XC6108_1 [TOREX]

Voltage Detector with Separated Sense Pin & Delay Type Capacitor; 电压检测器与分离式检测引脚和延迟型电容器
XC6108_1
型号: XC6108_1
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Voltage Detector with Separated Sense Pin & Delay Type Capacitor
电压检测器与分离式检测引脚和延迟型电容器

电容器
文件: 总22页 (文件大小:620K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC6108Series  
ETR0205_007  
Voltage Detector with Separated Sense Pin & Delay Type Capacitor  
GENERAL DESCRIPTION  
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming  
technologies.  
Since the sense pin is separated from power supply, it allows the IC to monitor added power supply.  
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when  
voltage of the monitored power supply drops to 0V.  
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an  
arbitrary release delay time.  
Both CMOS and N-channel open drain output configurations are available.  
APPLICATIONS  
Microprocessor reset circuitry  
FEATURES  
Highly Accurate  
: +2% (Setting Detect Voltage1.5V)  
: +30mV (Setting Detect Voltage1.5V)  
Charge voltage monitors  
Ultra Low Power Consumption  
: 0.8 A (TYP.) (VIN= 2.0V)  
: 0.8V ~ 5.0V in 100mV increments  
Memory battery back-up switch circuits  
Power failure detection circuits  
Detect Voltage Range  
Operating Voltage Range : 1.0V ~ 6.0V  
Detect Voltage Temperature Characteristics  
: ±100ppm/ (TYP.)  
Output Configuration  
: CMOS or N-channel open drain  
Operating Temperature Range  
: -40 ~ +85 ℃  
Separated Sense Pin  
Built-In Delay Circuit, Delay Capacitance Pin Available  
Ultra Small Package  
: USP-4  
SOT-25  
TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE  
CHARACTERISTICS  
Output Voltage vs. Sense Voltage  
XC6108C25AGR  
VIN  
R
100k  
Added  
Power  
Supply  
VIN  
VSEN  
Cd  
VOUT  
Ta=25  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
No resistor needed for  
CMOS output product  
VIN=6.0V  
4.0V  
Cd  
VSS  
1.0V  
5
0
1
2
3
4
6
Sense Voltage : VSEN (V)  
1/22  
XC6108
Series  
PIN CONFIGURATION  
5
4
Cd  
VSEN  
VOUT VSS  
VIN  
3
USP-4  
(BOTTOM VIEW)  
1
2
* In the XC6108xxxA/B series, the dissipation pad should  
not be short-circuited with other pins.  
* In the XC6108xxxC/D series, when the dissipation pad  
is short-circuited with other pins, connect it to the NC  
pin (pin No.2) before use.  
SOT-25  
(TOP VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
USP- 4  
SOT-25  
1
2
2
3
4
5
1
5
-
VOUT  
Cd  
Output (Detect L)  
Delay Capacitance (*1)  
No Connection  
Sense  
NC  
4
3
2
VSEN  
VIN  
Input  
VSS  
Ground (*2)  
NOTE:  
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.  
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be  
used as the N.C.  
PRODUCT CLASSIFICATION  
Ordering Information  
XC6108 ①②③④⑤⑥  
DESIGNATOR  
DESCRIPTION  
Output Configuration  
Detect Voltage  
SYMBOL  
DESCRIPTION  
C
N
: CMOS output  
: N-ch open drain output  
② ③  
08 ~ 50 : e.g. 181.8V  
A
B
: Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)  
: Built-in delay capacitance pin, hysteresis less than 1%(Standard*)  
: No built-in delay capacitance pin, hysteresis 5% (TYP.)  
(Semi-custom)  
: No built-in delay capacitance pin, hysteresis less than 1%  
(Semi-custom)  
Output Delay & Hysteresis  
(Options)  
C
D
G
M
R
L
: USP-4  
Package  
: SOT-25  
: Embossed tape, standard feed  
: Embossed tape, reverse feed  
Device Orientation  
*When delay function isnt used, open the delay capacitance pin before use.  
