TK68202AM4G0BC [TOKO]

Fixed Positive LDO Regulator, 2 Output, 1.5V1, 2.85V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, SON-8;
TK68202AM4G0BC
型号: TK68202AM4G0BC
厂家: TOKO, INC    TOKO, INC
描述:

Fixed Positive LDO Regulator, 2 Output, 1.5V1, 2.85V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, SON-8

光电二极管 输出元件 调节器
文件: 总36页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION MANUAL  
Capacitor-less, Low IQ  
2CH 200mA CMOS LDO REGULATOR IC  
TK682xxAB1/M4  
CONTENTS  
1 . DESCRIPTION  
2 . FEATURES  
3 . APPLICATIONS  
4 . PIN CONFIGURATION  
5 . BLOCK DIAGRAM  
6 . ORDERING INFORMATION  
2
2
2
2
2
3
7 . ABSOLUTE MAXIMUM RATINGS  
8 . ELECTRICAL CHARACTERISTICS  
9 . TEST CIRCUIT  
4
5
7
10 . TYPICAL CHARACTERISTICS  
11 . PIN DESCRIPTION  
12 . APPLICATIONS INFORMATION  
13 . PACKAGE OUTLINE  
14 . NOTES  
9
27  
28  
34  
36  
36  
15 . OFFICES  
GC3-N028  
Page 1  
TK682xxAB1/M4  
Capacitor-less, Low IQ  
2CH 200mA CMOS LDO REGULATOR IC  
TK682xxAB1/M4  
1. DESCRIPTION  
4. PIN CONFIGURATION  
The TK682xxAB1/M4 is 2ch CMOS LDO regulator.  
The packages are the very small 6-bump flip chip and the  
thin SON3024-8.  
The IC is designed for portable applications with space  
requirements, battery powered system and any electronic  
equipment.  
The IC can supply 200mA output current.  
The IC does not require input capacitor, output capacitor,  
and noise-bypass capacitor.  
„ FC-6 (TK682xxAB1)  
A1 mark  
VOut1  
VIn  
A1  
A2  
B2  
C2  
VCont1  
GND  
VCont2  
B1  
C1  
VOut2  
The IC offers low quiescent current.  
The output voltage is internally fixed from 1.2V to 4.2V.  
(Top View)  
„ SON3024-8 (TK682xxAM4)  
2. FEATURES  
1
2
3
4
8
7
6
5
VOut1  
VIn1  
VCont1  
GND  
NC  
„ Package: FC-6 / SON3024-8  
„ Capacitor-less  
(Without input capacitor, output capacitor, and noise-  
bypass capacitor)  
„ Low quiescent current  
„ Low dropout voltage  
„ Thermal and over current protection  
„ On/Off control  
VIn2  
VOut2  
VCont2  
(Top View)  
„ High accuracy  
3. APPLICATIONS  
„ Mobile Communication  
„ Battery Powered System  
„ Any Electronic Equipment  
5. BLOCK DIAGRAM  
„ TK682xxAB1  
„ TK682xxAM4  
Ch1  
Ch1  
A1  
B1  
C1  
A2  
B2  
C2  
1
8
7
6
5
VOut 1  
VRef  
VCont 1  
VOut 1  
VRef  
VCont 1  
GND  
NC  
On/Off  
Control  
On/Off  
Control  
Thermal &  
Over Current  
Protection  
Thermal &  
Over Current  
Protection  
2
VIn1  
VIn  
GND  
Ch2  
Ch2  
3
VIn2  
VRef  
VRef  
On/Off  
Control  
On/Off  
Control  
Thermal &  
Over Current  
Protection  
Thermal &  
Over Current  
Protection  
4
VOut 2  
VCont 2  
VOut 2  
VCont 2  
GC3-N028  
Page 2  
TK682xxAB1/M4  
6. ORDERING INFORMATION  
T K 6 8 2  
A
G 0  
- C  
Voltage Code  
Operating Temp. Range  
Code  
(Refer to the following table)  
C : C Rank (standard)  
only  
Package Code  
B1 : FC-6  
M4 : SON3024-8  
Tape/Reel Code  
B : Normal type for FC  
Solder Composition Code  
G0 : Lead Free  
L : Normal type  
for plastic package  
TK682xxAB1  
Output Voltage  
Output Voltage  
Voltage Code  
Voltage Code  
VOut1  
3.00V  
2.80V  
VOut2  
2.50V  
1.80V  
VOut1  
VOut2  
1.50V  
1.20V  
01  
03  
05  
07  
2.85V  
1.20V  
3.10V  
02  
04  
06  
2.90V  
3.30V  
1.20V  
2.60V  
3.10V  
TK682xxAM4  
Output Voltage  
Output Voltage  
Voltage Code  
Voltage Code  
VOut1  
VOut2  
VOut1  
VOut2  
2.50V  
3.00V  
01  
03  
05  
07  
1.50V  
1.20V  
3.10V  
2.85V  
1.20V  
3.10V  
02  
04  
06  
1.80V  
1.20V  
2.60V  
2.80V  
2.90V  
3.30V  
* If you need a voltage other than the value listed in the above table, please contact TOKO.  
GC3-N028  
Page 3  
TK682xxAB1/M4  
7. ABSOLUTE MAXIMUM RATINGS  
Ta=25°C  
Parameter  
Absolute Maximum Ratings  
Input Voltage  
Symbol  
Rating  
Units  
Conditions  
VIn,MAX  
VOut,MAX  
VCont,MAX  
Tstg  
-0.3 ~ 6.0  
-0.3 ~ VIn+0.3  
-0.3 ~ 6.0  
V
V
Output pin Voltage  
Control pin Voltage  
V
Storage Temperature Range  
-55 ~ 150  
°C  
Internal Limited Tj=150°C *,  
when mounted on PCB  
Power Dissipation  
PD  
600  
mW FC-6 : 7mm×8mm×0.8mm  
SON3024-8 :  
7mm×10mm×0.8mm  
Operating Condition  
Operational Temperature Range  
Operational Voltage Range  
TOP  
VOP  
-40 ~ 85  
1.8 ~ 6.0  
°C  
V
* PD must be decreased at the rate of 4.8mW/°C for operation above 25°C.  
The maximum ratings are the absolute limitation values with the possibility of the IC being damaged.  
If the operation exceeds any of these standards, quality cannot be guaranteed.  
GC3-N028  
Page 4  
TK682xxAB1/M4  
8. ELECTRICAL CHARACTERISTICS  
The parameters with min. or max. values will be guaranteed at Ta=Tj=25°C with test when manufacturing or SQC  
(Statistical Quality Control) methods. The operation between -40 ~ 85°C is guaranteed by design.  
VIn=VOut,TYP+1V, VCont=1.2V, Ta=Tj=25°C  
Value  
Parameter  
Symbol  
Units  
Conditions  
MIN  
Refer to TABLE 1, 2  
0.0 4.0  
TYP  
MAX  
Output Voltage  
VOut  
V
IOut=5mA  
Line Regulation  
LinReg  
LoaReg  
VDrop  
-
mV  
mV  
mV  
mA  
VIn=1V  
Load Regulation  
Refer to TABLE 1, 2  
Refer to TABLE 1, 2  
Refer to TABLE 1, 2  
Refer to TABLE 1, 2  
VOut=VOut,TYP×0.9  
Dropout Voltage *1  
Maximum Load Current *2  
IOut,MAX  
210  
330  
-
IOut=0mA,  
Quiescent Current  
Standby Current  
GND Pin Current  
IQ  
-
-
-
10  
20  
0.2  
50  
µA  
µA  
µA  
VCont1=VIn, VCont2= 0V  
or VCont1= 0V, VCont2=VIn  
IStandby  
IGND  
0.01  
25  
VCont1= VCont2=0V  
IOut=50mA,  
VCont1=VIn, VCont2= 0V  
or VCont1= 0V , VCont2=VIn  
Control Terminal  
Control Current  
V
Cont1=1.2V, VCont2= 0V  
ICont  
-
0.15  
0.3  
µA  
or VCont1= 0V, VCont2=1.2V  
VOut On state  
1.2  
-
-
-
-
V
V
Control Voltage  
VCont  
0.2  
VOut Off state  
Reference data  
Output Voltage / Temp.  
Output Noise Voltage  
(VOut,TYP=2.8V)  
Ripple Rejection  
(VOut,TYP=2.8V)  
-
-
100  
50  
-
-
ppm/°C  
µVrms  
IOut=5mA  
VOut/Ta  
COut=1.0µF, IOut=30mA,  
BPF=400Hz~80kHz  
COut=1.0µF,  
IOut=10mA, f=1kHz  
COut=1.0µF,  
VNoise  
RR  
tr  
-
-
55  
-
-
dB  
µs  
Rise Time  
(VOut,TYP=2.8V)  
170  
VCont : Pulse Wave (100Hz),  
VCont OnVOut,TYP×0.95  
*1: For VOut 1.8V , no regulations.  
*2: The maximum output current is limited by power dissipation.  
The maximum load current is the current where the output voltage decreases to 90% by increasing the output current at  
