 = ON (supplying 1 V to Pin 18). Measure the DC current  
(A4) between V8 and Pin 10 in the case of V8 = 3 V, 0 V.  
Measurement of Output Impedance of RSSI Buffer Amplifier 2:  
No IF input. SW8 = VB position. SW4 = ON (supplying 1 V to Pin 18). At first, SW7 = OFF and measure the  
DCcurrent(VB1)ofPin10. Next, SW7=ONandmeasuretheDCcurrent(VB8)ofPin10. Theoutputimpedance  
(ZOUT) is calculated by the following:  
ZOUT () = 10 k • ((VB1 - VB2)/(VB2 - 0.5))  
Page 6  
January 2000 TOKO, Inc.  
TK14551V  
PIN FUNCTION DESCRIPTION  
PIN  
NO.  
TERMINAL  
VOLTAGE  
SYMBOL  
IF DECOUPLE  
IF DECOUPLE  
INTERNAL EQUIVALENT CIRCUIT  
DESCRIPTION  
1
2
1.8 V  
1.8 V  
1.8 V  
1.8 V  
Pin 1,2: The terminal to  
connect the bypass  
capacitor of the IF  
limiter amplifier.  
IF V  
CC  
23 IF INPUT (+)  
24 IF INPUT (-)  
Pin 23: IF Limiter  
Amplifier Non-inverting  
Input.  
1.5 k  
50 k  
1.5 k  
50 k  
Pin 24: IF Limiter  
Amplifier Inverting Input.  
3
IF OUTPUT  
2.0 V  
IF Limiter Amplifier  
Output.  
IF V  
CC  
1 k  
4
IF DEMODULATOR  
INPUT  
3.0 V  
FM Detector Input.  
Connection for the  
phase shift circuit.  
IF V  
CC  
5
IF VCC  
3.0 V  
Power supply terminal  
of IF limiter amplifier,  
RSSI buffer amplifier-2  
and FM detector  
6
7
GND  
VCC  
0 V  
GND Terminal  
3.0 V  
Power supply terminal  
of RSSI buffer amplifier-  
1, RSSI comparator,  
and data comparator  
January 2000 TOKO, Inc.  
Page 7  
TK14551V  
PIN FUNCTION DESCRIPTION (CONT.)  
PIN  
NO.  
TERMINAL  
VOLTAGE  
SYMBOL  
INTERNAL EQUIVALENT CIRCUIT  
DESCRIPTION  
8
FM  
1.4 V  
Pin 8: FM Detector Post  
Amplifier Input.  
IF V  
CC  
DEMODULATOR  
AMP INPUT  
9
1.4 V  
Pin 9: FM Detector Post  
Amplifier Output.  
FM  
DEMODULATOR  
AMP OUTPUT  
1.4 V  
10 RSSI BUFFERED  
OUTPUT-2  
RSSI Buffer Amplifier-2  
Output.  
IF V  
CC  
11 DATA COMP  
INPUT (-)  
Pin 11: Data  
Comparator Inverting  
Input.  
IF V  
CC  
12 DATA COMP  
INPUT (+)  
Pin 12: Data  
Comparator  
Non-inverting Input.  
13 DATA COMP  
OUTPUT  
Pin 13: Data  
IF V  
CC  
Comparator Output.  
The output circuit is  
open collector.  
14 DATA COMP GND  
0 V  
Pin 14: The terminal to  
terminate the data  
comparator output.  
Page 8  
January 2000 TOKO, Inc.  
TK14551V  
PIN FUNCTION DESCRIPTION (CONT.)  
PIN  
NO.  
TERMINAL  
VOLTAGE  
SYMBOL  
INTERNAL EQUIVALENT CIRCUIT  
DESCRIPTION  
15 RSSI COMP GND  
0 V  
Pin 15: The terminal to  
terminate the RSSI  
comparator output.  
IF V  
CC  
16 RSSI COMP  
OUTPUT  
Pin 16: RSSI  
Comparator Output.  
The output circuit is  
open collector.  
17 RSSI BUFFERED  
OUTPUT-1  
RSSI Buffer Amplifier-1  
Output.  
IF V  
CC  
18 RSSI OUTPUT-2  
19 RSSI OUTPUT-1  
Pin 18, 19: RSSI  
Output.  
V
IF V  
CC  
CC  
These terminals are  
current outputs,  
converted to a voltage  
by connecting the  
external resistor  
between the output  
terminals and GND.  
20 RSSI COMP BIAS  
RSSI Comparator  
Non-inverting Input.  
Supply the reference  
voltage.  
IF V  
CC  
January 2000 TOKO, Inc.  
Page 9  
TK14551V  
PIN FUNCTION DESCRIPTION (CONT.)  
PIN  
NO.  
TERMINAL  
VOLTAGE  
SYMBOL  
INTERNAL EQUIVALENT CIRCUIT  
DESCRIPTION  
21 BATTERY SAVE  
VBS  
Battery Save Control.  
100 k  
100 k  
Battery Save OFF:  
VBS = 1.5 V to VCC  
Battery Save ON:  
VBS < 0.3 V  
22 IF GND  
0 V  
GND Terminal  
Page 10  
January 2000 TOKO, Inc.  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25 °C, unless otherwise specified.  
FM DEMODULATION  
S+N, N, THD, AM OUT (f = 10.7 MHz)  
FM DEMODULATION  
S+N, N, THD, AM OUT (f = 40 MHz)  
in  
in  
20  
16  
12  
20  
16  
12  
0
0
V
= 3 V  
V
= 3 V  
CC  
= 10.7 MHz  
CC  
= 40 MHz  
f
f
in  
in  
S+N  
S+N  
fm = 1 kHz  
fm = 1 kHz  
dev. = ±100 kHz  
dev. = ±100 kHz  
-20  
-20  
-40  
-60  
-40  
-60  
AM OUT  
(30% mod.)  
AM OUT  
(30% mod.)  
8
4
0
8
4
0
N
N
-80  
-80  
THD  
THD  
-100  
-100  
-120 -100 -80 -60 -40 -20  
0
20  
-120 -100 -80 -60 -40 -20  
0
20  
IF INPUT LEVEL (dBm)  
IF INPUT LEVEL (dBm)  
RSSI BUFFER OUTPUT VOLTAGE  
vs. IF INPUT LEVEL  
RSSI BUFFER OUTPUT VOLTAGE  
vs. IF INPUT LEVEL  
(FREQUENCY CHARACTERISTICS)  
(V  
CHARACTERISTICS)  
CC  
2.0  
1.6  
2.0  
1.6  
f
= 40 MHz  