2/22  
XC6108  
Series  
BLOCK DIAGRAMS  
(1) XC6108CxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram  
of XC6108CxxC (semi-custom).  
(2) XC6108CxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108CxxD (semi-custom).  
(3) XC6108NxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108NxxC (semi-custom).  
(4) XC6108NxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108NxxD (semi-custom).  
3/22  
XC6108
Series  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25OC  
UNITS  
V
XC6108xxxA/B  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
VIN  
RATINGS  
VSS0.3 ~ 7.0  
10  
IOUT  
mA  
XC6108C (*1)  
XC6108N (*2)  
Sense Pin Voltage  
VSS0.3 ~ VIN0.3  
VSS0.3 ~ 7.0  
VSS0.3 ~ 7.0  
VSS0.3 ~ VIN0.3  
5.0  
Output Voltage  
VOUT  
V
VSEN  
VCD  
ICD  
V
V
Delay Capacitance Pin Voltage  
Delay Capacitance Pin Current  
USP-4  
mA  
120  
Power Dissipation  
Pd  
mW  
SOT-25  
Operating Temperature Range  
Storage Temperature Range  
250  
Ta  
40 ~85  
55 ~125  
Tstg  
Ta = 25OC  
UNITS  
V
XC6108xxxC/D  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
VIN  
RATINGS  
VSS0.3 ~ 7.0  
10  
IOUT  
mA  
XC6108C (*1)  
XC6108N (*2)  
VSS0.3 ~ VIN0.3  
VSS0.3 ~ 7.0  
VSS0.3 ~ 7.0  
120  
Output Voltage  
VOUT  
VSEN  
Pd  
V
V
Sense Pin Voltage  
USP-4  
Power Dissipation  
mW  
SOT-25  
250  
Operating Temperature Range  
Storage Temperature Range  
Ta  
40 ~85  
Tstg  
55 ~125  
NOTE:  
*1: CMOS output  
*2: N-ch open drain output  
4/22  
XC6108  
Series  
ELECTRICAL CHARACTERISTICS  
XC6108xxxA  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS CIRCUITS  
V
V
V
-
VDF  
E-1  
E-2  
1
1
Hysteresis Range1  
VHYS1  
ΔVDF  
VIN = 1.0 ~ 6.0V  
Detect Voltage  
Line Regulation  
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
A  
1
2
ΔVINVDF  
VIN = 1.0V  
-
0.6  
0.7  
1.5  
1.6  
1.7  
1.8  
-
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
VDF x 0.9  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
0.8  
VSEN =  
VDF x 1.1  
ISS2  
A  
mA  
2
3
4
-
0.08  
1.20  
-
0.9  
0.20  
2.00  
-0.30  
-2.00  
VSEN =0V  
VDS =0.5V(N-ch)  
-
Output Current  
(*3)  
IOUT  
VSEN = 6.0V  
-0.08  
-0.70  
mA  
VDS=0.5V(P-ch)  
-
Temperature  
Characteristics  
Sense Resistance  
(*4)  
ΔVDF  
ppm/  
-40 ℃ ≦ Ta 85℃  
-
±100  
E-4  
2.0  
-
1
5
6
6
ΔTaVDF  
RSEN  
Rdelay  
ICD  
VSEN = 5.0V, VIN = 0V  
M  
M  
A  
V  
Delay Resistance  
(*5)  
VSEN = 6.0V, VIN = 5.0V,  
Cd = 0V  
1.6  
-
2.4  
-
Delay capacitance pin  
Sink Current  
VDS = 0.5V, VIN = 1.0V  
200  
Delay Capacitance Pin  
Threshold Voltage  
VSEN = 6.0V, VIN = 1.0V  
VSEN = 6.0V, VIN = 6.0V  
0.4  
2.9  
0.5  
3.0  
0.6  
3.1  
VTCD  
7
Unspecified Operating  
Voltage (*6)  
VUNS  
TDF0  
TDR0  
VIN = VSEN = 0V ~ 0.7V  
-
0.3  
30  
30  
0.4  
230  
200  
V
8
9
9
VIN=6.0V,VSEN=6.0V0.0V  
Cd:Open  
Detect Delay Time (*7)  
s  
s  
Release Delay Time  
VIN=6.0V,VSEN=0.0V6.0V  
Cd:Open  
(*8)  
NOTE:  
*1: VDF(T): Setting detect voltage  
*2: Current flows the sense resistor is not included.  
*3: This numerical value is applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: Calculated from the voltage value of the VIN and the current value of the Cd.  
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited  
This numerical value is applied only to the XC6108C series (CMOS output).  
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.  
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.  
5/22  
XC6108