Tj=25°C, compared to the output voltage specified at VIn=VOut,TYP+1V. The maximum load current indicates the current  
at which over current protection turns on.  
For all output voltage products, the maximum output current for normal operation without operating any protection is  
200mA. Accordingly, LoaReg and VDrop are specified on the condition that IOut is less than 200mA.  
General Note  
Parameters with only typical values are just reference. (Not guaranteed)  
The noise level is dependent on the output voltage, the capacitance and capacitor characteristic.  
GC3-N028  
Page 5  
TK682xxAB1/M4  
TABLE 1. TK682xxAB1  
Output Voltage  
Load Regulation  
Dropout Voltage  
IOut=100mA IOut=200mA  
I
Out=5 ~ 100mA IOut=5 ~ 200mA  
Setting Voltage  
MIN  
V
TYP  
V
MAX  
V
TYP  
mV  
6
MAX  
mV  
24  
TYP  
mV  
13  
MAX  
mV  
52  
TYP  
mV  
-
MAX  
mV  
-
TYP  
mV  
-
MAX  
mV  
-
1.20V  
1.50V  
1.80V  
2.50V  
2.60V  
2.80V  
2.85V  
2.90V  
3.00V  
3.10V  
3.30V  
1.140  
1.440  
1.740  
2.440  
2.540  
2.740  
2.790  
2.840  
2.940  
3.038  
3.234  
1.200  
1.500  
1.800  
2.500  
2.600  
2.800  
2.850  
2.900  
3.000  
3.100  
3.300  
1.260  
1.560  
1.860  
2.560  
2.660  
2.860  
2.910  
2.960  
3.060  
3.162  
3.366  
7
28  
14  
56  
-
-
-
-
7
28  
16  
64  
-
-
-
-
9
36  
19  
76  
135  
130  
120  
120  
120  
115  
110  
105  
205  
195  
185  
185  
180  
175  
170  
160  
265  
255  
240  
240  
235  
225  
220  
210  
405  
390  
370  
370  
360  
350  
340  
320  
9
36  
19  
76  
9
36  
20  
80  
9
36  
20  
80  
9
36  
20  
80  
10  
10  
10  
40  
21  
84  
40  
21  
84  
40  
22  
88  
TABLE 2. TK682xxAM4  
Output Voltage  
Load Regulation  
Out=5 ~ 100mA IOut=5 ~ 200mA  
Dropout Voltage  
I
IOut=100mA  
IOut=200mA  
Setting Voltage  
MIN  
TYP  
V
MAX  
TYP  
mV  
9
MAX  
mV  
36  
TYP  
mV  
19  
MAX  
mV  
76  
TYP  
mV  
-
MAX  
mV  
-
TYP  
mV  
-
MAX  
mV  
-
V
V
1.20V  
1.50V  
1.80V  
2.50V  
2.60V  
2.80V  
2.85V  
2.90V  
3.00V  
3.10V  
3.30V  
1.140  
1.440  
1.740  
2.440  
2.540  
2.740  
2.790  
2.840  
2.940  
3.038  
3.234  
1.200  
1.500  
1.800  
2.500  
2.600  
2.800  
2.850  
2.900  
3.000  
3.100  
3.300  
1.260  
1.560  
1.860  
2.560  
2.660  
2.860  
2.910  
2.960  
3.060  
3.162  
3.366  
9
36  
20  
80  
-
-
-
-
10  
11  
11  
11  
12  
12  
12  
12  
12  
40  
21  
84  
-
-
-
-
44  
24  
96  
140  
135  
125  
125  
125  
120  
115  
110  
210  
200  
190  
190  
185  
180  
175  
165  
275  
265  
250  
250  
245  
235  
230  
220  
415  
400  
380  
380  
370  
360  
350  
330  
44  
25  
100  
100  
104  
104  
104  
108  
108  
44  
25  
48  
26  
48  
26  
48  
26  
48  
27  
48  
27  
Notice.  
Please contact your authorized TOKO representative for voltage availability.  
GC3-N028  
Page 6  
TK682xxAB1/M4  
9. TEST CIRCUIT  
„ Test circuit for electrical characteristic  
IOut1  
=5mA  
VIn  
IIn  
=VOut, TYP+1.0V  
_
A
VIn  
VOut1  
Notice.  
CIn  
COut1  
_
V
VOut1  
The following capacitors are used in final inspection to  
verify electrical characteristics:  
=1.0  
µ
F
=1.0  
µ
F
_
A
VCont1 VOut2  
COut2  
CIn=1.0µF(ceramic), COut=1.0µF(ceramic)  
_
V
VOut2  
VCont1  
ICont1  
=1.0  
µ
F
IOut2  
=5mA  
_
ICont2  
A
VCont2 GND  
But ceramic and/or tantalum can both be used for CIn and  
VCont2  
COut  
.
This IC does not oscillate without input and output  
capacitors.The electrical characteristics without input and  
output capacitors are guaranteed by design, please refer to  
12-1 for external capacitor.  
VIn  
=VOut, TYP+1.0V  
IIn  
IOut1  
_
A
VIn  
VOut1  
„ VOut vs VIn  
„ VDrop vs IOut  
„ VOut vs IOut  
„ VOut vs IOut  
„ VOut vs Ta  
CIn  
COut1  
_
V
VOut1  
=1.0  
µF  
=1.0  
µ
F
_
A
VCont1 VOut2  
COut2  
=1.0  
_
V
VOut2  
VCont1  
ICont1  
µF  
„ VDrop vs Ta  
_
A
VCont2 GND  
IOut2  
„ IOut,MAX vs Ta  
„ ICont vs VCont , VOut vs VCont  
„ ICont vs Ta  
VCont2  
ICont2  
„ VCont vs Ta  
„ VNoise vs VIn  
„ VNoise vs IOut  
„ VNoise vs VOut  
„ VNoise vs Frequency  
VIn  
IIn  
=VOut, TYP+1.0V  
_
A
VIn  
VOut1  
Open  
Open  
„ IQ vs VIn  
„ Istandby vs VIn  
„ IQ vs Ta  
CIn  
COut1  
=1.0  
µF  
=1.0  
µ
F
_
ICont1  
A
VCont1 VOut2  
COut2  
VCont1  
=1.0  
µ
F
_
A
VCont2 GND  
VCont2  
ICont2  
VIn  
=VOut, TYP+1.0V  
IIn  
_
A
VIn  
VOut1  
„ IGND vs IOut  
„ IGND vs Ta  
CIn  
COut1  
IOut1  
=1.0  
µF  
=1.0  
µF  
_
ICont1  
A
VCont1 VOut2  
COut2  
VCont1  
IOut2  
=1.0  
µF  
_
A
VCont2 GND  
_
A
VCont2  
ICont2  
IGND  
GC3-N028  
Page 7  
TK682xxAB1/M4  
VIn  
IOut1  
=10mA  
=VOut, TYP+1.5V  
IIn  
VIn  
VOut1  
„ RR vs VIn  
„ RR vs Frequency  
„ RR vs Frequency  
Vripple  
=500mVP-P  
CIn  
COut1  
=1.0µ  
F
=1.0  
µ
F
VCont1 VOut2  
COut2  
VCont1  
=1.0  
µ
F
IOut2  
=10mA  
VCont2 GND  
VCont2  
VOut, TYP+2.0V  
VOut, TYP+1.0V  
IOut1  
=10mA  
IIn  
VIn  
VOut1  
VCont1 VOut2  
VCont2 GND  
„ Line Transient  
CIn  
=1.0  
COut1  
=1.0  
_
V
VOut1  
µ
F
µ
F
COut2  
=1.0  
_
V
VOut2  
VCont1  
µ
F
IOut2  
=10mA  
VCont2  
VIn  
VOut1  
=VOut, TYP+1.0V  
VIn  
VOut1  
„ Load Transient  
„ Crosstalk  
CIn  
COut1  
=1.0  
_
V
=1.0µF  
µF  
VCont1 VOut2  
COut2  
=1.0  
_
V
VCont1  
µF  
VOut2  
VCont2 GND  
VCont2  
IOut1  
=5mA  
VIn  
=VOut, TYP+1.0V  
VIn  
VOut1  
„ On/Off Transient  
CIn  
=1.0  
COut1  
_
V
VOut1  
µ
F
=1.0  
µF  
VCont1 VOut2  
VCont1  
=0V 1.2V  
COut2  
=1.0µF  
_
V
VOut2  
IOut2  
=5mA  
VCont2 GND  
VCont2  
=0V 1.2V  
GC3-N028  
Page 8  
TK682xxAB1/M4  
10. TYPICAL CHARACTERISTICS  
10-1. DC CHARACTERISTICS  
„ VOut vs VIn (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ VOut vs VIn (VOut,TYP=1.2V (TK682xxAB1))  
100  
200  
160  
120  
80  
80  
60  
IOut=5mA  
IOut=0, 5, 50, 100, 150, 200mA  
40  
20  
40  
0
0
-20  
-40  
-60  
-80  
-100  
-40  
-80  
-120  
-160  
-200  
0
1
2
3
4
5
6
-100  
0
100 200 300 400 500 600 700 800  
VIn-VOut [mV]  
VIn [V]  
„ VOut vs VIn (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ VOut vs VIn (VOut,TYP=2.8V (TK682xxAB1))  
40  
10  
IOut=5mA  
5
20  
0
IOut=0, 5, 50, 100, 150, 200mA  
0
-5  
-20  
-40  
-60  
-80  
-100  
-10  
-15  
-20  
-25  
-30  
-100  
0
100  
200  
300  
0
1
2
3
4
5
6
VIn-VOut [mV]  
VIn [V]  
„ VOut vs VIn (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ VOut vs VIn (VOut,TYP=4.2V (TK682xxAB1))  
