XC6118C09CGR-G [TOREX]

IC SUPERVISOR 0.9V 4-USP;
XC6118C09CGR-G
型号: XC6118C09CGR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

IC SUPERVISOR 0.9V 4-USP

文件: 总20页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC6118Series  
ETR02013-005  
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin  
GENERAL DESCRIPTION  
The XC6118 series is a low power consumption voltage detector with high accuracy detection, manufactured using CMOS  
process and laser trimming technologies.  
Since the sense pin is separated from the power supply pin, it allows the IC to monitor the other power supply.  
The XC6118 can maintain the state of detection even when voltage of the monitored power supply drops to 0V.  
Moreover, a release delay time can be adjusted by the external capacitor connected to the Cd pin.  
The VOUT pin is available in both CMOS and N-channel open drain output configurations.  
FEATURES  
APPLICATIONS  
Microprocessor reset circuitry  
High Accuracy  
:±2(Detect Voltage1.5V)  
±30mV(Detect Voltage1.5V)  
: 0.4μA TYP. (Detect, VIN=1.0V)  
0.8μA TYP. (Release, VIN=1.0V)  
: 0.8V5.0V (0.1V increments)  
: 1.0V6.0V  
Charge voltage monitors  
Low Power Consumption  
Memory battery back-up switch circuits  
Power failure detection circuits  
Detect Voltage Range  
Operating Voltage Range  
Temperature Characteristics : ±100ppm/TYP.  
Output Configuration  
Pin Function  
: CMOS, N-channel open drain  
: Power supply separation  
Release delay time adjustable  
Operating Ambient Temperature : -40℃~+85℃  
Packages  
: USP-4, SOT-25  
Environmentally Friendly  
: EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
Output Voltage vs. Sense Voltage  
XC6118C25AGR  
Ta=25  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
Monitering  
Power  
supply  
VIN=6.0V  
4.0V  
(No Pull-Up resistor needed for  
CMOS output product)  
1.0V  
5
0
1
2
3
4
6
Sense Voltage: VSEN (V)  
1/20  
XC6118 Series  
PIN CONFIGURATION  
Cd/NC  
3
4
VSEN  
VIN  
Cd/NC  
VOUT  
2
5
VSS  
1
USP-4  
BOTTOM VIEW)  
SO25  
* In the XC6118xxxA/B series, the dissipation pad  
should not be short-circuited with other pins.  
* In the XC6118xxxC/D series, when the dissipation  
pad is short-circuited with other pins, connect it to  
the NC pin (No.2) pin before use.  
TOP VIEW
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
USP-4  
SOT-25  
1
2
2
3
4
5
1
5
5
4
3
2
VOUT  
Cd  
Output (Detect ”L”)  
Delay Capacitance (*1)  
No Connection  
Sense  
NC  
VSEN  
VIN  
Input  
Ground (*2)  
VSS  
NOTE:  
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.  
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will  
be used as the NC.  
PRODUCT CLASSIFICATION  
Ordering Information  
(*1)  
XC6118①②③④⑤⑥-⑦  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
C
N
CMOS output  
Output Configuration  
Detect Voltage  
N-ch open drain output  
e.g. 18 1.8V  
②③  
08~50  
A
Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)  
Built-in delay capacitance pin, hysteresis less than 1%(Standard*)  
B
Options  
No built-in delay capacitance pin, hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin, hysteresis less than 1%  
(Semi-custom)  
C
D
GR-G  
MR-G  
USP-4 (3,000/Reel)  
SOT-25 (3,000/Reel)  
Packages  
(Order Unit)  
⑤⑥-⑦  
*When delay function isn’t used, open the delay capacitance pin before use.  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.  
2/20  
XC6118  
Series  
BLOCK DIAGRAMS  
(1) XC6118CxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6118CxxC (semi-custom).  