V
= 3 V  
in  
CC  
1.2  
0.8  
0.4  
0.0  
1.2  
0.8  
0.4  
0.0  
V
CC  
f
in  
40 MHz  
70 MHz  
90 MHz  
5.5 V  
5.0 V  
4.0 V  
3.0 V  
-120 -100 -80 -60 -40 -20  
0
20  
-120 -100 -80 -60 -40 -20  
0
20  
IF INPUT LEVEL (dBm)  
IF INPUT LEVEL (dBm)  
LOGARITHMIC DETECTION  
AM DEMODULATION VOLTAGE VS.  
IF INPUT LEVEL  
LOGARITHMIC DETECTION  
AM DEMODULATION VOLTAGE VS.  
DEMODULATING FREQUENCY  
1000  
1000  
V
= 3 V  
CC  
= 40 MHz  
f
in  
500  
300  
500  
300  
fm = 2 MHz  
mod = 80%  
100  
100  
V
= 3 V  
CC  
= 40 MHz  
50  
30  
50  
30  
f
in  
mod = 80%  
10  
10  
-120 -100 -80 -60 -40 -20  
0
20  
10k 30k 100k 300k 1M 3M 10M  
IF INPUT LEVEL (dBm)  
MODULATING FREQUENCY fm (Hz)  
January 2000 TOKO, Inc.  
Page 11  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
IF LIMITING  
SUPPLY CURRENT vs.  
SUPPLY VOLTAGE  
AMPLIFIER GAIN  
vs. INPUT FREQUENCY  
100  
80  
20  
16  
V
= 3 V  
CC  
12  
8
60  
40  
20  
0
4
0
2
3
4
5
)
6
1
3
5
10  
30 50  
100  
V
(V  
CC DC  
INPUT FREQUENCY (MHz)  
RSSI BUFFER OUTPUT VOLTAGE  
vs. TEMPERATURE  
SUPPLY CURRENT vs.  
TEMPERATURE  
2.0  
1.6  
20  
16  
V
= 3 V  
CC  
= 40 MHz  
f
in  
0 dBm input  
1.2  
0.8  
0.4  
0.0  
12  
8
-30 dBm input  
-60 dBm input  
-90 dBm input  
4
0
-40 -20  
0
20 40 60 80  
-40 -20  
0
20 40 60 80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOGARITHMIC DETECTION AM  
DEMODULATION VOLTAGE, AM  
DEMODULATION OUTPUT  
vs. TEMPERATURE  
RSSI BUFFER OUTPUT VOLTAGE vs.  
IF INPUT LEVEL  
(TEMPERATURE CHARACTERISTICS)  
2.0  
400  
300  
8
6
V
= 3 V  
CC  
= 40 MHz  
V
= 3 V  
= 40 MHz  
CC  
f
in  
f
in  
fm = 2 MHz  
mod. = 80%  
1.6  
V
= -40 dBm  
in  
AM Demodulating  
Output Voltage  
1.2  
0.8  
0.4  
0.0  
200  
100  
0
4
2
0
TEMP. (°C)  
85  
50  
25  
0
-20  
-40  
AM Demodulating Output  
Voltage Deflection  
-120 -100 -80 -60 -40 -20  
0
20  
-40 -20  
0
20 40 60 80  
IF INPUT LEVEL (dBm)  
TEMPERATURE (°C)  
Page 12  
January 2000 TOKO, Inc.  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
FM DEMODULATION  
LOGARITHMIC DETECTION  
AM DEMODULATION VOLTAGE,  
AM DEMODULATION OUTPUT  
vs. SUPPLY VOLTAGE  
DEMODULATION OUTPUT VOLTAGE,  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE  
200  
160  
120  
5
400  
300  
8
6
V
= 3 V  
CC  
= 10.7 MHz  
f
in  
fm = 1 kHz  
dev. = ±100 kHz  
4
3
AM Demodulating  
Output Voltage  
V
OUT  
V
= 3 V  
CC  
= 40 MHz  
f
in  
200  
100  
0
4
2
0
fm = 2 MHz  
mod. = 80%  
in  
80  
40  
0
2
1
0
V
= -40 dBm  
AM Demodulating Output  
Voltage Deflection  
THD  
-40 -20  
0
20 40 60 80  
2
3
4
5
6
TEMPERATURE (°C)  
V
(V )  
CC DC  
FM DEMODULATION  
FM DEMODULATION  
S/N, -3 dB LIMITING SENSITIVITY  
vs. TEMPERATURE  
DEMODULATION OUTPUT VOLTAGE,  
TOTAL HARMONIC DISTORTION  
vs. SUPPLY VOLTAGE  
5
80  
70  
-40  
-50  
200  
160  
120  
V
= 3 V  
V
= 3 V  
CC  
= 10.7 MHz  
CC  
= 10.7 MHz  
f
in  
f
in  
fm = 1 kHz  
dev. = ±100 kHz  
fm = 1 kHz  
dev. = ±100 kHz  
4
3
S/N  
V
OUT  
-60  
-70  
-80  
60  
50  
40  
80  
40  
0
2
1
0
-3 dB Limit. Sens.  
THD  
-40 -20  
0
20 40 60 80  
2
3
4
5
6
TEMPERATURE (°C)  
V
(V )  
CC DC  
FM DEMODULATION  
S/N, -3 dB LIMITING SENSITIVITY  
vs. SUPPLY VOLTAGE  
DATA COMPARATOR  
TRANSIENT RESPONSE  
(RISE)  
80  
70  
-40  
-50  
V
= 3 V  
V
= 3 V  
CC  
= 10.7 MHz  
CC  
f
in  
fm = 1 kHz  
dev. = ±100 kHz  
OUT  
(1V/div)  
S/N  
-60  
-70  
-80  
60  
50  
40  
IN  
(0.1V/div)  
-3 dB Limit. Sens.  
2
3
4
5
6
V
(V )  
CC DC  
20 ns/div  
January 2000 TOKO, Inc.  
Page 13  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
DATA COMPARATOR  
TRANSIENT RESPONSE  
(FALL)  
DATA COMPARATOR  
OUTPUT DUTY RATIO  
vs. INPUT VOLTAGE  
100  
80  
60  
V
= 3 V  
CC  
V
= 3 V  
CC  
= 2 MHz  
f
in  
OUT  
(1V/div)  
40  
IN  
(0.1V/div)  
20  
0
0
100  
200  
(mV  
300  
400  
20 ns/div  
V
)
P-P  
IN  
FM DEMODULATION  
FREQUENCY  
CHARACTERISTICS  
S CURVE CHARACTERISTICS  
2.0  
1.6  
V
= 3 V  
CC  
= -20 dBm  
V
IN  
RD = 1 k  
1 pF  
22 k  
C
1.2  
0.8  
RD  
836BH-0268  
(TOKO)  
V
RD = 2.2 k  
10.3 10.7 11.1 11.5  
CC  
9.9  
IF INPUT FREQUENCY (MHz)  
DEMODULATION OUTPUT VOLTAGE  
vs. DEMODULTING FREQUENCY  
RD = 2.2 kΩ  