40  
10  
IOut=0, 5, 50, 100, 150, 200mA  
20  
IOut=5mA  
5
0
-5  
0
-20  
-10  
-15  
-20  
-25  
-30  
-40  
-60  
-80  
-100  
-100  
0
100  
200  
300  
0
1
2
3
4
5
6
VIn-VOut [mV]  
VIn [V]  
GC3-N028  
Page 9  
TK682xxAB1/M4  
„ VOut vs VIn (VOut,TYP=1.2V (TK682xxAM4))  
200  
160  
120  
IOut=0, 5, 50, 100, 150, 200mA  
80  
40  
0
-40  
-80  
-120  
-160  
-200  
-100  
0
100 200 300 400 500 600 700 800  
VIn-VOut [mV]  
„ VDrop vs IOut (VOut,TYP=2.8V (TK682xxAB1))  
„ VOut vs VIn (VOut,TYP=2.8V (TK682xxAM4))  
0
-50  
40  
20  
0
IOut=0, 5, 50, 100, 150, 200mA  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-20  
-40  
-60  
-80  
-100  
0
50  
100  
150  
200  
-100  
0
100  
200  
300  
IOut [mA]  
VIn-VOut [mV]  
„ VDrop vs IOut (VOut,TYP=4.2V (TK682xxAB1))  
„ VOut vs VIn (VOut,TYP=4.2V (TK682xxAM4))  
0
-50  
40  
IOut=0, 5, 50, 100, 150, 200mA  
20  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
-20  
-40  
-60  
-80  
-100  
0
50  
100  
150  
200  
-100  
0
100  
200  
300  
IOut [mA]  
VIn-VOut [mV]  
GC3-N028  
Page 10  
TK682xxAB1/M4  
„ VOut vs IOut (VOut,TYP=1.2V (TK682xxAB1/M4))  
2
1.5  
1
0.5  
0
0
100  
200  
300  
400  
500  
IOut [mA]  
„ VDrop vs IOut (VOut,TYP=2.8V (TK682xxAM4))  
„ VOut vs IOut (VOut,TYP=2.8V (TK682xxAB1/M4))  
4
0
-50  
3
2
1
0
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
100  
200  
300  
400  
500  
0
50  
100  
150  
200  
IOut [mA]  
IOut [mA]  
„ VDrop vs IOut (VOut,TYP=4.2V (TK682xxAM4))  
„ VOut vs IOut (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
-50  
6
5
4
3
2
1
0
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
50  
100  
150  
200  
0
100  
200  
300  
400  
500  
IOut [mA]  
IOut [mA]  
GC3-N028  
Page 11  
TK682xxAB1/M4  
„ VOut vs IOut (VOut,TYP=1.2V (TK682xxAB1))  
„ VOut vs IOut (VOut,TYP=1.2V (TK682xxAM4))  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
IOut [mA]  
IOut [mA]  
„ VOut vs IOut (VOut,TYP=2.8V (TK682xxAB1))  
„ VOut vs IOut (VOut,TYP=2.8V (TK682xxAM4))  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
IOut [mA]  
IOut [mA]  
„ VOut vs IOut (VOut,TYP=4.2V (TK682xxAB1))  
„ VOut vs IOut (VOut,TYP=4.2V (TK682xxAM4))  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
IOut [mA]  
IOut [mA]  
GC3-N028  
Page 12  
TK682xxAB1/M4  
„ VOut vs Ta (VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
„ VDrop vs Ta (VOut,TYP=2.8V (TK682xxAB1))  
„ VOut vs Ta (VOut,TYP=2.8V (TK682xxAB1/M4))  
0
-50  
100  
80  
IOut=100mA  
60  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
IOut=200mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
„ VDrop vs Ta (VOut,TYP=4.2V (TK682xxAB1))  
„ VOut vs Ta (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
100  
80  
IOut=100mA  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
60  
40  
20  
0
IOut=200mA  
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
GC3-N028  
Page 13  
TK682xxAB1/M4  
„ IOut,MAX vs Ta (VOut,TYP=1.2V (TK682xxAB1/M4))  
400  
300  
200  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
„ VDrop vs Ta (VOut,TYP=2.8V (TK682xxAM4))  
„ IOut,MAX vs Ta (VOut,TYP=2.8V (TK682xxAB1/M4))  
0
400  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
IOut=100mA  
300  
IOut=200mA  
200  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
„ VDrop vs Ta (VOut,TYP=4.2V (TK682xxAM4))  
„ IOut,MAX vs Ta (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
400  
IOut=100mA  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
300  
IOut=200mA  
200  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
GC3-N028  
Page 14  
TK682xxAB1/M4  
„ IQ vs VIn (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ IStandby vs VIn (VOut,TYP=1.2V (TK682xxAB1/M4))  
20  
10  
9
8
7
6
5
4
3
2
1
0
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
18  
16  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VIn [V]  
VIn [V]  
„ IQ vs VIn (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ IStandby vs VIn (VOut,TYP=2.8V (TK682xxAB1/M4))  
20  
10  
9
8
7
6
5
4
3
2
1
0
VCont1=VIn, VCont2=0V  
18  
or  
16  
VCont1=0V, VCont2=VIn  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VIn [V]  
VIn [V]  
„ IQ vs VIn (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ IStandby vs VIn (VOut,TYP=4.2V (TK682xxAB1/M4))  
20  
10  
9
8
7
6
5
4
3
2
1
0
VCont1=VIn, VCont2=0V  
18  
or  
16  
VCont1=0V, VCont2=VIn  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VIn [V]  
VIn [V]  
GC3-N028  
Page 15  
TK682xxAB1/M4  
„ IGND vs IOut (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ IQ vs Ta (VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
20  
18  
16  
14  
12  
10  
8
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
0
50  
100  
IOut [mA]  
150  
200  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
„ IGND vs IOut (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ IQ vs Ta (VOut,TYP=2.8V (TK682xxAB1/M4))  
100  
20  
VCont1=VIn, VCont2=0V  
90  
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
18  
16  
14  
12  
10  
8
or  
80  
VCont1=0V, VCont2=VIn  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
0
50  
100  
150  
200  
-50  
-25  
0
25  
50  
75  
100  
IOut [mA]  
Ta [°C]  
„ IGND vs IOut (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ IQ vs Ta (VOut,TYP=4.2V (TK682xxAB1/M4))  
100  
20  
VCont1=VIn, VCont2=0V  
90  
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
18  
16  
14  
12  
10  
8
or  
80  
VCont1=0V, VCont2=VIn  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
0
50  
100  
150  
200  
-50  
-25  
0
25  
50  
75  
100  
IOut [mA]  
Ta [°C]  
GC3-N028  
Page 16  
TK682xxAB1/M4  
„ IGND vs Ta (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ ICont, VOut vs VCont (VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
0.4  
0.3  
0.2  
0.1  
0
2
IOut=50mA,  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
1.5  
1
VOut  
0.5  
0
ICont  
-50  
-25  
0
25  
50  
75  
100  
0
0.5  
1
1.5  
2
Ta [°C]  
VCont [V]  
„ IGND vs Ta (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ ICont, VOut vs VCont (VOut,TYP=2.8V (TK682xxAB1/M4))  
100  
0.4  
4
IOut=50mA,  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
VOut  
0.3  
0.2  
0.1  
0
3
2
1
0
ICont  
-50  
-25  
0
25  
50  
75  
100  
0
0.5  
1
1.5  
2
Ta [°C]  
VCont [V]  
