XC6134N36MER-G [TOREX]

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, USP-6;
XC6134N36MER-G
型号: XC6134N36MER-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, USP-6

光电二极管
文件: 总28页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC6134 Series  
ETR02029-001  
Delay capacitor adjustable voltage detectors with sense pin isolation and HYS  
external adjustment  
GENERAL DESCRIPTION  
The XC6134 series are ultra-small delay capacitor adjustable type voltage detectors that have high accuracy and sense pin  
isolation. High accuracy and a low supply current are achieved by means of a CMOS process, a highly accurate reference  
power supply, and laser trimming technology.  
The sense pin is isolated from the power input pin to enable monitoring of the voltage of another power supply. Output can be  
maintained in the detection state even if the voltage of the power supply that is monitored drops to 0V. The sense pin is also  
suitable for detecting high voltages, and the detection and release voltage can be set as desired using external resistors. An  
internal delay circuit is also provided. By connecting a capacitor to the Cd/MRB pin, any release delay time and detect delay  
time can be set, and the pin can also be used as a manual reset pin. The HYS external adjustment pin can be used to  
establish a sufficient hysteresis width.  
FEATURES  
Operating Ambient Temperature  
Operating voltage range  
Detect voltage range  
Detect voltage accuracy  
(Ta=25)  
APPLICATIONS  
Microcontroller reset and malfunction monitoring  
Battery voltage monitoring  
: -40+125℃  
: 1.6V6.0V  
: 0.8V5.0V  
: ±18mV(VDF1.5V)  
System power-on reset  
: ±1.2%(1.5VVDF3.0V)  
: ±1.5%(3.1VVDF5.0V)  
: ±36mV(VDF1.5V)  
Power failure detection  
Detect voltage accuracy  
: ±2.7%(1.5VVDF3.0V)  
: ±3.0%(3.1VVDF5.0V)  
: ±50ppm/(TYP.)  
(Ta=-40125)  
Temperature Characteristics  
Hysteresis width  
: VDF×0.1%(TYP.)  
: Yes  
Adjustable Pin for Hysteresis Width  
Low supply current  
: 1.28μA(TYP.)  
VIN=1.6V(At detection)  
: 1.65μA(TYP.)  
VIN=6.0V(At release)  
: Yes (For details, refer to  
FUNCTION CHART)  
: CMOS or Nch open drain  
Manual reset function  
Output type  
: H level or L level at detection  
Output logic  
: Release delay / detection delay  
can be set in 5 time ratio options  
(For details, refer to Selection Guide).  
: USP-6C,SOT-26  
Delay capacitance pin  
Packages  
: EU RoHS compliant, Pb free  
Environment friendly  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
+B  
VDD  
VIN=3.3V、VSEN=0V→6V→0V  
R3  
R1=330kΩ  
VIN  
R1  
XC6134C10B  
HYS  
VSEN  
Rpull(*1)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RESET  
RESETB  
R2  
R3=0Ω  
Cd/MRB  
R3=330kΩ  
R3=110kΩ  
RESET  
SW  
Cd  
VSS  
GND  
Battery (+B) voltage monitoring: Detects high voltage  
by R1/R2 resistance dividing.  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
A hysteresis width can be added as desired by  
connecting R3 between the VSEN and HYS pins  
(For details, refer to OPERATIONAL DESCRIPTION).  
VSEN pin Voltage : VSEN(V)  
1/28  
XC6134 Series  
BLOCK DIAGRAMS  
(1)XC6134C Series A/B/C/D/L type (RESET OUTPUT: CMOS/Active High)  
VSEN HYS  
VIN  
M2  
M4  
RSEN=RA+RB+RC  
M6  
M5  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
RB  
RESET  
VREF  
M1  
M3  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
(2)XC6134C Series E/F/H/K/M type (RESETB OUTPUT: CMOS/Active Low)  
VSEN  
HYS  
VIN  
M2  
M4  
M3  
RSEN=RA+RB+RC  
M6  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
RB  
RESETB  
VREF  
M1  
M5  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2/28  
XC6134  
Series  
BLOCK DIAGRAMS (Continued)  
(3)XC6134N Series A/B/C/D/L type (RESET OUTPUT: Nch open drain/Active High)  
VSEN HYS  
VIN  
M2  
M4  
RSEN=RA+RB+RC  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
RB  
RESET  
VREF  
M1  
M3  
M5  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
(4)XC6134N Series E/F/H/K/M type (RESETB OUTPUT: Nch open drain/Active Low)  
VSEN HYS  
VIN  
M2  
M4  
RSEN=RA+RB+RC  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
RB  
RESETB  
VREF  
M1  
M3  
M5  
Cd/MRB  
RC  
VSS  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
3/28  
XC6134 Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XC6134①②③④⑤⑥-⑦  
(*1)  
DESIGNATOR  
ITEM  
SYMBOL  
C
DESCRIPTION  
CMOS output  
Output Configuration  
N
Nch open drain output  
e.g. 1.0V =1, =0  
Refer to Selection Guide  
SOT-26 (3,000pcs/Reel)  
USP-6C (3,000pcs/Reel)  
②③  
Detect Voltage  
TYPE  
0850  
AM  
MR-G  
ER-G  
(*1)  
⑤⑥-⑦  
Packages (Order Unit)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
Selection Guide  
TYPE  
RESET/RESETB OUTPUT  
DELAY(Rp:Rn)  
HYSTERESIS  
A
B
C
D
L
Active High(*2)  
10  
144k0Ω  
144k18kΩ  
144k144kΩ  
288k144kΩ  
11k144kΩ  
144k0Ω  
0.1%(TYP)  
10.125  
11  
21  
0.0761  
10  
E
F
Active Low(*2)  
10.125  
11  
144k18kΩ  
144k144kΩ  
288k144kΩ  
11k144kΩ  
H
K
M
21  
0.0761  
(*2) ”Active High” is H level when detection occurs, and “Active Low” is L level when detection occurs.  