DEMODULATION OUTPUT VOLTAGE  
vs. DEMODULTING FREQUENCY  
RD = 1.0 kΩ  
2
0
2
0
0 dB = 104.4 mVrms  
C = none  
0 dB = 30.7 mVrms  
C = none  
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
C = 330 pF  
C = 330 pF  
C = 1000 pF  
C = 1000 pF  
C =  
10 pF  
V
= 3 V  
C =  
47 pF  
V
= 3 V  
CC  
= 10.7 MHz  
CC  
= 10.7 MHz  
f
f
in  
dev. = 100 kHz  
in  
dev. = 100 kHz  
C =  
47 pF  
C =  
10 pF  
-10  
-12  
-10  
-12  
1k  
3k 10k 30k 100k 300k 1M  
1k  
3k 10k 30k 100k 300k 1M  
MODULATING FREQUENCY fm (Hz)  
MODULATING FREQUENCY fm (Hz)  
Page 14  
January 2000 TOKO, Inc.  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
ASK Demodulation Output Wave, Effect of Inserting Active Filter  
Condition: VCC = 3 V, fin = 40 MHz, fm = 2 MHz (sine wave), mod. = 80%, VIN = -40 dBm  
Without Active Filter  
Test Circuit  
With Active Filter (fc = 3 MHz)  
Test Circuit  
3 k  
1000 pF  
3 k  
3 k  
10 pF  
1 k  
1 k  
3 k  
1000 pF  
10 pF  
33 pF  
COMP V  
COMP V  
CC  
CC  
2.2 k  
2.2 k  
15 pF  
RSSI Buffer Out 2 (0.1V/div)  
RSSI Buffer Out 2 (0.1V/div)  
Data Comparator Out (1V/div)  
Data Comparator Out (1V/div)  
0.2 µs/div  
0.2 µs/div  
January 2000 TOKO, Inc.  
Page 15  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
RSSI Buffer Output (Pin 17) Transient Response (IF Input ON/OFF)  
RSSI BUFFERED  
OUTPUT-1  
C
5.6 k  
Condition  
V
= 3 V  
CC  
= 40 MHz  
f
in  
C = 100 pF  
0 dBm input  
-30 dBm input  
-60 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
SG GATE PULSE  
(1V/div)  
2 µs/div  
2 µs/div  
C = 1000 pF  
0 dBm input  
-30 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
-60 dBm input  
SG GATE PULSE  
(1V/div)  
5 µs/div  
5 µs/div  
C = 0.01 µF  
0 dBm input  
-30 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
-60 dBm input  
SG GATE PULSE  
(1V/div)  
50 µs/div  
50 µs/div  
Page 16  
January 2000 TOKO, Inc.  
TK14551V  
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)  
TA = 25 °C, unless otherwise specified.  
RSSI Buffer Output-1 (Pin 17) Transient Response (Battery Save ON OFF)  
RSSI BUFFERED  
OUTPUT-1  
C
5.6 k  
Condition  
V
= 3 V  
CC  
= 40 MHz  
f
in  
C = 100 pF  
0 dBm input  
-30 dBm input  
-60 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
Battery Save  
(1V/div)  
2 µs/div  
C = 1000 pF  
0 dBm input  
-30 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
-60 dBm input  
Battery Save  
(1V/div)  
5 µs/div  
C = 0.01 µF  
0 dBm input  
-30 dBm input  
RSSI BUFFERED OUTPUT-1  
(0.5V/div)  
-60 dBm input  
Battery Save  
(1V/div)  
50 µs/div  
January 2000 TOKO, Inc.  
Page 17  
TK14551V  
APPLICATION NOTES  
If the input is FM or FSK modulation, whether the IF input is a balanced or an unbalanced input, there is no problem. But,  
if the input is ASK modulation and the IF input is a balanced input, the Bit Error Rate (BER) may be high. Therefore, if  
theinputisASKmodulation, theIFinputmustbeanunbalancedinput. Iftheinputisanunbalancedinputasshownbelow,  
donotterminatePin1(donotconnectthebypasscapacitorbetweenPin1andGND). IfPin23istheinputdonotterminate  
Pin 2.  
do not terminate  
1.5 k  
50 k  
1.5 k  
50 k  
50  
~
Page 18  
January 2000 TOKO, Inc.  
TK14551V  
CIRCUIT DESCRIPTION  
IF Limiter Amplifier:  
The IF limiter amplifier is composed of four differential gain stages. The total gain of the IF limiter amplifier is about 64  
dB. TheoutputsignaloftheIFlimiteramplifierisprovidedatPin3throughtheemitter-followeroutputstage. TheIFlimiter  
amplifier output level is 0.5 VP-P  
.
The operating current of the IF limiter amplifier emitter-follower output is 550 µA. If the capacitive load is heavy, the  
negative half cycle of the output waveform may be distorted. This distortion can be reduced by connecting an external  
resistor between Pin 3 and GND to increase the operating current. The increased operating current by using an external  
resistor is calculated as follows (see Figure 1):  
V
CC  
IF OUTPUT  
R
e
I
e
FIGURE 1  
The increased operating current Ie (mA) = (VCC - 1.0)/Re (k).  
Because the IF input is a balanced input, it is easy to match a SAW filter, etc.  
If the IF input is an unbalanced input, connect Pin 23 or 24 with a bypass capacitor to ground.  