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxB  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS CIRCUITS  
V
V
V
-
VDF  
E-1  
E-3  
1
1
Hysteresis Range1  
VHYS1  
ΔVDF  
VIN = 1.0 ~ 6.0V  
Detect Voltage  
Line Regulation  
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
A  
1
2
ΔVINVDF  
VIN = 1.0V  
-
0.6  
0.7  
1.5  
1.6  
1.7  
1.8  
-
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
VDF x 0.9  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
0.8  
VSEN =  
VDF x 1.1  
ISS2  
A  
mA  
2
3
4
-
0.08  
1.20  
-
0.9  
0.20  
2.00  
-0.30  
-2.00  
VSEN =0V  
VDS =0.5V(N-ch)  
-
Output Current (*3)  
IOUT  
VSEN = 6.0V  
-0.08  
-0.70  
mA  
VDS =0.5V(P-ch)  
-
Temperature  
Characteristics  
Sense Resistance  
(*4)  
ΔVDF  
ppm/  
-40 ℃ ≦ Ta 85℃  
-
±100  
E-4  
2.0  
-
1
5
6
6
ΔTaVDF  
RSEN  
Rdelay  
ICD  
VSEN = 5.0V, VIN = 0V  
M  
M  
A  
V  
Delay Resistance  
(*5)  
VSEN = 6.0V, VIN = 5.0V,  
Cd = 0V  
1.6  
-
2.4  
-
Delay capacitance pin  
Sink Current  
VDS = 0.5V, VIN = 1.0V  
200  
Delay Capacitance Pin  
Threshold Voltage  
VSEN = 6.0V, VIN = 1.0V  
VSEN = 6.0V, VIN = 6.0V  
0.4  
2.9  
0.5  
3.0  
0.6  
3.1  
VTCD  
7
Unspecified Operating  
Voltage (*6)  
VUNS  
TDF0  
TDR0  
VIN = VSEN = 0V ~ 0.7V  
-
0.3  
30  
30  
0.4  
230  
200  
V
8
9
9
Detect Delay Time  
VIN=6.0V,VSEN=6.0V0.0V  
Cd:Open  
s  
s  
(*7)  
Release Delay Time  
(*8)  
VIN=6.0V,VSEN=0.0V6.0V  
Cd:Open  
NOTE:  
*1: VDF(T): Setting detect voltage  
*2: Current flows the sense resistor is not included.  
*3: This numerical value is applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: Calculated from the voltage value of the VIN and the current value of the Cd.  
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited  
This numerical value is applied only to the XC6108C series (CMOS output).  
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.  
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.  
6/22  
XC6108  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxC  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS CIRCUITS  
V
V
V
-
VDF  
E-1  
E-2  
1
1
Hysteresis Range1  
VHYS1  
ΔVDF  
VIN = 1.0 ~ 6.0V  
Detect Voltage  
Line Regulation  
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
A  
1
2
ΔVINVDF  
VIN = 1.0V  
-
0.6  
0.7  
1.5  
1.6  
1.7  
1.8  
-
VSEN =  
Supply Current 1 (*2)  
ISS1  
VDF x 0.9  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
0.8  
Supply Current 2  
(*2)  
VSEN =  
VDF x 1.1  
ISS2  
A  
mA  
2
3
-
0.08  
1.20  
-
0.9  
0.20  
2.00  
-0.30  
-2.00  
VSEN =0V  
VDS =0.5V(N-ch)  
-
Output Current  
(*3)  
IOUT  
VSEN = 6.0V  
-0.08  
-0.70  
mA  
4
1
5
VDS=0.5V(P-ch)  
-
Temperature  
Characteristics  
Sense Resistance  
(*4)  
ΔVDF  
ppm/  
-40 ℃ ≦ Ta 85℃  
-
±100  
-
ΔTaVDF  
RSEN  
VSEN = 5.0V, VIN = 0V  
E-4  
M  
Unspecified Operating  
Voltage (*5)  
VUNS  
TDF0  
TDR0  
VIN = VSEN = 0V ~ 0.7V  
VIN=6.0V,VSEN=6.0V0.0V  
VIN=6.0V,VSEN=0.0V6.0V  
-
0.3  
30  
30  
0.4  
230  
200  
V
7
9
9
Detect Delay Time (*6)  
s  
s  
Release Delay Time  
(*7)  
NOTE:  
*1: VDF(T): Setting detect voltage  
*2: Current flows the sense resistor is not included.  
*3: This numerical value is applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited  
This numerical value is applied only to the XC6108C series (CMOS output).  
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.  
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.  
7/22  
XC6108