4/28  
XC6134  
Series  
PIN CONFIGURATION  
A/B/C/D/L type  
VSEN  
4
Cd/MRB VSS  
6
5
1 HYS  
6
5
VSEN  
VSS  
2 RESET  
3 VIN  
Cd/MRB 4  
1
2
3
VIN  
RESET HYS  
SOT-26  
(TOP VIEW)  
USP-6C  
(BOTTOM VIEW)  
E/F/H/K/M type  
VSEN  
4
Cd/MRB VSS  
6
5
1 HYS  
6
5
VSEN  
VSS  
2 RESETB  
3 VIN  
Cd/MRB 4  
1
2
3
VIN RESETB HYS  
SOT-26  
(TOP VIEW)  
USP-6C  
(BOTTOM VIEW)  
*The dissipation pad for the USP-6C package should be solder-plated in reference mount pattern and metal masking so as to  
enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to VSS (No.  
5) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-26 USP-6C  
1
3
VIN  
RESETB  
RESET  
HYS  
Power Input  
Reset Output (Active Low)(*1)  
Reset Output (Active High)(*1)  
Adjustable Pin for Hysteresis Width  
Voltage Sense  
2
2
3
4
5
1
6
5
VSEN  
VSS  
Ground  
Adjustable Pin for Delay Time/  
Manual Reset  
6
4
Cd/MRB  
(*1) Refer to the in Ordering Information table.  
5/28  
XC6134 Series  
FUNCTION CHART  
PIN  
SIGNAL  
NAME  
STATUS  
L
H
Forced Reset  
For details, refer to " Function Chart "  
Normal Operation  
Cd/MRB  
OPEN  
Function Chart  
1.6VVIN6.0V  
Transition of VRESETB Condition  
Transition of VRESET Condition  
VSEN  
VCd/MRB  
TYPE:A/B/C/D/L  
TYPE:E/F/H/K/M  
V
Cd/MRBVMRL  
Reset (High Level)(*2)  
Reset (Low Level)( *1)  
VSENVDF+VHYS  
V
Cd/MRBVMRH  
Cd/MRBVMRL  
Cd/MRBVMRH  
Release (Low Level)(*1)  
Reset (High Level)( *2)  
Undefined(*3)  
Release (High Level)(*2)  
Reset (Low Level)( *1)  
Undefined(*3)  
V
VSENVDF  
V
(*1) CMOS output: VIN × 0.1 or less, N-ch open drain output, pull-up voltage × 0.1 or less.  
(*2) CMOS output: VIN × 0.9 or higher, N-ch open drain output, pull-up voltage × 0.9 or higher.  
(*3) For details,refer to page 16Manual reset function.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
SYMBOL  
RATINGS  
UNITS  
Input Voltage  
VSEN Pin Voltage  
HYS Pin Voltage  
Cd/MRB Pin Voltage  
VIN  
VSEN  
-0.3+7.0  
V
V
-0.3+7.0  
VHYS  
-0.3+7.0  
V
VCd/MRB  
-0.3+VIN+0.3 or +7.0(*1)  
V
XC6134C(*2)  
-0.3+VIN+0.3 or +7.0(*1)  
V
Output Voltage  
Output Current  
Power Dissipation  
VRESETB VRESET  
ICd/MRB  
IRBOUT IROUT  
XC6134N(*3)  
-0.3+7.0  
±5.0  
V
Cd/MRB Pin Current  
mA  
mA  
mA  
mA  
mW  
mW  
XC6134C(*2)  
XC6134N(*3)  
±50  
+50  
HYS Pin Current  
IHYS  
Pd  
+50  
SOT-26  
USP-6C  
250  
100  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40+125  
-55+125  
* All voltages are described based on the VSS  
.
(*1) The maximum value should be either VIN+0.3 or +7.0 in the lowest.  
(*2) CMOS Output  
(*3) N-ch Open Drain Output  
6/28  
XC6134  
Series  
ELECTRICAL CHARACTERISTICS  
Ta=25℃  
-40℃≦Ta125(*5)  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS CIRCUIT  
MIN. TYP. MAX. MIN. TYP. MAX.  