(2) XC6118CxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6118CxxD (semi-custom).  
(3) XC6118NxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6118NxxC (semi-custom).  
(4) XC6118NxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6118NxxD (semi-custom).  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
3/20  
XC6118 Series  
ABSOLUTE MAXIMUM RATINGS  
XC6118xxxA/B  
Ta=25℃  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
RATINGS  
VSS-0.37.0  
10  
UNITS  
V
VIN  
IOUT  
mA  
XC6118C (*1)  
XC6118N (*2)  
Sense Pin Voltage  
VSS-0.3VIN+0.3  
VSS-0.37.0  
VSS-0.37.0  
VSS-0.3VIN+0.3  
5.0  
Output Voltage  
VOUT  
V
VSEN  
VCD  
ICD  
V
V
Delay Capacitance Pin Voltage  
Delay Capacitance Pin Current  
USP-4  
mA  
120  
Power Dissipation  
Pd  
mW  
SOT-25  
Operating Ambient Temperature  
Storage Temperature  
250  
Ta  
-40+85  
-55+125  
oC  
oC  
Tstg  
XC6118xxxC/D  
Ta=25℃  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
VIN  
RATINGS  
VSS-0.37.0  
10  
UNITS  
V
IOUT  
mA  
XC6118C (*1)  
XC6118N (*2)  
VSS-0.3VIN+0.3  
Output Voltage  
VOUT  
VSEN  
Pd  
V
V
VSS-0.37.0  
Sense Pin Voltage  
VSS-0.37.0  
120  
USP-4  
Power Dissipation  
mW  
SOT-25  
250  
Operating Ambient Temperature  
Storage Temperature  
Ta  
-40+85  
-55+125  
oC  
oC  
Tstg  
NOTE:  
*1: CMOS output  
*2: N-ch open drain output  
4/20  
XC6118  
Series  
ELECTRICAL CHARACTERISTICS  
XC6118xxxA  
Ta=25℃  
PARAMETER  
SYMBOL  
VIN  
CONDITIONS  
MIN.  
1.0  
TYP.  
MAX.  
6.0  
UNITS  
V
CIRCUITS  
VDF(T)=0.85.0V (*1)  
-
Operating Voltage  
Detect Voltage  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VDF  
VIN=1.06.0V  
VIN=1.06.0V  
E-1  
E-2  
V
V
VHYS  
ΔVDF  
/
VIN=1.06.0V  
±0.1  
%/V  
(ΔVINVDF  
)
V
SEN=VDF×0.9  
VIN=1.0V  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
0.4  
0.4  
1.0  
1.0  
μA  
VIN=6.0V  
V
SEN=VDF×1.1  
VIN=1.0V  
ISS2  
0.8  
0.9  
1.6  
1.8  
μA  
VIN=6.0V  
V
SEN=0V, VDS=0.5V(Nch)  
VIN=1.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VIN=2.0V  
IOUT1  
VIN=3.0V  
mA  
VIN=4.0V  
Output Current (*3)  
VIN=5.0V  
VIN=6.0V  
VSEN=6.0V,  
VDS=0.5V(Pch)  
VIN=1.0V  
IOUT2  
-0.30  
-1.00  
-0.08  
-0.70  
mA  
VIN=6.0V  
CMOS Output  
VIN=6.0V, VSEN=0V,  
VOUT=0V, Cd: Open  
-0.20  
0.20  
(P-ch)  
Leakage  
Current  
ILEAK  
μA  
N-ch Open Drain  
Output  
VIN=6.0V, VSEN=6.0V,  
0.40  
VOUT=6.0V, Cd: Open  
-40 oCTopr85 oC  
VSEN=5.0V VIN=0V  
ΔVDF  
/
±100  
ppm/oC  
Temperature Characteristics  
(ΔToprVDF  
)
Sense Resistance (*4)  
Delay Resistance (*5)  
RSEN  
E-4  
2.0  
MΩ  
MΩ  
V
SEN=6.0V VIN=5.0V  
Cd=0V  
RDELAY  
1.6  
2.4  
Delay capacitance pin  
Sink Current  
ICD  
Cd=0.5V, VIN=1.0V  
200  
μA  
Delay Capacitance Pin Threshold  
Voltage  
V
SEN=6.0V VIN=1.0V  
VSEN=6.0V VIN=6.0V  
VIN=VSEN=01.0V  
VIN=6.0V, VSEN=6.0V0V  
Cd: Open  
0.4  
2.9  
0.5  
3.0  
0.3  
0.6  
3.1  
0.4  
VTCD  
VUNS  
tDF0  
V
V
Undefined Operation (*6)  
Detect Delay Time (*7)  
30  
30  
230  
200  
μs  
VIN=6.0V, VSEN=0V6.0V  
Cd: Open  
Release Delay Time (*8)  
tDR0  
μs  
NOTE:  
*1: VDF (T): Nominal detect voltage  
*2: Current to the sense resistor is not included.  
*3: IOUT2 is applied only to the XC6118C series (CMOS output).  
*4: It is calculated from the voltage value and the current value of the VSEN  
.
*5: It is calculated from the voltage value of the VIN and the current value of the Cd.  
*6: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.  