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxD  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS CIRCUITS  
V
V
V
-
VDF  
E-1  
E-3  
1
1
Hysteresis Range1  
VHYS1  
ΔVDF  
VIN = 1.0 ~ 6.0V  
Detect Voltage  
Line Regulation  
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
A  
1
2
ΔVINVDF  
VIN = 1.0V  
-
0.6  
0.7  
1.5  
1.6  
1.7  
1.8  
-
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
VDF x 0.9  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
0.8  
VSEN =  
VDF x 1.1  
ISS2  
A  
mA  
2
3
4
-
0.08  
1.20  
-
0.9  
0.20  
2.00  
-0.30  
-2.00  
VSEN=0V  
VDS=0.5V(N-ch)  
-
Output Current (*3)  
IOUT  
VSEN = 6.0V  
-0.08  
-0.70  
mA  
VDS =0.5V(P-ch)  
-
Temperature  
Characteristics  
ΔVDF  
ΔTaVDF  
RSEN  
ppm/  
-40 ℃ ≦ Ta 85℃  
VSEN = 5.0V, VIN = 0V  
-
-
±100  
E-4  
0.3  
30  
-
1
5
7
9
9
Sense Resistance (*4)  
Unspecified Operating  
Voltage (*5)  
M  
VUNS  
TDF0  
TDR0  
VIN = VSEN = 0V ~ 0.7V  
VIN=6.0V,VSEN=6.0V0.0V  
VIN=6.0V,VSEN=0.0V6.0V  
0.4  
230  
200  
V
Detect Delay Time (*6)  
s  
s  
Release Delay Time  
(*7)  
30  
NOTE:  
*1: VDF(T): Setting detect voltage  
*2: Current flows the sense resistor is not included.  
*3: This numerical value is applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited  
This numerical value is applied only to the XC6108C series (CMOS output).  
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.  
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.  
8/22  
XC6108  
Series  
VOLTAGE CHART  
SYMBOL  
E-1  
E-2  
HYSTERESIS  
RANGE  
(V)  
E-3  
HYSTERESIS  
RANGE  
(V)  
E-4  
SENSE  
RESISTANCE  
(MΩ)  
SETTING OUTPUT  
VOLTAGE  
DETECT VOLTAGE  
(*1) (V)  
VDF(T)  
VDF  
VHYS  
VHYS  
RSEN  
(V)  
MIN.  
0.770  
0.870  
0.970  
1.070  
1.170  
1.270  
1.370  
1.470  
1.568  
1.666  
1.764  
1.862  
1.960  
2.058  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.312  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
MAX.  
0.830  
0.930  
1.030  
1.130  
1.230  
1.330  
1.430  
1.530  
1.632  
1.734  
1.836  
1.938  
2.040  
2.142  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
MIN.  
MAX.  
0.066  
0.074  
0.082  
0.090  
0.098  
0.106  
0.114  
0.122  
0.131  
0.085  
0.147  
0.155  
0.163  
0.171  
0.180  
0.188  
0.196  
0.204  
0.212  
0.220  
0.228  
0.237  
0.245  
0.253  
0.261  
0.269  
0.277  
0.286  
0.294  
0.302  
0.310  
0.318  
0.326  
0.335  
0.343  
0.351  
0.359  
0.367  
0.375  
0.384  
0.392  
0.400  
0.408  
MIN.  
MAX.  
MIN.  
TYP.  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
0.015  
0.017  
0.019  
0.021  
0.023  
0.025  
0.027  
0.029  
0.031  
0.033  
0.035  
0.037  
0.039  
0.041  
0.043  
0.045  
0.047  
0.049  
0.051  
0.053  
0.055  
0.057  
0.059  
0.061  
0.063  
0.065  
0.067  
0.069  
0.071  
0.073  
0.074  
0.076  
0.078  
0.080  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
0.008  
0.009  
0.010  
0.011  
0.012  
0.013  
0.014  
0.015  
0.016  
0.017  
0.018  
0.019  
0.020  
0.021  
0.022  
0.023  
0.024  
0.026  
0.027  
0.028  
0.029  
0.030  
0.031  
0.032  
0.033  
0.034  
0.035  
0.036  
0.037  
0.038  
0.039  
0.040  
0.041  
0.042  
0.043  
0.044  
0.045  
0.046  
0.047  
0.048  
0.049  
0.050  
0.051  
10  
20  
0
13  
24  
15  
28  
NOTE:  
*1: When VDF(T)1.4V, the detection accuracy is ±30mV.  
When VDF(T)1.5V, the detection accuracy is ±2%.  
9/22  
XC6108
Series  
TEST CIRCUITS  
Circuit 1  
Circuit 2  
Circuit 3  
Circuit 4  
Circuit 5  
10/22  
XC6108  
Series  