Operating Voltage  
VSEN Input Voltage  
VIN  
1.6  
0
6.0  
6.0  
1.6  
0
6.0  
6.0  
V
V
VSEN  
VDF(T)  
-18mV  
VDF(T)  
VDF(T) VDF(T)  
+18mV -36mV  
VDF(T) VDF(T)  
×1.012 ×0.973  
VDF(T) VDF(T)  
×1.015 ×0.970  
VDF(T)  
+36mV  
VDF(T)  
VDF(T)(*1)=0.8V1.4V  
VDF(T)(*1)=1.5V3.0V  
VDF(T)(*1)=3.1V5.0V  
VDF(T)  
VDF(T)  
VDF(T)  
VDF(T)  
VDF(T)  
VDF(T)  
V
V
V
Detect Voltage  
VDF  
×0.988  
VDF(T)  
×1.027  
VDF(T)  
×0.985  
×1.030  
Temperature  
VDF/  
-40℃≦Topr125℃  
-
-
-
±50  
VDF  
-
-
-
-
±50  
VDF  
-
ppm/℃  
Characteristics  
(ToprVDF)  
VDF  
VDF  
Hysteresis Width  
Supply Current 1  
VHYS  
V
×0.001 ×0.007  
×0.001 ×0.01  
V
SEN=VDF×0.9V,  
1.28 2.65  
1.28 3.92  
VIN=1.6V  
Iss1  
VSEN=VDF×0.9V,  
VIN=6.0V  
-
-
-
1.36 2.80  
1.32 2.75  
1.65 3.25  
-
-
-
1.36 4.22  
1.32 4.26  
1.65 4.97  
µA  
V
SEN=VDF×1.1V,  
VIN=1.6V  
Supply Current 2  
Iss2  
VSEN=VDF×1.1V,  
VIN=6.0V  
SENSE Resistance  
Release Delay  
Resistance  
RSEN  
VIN=6.0V,VSEN=6.0V  
E-1(*2)  
-
E-2(*2)  
-
MΩ  
VIN=6.0V,VSEN=6.0V,  
130  
259  
8.3  
144  
288  
11  
158  
122  
245  
7.6  
144  
288  
11  
166  
V
Cd/MRB=0V  
(TYPE:A/B/C/E/F/H)  
Release Delay  
Resistance  
VIN=6.0V,VSEN=6.0V,  
Cd/MRB=0V  
Rp  
317  
18.4  
158  
331  
20.0  
166  
V
(TYPE:D/K)  
Release Delay  
Resistance  
VIN=6.0V,VSEN=6.0V,  
Cd/MRB=0V  
kΩ  
V
(TYPE:L/M)  
Detect Delay  
Resistance  
VIN=6.0V,VSEN=0V,  
Cd/MRB=6.0V  
130  
16.8  
144  
18  
122  
144  
18  
V
(TYPE:C/D/H/K/L/M)  
Detect Delay  
Resistance  
Rn  
VIN=6.0V,VSEN=0V,  
Cd/MRB=6.0V  
19.1 16.2  
19.8  
V
(TYPE:B/F)  
Release Delay  
Time(*3)  
VIN=6.0V,  
tDR0  
-
-
20  
20  
102  
82  
-
-
20  
20  
136  
116  
VSEN=VDF×0.9VVDF×1.1V  
µs  
Detect Delay  
Time(*4)  
VIN=6.0V,  
tDF0  
VSEN=VDF×1.1VVDF×0.9V  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
(*1)  
V
: Nominal detect voltage  
DF(T)  
(*2) For VIN conditions, refer to SPEC TABLE (p.10).  
(*3) RESETB product: Time from when the VSEN pin voltage reaches the release voltage until the reset output pin reaches 5.4V  
(VIN×90%).  
RESET product: Time from when the VSEN pin voltage reaches the release voltage until the reset output pin reaches 0.6V(VIN×10%)  
Release voltage (VDR)=Detect voltage (VDF)+Hysteresis width (VHYS).  
(*4) RESETB product: Time from when the VSEN pin voltage reaches the detect voltage until the reset output pin reaches 0.6V(VIN×10%).  
RESET product: Time from when the VSEN pin voltage reaches the detect voltage until the reset output pin reaches 5.4V(VIN×90%).  
(*5) The ambient temperature range (-40℃≦Ta125) is a design Value.  
7/28  
XC6134 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
-40℃≦Ta125(*7)  
TYP. MAX.  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
mA  
CIRCUIT  
MIN. TYP. MAX. MIN.  
Hysteresis Output  
Current  
VIN=1.6V,  
SEN=0V,VHYS=0.3V  
IHYSOUT  
1.9  
-
3.4  
-
0.7  
-
3.4  
-
V
Hysteresis Output  
Leakage Current  
VIN=6.0V,VSEN=6.0V,  
IHYSLEAK  
0.01  
0.1  
0.01  
1.0  
µA  
V
HYS=6.0V  
V
SEN=VDF×0.9V,  
Nch. VRESETB=0.3V  
VIN=1.6V  
1.9  
4.2  
3.4  
6.0  
-
-
-
-
-
-
0.7  
2.0  
4.3  
6.2  
7.3  
8.1  
3.4  
6.0  
-
-
-
-
-
-
VIN=2.0V  
IRBOUTN  
VIN=3.0V  
8.6  
10.5  
14.1  
17.0  
19.2  
10.5  
14.1  
17.0  
19.2  
VIN=4.0V  
12.7  
15.6  
17.8  
RESETB  
VIN=5.0V  
mA  
Output Current  
VIN=6.0V  
VSEN=VDF×1.1V,  
Pch.  