„ IGND vs Ta (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ ICont, VOut vs VCont (VOut,TYP=4.2V (TK682xxAB1/M4))  
100  
0.4  
8
IOut=50mA,  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCont1=VIn, VCont2=0V  
or  
VCont1=0V, VCont2=VIn  
0.3  
6
VOut  
0.2  
4
0.1  
2
ICont  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
0.5  
1
1.5  
2
Ta [°C]  
VCont [V]  
GC3-N028  
Page 17  
TK682xxAB1/M4  
„ VCont vs Ta (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ ICont vs Ta (TK682xxAB1/M4)  
1.4  
0.4  
VCont1=1.2V, VCont2=0V  
or  
VCont1=0V, VCont2=1.2V  
VOut On State  
1.2  
0.3  
0.2  
0.1  
0
1
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
„ VCont vs Ta (VOut,TYP=2.8V (TK682xxAB1/M4))  
1.4  
VOut On State  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
„ VCont vs Ta (VOut,TYP=4.2V (TK682xxAB1/M4))  
1.4  
VOut On State  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
GC3-N028  
Page 18  
TK682xxAB1/M4  
10-2. AC CHARACTERISTICS  
„ RR vs Frequency (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ RR vs VIn (VOut,TYP=1.2V (TK682xxAB1/M4))  
0
0
IOut=10mA  
-10  
Vripple=0.1Vp-p, f=1kHz  
-10  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-60  
-50  
COut=1.0µF(cer.)  
-60  
COut=1.0µF(tant.)  
-70  
-70  
-80  
IOut=200mA  
100mA  
50mA  
-80  
-90  
-90  
10mA  
-100  
-100  
100  
1k  
10k  
100k  
1M  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
VIn-VOut [V]  
Frequency [Hz]  
„ RR vs Frequency (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ RR vs VIn (VOut,TYP=2.8V (TK682xxAB1/M4))  
0
0
IOut=10mA  
-10  
Vripple=0.1Vp-p, f=1kHz  
-10  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-50  
COut=1.0µF(cer.)  
-60  
-60  
IOut=200mA  
COut=1.0µF(tant.)  
-70  
-70  
-80  
100mA  
50mA  
10mA  
-80  
-90  
-90  
-100  
-100  
100  
1k  
10k  
100k  
1M  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
VIn-VOut [V]  
Frequency [Hz]  
„ RR vs Frequency (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ RR vs VIn (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
0
IOut=10mA  
-10  
Vripple=0.1Vp-p, f=1kHz  
-10  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-50  
COut=1.0µF(cer.)  
-60  
-60  
-70  
IOut=200mA  
100mA  
50mA  
COut=1.0µF(tant.)  
-70  
-80  
-90  
-80  
10mA  
-90  
-100  
-100  
100  
1k  
10k  
100k  
1M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Frequency [Hz]  
VIn-VOut [V]  
GC3-N028  
Page 19  
TK682xxAB1/M4  
„ RR vs Frequency (VOut,TYP=1.2V (TK682xxAB1/M4))  
The ripple rejection (RR) characteristic depends on the  
characteristic and the capacitance value of the capacitor  
connected to the output side. The RR characteristic of  
50kHz or more varies greatly with the capacitor on the  
output side and PCB pattern. If necessary, please confirm  
stability of your design.  
0
IOut=10mA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
COut=0.47µF  
0.68µF  
1.0µF  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
„ RR vs Frequency (VOut,TYP=2.8V (TK682xxAB1/M4))  
0
IOut=10mA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
COut=0.47µF  
0.68µF  
1.0µF  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
„ RR vs Frequency (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
IOut=10mA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
COut=0.47µF  
0.68µF  
1.0µF  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
GC3-N028  
Page 20  
TK682xxAB1/M4  
„ VNoise vs VIn (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ VNoise vs IOut (VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOut=30mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
2
3
4
5
6
0
50  
100  
150  
200  
250  
VIn [V]  
IOut [mA]  
„ VNoise vs VIn (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ VNoise vs IOut (VOut,TYP=2.8V (TK682xxAB1/M4))  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOut=30mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
50  
100  
150  
200  
250  
VIn [V]  
IOut [mA]  
„ VNoise vs VIn (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ VNoise vs IOut (VOut,TYP=4.2V (TK682xxAB1/M4))  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOut=30mA  
4
4.5  
5
5.5  
6
0
50  
100  
150  
200  
250  
VIn [V]  
IOut [mA]  
GC3-N028  
Page 21  
TK682xxAB1/M4  
„ VNoise vs VOut,TYP (TK682xxAB1/M4)  
„ VNoise vs Frequency  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
10  
IOut=10mA  
IOut=30mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
100k  
100k  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Frequency [Hz]  
VOut,TYP [V]  
„ VNoise vs Frequency  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
10  
IOut=10mA  
1
0.1  
0.01  
10  
100  
1k  
10k  
Frequency [Hz]  
„ VNoise vs Frequency  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
10  
IOut=10mA  
1
0.1  
0.01  
10  
100  
1k  
10k  
Frequency [Hz]  
GC3-N028  
Page 22  
TK682xxAB1/M4  
10-3. TRANSIENT CHARACTERISTICS  
„ Line Transient (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
100mA  
IOut  
5mA  
0
3.2V  
VIn  
100mA/div  
0.2V/div  
1V/div  
2.2V  
VOut  
IOut=50, 100, 200mA  
0
VOut  
50mV/div  
0
0
COut=0.47µF  
0.68µF  
1.0µF  
0
20µsec/div  
Time  
20µsec/div  
Time  
„ Line Transient (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
100mA  
IOut  
4.8V  
VIn  
5mA  
100mA/div  
0.2V/div  
1V/div  
3.8V  
0
VOut  
IOut=50, 100, 200mA  
0
VOut  
50mV/div  
COut=0.47µF  
0.68µF  
0
0
1.0µF  
0
20µsec/div  
Time  
20µsec/div  
Time  
„ Line Transient (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
100mA  
IOut  
5mA  
0
6.2V  
VIn  
100mA/div  
0.2V/div  
1V/div  
5.2V  
VOut  
IOut=50, 100, 200mA  
0
VOut  
50mV/div  
0
0
COut=0.47µF  
0.68µF  
1.0µF  
0
20µsec/div  
Time  
20µsec/div  
Time  
GC3-N028  
Page 23  
TK682xxAB1/M4  
„ Load Transient (IOut=0100mA)  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
100mA  
100mA  
100mA  
100mA  
IOut  
0
IOut  
0 or 5mA  
100mA/div  
100mA/div  
0.2V/div  
0 or 5mA  
0
VOut  
VOut  
0
0
0.2V/div  
0 100mA  
0 100mA  
0
0
5 100mA  
10µsec/div  
Time  
5 100mA  
50msec/div  
Time  
„ Load Transient (IOut=0100mA)  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
100mA  
IOut  
0
IOut  
100mA/div  
100mA/div  
0.2V/div  
0 or 5mA  
0
0 or 5mA  
VOut  