This value is effective only to the XC6118C series (CMOS output).  
*7: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.  
*8: Delay time from the time of VIN= VDF +VHYS to the time of VOUT = 5.4V when the VSEN rises.  
5/20  
XC6118 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6118xxxB  
Ta=25℃  
PARAMETER  
SYMBOL  
VIN  
CONDITIONS  
MIN.  
1.0  
TYP.  
MAX.  
6.0  
UNITS  
V
CIRCUITS  
VDF(T)=0.85.0V (*1)  
-
Operating Voltage  
Detect Voltage  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VDF  
VIN=1.06.0V  
VIN=1.06.0V  
E-1  
E-3  
V
V
VHYS  
ΔVDF  
/
VIN=1.06.0V  
±0.1  
%/V  
(ΔVINVDF  
)
V
SEN=VDF×0.9  
VIN=1.0V  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
0.4  
0.4  
1.0  
1.0  
μA  
VIN=6.0V  
V
SEN=VDF×1.1  
VIN=1.0V  
ISS2  
0.8  
0.9  
1.6  
1.8  
μA  
VIN=6.0V  
V
SEN=0V VDS=0.5V(Nch)  
VIN=1.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VIN=2.0V  
IOUT1  
VIN=3.0V  
mA  
VIN=4.0V  
Output Current (*3)  
VIN=5.0V  
VIN=6.0V  
V
SEN=6.0V VDS=0.5V(Pch)  
VIN=1.0V  
IOUT2  
-0.30  
-1.00  
-0.08  
-0.70  
mA  
VIN=6.0V  
CMOS Output  
VIN=6.0V, VSEN=0V,  
VOUT=0V, Cd: Open  
-0.20  
0.20  
Leakage  
Current  
(P-ch)  
ILEAK  
μA  
N-ch Open  
VIN=6.0V, VSEN=6.0V,  
0.40  
Drain Output  
VOUT=6.0V, Cd: Open  
ΔVDF  
/
-40 oCTopr85 oC  
±100  
ppm/oC  
Temperature Characteristics  
(ΔToprVDF  
)
Sense Resistance (*4)  
Delay Resistance (*5)  
Delay capacitance pin  
Sink Current  
RSEN  
VSEN=5.0V VIN=0V  
E-4  
2.0  
MΩ  
MΩ  
RDELAY  
VSEN=6.0V VIN=5.0V Cd=0V  
1.6  
2.4  
ICD  
Cd=0.5V, VIN=1.0V  
200  
μA  
Delay Capacitance Pin  
Threshold Voltage  
Undefined Operation (*6)  
V
SEN=6.0V VIN=1.0V  
0.4  
2.9  
0.5  
3.0  
0.3  
0.6  
3.1  
0.4  
VTCD  
VUNS  
tDF0  
V
V
VSEN=6.0V VIN=6.0V  
VIN=VSEN=01.0V  
VIN=6.0V, VSEN=6.0V0V  
Cd: Open  
Detect Delay Time (*7)  
Release Delay Time (*8)  
NOTE:  
30  
30  
230  
200  
μs  
VIN=6.0V, VSEN=0V6.0V  
Cd: Open  
tDR0  
μs  
*1: VDF (T): Nominal detect voltage  
*2: Current to the sense resistor is not included.  
*3: IOUT2 is applied only to the XC6118C series (CMOS output).  
*4: It is calculated from the voltage value and the current value of the VSEN  
.
*5: It is calculated from the voltage value of the VIN and the current value of the Cd.  
*6: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.  
This value is effective only to the XC6118C series (CMOS output).  
*7: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.  
*8: Delay time from the time of VIN= VDF +VHYS to the time of VOUT= 5.4V when the VSEN rises.  
6/20  
XC6118  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6118xxxC  
Ta=25℃  
PARAMETER  
SYMBOL  
VIN  
CONDITIONS  
MIN.  
1.0  
TYP.  
MAX.  
6.0  
UNITS  
V
CIRCUITS  
VDF(T)=0.85.0V (*1)  
-
Operating Voltage  
Detect Voltage  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VDF  
VIN=1.06.0V  
VIN=1.06.0V  
E-1  
E-2  
V
V
VHYS  
ΔVDF  
/
VIN=1.06.0V  
±0.1  
%/V  
(ΔVINVDF  
)
V
SEN=VDF×0.9  
VIN=1.0V  
Supply Current 1 (*2)  
ISS1  
0.4  
0.4  
1.0  
1.0  
μA  
VIN=6.0V  
V
SEN=VDF×1.1  
VIN=1.0V  
Supply Current 2 (*2)  
ISS2  
0.8  
0.9  
1.6  
1.8  
μA  
VIN=6.0V  
V
SEN=0V VDS=0.5V(Nch)  
VIN=1.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VIN=2.0V  
IOUT1  
VIN=3.0V  
mA  
VIN=4.0V  
Output Current (*3)  
VIN=5.0V  
VIN=6.0V  
V
SEN=6.0V VDS=0.5V(Pch)  
VIN=1.0V  
IOUT2  
-0.30  
-1.00  
-0.08  
-0.70  
mA  
VIN=6.0V  
CMOS Output  
VIN=6.0V, VSEN=0V,  
VOUT=0V  
-0.20  
0.20  
Leakage  
Current  
(P-ch)  