V
RESETB=VIN-0.3V  
IRBOUTP  
VIN=1.6V  
-
-
-
-1.2  
-3.0  
-4.9  
-0.7  
-2.5  
-4.4  
-
-
-
-1.2  
-3.0  
-4.9  
-0.48  
-1.1  
VIN=3.0V  
VIN=6.0V  
-2.5  
VSEN=VDF×1.1V,  
Nch. VRESET=0.3V  
VIN=1.6V  
1.9  
4.2  
3.4  
6.0  
-
-
-
-
-
-
0.7  
2.0  
4.3  
6.2  
7.3  
8.1  
3.4  
6.0  
-
-
-
-
-
-
VIN=2.0V  
IROUTN  
VIN=3.0V  
8.6  
10.5  
14.1  
17.0  
19.2  
10.5  
14.1  
17.0  
19.2  
VIN=4.0V  
12.7  
15.6  
17.8  
RESET  
VIN=5.0V  
mA  
Output Current  
VIN=6.0V  
VSEN=VDF×0.9V,  
Pch. VRESET=VIN-0.3V  
VIN=1.6V  
IROUTP  
-
-
-
-1.2  
-3.0  
-4.9  
-0.7  
-2.5  
-4.4  
-
-
-
-1.2  
-3.0  
-4.9  
-0.48  
-1.1  
VIN=3.0V  
VIN=6.0V  
-2.5  
VIN=6.0V,VSEN=6.0V,  
Nch. VRESETB=6.0V  
VIN=6.0V,VSEN=0V,  
Pch. VRESETB=0V  
(*6)  
ILEAKN  
-
-
-
-
0.01  
-0.01  
0.01  
0.1  
-
-
-
-
-
0.01  
-0.01  
0.01  
1.0  
-
RESETB Output  
Leakage Current  
ILEAKP  
µA  
VIN=6.0V,VSEN=0V,  
Nch. VRESET=6.0V  
VIN=6.0V,VSEN=6.0V,  
Pch. VRESET=0V  
(*6)  
ILEAKN  
0.1  
-
1.0  
-
RESET Output  
Leakage Current  
ILEAKP  
-0.01  
-0.01  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
(*6) Max. value is for XC6134N (Nch open drain).  
(*7) The ambient temperature range (-40℃≦Ta125) is a design Value.  
8/28  
XC6134  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
-40℃≦Ta125(*11)  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS CIRCUIT  
MIN.  
0.92  
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
VIN=1.6V,  
Cd/MRB=0.5V,  
Cd Pin Sink Current  
(TYPE:A/E)  
ICd  
V
1.2  
0.66  
1.2  
mA  
V
VSEN=0V  
Cd Pin Threshold  
Voltage(Release)  
VIN:1.6V6.0V,  
VTCd1  
VSEN=0VVDF×1.1V  
VIN×0.46 VIN×0.5 VIN×0.54 VIN×0.46 VIN×0.5 VIN×0.54  
Cd Pin Threshold  
Voltage(Detect)  
VIN:1.6V6.0V,  
VTCd2  
VSEN=VDF×1.1V0V  
MRB High Level  
Voltage  
VIN:1.6V6.0V,  
VMRH  
VIN×0.55  
VIN  
VIN×0.55  
VIN  
V
V
VSEN= VDF×1.1V  
MRB Low Level  
Voltage  
VIN:1.6V6.0V,  
VMRL  
0
VIN×0.18  
0
VIN×0.18  
V
SEN= VDF×1.1V  
VIN:Refer to V-1(*10)  
VSEN=VDF×1.1V,  
Apply pulse from  
,
(*8)  
5.0  
-
-
-
-
5.0  
-
-
-
-
tMRIN  
MRB Minimum  
Pulse Width  
µs  
(*9)  
V
DF×1.1V to 0V to the  
MRB pin.  
Unless otherwise specified in measurement conditions, Cd/MRB pin and HYS pin are open.  
32.0  
32.0  
tMRIN  
(*8) Specification is guaranteed for types A/B/C/D/L/E/F/H/K/M of the CMOS output product and types E/F/H/K/M of the Nch open drain  
product.  
(*9) Specification is guaranteed for types A/B/C/D/L of the Nch open drain output product.  
(*10) For VIN conditions, refer to SPEC TABLE (p.10).  
(*11) The ambient temperature range (-40℃≦Ta125) is a design Value.  
9/28  
XC6134 Series  
ELECTRICAL CHARACTERISTICS (SPEC TABLE)  
Table of Characteristics by Voltage Setting  
NOMINAL DETECT  
E-1(Ta=25)  
E-2(-40℃≦Ta125)  
SENSE Resistance(M)  
V-1  
VOLTAGE(V)  
VDF(T)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
SENSE Resistance(M)  
INPUT VOLTAGE(V)  
MIN.  
7.5  
TYP.  
20.7  
23.3  
26.1  
28.6  
31.3  
33.9  
36.6  
38.6  
39.2  
39.8  
40.4  
40.2  
39.9  
39.1  
38.3  
37.6  
37.0  
36.5  
36.0  
35.6  
35.2  
34.9  
34.5  
34.2  
34.0  
33.7  
33.5  
33.2  
33.0  
32.8  
32.6  
32.5  
32.3  
32.2  
32.0  
31.9  
31.8  
31.7  
31.5  
31.4  
31.3  
31.2  
30.1  
MIN.  
5.9  
TYP.  