The input resistance of the IF limiter amplifier is 1.5 k(see Figure 2). If the impedance of the filter is lower than 1.5 k,  
connect an external resistor between Pin 24 and Pin 2 or between Pin 23 and Pin 1 in parallel to provide the equivalent  
load impedance of the filter. Figure 2 shows an example of a filter with a 330 impedance.  
23,  
24  
1.5 K  
330  
1, 2  
FIGURE 2  
January 2000 TOKO, Inc.  
Page 19  
TK14551V  
CIRCUIT DESCRIPTION  
The input impedance of the IF limiter amplifier (between Pin 23, 24 and GND) is as follows:  
S11  
FREQUENCY  
(MHz)  
Zin [ ]  
(series impedance)  
φ
-3.4  
-4.2  
-5.2  
-7.6  
-8.0  
-8.3  
-9.2  
-10.0  
|S11|  
30  
40  
50  
60  
70  
80  
90  
100  
0.932  
0.928  
0.930  
0.939  
0.933  
0.926  
0.920  
0.916  
831-j701  
683-j667  
538-j672  
294-j613  
285-j574  
287-j537  
255-j490  
230-j450  
+ j50  
+ j200  
+ j150  
+ j300  
+ j25  
+ j100  
+ j500  
+ j100  
+ j75  
+ j50  
+ j10  
0
+ j250  
175  
250  
400  
850  
10  
25  
50  
100  
250  
0
S11  
30 MHz  
S11  
magnified  
- j250  
- j10  
- j50  
- j75  
- j100  
100 MHz  
- j500  
- j25  
- j100  
- j150  
- j300  
- j200  
- j50  
Page 20  
January 2000 TOKO, Inc.  
TK14551V  
CIRCUIT DESCRIPTION  
RSSI, RSSI Buffer Amplifier:  
Because the RSSI output of this product is a dual output, it has various uses. Because it includes a dual high-speed RSSI  
output, it is possible to sense the carrier level and to demodulate AM at the same time.  
The RSSI output is a current output. It converts to a voltage by an external resistor between Pin 28,19 and GND. The  
time constant of the RSSI output is determined by the product of the external converting resistor and parallel capacitor.  
When the time constant is longer, the RSSI output is more immune to disturbances or the component of amplitude  
modulation, but the RSSI output response is lower. Determine the external resistor and capacitor with this in mind.  
It is possible to modify the slope of the RSSI curve characteristic by changing the external resistor. In this case, the  
maximum range of converted RSSI output voltage is GND level to about VCC - 0.2 V (the supply voltage minus the collector  
saturation voltage of the output transistor).  
In addition, it is possible to modify the temperature characteristic of the RSSI output voltage by changing the temperature  
characteristic of the external resistor. Normally, the temperature characteristic of the RSSI output voltage is very stable  
when using a carbon resistor or metal film resistor with a temperature characteristic of 0 to 200 ppm/ °C.  
This product is very accurate, because the RSSI characteristic is trimmed individually.  
Both systems of RSSI output are connected to individual buffer amplifiers with an internal gain of 1. Therefore, even if  
the load impedance is heavy, it is possible to take out the RSSI output signal from the buffer amplifier output. The  
maximum input and output level of this buffer amplifier is VCC - 1.0 V.  
V
CC  
OUTPUT  
CURRENT  
18,  
19  
RSSI- OUT  
Current-to-Voltage Transformation Resistor  
FIGURE 3 - RSSI OUTPUT STAGE  
AM Demodulation by Using the RSSI Output:  
Although the distortion of the RSSI output is high because it is a logarithmic detection of the envelope to the IF input, AM  
can be demodulated simply by using the RSSI output. In this case, the input dynamic range that can demodulate AM  
is the inside of the linear portion of the RSSI curve characteristic (see Figure 4).  
This method does not have a feedback loop to control the gain because an AGC amplifier is not necessary (unlike the  
popularly used AM demodulation method). Therefore, it is a very useful application for some uses because it doesnt  
have the response time problem.  
January 2000 TOKO, Inc.  
Page 21  
TK14551V  
CIRCUIT DESCRIPTION  
Figure 4 shows the AM demodulated waveform.  
RSSI-OUT (V)  
Operating Condition:  
AM can be  
demodulated  
inside of linear  
range  
VCC = 3 V, fin = 40 MHz,  
fm = 2 MHz, Mod = ±80%,  
VIN = -40 dBm  
50 mV/div  
0.2 µs/div  
RF INPUT - LEVEL (dBu)  
FIGURE 4 -AM DEMODULATED WAVEFORM  