ILEAK  
μA  
Nch Open Drain  
Output  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V  
0.40  
ΔVDF  
/
-40 oCTopr 85 oC  
±100  
ppm/oC  
Temperature Characteristics  
(ΔTopr VDF  
)
Sense Resistance (*4)  
Undefined Operation (*5)  
Detect Delay Time (*6)  
Release Delay Time (*7)  
RSEN  
VUNS  
tDF0  
VSEN=5.0V VIN=0V  
E-4  
0.3  
30  
MΩ  
V
VIN=VSEN=01.0V  
0.4  
230  
200  
VIN=6.0V, VSEN=6.00V  
VIN=6.0V, VSEN=06.0V  
μs  
μs  
tDR0  
30  
NOTE:  
*1: VDF (T): Nominal detect voltage  
*2: Current to the sense resistor is not included.  
*3: IOUT2 is applied only to the XC6118C series (CMOS output).  
*4: It is calculated from the voltage value and the current value of the VSEN  
.
*5: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.  
This value is effective only to the XC6118C series (CMOS output).  
*6: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.  
*7: Delay time from the time of VIN= VDF +VHYS to the time of VOUT= 5.4V when the VSEN rises.  
7/20  
XC6118 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
XC6118xxxD  
PARAMETER  
SYMBOL  
VIN  
CONDITIONS  
MIN.  
1.0  
TYP.  
MAX.  
6.0  
UNITS  
V
CIRCUITS  
VDF(T)=0.85.0V (*1)  
-
Operating Voltage  
Detect Voltage  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VDF  
VIN=1.06.0V  
VIN=1.06.0V  
E-1  
E-3  
V
V
VHYS  
ΔVDF  
/
VIN=1.06.0V  
±0.1  
%/V  
(ΔVINVDF  
)
V
SEN=VDF×0.9  
VIN=1.0V  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
0.4  
0.4  
1.0  
1.0  
μA  
VIN=6.0V  
V
SEN=VDF×1.1  
VIN=1.0V  
ISS2  
0.8  
0.9  
1.6  
1.8  
μA  
VIN=6.0V  
V
SEN=0V VDS=0.5V(Nch)  
VIN=1.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VIN=2.0V  
IOUT1  
VIN=3.0V  
mA  
VIN=4.0V  
Output Current (*3)  
VIN=5.0V  
VIN=6.0V  
V
SEN=6.0V VDS=0.5V(Pch)  
VIN=1.0V  
IOUT2  
-0.30  
-1.00  
-0.08  
-0.70  
mA  
VIN=6.0V  
CMOS Output  
VIN=6.0V, VSEN=0V,  
VOUT=0V  
-0.20  
0.20  
Leakage  
Current  
(P-ch)  
ILEAK  
μA  
Nch Open  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V  
0.40  
Drain Output  
ΔVDF  
/
-40 oCTopr85 oC  
±100  
ppm/oC  
Temperature Characteristics  
(ΔToprVDF  
)
Sense Resistance (*4)  
Undefined Operation (*5)  
Detect Delay Time (*6)  
Release Delay Time (*7)  
RSEN  
VUNS  
tDF0  
VSEN=5.0V VIN=0V  
E-4  
0.3  
30  
MΩ  
V
VIN=VSEN=01.0V  
0.4  
230  
200  
VIN=6.0V VSEN=6.00V  
VIN=6.0V VSEN=06.0V  
μs  
μs  
tDR0  
30  
NOTE:  
*1: VDF (T): Nominal detect voltage  
*2: Current to the sense resistor is not included.  
*3: IOUT2 is applied only to the XC6118C series (CMOS output).  
*4: It is calculated from the voltage value and the current value of the VSEN  
.
*5: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.  
This value is effective only to the XC6118C series (CMOS output).  
*6: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.  
*7: Delay time from the time of VIN= VDF +VHYS to the time of VOUT = 5.4V when the VSEN rises.  
8/20  
XC6118  
Series  
VOLTAGE CHART  
SYMBOL  
E-1  
E-2  
E-3  
E-4  
PARAMETER  
DETECT VOLTAGE (*1)  
(V)  
HYSTERESIS RANGE  
(V)  
HYSTERESIS RANGE  
(V)  
SENSE RESISTANCE  
NOMINAL  
VOLTAGE  
(MΩ)  
VDF(T)  
VDF  
VHYS  
VHYS  
RSEN  
(V)  
MIN.  
0.770  
0.870  
0.970  
1.070  
1.170  
1.270  
1.370  
1.470  
1.568  
1.666  
1.764  
1.862  
1.960  
2.058  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.312  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
MAX.  
0.830  
0.930  
1.030  
1.130  
1.230  
1.330  
1.430  
1.530  
1.632  
1.734  
1.836  
1.938  
2.040  