20.7  
23.3  
26.1  
28.6  
31.3  
33.9  
36.6  
38.6  
39.2  
39.8  
40.4  
40.2  
39.9  
39.1  
38.3  
37.6  
37.0  
36.5  
36.0  
35.6  
35.2  
34.9  
34.5  
34.2  
34.0  
33.7  
33.5  
33.2  
33.0  
32.8  
32.6  
32.5  
32.3  
32.2  
32.0  
31.9  
31.8  
31.7  
31.5  
31.4  
31.3  
31.2  
30.1  
1.6  
VDF×1.1  
8.6  
6.8  
10.0  
11.0  
12.2  
13.4  
14.5  
15.7  
16.9  
18.1  
19.3  
19.0  
18.6  
18.3  
18.0  
17.8  
17.5  
17.3  
17.1  
17.0  
16.8  
16.7  
16.5  
16.4  
16.3  
16.2  
16.1  
16.0  
15.9  
15.8  
15.7  
15.7  
15.6  
15.6  
15.5  
15.4  
15.4  
15.3  
15.3  
15.2  
15.2  
15.1  
15.1  
7.6  
8.5  
9.3  
10.2  
11.1  
11.9  
12.8  
13.6  
14.5  
14.3  
14.0  
13.8  
12.1  
11.9  
11.8  
11.7  
11.5  
11.4  
11.3  
11.2  
11.1  
11.0  
11.0  
10.9  
10.8  
10.8  
10.7  
10.7  
10.6  
10.6  
10.5  
10.5  
10.5  
10.4  
10.4  
10.3  
10.3  
10.3  
10.2  
10.2  
10.2  
10/28  
XC6134  
Series  
TEST CIRCUITS  
CIRCUIT①  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
VSS  
CIRCUIT②  
A
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
VSS  
CIRCUIT③  
VIN  
A
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
VSS  
CIRCUIT④  
VIN  
VSEN  
RESET  
RESETB  
A
Cd/MRB  
HYS  
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
11/28  
XC6134 Series  
TEST CIRCUITS (Continued)  
CIRCUIT⑤  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
Wave Form Measure Point  
VSS  
CIRCUIT⑥  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
A
HYS  
VSS  
CIRCUIT⑦  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
A
VSS  
CIRCUIT⑧  
VIN  
VSEN  
RESET  
RESETB  
A
Cd/MRB  
HYS  
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
12/28  
XC6134  
Series  
TEST CIRCUITS (Continued)  
CIRCUIT⑨  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
V
VSS  
CIRCUIT⑩  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
V
V
VSS  
CIRCUIT⑪  
VIN  
VSEN  
RESET  
RESETB  
Cd/MRB  
HYS  
Wave Form Measure Point  
V
VSS  
*“RESET” is A/B/C/D/L type, and “RESETB” is E/F/H/K/M type.  
13/28  
XC6134 Series  
OPERATIONAL DESCRIPTION  
<Basic Operation>  
Fig. 1 shows a typical block diagram. Fig. 2 shows the timing chart of Fig. 1.  
R2  
VSEN  
HYS  
VIN  
M2  
M4  
M3  
RSEN=RA+RB+RC  
M6  
M5  
+B  
+
Rp  
Rn  
DELAY/  
MRB  
CONTROL  
BLOCK  
-
RA  
RB  
RESETB  
VREF  
M1  
R1  
VDD  
Cd/MRB  
RC  
RESET  
SW  
Cd  
VSS  
* The XC6134N series (N-ch open drain output) requires a resistor to pull up the output.  
Fig. 1: Typical block diagram (Active Low product)  
VSEN pin voltage:VSEN(MIN.:0V,MAX.:6.0V)  
Release voltage:VDF+VHYS  
Detect voltage:VDF  
Cd/MRB pin voltage:VCd/MRB(MIN.:VSS,MAX.:VIN)  
Cd pin threshold voltage:VTCd1,VTCd2  
Output voltage:VRESETB(MIN.:VSS,MAX.:VIN)  
DF  
DR  
④ ⑤  
Fig. 2: Timing chart of Fig. 1(VIN=6.0VActive Low product)  
In the initial state, a voltage that is sufficiently high (MAX.:6.0V) with respect to the release voltage is applied to the VSEN pin,  
and the delay capacitance Cd is charged up to the power input pin voltage.  
The VSEN pin voltage starts to fall, and during the time until it reaches the detect voltage (VSENVDF),  
VRESETB is High level (=VIN).  
Note: If the pull-up resistor is connected to a power supply other than the power input pin VIN when using the Nch open drain  
output (XC6134N), High level will be the voltage of the power supply to which the pull-up resistor is connected.  
14/28  
XC6134  
Series  
OPERATIONAL DESCRIPTION (Continued)  
The VSEN pin voltage continues to drop, and when it reaches the detect voltage (VSEN=VDF), the Nch transistor for delay  
capacitance discharge turns ON, and discharge of the delay capacitance Cd starts through the delay resistor Rn.  
The time from VSEN=VDF until VRESETB reaches Low level is the detect delay time tDF (the detect time when the capacitor is not  
connected to the Cd/MRB pin is tDF0). The delay capacitance Cd is discharged through the delay resistor Rn when it is above  
the threshold voltage of VTCD2. When it is below the threshold voltage of VTCD2, the delay capacitance Cd is discharged faster  
through the internal built-in low impedance switch.  
During the time that the VSEN pin voltage is below the detect voltage VDF, the delay capacitance Cd discharges to ground level.  
The VSEN pin starts rising again, and during the time until it reaches the release voltage (VSEN<VDF+VHYS), VRESETB holds Low  
level.  