TEST CIRCUITS (Continued)  
Circuit 6  
Circuit 7  
Circuit 8  
Circuit 9  
R=100kΩ  
(No resistor needed for  
CMOS output products)  
VIN  
VSEN  
Cd  
VOUT  
Waveform Measurement Point  
VSS  
* No delay capacitance pin available  
in the XC6108xxxC/D series.  
11/22  
XC6108
Series  
OPERATIONAL EXPLANATION  
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.  
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged  
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to  
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the Highlevel (=VIN).  
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input  
voltage pin, the Highlevel will be a voltage value where the pull-up resistor is connected.  
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor  
(M3) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An  
inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the Lowlevel  
(=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the VOUT of Lowlevel  
(especially, when the Cd pin is not connected: TDF0).  
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground  
voltage (=VSS) level. Then, the output voltage maintains the Lowlevel while the sense pin voltage increases again to  
reach the release voltage (VSEN< VDF +VHYS).  
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M3) for  
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay  
resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic  
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).  
While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the  
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC  
series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1).  
TDR = Rdelay×Cd×In (1VTCD / VIN) (1)  
* In = a natural logarithm  
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and  
the delay capacitance pin voltage is VIN /2 (TYP.)  
TDR = 2.0e6×Cd×0.69(2)  
As an example, presuming that the delay capacitance is 0.68μF, TDR is :  
2.0e6×0.68e6×0.69 = 938 (ms)  
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the  
ground (=VSS) level because time described in is short.  
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter  
(Inv.1) will be inverted. As a result, the output voltage changes into the High(=VIN) level. TDR0 is defined as time  
which ranges from VSEN=VDF+VHYS to the VOUT of Highlevel without connecting to the Cd.  
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the  
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the High(=VIN)  
level.  
12/22  
XC6108  
Series  
OPERATIONAL EXPLANATION (Continued)  
Function Chart  
TRANSITION OF VOUT CONDITION*  
VSEN  
Cd  
L
H
L
H
L
L
L
L
H
L
L
H
L
H
H
H
H
*VOUT transits from condition to because of the combination of VSEN and Cd.  
Example  
ex. 1) VOUT ranges from Lto Hin case of VSEN = ‘H’ (VDRVSEN), Cd=H(VTCDCd) while VOUT is L.  
ex. 2) VOUT maintains Hwhen Cd ranges from Hto L, VSEN=Hand Cd=Lwhen VOUT becomes Hin ex.1.  
Release Delay Time Chart  
RELEASE DELAY TIME [TDR]  
RELEASE DELAY TIME [TDR]  
DELAY CAPACITANCE [Cd]  
(TYP.)  
(ms)  
13.8  
30.4  
64.9  
138  
(MIN. ~ MAX.)  
(ms)  
(μF)  
0.010  
0.022  
0.047  
0.100  
0.220  
0.470  
1.000  
11.0 ~ 16.6  
24.3 ~ 36.4  
51.9 ~ 77.8  
110 ~ 166  
304  
649  
243~ 364  
519 ~ 778  
1380  
1100 ~ 1660  
13/22  
XC6108
Series  
OPERATIONAL EXPLANATION (Continued)  
Figure 1: Typical application circuit example  
*The XC6108N series (N-ch open  
drain output) requires a pull-up  