If it is necessary to improve the distortion of the AM demodulated waveform of logarithmic detection, connect a low pass  
filter to the RSSI buffer amplifier output. Figure 5 shows the AM demodulated waveform with a low pass filter inserted.  
TEST CIRCUIT  
Operating Condition:  
VCC = 3 V, fin = 40 MHz,  
fm = 2 MHz, Mod = ±80%,  
3 k  
3 k  
C
VIN = -40 dBm  
1 k  
10 pF  
33 pF  
50 mV/div  
COMP V  
CC  
0.2 µs/div  
2.2 k  
2.2 k  
15 pF  
fc = 3 MHz  
FIGURE 5  
Page 22  
January 2000 TOKO, Inc.  
TK14551V  
CIRCUIT DESCRIPTION  
FM Detector:  
The FM detector is included in the quadrature FM detector using a Gilbert multiplier.  
It is suitable for high speed data communication because the demodulation bandwidth is over 1 MHz.  
The phase shifter is connected between Pin 3 (IF limiter output) and Pin 4 (input detector). Any available phase shifter  
can be used: a LC resonance circuit, a ceramic discriminator, a delay line, etc.  
Figure 6 shows the internal equivalent circuit of the detector.  
V
CC  
V
V
CC  
CC  
QB  
QA  
multiplier core circuit  
FIGURE 6 - DETECTOR INTERNAL EQUIVALENT CIRCUIT  
The signal from the phase shifter is applied to the multiplier (in the dotted line) through emitter-follower stage QA. When  
the phase shifter is connected between pin 3 and pin 4, note that the bias voltage to pin 4 should be provided from an  
external source because pin 4 is only connected to the base of QA.  
Because the base of QB (at the opposite side) is connected with the supply voltage, Pin 4 has to be biased with the  
equivalent voltage.  
Using an LC resonance circuit is not a problem (see Figure 7). However, when using a ceramic discriminator, it is  
necessary to pay attention to bias. If there is a difference of the base voltages, the DC voltages of the multiplier do not  
balance. It alters the DC zero point or worsens the distortion of demodulation output.  
The Pin 4 input level should be saturated at the multiplier; if this level is lower, it is easy to disperse the modulation output.  
Therefore, to have stable operation, Pin 4 should be higher than 100 mVP-P  
.
The following figures show examples of the phase shifter.  
Rz is the characteristic impedance  
V
CC  
V
V
CC  
CC  
Rz  
Rz  
Delay  
Line  
LC resonance circuit  
ceramic discriminator  
delay line  
FIGURE 7 - EXAMPLES OF PHASE SHIFTERS  
January 2000 TOKO, Inc.  
Page 23  
TK14551V  
CIRCUIT DESCRIPTION  
Establishing Demodulation Characteristics:  
Generally, demodulation characteristics of FM detectors are determined by the external phase shifter. However, this  
product has a unique function which can optionally establish the demodulation characteristics by the time constant of the  
circuit parts after demodulation. The following explains this concept.  
Figure 8 shows the internal equivalent circuit of the detector output stage.  
The multiplier output current of the detector is converted to a voltage by the internal OP AMP. The characteristic of this  
stage is determined by converting the current to voltage with resistor R0 and the capacitor C0 connected between Pin 8  
and Pin 9 (see Figure 8).  
In other words, the slope of the S-curve characteristic can be established optionally with resistor R0 without changing the  
constant of the phase shifter. The demodulated bandwidth can be established optionally by the time constant of this  
external resistor R0 and capacitor C0 inside of a bandwidth of the IF-filter and phase shifter. Figure 9 shows an example  
of this characteristic.  
V
ref  
The -3 dB frequency Fc is calculated by the following:  
I to V convertor  
1
Fc =  
2 π C0R0  
io  
The S-curve output voltage is calculated by the following  
as centering around the internal reference voltage Vref:  
VOUT = Vref ± io X R0  
R
C
0
0
Demodulated  
Output Current  
Demodulated  
Output Voltage  
V
OUT  
Where Vref = 1.4 V, maximum of current io = ±100 µA  
FIGURE 8 - INTERNAL EQUIVALENT CIRCUIT OF DETECTOR OUTPUT STAGE  
2
0 dB = 30.7 mVrms  
C = none  
0
-2  
C = 330 pF  
Operating Condition:  
-4  
C = 1000 pF  
Measured by the standard test circuit.  
Parallel resistor to phase shift coil = 1 k.  
fIN = 10.7 MHz, modulation = ±100 kHz.  
External capacitance C0 = 0 ~ 1000 pF.  