The VSEN pin voltage continues to rise, and when it reaches the release voltage (VDF+VHYS), the Nch transistor for delay  
capacitance discharge turns OFF, and charging of the delay capacitance Cd through the delay resistor Rp starts.The delay  
capacitance Cd is discharged through the delay resistor Rp when it is below the threshold voltage of VTCD1. When it is above the  
threshold voltage of VTCD1, the delay capacitance Cd is discharged faster through the internal built-in low impedance switch.  
When the delay capacitance pin voltage reaches VTCd1, VRESETB changes to High level.  
The time from VSEN=VDF+VHYS until the VRESETB logic changes is the release delay time tDR(the release time when the capacitor  
is not connected to the Cd/MRB pin is tDR0).  
During the time that the VSEN pin voltage is higher than the detect voltage (VSEN>VDF), VRESETB holds High level.  
The above operation description is for an Active Low detection product.  
For an Active High product, reverse the logic of the reset pin.  
In the factory shipping state, internal hysteresis is not added (VHYS =VDFx0.001V(TYP.)), so please add a hysteresis of 1% or  
more with an external resistor. For the calculation method, refer to <Hysteresis external adjustment function> below. Also  
please refer to “Note on use5)6)” as the notes.  
<Hysteresis external adjustment function>  
Hysteresis can be added as desired by inserting a resistor between the node to monitor and VSEN pin, and between the VSEN pin  
and HYS pin.  
The calculation method for adding hysteresis by increasing only the release voltage and leaving the detect voltage unchanged  
is given below.  
For the circuit schematic, refer to Fig. 3: Hysteresis Augmentation Circuit 1.  
VDR(H)=VDR(T)×{1+(RD/RE)}  
Hysteresis width=VDR(H)-VDF(T)  
Example 1: RD=200k, RE=200k, VDF(T)=1.000V, VDR(T)=1.001V.  
VDR(H)=2.002V  
Hysteresis width=2.002-1.000 =1.002V  
The calculation method for detecting high voltage and adding hysteresis is shown below.  
For the circuit schematic, refer to Fig. 4: Hysteresis Augmentation Circuit 2.  
VDF(H)=VDF(T)×{1+(R1/R2)}  
VDR(H)=VDR(T)×{1+(R1/R2)+(R1/R3)}  
Hysteresis width=VDR(H)-VDF(H)  
Example 2: R1=R3=500k, R2=200k, VDF(T)=2.000V, VDR(T)=2.002V.  
VDF(H)=7.0V  
VDR(H)=9.009V  
Hysteresis width=9.009-7.0=2.009V  
(Note 1) VDF(H) is the detect voltage after external adjustment.  
(Note 2) VDR(H) is the release voltage after external adjustment.  
(Note 3) VDR(T) is the release voltage.  
(Note 4) VDF(T) is the detect voltage.  
(Note 5) The R2 resistance is in parallel with the internal RSEN resistance, and thus to increase the accuracy of the detect  
voltage and release voltage after external adjustment, select an R2 resistance that is sufficiently small with respect to the RSEN  
resistance. For RSEN resistance values, refer to SPEC TABLE (p.10).  
(Note 6) If high voltage is to be detected, divide the voltage with resistors R1 and R2 so that VSEN pin6V. The battery voltage  
(+B) assumes up to 12V in this case.  
+B  
VDD  
+B  
VDD  
R3  
RE  
VIN  
R1  
VIN  
Rpull(*1)  
HYS  
VSEN  
RD  
HYS  
VSEN  
Rpull(*1)  
RESET  
RESETB  
RESET  
RESETB  
R2  
Cd/MRB  
Cd/MRB  
RESET  
SW  
Cd  
RESET  
SW  
Cd  
VSS  
VSS  
GND  
GND  
Fig. 3: Hysteresis Augmentation Circuit 1  
Fig. 4: Hysteresis Augmentation Circuit 2  
15/28  
XC6134 Series  
OPERATIONAL DESCRIPTION (Continued)  
<Release delay time / detect delay time>  
The release delay time and detect delay time are determined by the delay resistors (Rp and Rn) and the delay capacitance Cd.  
The ratio of the delay resistances (Rp and Rn) is selectable from 5 options. The delay time is adjustable using the combination  
of delay resistance and delay capacitance value. (Refer to “Selection Guide”)  
The release delay time (tDR) is calculated using Equation (1).  
tDR=Rp×Cd×{-ln(1-VTCd1/VIN)}+tDR0 …(1)  
* ln is the natural logarithm.  
The delay capacitance pin threshold voltage is VTCd1=VIN/2(TYP.), and thus when  
tDR0 can be neglected, the release delay time can be calculated simply using Equation (2).  
t
DR=Rp×Cd×[-ln{1-(VIN/2)/VIN}]=Rp×Cd×0.693 …(2)  
The detect delay time (tDF) is calculated using Equation (3).  
DF=Rn×Cd×{-ln(VTCd2/VIN)}+tDF0 …(3) * ln is the natural logarithm.  
The delay capacitance pin threshold voltage is VTCd2=VIN/2 (TYP.), and thus when  
DF0 can be neglected, the detect delay can be calculated simply using Equation (4).  
t
t
tDF=Rn×Cd×{-ln(VIN/2)/VIN}=Rn×Cd×0.693 …(4)  
Example 3: When type A is selected (RpRn=144k0),the delay times are as follows:  
If Cd is set to 0.1uF,  
tDR=144×103×0.1×10-6×0.693=10ms  
t
DF is the detect delay time (tDFO) when the delay capacitance Cd is not connected.  