VOut  
0
0
0.2V/div  
0 100mA  
0 100mA  
5 100mA  
0
0
5 100mA  
10µsec/div  
Time  
50msec/div  
Time  
„ Load Transient (IOut=0100mA)  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
100mA  
IOut  
0
IOut  
100mA/div  
100mA/div  
0.2V/div  
0 or 5mA  
0 or 5mA  
0
VOut  
VOut  
0
0
0.2V/div  
0 100mA  
0 100mA  
0
0
5 100mA  
5 100mA  
10µsec/div  
Time  
50msec/div  
Time  
GC3-N028  
Page 24  
TK682xxAB1/M4  
„ On/Off Transient (VCont=01.2V)  
„ On/Off Transient (VCont=1.20V)  
(VOut, TYP=1.2V(TK682xxAB1/M4))  
(VOut, TYP=1.2V(TK682xxAB1/M4))  
VCont  
VCont  
0
1V/div  
1V/div  
0
COut=0.47µF  
COut=0.47µF  
VOut  
0.5V/div  
0.5V/div  
VOut  
0.68µF  
1.0µF  
0.68µF  
1.0µF  
0
0
IIn  
0
IIn  
0
200mA/div  
200mA/div  
IOut=30mA  
IOut=30mA  
IOut=30mA  
IOut=30mA  
IOut=30mA  
IOut=30mA  
20µsec/div  
Time  
100µsec/div  
Time  
„ On/Off Transient (VCont=01.2V)  
(VOut, TYP=2.8V(TK682xxAB1/M4))  
„ On/Off Transient (VCont=1.20V)  
(VOut, TYP=2.8V(TK682xxAB1/M4))  
VCont  
VCont  
0
1V/div  
1V/div  
1V/div  
1V/div  
0
COut=0.47µF  
0.68µF  
1.0µF  
COut=0.47µF  
VOut  
VOut  
0.68µF  
1.0µF  
0
0
IIn  
0
IIn  
0
200mA/div  
200mA/div  
40µsec/div  
Time  
100µsec/div  
Time  
„ On/Off Transient (VCont=01.2V)  
(VOut, TYP=4.2V(TK682xxAB1/M4))  
„ On/Off Transient (VCont=1.20V)  
(VOut, TYP=4.2V(TK682xxAB1/M4))  
VCont  
0
VCont  
0
1V/div  
2V/div  
1V/div  
2V/div  
COut=0.47µF  
0.68µF  
VOut  
VOut  
1.0µF  
COut=0.47µF  
0.68µF  
1.0µF  
0
0
IIn  
IIn  
200mA/div  
200mA/div  
0
0
40µsec/div  
Time  
100µsec/div  
Time  
GC3-N028  
Page 25  
TK682xxAB1/M4  
„ Crosstalk (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ Crosstalk (VOut,TYP=1.2V (TK682xxAB1/M4))  
IOut2  
0
IOut2  
IOut2=100m 0A  
200mA/div  
200mA/div  
10mV/div  
IOut2=0 100mA  
0
IOut1=30mA  
IOut1=30mA  
VOut1  
VOut1  
10mV/div  
0
0
10µsec/div  
Time  
10µsec/div  
Time  
„ Crosstalk (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ Crosstalk (VOut,TYP=2.8V (TK682xxAB1/M4))  
IOut2  
IOut2  
0
IOut2=100m 0A  
200mA/div  
200mA/div  
10mV/div  
IOut2=0 100mA  
0
IOut1=30mA  
IOut1=30mA  
VOut1  
VOut1  
10mV/div  
0
0
10µsec/div  
Time  
10µsec/div  
Time  
„ Crosstalk (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ Crosstalk (VOut,TYP=4.2V (TK682xxAB1/M4))  
IOut2  
IOut2  
0
IOut2=100m 0A  
200mA/div  
200mA/div  
IOut2=0 100mA  
0
IOut1=30mA  
IOut1=30mA  
VOut1  
VOut1  
10mV/div  
10mV/div  
0
0
10µsec/div  
Time  
10µsec/div  
Time  
GC3-N028  
Page 26  
TK682xxAB1/M4  
11. PIN DESCRIPTION  
Pin No.  
Pin  
Description  
Internal Equivalent Circuit  
Description  
TK682xxAB1 TK682xxAM4  
Output Terminal  
VIn  
VOut  
A1  
1
VOut1  
ESD  
protection  
C1  
4
VOut2  
On/Off Control Terminal  
VCont > 1.2V : On  
VCont < 0.2V : Off  
A2  
C2  
8
5
VCont1  
VCont  
8M  
The pull-down resister (about  
8M) is built-in.  
ESD  
protection  
VCont2  
It is possible the control pin  
voltage is higher than the input  
terminal voltage.  
Input Terminal  
2
3
VIn1  
VIn2  
The TK682xxAM4 is possible to  
input the different voltage to each  
input terminal by the separate  
power supply.  
B1  
B2  
No Connected  
(Recommend connecting to GND)  
GND Terminal  
6
7
NC  
GND  
GC3-N028  
Page 27  
TK682xxAB1/M4  
12. APPLICATIONS INFORMATION  
12-1. External Capacitor  
„ RR vs Frequency (VOut,TYP=1.2V (TK682xxAB1/M4))  
General linear regulators require input capacitor and  
output capacitor in order to maintain the regulator’s loop  
stability.  
The TK682xxAB1/M4 provides stable operation without  
input and output capacitors.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Capacitor-less  
Fig.12-1 shows the stable operation area of output current  
and the equivalent series resistance (ESR) with a ceramic  
capacitor of 1.0µF.  
IOut=10mA  
100k 1M  
Fig.12-1: Output Current vs Stable Operation Area  
100  
1k  
10k  
TK682xxAB1/M4  
Frequency [Hz]  
100  
„ RR vs Frequency (VOut,TYP=2.8V (TK682xxAB1/M4))  
10  
0
Capacitor-less  
-10  
Stable area  
COut=1.0uF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1
0.1  
0.01  
-90  
IOut=10mA  
0
50  
100  
IOut (mA)  
150  
200  
-100  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
Refer to the following data that measured without input  
and output capacitors.  
The other electrical characteristics are equal to the  
electrical characteristics when using input and output  
capacitors.  
Transient characteristics (influence of load deviation)  
improve by using output capacitor (see the “Load  
Transient” on page 29).  
High frequency ripple can not be rejected without input  
and output capacitors. Therefore, it is recommended that  
external input and output capacitors be used when high  
frequency ripple is expected.  
Because a situation changes with each application, please  
confirm to operation in your design.  
„ RR vs Frequency (VOut,TYP=4.2V (TK682xxAB1/M4))  
0
Capacitor-less  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
IOut=10mA  
-100  
100  
1k  
10k  
100k  
1M  
Frequency [Hz]  
GC3-N028  
Page 28  
TK682xxAB1/M4  
„ VNoise vs IOut (VOut,TYP=1.2V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
100  
100mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Capacitor-less  
IOut  
100mA/div  
0.5V/div  
5mA  
0
VOut  
0
Capacitor-less  
0
50  
100  
150  
200  
250  
10µsec/div  
Time  
IOut [mA]  
„ VNoise vs IOut (VOut,TYP=2.8V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
100  
100mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Capacitor-less  
IOut  
100mA/div  
0.5V/div  
5mA  
0
VOut  
0
Capacitor-less  
0
50  
100  
150  
200  
250  
10µsec/div  
Time  
IOut [mA]  
„ VNoise vs IOut (VOut,TYP=4.2V (TK682xxAB1/M4))  
„ Load Transient (IOut=5100mA)  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
100  
100mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Capacitor-less  
IOut  
100mA/div  
0.5V/div  
5mA  
0
VOut  
0
Capacitor-less  
0
50  
100  
150  
200  
250  
10µsec/div  
Time  
IOut [mA]  
GC3-N028  
Page 29  
TK682xxAB1/M4  
„ On/Off Transient (VCont=01.2V)  
„ On/Off Transient (VCont=1.20V)  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
(VOut,TYP=1.2V (TK682xxAB1/M4))  
VCont  
0
VCont  
0
1V/div  
1V/div  
Capacitor-less  
Capacitor-less  
VOut  