-6  
-8  
C =  
V
= 3 V  
CC  
10 pF  
fin = 10.7 MHz  
dev. = 100 kHz  
C =  
47 pF  
-10  
-12  
1k  
3k 10k 30k 100k 300k 1M  
MODULATING FREQUENCY fm (Hz)  
FIGURE 9 - EXAMPLE: BAND WIDTH OF DEMODULATION VS. TIME CONSTANT CHARACTERISTIC  
Page 24  
January 2000 TOKO, Inc.  
TK14551V  
CIRCUIT DESCRIPTION  
Center Voltage of Detector DC Output:  
The center voltage of the detector DC output is determined by the internal reference voltage source. It is impossible to  
change this internal reference voltage source, but it is possible to change the center voltage by the following method.  
As illustrated in Figure 10, the demodulated output current at Pin 8 is converted to the voltage by an external resistor R1,  
without using the internal OP AMP.  
Figure 11 shows an example of a simple circuit that divides the supply voltage into halves using resistors. Since both  
circuits have a high output impedance, an external buffer amplifier should be connected.  
V
ref  
I to V convertor  
Demodulated Output Voltage VOUT = VB ± R1 x io  
1
Fc =  
Demodulated Bandwidth  
io  
2 π C1(1/gm)  
Demodulated  
Output Current  
1/gm is approximately 50 kwhich is the output resistance of the  
multiplier.  
Pin 9 is disconnected.  
VB  
Demodulated  
C1  
R1  
Output Voltage  
V
OUT  
FIGURE 10 - EXAMPLE OF USING EXTERNAL REFERENCE SOURCE  
Demodulated Output Voltage VOUT = VCC/ 2 ± R1 x io  
V
CC  
Demodulated  
1
R1  
R2  
Fc =  
Demodulated Bandwidth  
Output Voltage  
V
2 π C1(1/gm)  
OUT  
1/gm is approximately 50 k, which is the output resistance of the  
C1  
multiplier.  
Pin 9 is disconnected.  
FIGURE 11 - EXAMPLE OF DIVIDING SUPPLY VOLTAGE INTO HALVES BY RESISTORS  
January 2000 TOKO, Inc.  
Page 25  
TK14551V  
CIRCUIT DESCRIPTION  
RSSI Comparator, Data Comparator:  
The TK14551V contains a general purpose high speed data comparator and RSSI comparator for the base band  
processing.  
Because the input stage is composed of PNP transistors, it is possible to operate from a minimum voltage of 0.1 V to  
the supply voltage - 1.0 V (see Figure 12).  
Moreover, since the HFE of this PNP transistor is over 100, the bias current is below 0.01 µA (this is below the value of  
the competitors products which typically use a lateral PNP transistor at the input stage).  
INPUT STAGE  
FIGURE 12 - COMPARATOR INPUT STAGE  
Figure 13 shows the internal equivalent circuit of the comparator output stage. Because the comparator output is an open  
collector, it is suitable for many interface levels. This open collector output is connected with an electrostatic discharge  
protection diode at the GND side only; it is not connected with it at the power supply side in consideration of operating  
the voltage over the supply voltage of this IC.  
When the collector pull-up resistor value is low, high operating currents result. To prevent interference to the other  
circuitry, the emitters of the output transistors are brought out independently at Pins 14 and 15.  
Pins 14 and 15 are not connected with the substrate and other GNDs internal to the IC. Therefore, when operating these  
comparators, these terminals must be connected to GND.  
When these comparators are operating at high speed, the etch pattern of Pins 13, 14, 15, and 16 (comparator output  
stages) should not be run close to the etch pattern of Pins 23 and 24 (IF inputs). The switching waveforms of the  
comparator outputs may have an effect on the IF inputs and may add noise to the zero crossing of the demodulated  
waveform, resulting in cross over distortion.  
V
CC  
13,  
16  
V
CC  
14,  
15  
COMPARATOR  
OUTPUT STAGE  
FIGURE 13 - COMPARATOR OUTPUT STAGE  
Because the negative input of the RSSI comparator is connected to the RSSI buffer amplifier output-1 internally, it is used  
for carrier sensing.  
The data comparator is used for the data shaper.  
Page 26  
January 2000 TOKO, Inc.  
TK14551V  
CIRCUIT DESCRIPTION  
Battery Save Function:  
Pin 21 is the control terminal for the battery save function. The ON/OFF operation of the whole IC can be switched by  
controlling the DC voltage at this terminal. Figure 14 shows the internal equivalent circuit of Pin 21.  