2.142  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
MIN.  
0.015  
0.017  
0.019  
0.021  
0.023  
0.025  
0.027  
0.029  
0.031  
0.033  
0.035  
0.037  
0.039  
0.041  
0.043  
0.045  
0.047  
0.049  
0.051  
0.053  
0.055  
0.057  
0.059  
0.061  
0.063  
0.065  
0.067  
0.069  
0.071  
0.073  
0.074  
0.076  
0.078  
0.080  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
MAX.  
0.066  
0.074  
0.082  
0.090  
0.098  
0.106  
0.114  
0.122  
0.131  
0.085  
0.147  
0.155  
0.163  
0.171  
0.180  
0.188  
0.196  
0.204  
0.212  
0.220  
0.228  
0.237  
0.245  
0.253  
0.261  
0.269  
0.277  
0.286  
0.294  
0.302  
0.310  
0.318  
0.326  
0.335  
0.343  
0.351  
0.359  
0.367  
0.375  
0.384  
0.392  
0.400  
0.408  
MIN.  
MAX.  
0.008  
0.009  
0.010  
0.011  
0.012  
0.013  
0.014  
0.015  
0.016  
0.017  
0.018  
0.019  
0.020  
0.021  
0.022  
0.023  
0.024  
0.026  
0.027  
0.028  
0.029  
0.030  
0.031  
0.032  
0.033  
0.034  
0.035  
0.036  
0.037  
0.038  
0.039  
0.040  
0.041  
0.042  
0.043  
0.044  
0.045  
0.046  
0.047  
0.048  
0.049  
0.050  
0.051  
MIN.  
TYP.  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
10  
20  
0
13  
24  
15  
28  
NOTE:  
*1: When VDF(T)1.4V, the detection accuracy is ±30mV.  
When VDF(T)1.5V, the detection accuracy is ±2%.  
9/20  
XC6118 Series  
TEST CIRCUITS  
Circuit 1  
Circuit 2  
RPULL =100kΩ  
(No resistor needed for  
CMOS output products)  
VIN  
VSEN  
VOUT  
XC6118 Series  
Cd  
V
VSS  
Circuit 4  
Circuit 6  
Circuit 8  
Circuit 3  
VIN  
VIN  
VSEN  
Cd  
VOUT  
A
VSEN  
Cd  
VOUT  
XC6118 Series  
VSS  
XC6118 Series  
VSS  
A
Circuit 5  
VIN  
VSEN  
VOUT  
XC6118 Series  
VSS  
A
Cd  
Circuit 7  
RPULL =100kΩ  
VIN  
(No resistor needed for  
CMOS output products)  
VSEN  
VOUT  
XC6118 Series  
Cd  
V
V
VSS  
Circuit 9  
RPULL =100kΩ  
(No resistor needed for CMOS output products)  
Waveform Measurement Point  
*No delay capacitance pin available in the XC6118xxxC/D series.  
10/20  
XC6118  
Series  
OPERATIONAL EXPLANATION  
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2.  
VIN  
*The XC6118N series (N-ch open  
drain output) requires a pull-up  
resistor for pulling up output.  
M2  
M4  
SEN=R1+R2+R3  
VSEN  
VSEN  
Rdelay  
Comparator  
Inverter  
VOUT  
R1  
VIN  
R2  
R3  
M3  
Vref  
M5  
M1  
VSS  
Cd  
Cd  
Figure 1: Typical application circuit example  
Sense Pin Voltage: VSEN(MIN.:0V MAX.:6.0V)  
Release Voltage: VDF+VHYS  
Detect Voltage: VDF  
Delay Capacitance Pin Voltage: VCD(MIN.:VSS, MAX.:VIN)  
Delay Capacitance Pin Threshold Voltage: VTCD  
Output Voltage Pin Voltage: VOUT (MIN.:VSS MAX:VIN)  
Figre 2: Te mig chart of Fiure 1  
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged  
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to  
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).  
* If a pull-up resistor of the XC6118N series (N-ch open drain) is connected to added power supply different from the input  
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.  
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor (M1)  
for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter  
(Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level (=VSS).  
The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level (especially, when the  
Cd pin is not connected: tDF0).  
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground voltage  
(=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the  
release voltage (VSEN< VDF +VHYS).  