resistor for pulling up output.  
Figure 2: The timing chart of Figure 1  
14/22  
XC6108  
Series  
NOTES ON USE  
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent  
damage to the device.  
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through  
current at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below  
the minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage  
similarly occur. Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used,  
oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed  
the hysteresis voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.  
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage  
over 1.0V to the VIN pin.  
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.  
5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release  
operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between  
the VIN pin and the Cd pin as the Figure 3 shown below.  
6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200kΩ.  
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode  
15/22  
XC6108
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Supply Current vs. Sense Voltage  
XC6108C25AGR  
VIN=3.0V  
2.0  
Ta=85  
25  
1.5  
1.0  
0.5  
0.0  
-40  
0
1
2
3
4
5
6
Sense Voltage : VSEN (V)  
(2) Supply Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VSEN=2.25V  
VSEN=2.75V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
.0  
.8  
.6  
.4  
.2  
0.0  
Ta=85  
Ta=85  
25  
25  
-40  
5
-40  
5
0
1
2
3
4
6
0
1
2
3
4
6
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
(3) Detect Voltage vs. Ambient Temperature  
XC6108C25AGR  
(4) Detect Voltage vs. Input Voltage  
XC6108C25AGR  
VIN=4.0V  
2.55  
2.50  
2.45  
2.55  
2.50  
2.45  
Ta=25  
85  
-40  
-50  
-25  
0
25  
50  
75  
100  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Ambient Temperature : Ta ()  
Input Voltage : VIN (V)  
16/22  
XC6108  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(5) Hysteresis Voltage vs. Ambient Temperature  
(6) CD Pin Sink Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VIN=4.0V  
VSEN=0V, VDS=0.5V  
0.20  
0.15  
0.10  
0.05  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=-40  
25  
85  
4
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
5
6
Ambient Temperature : Ta ()  
Input Voltage : VIN (V)  
(7) Output Voltage vs. Sense Voltage  
XC6108C25AGR  
(8) Output Voltage vs. Input Voltage  
XC6108N25AGR  
Ta=25℃  
VSEN=VIN, Pull-up=VIN, R=100k  
Ω
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN=6.0V  
4.0V  
Ta=85  
25  
-40  
1.0V  
5
0
1
2
3
4
6
0
0.5  
1
1.5  
2
2.5  
3
SenseVoltage:VSEN(V)  
Input Voltage : VIN (V)  
(9) Output Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VDS(Nch)=0.5V  
VDS(Pch)=0.5V  
4.0  
3.5  
0.0  
Ta=-40  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
Ta=85  
25  
25  
85  
-40  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
17/22  
XC6108
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Delay Resistance vs. Ambient Temperature  
(11) Release Delay Time vs. Delay Capacitance  
XC6108C25AGR  
XC6108C25AGR  
VSEN=6.0V, VCD=0.0V, VIN=5.0V  
Ta=25  
10000  
1000  
100  
10  
4
VIN=1.0V  
3.0V  
3.5  
3
6.0V  
2.5  
2
1
1.5  
TDR=Cd×2.0e6×0.69  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Delay Capacitance : Cd (μF)  
(12) Detect Delay Time vs. Delay Capacitance  
XC6108C25AGR  
Ta=25  
1000  
VIN=6.0V  
4.0V  
100  
3.0V  
2.0V  
0.1  
10  
1
1.0V  
0.0001  
0.001  
0.01  
1