Because it switches the bias circuit of the whole IC using the transistor in standby mode, it reduces the supply current  
to near zero. As the input terminal is connected with an electrostatic discharge protection diode at GND side only, it is  
possible to control the voltage above the supply voltage. It is possible to go into standby mode by disconnecting Pin 21,  
but it is not recommended because Pin 21 is a high impedance and may malfunction from an external disturbance.  
When Pin 21 is disconnected, a suitable capacitor should be connected between Pin 21 and GND.  
V
CC  
BIAS  
50 K  
21  
Vs  
FIGURE 14 - BATTERY SAVE  
Application of ASK(Amplitude Shift Keying) Demodulation:  
Figure 15 shows an example application of ASK demodulation.  
If the application circuit is like Figure 15, the transient response time is long because of the time constant of the rectifier  
(Pin 12) of the data comparator input.  
On the other hand, if the circuit construction between the RSSI buffer amplifier output-2 (Pin 10) and the data comparator  
input is Figure 16, the transient response time is shortened. Since the demodulation is a logarithmic detection using the  
RSSI output, the demodulated wave of the RSSI buffer amplifier output-2 is distorted making the duty ratio of the data  
comparator output worse. The output duty ratio may be improved by adding the offset DC voltage (Vs) to the DC voltage  
of Pin 11 of the data comparator input. Vs is established at a few tens of mV. But, as the demodulation level of the RSSI  
buffer amplifier output-2 is changed by the dispersion, it is best to control Vs by a variable resistor, etc. It is possible to  
substitute the variable resistor for Vs.  
January 2000 TOKO, Inc.  
Page 27  
TK14551V  
CIRCUIT DESCRIPTION  
Comp V  
CC  
= 3 V  
0.01 µF  
10 µF  
1 k  
1 k  
B.S. = 1.5 V  
2200 pF  
5.6 K  
SG1  
50  
2200 pF  
51  
5.6 K  
100 pF  
~
BIAS  
IF  
AMP  
RSSI  
V
V
CC  
CC  
330 pF  
2200 pF  
0.01 µF 0.01 µF  
2200 pF  
3 K  
3 K  
0.01 µF  
10 µF  
0.01 µF  
V
47 µF  
CC = 3 V  
FIGURE 15  
Comp V  
CC  
= 3 V  
0.01 µF  
10 µF  
1 k  
1 k  
B.S. = 1.5 V  
2200 pF  
5.6 K  
SG1  
50  
2200 pF  
5.6 K  
100 pF  
51  
~
BIAS  
IF  
AMP  
RSSI  
V
V
CC  
CC  
V
V
2200 pF  
CC  
CC  
0.01 µF 0.01 µF  
2200 pF  
100 pF  
100 K  
100 K  
0.01 µF  
10 µF  
0.01 µF  
Vs  
V
47 µF  
CC = 3 V  
FIGURE 16  
Page 28  
January 2000 TOKO, Inc.  
TK14551V  
TEST BOARD  
L1  
C1= 2200 pF, C2 = 10 µF, C3 = 0.01 µF, C4 = 1 pF, C5 = 1000 pF, C6 = 100 pF  
R1 = 50 , R2 = 2.2 k, R3 = 22 k, R4 = 1 k, R5 = 5.6 kΩ  
L1 = 10 µH, L2 = 836BH-0268 (TOKO)  
January 2000 TOKO, Inc.  
Page 29  
TK14551V  
NOTES  
Page 30  
January 2000 TOKO, Inc.  
TK14551V  
NOTES  
January 2000 TOKO, Inc.  
Page 31  
TK14551V  
PACKAGE OUTLINE  
Marking Information  
TSSOP-24  
TK14551V  
14551  
0.35  
Marking  
13  
24  
AAAAA  
YYY  
e
0.65  
Recommended Mount Pad  
1
12  
Lot. No.  
7.8  
0.50  
e 0.65  
+0.15  
-0.15  
0.25  
0.1  
6.4 +  
0.3  
M
0.12  
Dimensions are shown in millimeters  
Tolerance: x.x = ± 0.2 mm (unless otherwise specified)  
Toko America, Inc. Headquarters  
1250 Feehanville Drive, Mount Prospect, Illinois 60056  
Tel: (847) 297-0070 Fax: (847) 699-7864  
TOKO AMERICA REGIONAL OFFICES  
Midwest Regional Office  
Toko America, Inc.  
1250 Feehanville Drive  
Mount Prospect, IL 60056  
Tel: (847) 297-0070  
Western Regional Office  
Toko America, Inc.  
2480 North First Street , Suite 260  
San Jose, CA 95131  
Tel: (408) 432-8281  
Fax: (408) 943-9790  
Eastern Regional Office  
Toko America, Inc.  
107 Mill Plain Road  
Danbury, CT 06811  
Tel: (203) 748-6871  
Fax: (203) 797-1223  
Semiconductor Technical Support  
Toko Design Center  
4755 Forge Road  
Colorado Springs, CO 80907  
Tel: (719) 528-2200  
Fax: (719) 528-2375  
Fax: (847) 699-7864  
Visit our Internet site at http://www.tokoam.com  
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its  
products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of  
third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.  
Page 32  
January 2000 TOKO, Inc.  
© 1999 Toko, Inc.  
IC-119-TK119xx  
0798O0.0K  
Printed in the USA  
All Rights Reserved  