0.5V/div  
0.5V/div  
VOut  
0
0
IIn  
IIn  
200mA/div  
200mA/div  
0
0
IOut=30mA  
IOut=30mA  
20µsec/div  
Time  
100µsec/div  
Time  
„ On/Off Transient (VCont=01.2V)  
„ On/Off Transient (VCont=1.20V)  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
(VOut,TYP=2.8V (TK682xxAB1/M4))  
VCont  
0
VCont  
0
1V/div  
1V/div  
1V/div  
1V/div  
Capacitor-less  
Capacitor-less  
VOut  
VOut  
0
0
IIn  
IIn  
200mA/div  
200mA/div  
0
0
IOut=30mA  
IOut=30mA  
40µsec/div  
Time  
100µsec/div  
Time  
„ On/Off Transient (VCont=01.2V)  
„ On/Off Transient (VCont=1.20V)  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
(VOut,TYP=4.2V (TK682xxAB1/M4))  
VCont  
0
VCont  
0
1V/div  
2V/div  
1V/div  
2V/div  
Capacitor-less  
VOut  
VOut  
Capacitor-less  
0
0
0
IIn  
IIn  
200mA/div  
200mA/div  
0
IOut=30mA  
IOut=30mA  
40µsec/div  
Time  
100µsec/div  
Time  
GC3-N028  
Page 30  
TK682xxAB1/M4  
Fig.12-4: Derating curve  
Pd(mW)  
12-2. Layout  
Fig.12-2: Layout example (TK682xxAB1)  
600  
-4.8mW/°C  
VCont1  
GND  
VCont2  
25  
50  
100  
150°C  
(85°C)  
The package loss is limited at the temperature that the  
internal temperature sensor works (about 150°C).  
Therefore, the package loss is assumed to be an internal  
limitation. There is no heat radiation characteristic of the  
package unit assumed because of its small size. Heat is  
carried away from the device by being mounted on the  
PCB. This value is directly effected by the material and  
the copper pattern etc. of the PCB. The losses are  
approximately 600mW. Enduring these losses becomes  
possible in a lot of applications operating at 25°C.  
VOut1  
VIn  
VOu2  
(Top View)  
PCB Material : Glass epoxy  
Size : 7mm×8mm×0.8mm  
The overheating protection circuit operates when the  
junction temperature reaches 150°C (this happens when  
the regulator is dissipating excessive power, outside  
temperature is high, or heat radiation is bad). The output  
current and the output voltage will drop when the  
protection circuit operates. However, operation begins  
again as soon as the output voltage drops and the  
temperature of the chip decreases.  
Fig.12-3: Layout example (TK682xxAM4)  
VCont1  
GND  
NC  
VCont2  
How to determine the thermal resistance when  
mounted on PCB  
The thermal resistance when mounted is expressed as  
follows:  
Tj=θja×Pd+Ta  
Tj of IC is set around 150°C. Pd is the value when the  
thermal sensor is activated.  
If the ambient temperature is 25°C, then:  
150=θja×Pd+25  
θja=125/Pd (°C /mW)  
VOut1  
VIn1  
VIn2  
VOut2  
(Top View)  
Pd is easily calculated.  
A simple way to determine Pd is to calculate VIn×IIn when  
the output side is shorted. Input current gradually falls as  
temperature rises. You should use the value when thermal  
equilibrium is reached. In many cases, heat radiation is  
good, Pd is 600mW or more.  
PCB Material : Glass epoxy  
Size : 7mm×10mm×0.8mm  
Please do derating with 4.8mW/°C at Pd=600mW and  
25°C or more. Thermal resistance (θja) is=208°C/W.  
GC3-N028  
Page 31  
TK682xxAB1/M4  
12-3. On/Off Control  
Fig.12-5: How to determine DPd  
It is recommended to turn the regulator Off when the  
circuit following the regulator is not operating. A design  
with little electric power loss can be implemented. We  
recommend the use of the On/Off control of the regulator  
without using a high side switch to provide an output  
from the regulator. A highly accurate output voltage with  
low voltage drop is obtained.  
Pd (mW)  
2
Pd  
DPd  
5
3
4
Because the control current is small, it is possible to  
control it directly by CMOS logic.  
0
25  
50  
75  
100  
125  
150  
Ta (°C)  
Vsat  
Procedure (When mounted on PCB.)  
1. Find Pd (VIn×IIn when the output side is short-  
circuited).  
REG  
2. Plot Pd against 25°C.  
On/Off Cont.  
3. Connect Pd to the point corresponding to the 150°C  
with a straight line.  
Control Terminal Voltage (VCont  
VCont > 1.2V  
)
On/Off State  
4. In design, take a vertical line from the maximum  
operating temperature (e.g., 75°C) to the derating  
curve.  
On  
Off  
VCont < 0.2V  
5. Read off the value of Pd against the point at which the  
vertical line intersects the derating curve. This is taken  
as the maximum power dissipation DPd.  
6. DPd ÷ (VIn,MAXVOut)=IOut (at 75°C)  
12-4. Influence by Light (TK682xxAB1)  
When this IC is exposed to strong light, IC, the electric  
characteristics change. Please confirm the influence by  
light in your design.  
The maximum output current at the highest operating  
temperature will be IOut DPd ÷ (VIn,MAXVOut).  
Please use the device at low temperature with better  
radiation. The lower temperature provides better quality.  
GC3-N028  
Page 32  
TK682xxAB1/M4  
12-5. Definition of term  
Characteristics  
Protections  
Output Voltage (VOut  
The output voltage is specified with VIn=(VOutTYP+1V)  
and IOut=5mA.  
)
Over Current Sensor  
The over current sensor protects the device when there is  
excessive output current. It also protects the device if the  
output is accidentally connected to ground.  
Maximum Output Current (IOut, MAX  
)
The rated output current is specified under the condition  
where the output voltage drops to 90% of the value  
specified with IOut=5mA. The input voltage is set to  
VOutTYP+1V and the current is pulsed to minimize  
temperature effect.  
Thermal Sensor  
The thermal sensor protects the device in case the  
junction temperature exceeds the safe value (Tj=150°C).  
This temperature rise can be caused by external heat,  
excessive power dissipation caused by large input to  
output voltage drops, or excessive output current. The  
regulator will shut off when the temperature exceeds the  
safe value. As the junction temperatures decrease, the  
regulator will begin to operate again. Under sustained  
fault conditions, the regulator output will oscillate as the  
device turns off then resets. Damage may occur to the  
device under extreme fault.  
Dropout Voltage (VDrop  
)
The dropout voltage is the difference between the input  
voltage and the output voltage at which point the  
regulator starts to fall out of regulation. Below this value,  
the output voltage will fall as the input voltage is reduced.  
It is dependent upon the output voltage, the load current,  