Delay Capacitance : Cd (μF)  
18/22  
XC6108  
Series  
PACKAGING INFORMATION  
USP-4  
1. 2±0. 08  
0. 3±0. 05  
*Solderingfilletsurfaceis notformed  
because the sides ofthe pins are plated.  
1. 0±0. 1  
( 0. 6)  
SOT-25  
19/22  
XC6108
Series  
PACKAGING INFORMATION (Continued)  
USP-4 Recommended Pattern Layout  
USP-Recommended Metal Mask Design  
MARKING RULE  
SOT-25  
Represents output configuration and integer number of detect voltage  
CMOS Output (XC6108C Series)  
N-ch Open Drain Output (XC6108N Series)  
5
4
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
K
L
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
M
N
P
R
1
2
3
SOT-25  
(TOP VIEW)  
Represents decimal number of detect voltage  
(ex.)  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
0
x.3  
x.0  
XC6108xx3xxx  
XC6108xx0xxx  
Represents options  
MARK  
OPTIONS  
PRODUCT SERIES  
XC6108xxxAxx  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Standard)  
Built-in delay capacitance pin with hysteresis less than 1%  
(Standard)  
A
B
C
D
XC6108xxxBxx  
XC6108xxxCxx  
XC6108xxxDxx  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
Represents production lot number  
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.  
(G, I, J, O, Q, W excepted.)  
20/22  
XC6108  
Series  
MARKING RULE (Continued)  
Represents output configuration and integer number of detect voltage  
USP-4  
CMOS Output (XC6108C Series)  
N-ch Open Drain Output (XC6108N Series)  
4
3
1
2
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
K
L
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
USP-4  
(TOP VIEW)  
M
N
P
R
Represents decimal number of detect voltage  
(ex.)  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
0
x.3  
x.0  
XC6108xx3xxx  
XC6108xx0xxx  
Represents options  
PRODUCT  
MARK  
OPTIONS  
SERIES  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Standard)  
XC6108xxxAxx  
A
B
C
D
Built-in delay capacitance pin with hysteresis less than 1%  
(Standard)  
XC6108xxxBxx  
XC6108xxxCxx  
XC6108xxxDxx  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
Represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.)  
*No character inversion used.  
21/22  
XC6108
Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this catalog is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this catalog.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this catalog.  
4. The products in this catalog are not developed, designed, or approved for use with such  
equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this catalog within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this catalog may be copied or reproduced without the  
prior permission of Torex Semiconductor Ltd.  
22/22  

相关型号:

XC6109

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C0

Voltage Detector with External Delay Type Capacitor
TOREX

XC6109C08ANL

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C08ANR

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C09ANL

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C09ANR

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C0XXNX

Voltage Detector with External Delay Type Capacitor
TOREX

XC6109C1

Voltage Detector with External Delay Type Capacitor
TOREX

XC6109C10ANL

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C10ANR

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C11ANL

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C11ANR

Voltage Detector with Delay Type Capacitor
TOREX