11/20  
XC6118 Series  
OPERATIONAL EXPLANATION (Continued)  
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for  
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay  
resistor (RDELAY). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic  
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).  
While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the  
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series  
circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).  
tDR=-RDELAY×Cd×ln(1-VTCD/VIN) (1)  
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and  
the delay capacitance pin threshold voltage is VIN /2 (TYP.)  
tDR=RDELAY×Cd×0.69 (2)  
*RDELAY is 2.0MΩ(TYP.)  
As an example, presuming that the delay capacitance is 0.68μF, tDR is :  
2.0×106×0.68×10-6×0.69=938(ms)  
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the ground  
(=VSS) level because time described in is short.  
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter  
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time which  
ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.  
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay  
capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN) level.  
Function Chart  
TRANSITION OF VOUT CONDITION *1  
VSEN  
Cd  
L
H
L
H
L
H
L
H
L
L
L
H
L
H
L
H
H
*1: VOUT transits from condition to because of the combination of VSEN and VCD,VIN.  
VIN should be more than the lowest operation voltage.  
Example  
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDRVSEN), Cd=’H’ (VTCDCd) while VOUT is ‘L’.  
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.  
Release Delay Time Chart  
DELAY  
CAPACITANCE [Cd]  
(μF)  
RELEASE DELAY TIME [tDR]  
RELEASE DELAY TIME [tDR] *2  
(MIN. ~ MAX.)  
(ms)  
(TYP.)  
(ms)  
13.8  
30.4  
64.9  
138  
0.010  
0.022  
0.047  
0.100  
11.0 ~ 16.6  
24.3 ~ 36.4  
51.9 ~ 77.8  
110 ~ 166  
0.220  
304  
243 ~ 364  
0.470  
649  
519 ~ 778  
1.000  
1380  
1100 ~ 1660  
* The release delay time values above are calculated by using the formula (2).  
*2: The release delay time (tDR) is influenced by the delay capacitance Cd.  
12/20  
XC6118  
Series  
NOTES ON USE  
1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising  
phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at  
operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the minimum  
operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage similarly occur.  
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of the circuit may  
occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it  
especially when you use the IC with the VIN pin connected to a resistor.  
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over  
1.0V to the VIN pin.  
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.  
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and  
test on the board carefully.  
6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation  
with the delay capacitance pin (Cd) connected to a capacitor, use a Schottky barrier diode connected between the VIN pin  
and the Cd pin as the Figure 3 shown below.  
7. In N channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor  
connected at the VOUT pin. Please choose proper resistance values with refer to Figure 4;  
During detection: VOUT = VPULL / (1+RPULL / RON  
PULL: Pull up voltage  
ON(1)On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics,  
For example, when (2) RON = 0.5 / 0.8×10-3 = 625Ω(MAX.at VIN=2.0V, VPULL = 3.0V and VOUT 0.1V at detect,  