Example 4: When type B is selected (RpRn=144k18k),the delay times are as follows:  
If Cd is set to 0.1uF,  
tDR=144×103×0.1×10-6×0.693=10ms  
tDF =18×103×0.1×10-6×0.693=1.25ms  
(Note 7) The release delay times tDR in Examples 3 and 4 are the values calculated from Equation (2).  
(Note 8) The detect delay time tDF in Example 4 is the value calculated from Equation (4).  
(Note 9) Note that the delay times will vary depending on the actual capacitance value of the delay capacitance Cd.  
<Manual reset function>  
The Cd/MRB pin can also be used as a manual reset pin.  
When the Cd and RESET switch are connected to theCd/MRB pin (refer to Fig.1), and under the release condition, if the  
RESET switch turns on, then the detect signal is generated at the RESET/RESETB pin forcibly.  
For Active Low type (RESETB), under the release condition, if the RESET switch turns on, then the voltage at the RESETB pin  
changes from H to L after the detect delay time.  
And for Active High type (RESET), under the release condition, if the RESET switch turns on, then the voltage at the RESET pin  
changes from L to H after the detect delay time.  
Under the detect condition, the condition will be kept even if the RESET switch turns on and off.  
In the case that either H level or L level is fed to the Cd/MRB pin without the RESET switch, the behavior of the XC6134 follows  
the timing chart in Fig. 5.  
L level is fed to MRB pin under the detect condition, the RESET switch will be kept.  
H level is fed to MRB pin under the detect condition, the RESET switch will be undefined.  
Even though the voltage at the VSEN pin changes from a higher voltage than the detect voltage to a lower voltage, as long as H  
level is fed to the MRB pin, the release condition is kept.  
If H level or L level is fed to the Cd/MRB pin forcibly, then even though Cd is connected to the pin, the XC6134 can’t have any  
delay time.  
Release voltage:VDF+VHYS  
Detect voltage:VDF  
VSEN pin voltage:VSENMIN.:0V,MAX.:6.0V)  
MRB High level voltage:VMRH  
Cd pin threshold voltage:VTCd  
MRB Low level voltage:VMRL  
Cd pin voltage:VCd/MRB (MIN.:VSS,MAX.:VIN  
)
Release voltage:VDF+VHYS  
Detect voltage:VDF  
Undefined  
Output voltage:VRESETB  
(MIN.:VSS,MAX.:VIN(CMOS),Vpull(Nch open drain))  
Fig. 5: Manual reset operation using the Cd/MRB pin (VIN =6.0V, Active Low product)  
16/28  
XC6134  
Series  
NOTES ON USE  
1) Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is  
liable to malfunction should the ratings be exceeded.  
2) The power input pin voltage may fall due to the flow through current during IC operation and the resistance component  
between the power supply and the power input pin.  
In the case of CMOS output, a drop in the power input pin voltage may occur in the same way due to the output current. When  
this happens, if the power input pin voltage drops below the minimum operating voltage, a malfunction may occur.  
3) Note that large, sharp changes of the power input pin voltage may lead to malfunction.  
4) Power supply noise is sometimes a cause of malfunction. Sufficiently test using the actual device, such as inserting a  
capacitor between VIN and GND.  
5) Internal hysteresis is not initially included with the product. Connect external resistors to the VSEN pin and HYS pin to add a  
hysteresis of 1% or more. Note that if hysteresis is not added with external resistors, oscillation will occur when switching takes  
place at the detect voltage or the release voltage.  
6) There is a possibility that oscillation will occur if the resistances of the VSEN pin and HYS pin are high. Use a resistance of  
1Mor less between the node to monitor and VSEN pin, and between the VSEN pin and HYS pin.  
7) Exercise caution if VIN and VSEN are started in common, as the output will be undefined until VIN reaches the operating  
voltage.  
8) For a manual reset function, in case when the function is activated by feeding either MRB H level or MRB L level to Cd/MRB  
pin instead of using a reset switch, please note these phenomena below;  
The RESET output signal will be undefined when MRB H is fed to Cd/MRB pin under the detect condition.  
The RESET output signal will be undefined based on the voltage relationship between VSEN pin and Cd/MRB pin.  
9) When an N-ch open drain output is used, the VRESETB voltage at detection and release is determined by the pull-up resistance  
connected to the output pin. Refer to the following when selecting the resistance value.  
At detection:  
VRESETB=Vpull/(1+Rpull/RON)  
VpullVoltage after pull-up  
RON(*1)ON resistance of N-ch driver M5 (calculated from VRESETB/IRBOUTN based on electrical characteristics)  
Example: When VIN=2.0V(*2), RON=0.3/4.2×10-3=71.4(MAX.).  
If it is desired to make VRESETB at detection 0.1V or less when Vpull is 3.0V,  
Rpull={(Vpull/VRESETB)-1}×RON={(3/0.1)-1}×71.42.1kΩ  
Therefore, to make the output voltage at detection 0.1V or less under the above conditions, the pull-up resistance must be 2.1kor higher.  
(*1) Note that RON becomes larger as VIN becomes smaller.  
(*2) For VIN in the calculation, use the lowest value of the input voltage range you will use.  