and the junction temperature.  
Please prevent the loss of the regulator when this  
protection operates, by reducing the input voltage or  
providing better heat efficiency.  
Line Regulation (LinReg)  
Line regulation is the ability of the regulator to maintain a  
constant output voltage as the input voltage changes. The  
line regulation is specified as the input voltage is changed  
ESD  
MM : 200pF 0150V or more  
HBM : 100pF 1.5k2000V or more  
from VIn=VOut,TYP+1V to VIn=6V. It is  
measurement to minimize temperature effect.  
a pulse  
Load Regulation (LoaReg)  
Load regulation is the ability of the regulator to maintain  
a constant output voltage as the load current changes. It is  
a pulsed measurement to minimize temperature effects  
with the input voltage set to VIn=VOut,TYP+1V. The load  
regulation is specified under an output current step  
condition of 1mA to 50mA.  
Ripple Rejection (RR)  
Ripple rejection is the ability of the regulator to attenuate  
the ripple content of the input voltage at the output. It is  
specified with 500mVP-P, 1kHz super-imposed on the  
input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection  
is the ratio of the ripple content of the output vs. input and  
is expressed in dB.  
Standby Current (IStandby  
)
Standby current is the current which flows into the  
regulator when the output is turned off by the control  
function (VCont=0V).  
GC3-N028  
Page 33  
TK682xxAB1/M4  
13. PACKAGE OUTLINE  
„ FC-6  
+
0.03  
6- 0.30  
M
0.05  
C
B
A
0.5  
+
0.03  
1.46  
0.05  
0.5  
6- 0.275  
Reference Mount Pad  
Unit : mm  
Package Structure and Others  
Base Material  
: Si  
Mark Method  
: Laser  
Terminal Material : Lead Free Solder Bump  
Solder Composition : Sn-2.5Ag  
Country of Origin : Japan  
Marking  
Part Number  
Marking Code  
Part Number  
TK68202AB1  
TK68205AB1  
Marking Code  
Part Number  
TK68203AB1  
TK68206AB1  
Marking Code  
TK68201AB1  
TK68204AB1  
TK68207AB1  
C01  
C04  
C07  
C02  
C05  
C03  
C06  
GC3-N028  
Page 34  
TK682xxAB1/M4  
„ SON3024-8  
Mark  
5
0.4  
Lead Free Mark  
8
#2  
#2  
0.5  
1 Pin  
Mark  
1
4
0.30+0.10  
0.05  
0.475  
0.65  
M
0.10  
Reference Mount Pad  
0.65  
3.0 +0.2  
+
2.8  
0.1  
(0.2)  
(0.2)  
0.1  
1
4
#1  
#1  
(0.1)  
#1 : Exposed metal  
tabs  
8
5
Unit : mm  
Package Structure and Others  
Package Material  
Terminal Material : Copper Alloy  
Terminal Finish  
: Epoxy Resin  
Mark Method  
: Laser  
Country of Origin : Japan  
Mass : 0.015g  
:
Lead Free Solder Plating (5~15µm)  
Solder Composition : Sn-2.5Ag  
Caution in Printed Circuit Board Layout  
In addition to the normal pins, this plastic package has exposed metal tabs on two edges.(#1)  
These tabs are electrically connected to the internal chip.  
Exercise caution when determining package location on PCB layout.  
Avoid electrical contact with these tabs from external print traces, adjacent components, etc. (#2)  
Marking  
Part Number  
Marking Code  
Part Number  
TK68202AM4  
TK68205AM4  
Marking Code  
Part Number  
TK68203AM4  
TK68206AM4  
Marking Code  
TK68201AM4  
TK68204AM4  
TK68207AM4  
D01  
D04  
D07  
D02  
D05  
D03  
D06  
GC3-N028  
Page 35  
TK682xxAB1/M4  
15. OFFICES  
14. NOTES  
If you need more information on this product and other  
TOKO products, please contact us.  
„ Please be sure that you carefully discuss your planned  
purchase with our office if you intend to use the products in  
this application manual under conditions where particularly  
extreme standards of reliability are required, or if you intend  
to use products for applications other than those listed in this  
application manual.  
„ TOKO Inc. Headquarters  
1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo,  
145-8585, Japan  
TEL: +81.3.3727.1161  
FAX: +81.3.3727.1176 or +81.3.3727.1169  
z Power drive products for automobile, ship or aircraft  
transport systems; steering and navigation systems,  
emergency signal communications systems, and any  
system other than those mentioned above which include  
electronic sensors, measuring, or display devices, and  
which could cause major damage to life, limb or property  
if misused or failure to function.  
z Medical devices for measuring blood pressure, pulse,  
etc., treatment units such as coronary pacemakers and heat  
treatment units, and devices such as artificial organs and  
artificial limb systems which augment physiological  
functions.  
Web site: http://www.toko.co.jp/  
„ TOKO America  
Web site: http://www.toko.com/  
„ TOKO Europe  
Web site: http://www.tokoeurope.com/  
„ TOKO Hong Kong  
Web site: http://www.toko.com.hk/  
z Electrical instruments, equipment or systems used in  
disaster or crime prevention.  
„ TOKO Taiwan  
Web site: http://www.tokohc.com.tw/  
„ Semiconductors, by nature, may fail or malfunction in  
spite of our devotion to improve product quality and  
reliability. We urge you to take every possible precaution  
against physical injuries, fire or other damages which may  
cause failure of our semiconductor products by taking  
appropriate measures, including a reasonable safety margin,  
malfunction preventive practices and fire-proofing when  
designing your products.  
„ TOKO Singapore  
Web site: http://www.toko.com.sg/  
„ TOKO Seoul  
Web site: http://www.toko.co.kr/  
„ TOKO Manila  
Web site: http://www.toko.com.ph/  
„ This application manual is effective from Dec. 2007. Note  
that the contents are subject to change or discontinuation  
without notice. When placing orders, please confirm  
specifications and delivery condition in writing.  
„ TOKO Brazil  
Web site: http://www.toko.com.br/  
„ TOKO is not responsible for any problems nor for any  
infringement of third party patents or any other intellectual  
property rights that may arise from the use or method of use  
of the products listed in this application manual. Moreover,  
this application manual does not signify that TOKO agrees  
implicitly or explicitly to license any patent rights or other  
intellectual property rights which it holds.  
Semiconductor Division  
„ None of the ozone depleting substances(ODS) under the  
Montreal Protocol are used in our manufacturing process.  
YOUR DISTRIBUTOR  
GC3-N028  
Page 36  