PULL= (VPULL /VOUT-1)×RON= (3 / 0.1-1)×62518kΩ  
)
V
R
R
In this case, RPULL should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during  
detection.  
(1) RON is bigger when VIN is smaller, be noted.  
(2) For calculation, Minimum VIN should be chosen among the input voltage range.  
During releasingVOUT = VPULL / (1 + RPULL / ROFF  
)
VPULLPull up voltage  
ROFFOn resistance of N channel driver M3 is 15MΩ(MIN.when the driver is off (as to VOUT / ILEAK  
For examplewhen VPULL = 6.0V and VOUT 5.99V,  
)
R
PULL = (VPULL / VOUT-1)×ROFF = (6/5.99-1)×15×106 25 kΩ  
In this case, RPULL should be selected smaller or equal to 25 kΩ in order to obtain output voltage higher than 5.99V during  
releasing.  
8. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
VIN  
M2  
M4  
SEN=R1+R2+R3  
VSEN  
Rdelay  
Comparator  
Inverter  
RPULL=100kΩ  
VOUT  
R1  
VIN  
(No resistor needed for  
CMOS output products)  
VSEN  
VIN  
VSEN  
R2  
R3  
M3  
Vref  
M5  
M1  
VOUT  
VOUT  
VIN  
VSEN  
VSS  
Cd  
Cd  
Cd  
VSS  
Cd  
NOTEROFF=VOUT/ILEAK  
Figure 4: Circuit example of XC6118N Series  
Figure 3: Circuit example with the delay capacitance pin (Cd)  
connected to a Schottky barrier diode  
13/20  
XC6118 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Supply Current vs. Sense Voltage  
XC6118C25Ax  
VIN=3.0V  
2.0  
Ta=85  
1.5  
1.0  
0.5  
0.0  
25  
-40  
5
0
1
2
3
4
6
Sense Voltage: VSEN (V)  
(2) Supply Current vs. Input Voltage  
XC6118C25Ax  
XC6118C25Ax  
VSEN=2.75V  
Ta=85  
VSEN=2.25V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=85  
25  
25  
-40  
-40  
5
0
1
2
3
4
5
6
0
1
2
3
4
6
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(4) Detect Voltage vs. Input Voltage  
(3) Detect Voltage vs. Ambient Temperature  
XC6118C25Ax  
XC6118C25Ax  
VIN=4.0V  
2.55  
2.55  
2.50  
2.45  
Ta=25  
85  
2.50  
2.45  
-40  
-50  
-25  
0
25  
50  
75  
100  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Ambient Temperature: Ta (  
)
Input Voltage: VIN (V)  
14/20  
XC6118  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(6) CD Pin Sink Current vs. Input Voltage  
XC6118C25Ax  
(5) Hysteresis Voltage vs. Ambient Temperature  
XC6118C25Ax  
VSEN=0V VDS=0.5V  
3.0  
VIN=4.0V  
0.20  
2.5  
Ta=-40  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
0.15  
0.10  
0.05  
85  
0
1
2
3
4
5
6
-50 -25  
0
25  
50  
75  
100  
Input Voltage : VIN (V)  
Ambient Temperature: Ta (  
)
(8) Output Voltage vs. Input Voltage  
XC6118N25Ax  
(7) Output Voltage vs. Sense Voltage  
XC6118C25Ax  
VSEN=VIN Pull-up=VIN R=100k  
4.0  
Ta=25  
Ω
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
3.0  
VIN=6.0V  
4.0V  
Ta=85  
2.0  
1.0  
25  
-40  
0.0  
1.0V  
5
-1.0  
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
6
Input Voltage : VIN (V)  
Sense Voltage: VSEN (V)  
(9) Output Current vs. Input Voltage  
XC6118C25Ax  
XC6118C25Ax  
VDS(Pch)=0.5V  
VDS(Nch)=0.5V  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=-40  
Ta=85  
-0.5  
-1.0  
-1.5  
-2.0  
25  
25  
85  
-40  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
15/20  
XC6118 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(11) Release Delay Time vs. Delay Capacitance  
XC6118C25Ax  
(10) Delay Resistance vs. Ambient Temperature  
XC6118C25Ax  
VSEN=6.0V VCD=0.0V VIN=5.0V  
4
Ta=25  
10000  
1000  
100  
10  
VIN=1.0V  
3.0V  
6.0V  
3.5  
3
2.5  
2
1
1.5  
tDR=Cd×2.0×106×0.69  
1
0.1  
-50  
-25  
0
25  
50  
75  