相关型号:

TK14551V/14551

FM IF DETECTOR/AMPLIFIER
TOKO

TK14551VTL

FM IF DETECTOR/AMPLIFIER
TOKO

TK14552V

Wide band AM / ASK IF IC for ETC
TOKO

TK14565AV

Telecom Circuit, 1-Func, PDSO16, TSSOP-16
TOKO

TK14570L

Telecom Circuit, 1-Func, PDSO8, SOT-23, 8 PIN
TOKO

TK14570LT-GH

Telecom Circuit, 1-Func, PDSO8, HALOGEN FREE AND LEAD FREE, SOT-23L, 8 PIN
AKM

TK14570LTL

Telecom Circuit, 1-Func, PDSO8, SOT-23L, 8 PIN
TOKO

TK14570LTL-GH

Telecom Circuit, 1-Func, PDSO8, HALOGEN FREE AND LEAD FREE, SOT-23L, 8 PIN
AKM

TK14571L

Telecom Circuit, 1-Func, PDSO8, SOT-23, 8 PIN
TOKO

TK14580M

Analog Circuit
TOKO

TK14581M

Telecom Circuit, 1-Func, Bipolar, PDSO20,
TOKO

TK14583V

Audio Single Chip Receiver, AM, Bipolar, PDSO24, TSSOP-24
TOKO