相关型号:

TK68202AM4G0LC

Fixed Positive LDO Regulator, 2 Output, 1.5V1, 2.85V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, PLASTIC, SON-8
TOKO

TK68203AB1G0BC

Fixed Positive LDO Regulator, 2 Output, 2.8V1, 1.8V2, CMOS, PBGA6, LEAD FREE, FC-6
TOKO

TK68203AB1G0LC

Fixed Positive LDO Regulator, 2 Output, 2.8V1, 1.8V2, CMOS, PBGA6, LEAD FREE, PLASTIC, FC-6
TOKO

TK68203AM4G0BC

Fixed Positive LDO Regulator, 2 Output, 1.8V1, 2.8V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, SON-8
TOKO

TK68204AM4G0BC

Fixed Positive LDO Regulator, 2 Output, 1.2V1, 1.2V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, SON-8
TOKO

TK68204AM4G0LC

Fixed Positive LDO Regulator, 2 Output, 1.2V1, 1.2V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, PLASTIC, SON-8
TOKO
TOKO

TK68205AB1G0BC

Fixed Positive LDO Regulator, 2 Output, 2.9V1, 1.2V2, CMOS, PBGA6, LEAD FREE, FC-6
TOKO
TOKO

TK68205AM4G0LC

Fixed Positive LDO Regulator, 2 Output, 1.2V1, 2.9V2, CMOS, PDSO8, 3 X 2.40 MM, LEAD FREE, PLASTIC, SON-8
TOKO
TOKO

TK68206AB1G0BC

暂无描述
TOKO