100  
0.0001  
0.001  
0.01  
0.1  
1
Ambient Temperature: Ta (  
)
Delay Capacitor: Cd ( F)  
μ
(13) Leakage Current vs. Ambient Temperature  
XC6118N25Ax  
(12) Detect Delay Time vs. Delay Capacitance  
XC6118C25Ax  
Ta=25  
VIN=VSEN=6.0V VOUT=6.0V  
0.25  
1000  
100  
10  
VIN=6.0V  
4.0V  
3.0V  
0.20  
0.15  
0.10  
2.0V  
1.0V  
1
0.0001  
0.001  
0.01  
0.1  
1
-50  
-25  
0
25  
50  
75  
100  
Delay Capacitor: Cd ( F)  
μ
Ambient Temperature: Ta (  
)
(14) Leakage Current vs. Supply Voltage  
XC6118N25Ax  
VIN=VSEN=6.0V  
0.25  
0.20  
0.15  
0.10  
0
1
2
3
4
5
6
Output Voltage: VOUT (V)  
16/20  
XC6118  
Series  
PACKAGING INFORMATION  
USP-4  
SOT-25  
USP-4 Reference Pattern Layout  
1.0  
0.35  
0.35  
4 3  
1 2  
0.6  
USP-4 Reference Metal Mask Design  
17/20  
XC6118 Series  
MARKING RULE  
SOT-25  
represents output configuration and integer number of detect voltage  
CMOS Output (XC6118C Series)  
N-ch Open Drain Output (XC6118N Series)  
MARK  
VOLTAGE (V)  
5
4
MARK  
VOLTAGE (V)  
L
M
N
P
R
S
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
T
U
V
X
Y
Z
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
1
2
3
SOT-25  
(TOP VIEW)  
represents decimal number of detect voltage  
(ex.)  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
XC6118**3***  
3
0
X.3  
X.0  
XC6118**0***  
represents options  
MARK  
OPTIONS  
PRODUCT SERIES  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
A
B
C
D
XC6118***A**  
XC6118***B**  
XC6118***C**  
XC6118***D**  
(Standard)  
Built-in delay capacitance pin with hysteresis less than 1%  
(Standard)  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
④⑤ represents production lot number  
0 to 9 A to Z, or inverted characters of 0 to 9, A to Z repeated.  
(G, I, J, O, Q, and W excluded)  
*No character inversion used.  
18/20  
XC6118  
Series  
MARKING RULE (Continued)  
USP-4  
represents output configuration and integer number of detect voltage  
CMOS Output (XC6118C Series)  
N-ch Open Drain Output (XC6118N Series)  
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
L
M
N
P
R
S
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
T
U
V
X
Y
Z
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
4
3
1
2
USP-4  
(TOP VIEW)  
represents decimal number of detect voltage  
(ex.)  
MARK  
VOLTAGE (V) PRODUCT SERIES  
3
0
X.3  
X.0  
XC6118**3***  
XC6118**0***  
represents options  
MARK  
OPTIONS  
PRODUCT SERIES  
XC6118***A**  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
A
B
C
D
(Standard)  
Built-in delay capacitance pin with hysteresis less than 1%  
(Standard)  
XC6118***B**  
XC6118***C**  
XC6118***D**  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
④⑤ represents production lot number  
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.  
(G, I, J, O, Q, and W excluded)  
*No character inversion used.  
19/20  
XC6118 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
20/20  

相关型号:

XC6118C09DGR-G

IC SUPERVISOR 0.9V 4-USP
TOREX

XC6118C10AGR-G

IC SUPERVISOR 1.0V 4-USP
TOREX

XC6118C10BGR-G

IC SUPERVISOR 1.0V 4-USP
TOREX

XC6118C10CGR-G

IC SUPERVISOR 1.0V 4-USP
TOREX

XC6118C10DGR-G

IC SUPERVISOR 1.0V 4-USP
TOREX

XC6118C11AGR-G

IC SUPERVISOR 1.1V 4-USP
TOREX

XC6118C11BGR-G

IC SUPERVISOR 1.1V 4-USP
TOREX

XC6118C11CGR-G

IC SUPERVISOR 1.1V 4-USP
TOREX

XC6118C11DGR-G

IC SUPERVISOR 1.1V 4-USP
TOREX

XC6118C12AGR-G

IC SUPERVISOR 1.2V 4-USP
TOREX

XC6118C12BGR-G

IC SUPERVISOR 1.2V 4-USP
TOREX

XC6118C12CGR-G

IC SUPERVISOR 1.2V 4-USP
TOREX