At release:  
V
RESETB=Vpull/(1+Rpull/Roff)  
pull: Voltage after pull-up  
V
Roff: Resistance when N-ch driver M5 is OFF (calculated from VRESETB/ILEAKN based on electrical characteristics)  
Example: When Vpull is 6.0V, Roff=6/(0.1×10-6)=60M(MIN.). If it is desired to make VRESETB 5.99V or higher,  
Rpull={(Vpull/VRESETB)-1}×Roff={(6/5.99)-1}×60×106100kΩ  
Therefore, to make the output voltage at release 5.99V or higher under the above conditions, the pull-up resistance must be  
100kor less.  
10) If the discharge time of the delay capacitance Cd at detection is short and the delay capacitance Cd cannot be discharged to  
ground level, charging will take place at the next release operation with electric charge remaining in the delay capacitance Cd,  
and this may cause the release delay time to become noticeably short.  
11) If the charging time of the delay capacitance Cd at release is short and the delay capacitance Cd cannot be charged to the  
VIN level, the delay capacitance Cd will discharge from less than the VIN level at the next detection operation, and this may  
cause the detect delay time to become noticeably short.  
12) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs  
and post-aging protection treatment when using Torex products in their systems.  
17/28  
XC6134 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Detect, Release Voltage vs. Ambient Temperature  
XC6134 (VDF(T)=0.8V)  
XC6134 (VDF(T)=5.0V)  
VIN=6.0V  
VIN=6.0V  
0.90  
0.86  
0.82  
0.78  
0.74  
0.70  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
VDR  
VDR  
VDF  
VDF  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(2) Output Voltage vs Sense Voltage  
XC6134x50A (VDF(T)=5.0V)  
XC6134x08A (VDF(T)=0.8V)  
VIN=6.0V  
VIN=6.0V  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Ta=-40℃  
Ta=-40℃  
Ta=25℃  
Ta=25℃  
Ta=125℃  
Ta=125℃  
4.90  
4.95  
5.00  
5.05  
5.10  
0.70  
0.75  
0.80  
0.85  
0.90  
VSEN pin Voltage : VSEN(V)  
VSEN pin Voltage : VSEN(V)  
(3) Supply Current vs. Ambient Temperature  
XC6134  
XC6134  
VSEN=VDF×1.1V  
VSEN=VDF×0.9V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
VIN=6.0V  
VIN=6.0V  
1.5  
VIN=1.6V  
VIN=1.6V  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta (  
)
18/28  
XC6134  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Supply Current vs. Input Voltage  
XC6134  
XC6134  
VSEN=VDF×0.9V  
VSEN=VDF×1.1V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
Input Voltage : VIN (V)  
4.0  
5.0  
6.0  
Input Voltage : VIN (V)  
(5) Sense Resistance vs Ambient Temperature  
(6) Delay Resistance vs Ambient Temperature  
XC6134 (VDF(T)=0.8V)  
XC6134  
V
V
IN=6.0V  
SEN=6.0V  
TYPE : L/M  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
XC6134  
XC6134  
TYPE : D/K  
TYPE : A/B/C/E/F/H  
160  
155  
150  
145  
140  
135  
130  
125  
120  
300  
295  
290  
285  
280  
275  
270  
265  
260  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
19/28  
XC6134 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(6) Delay Resistance vs Ambient Temperature (Continued)  
XC6134  
XC6134  
TYPE : B/F  
TYPE : C/D/H/K/L/M  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
160  
155  
150  
145  
140  
135  
130  
125  
120  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(7) Delay Time vs Ambient Temperature  
XC6134  
XC6134  
VIN=6.0V  
VSEN=VDF×0.9VVDF×1.1V  
VIN=6.0V  
VSEN=VDF  
×1.1VVDF  
×
0.9V  
Cd=OPEN  
Cd=OPEN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(8) Hysteresis Output Current vs Ambient Temperature  
(9) Hysteresis Output Current vs Input Voltage  
XC6134  
XC6134  
VSEN=0V  
VHYS=0.3V  
VSEN=0V  
VHYS=0.3V  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
IN=6.0V  
V
IN=3.0V  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
VIN=1.6V  
0
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage : VIN (V)  
Ambient Temperature : Ta ()  
20/28  
XC6134  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Hysteresis Output Leakage Current vs Ambient Temperature  
(11) RESET Output Current vs Ambient Temperature  
XC6134xxxA  
XC6134  
VIN=6.0V  
VSEN=VDF  
×
1.1V  
VSEN=6.0V  
VRESET=0.3V  
VHYS=6.0V  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
30  
25  
20  
15  
10  
5
V
IN=6.0V  
V
IN=3.0V  
VIN=1.6V  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(12) RESET Output Current vs Input Voltage  
XC6134CxxA  
XC6134xxxA  
VSEN=VDF  
×0.9V  
VSEN=VDF×1.1V  
V
RESET=VIN-0.3V  
VRESET=0.3V  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
30  
25  
20  
15  
10  
5
V
IN=1.6V  
V
IN=3.0V  
VIN=6.0V  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage : VIN (V)  
Ambient Temperature : Ta ()  
(13) RESET Output Leakage Current vs Ambient Temperature  
XC6134CxxA  
XC6134  
VIN=6.0V  
VSEN=VDF  
×0.9V  
VSEN=0V  
VRESET=VIN-0.3V  
V
RESET=6.0V  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
25  
50  
75  
100  
125  
150  
Input Voltage : VIN (V)  
Ambient Temperature : Ta ()  
21/28  
XC6134 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(14) Cd Pin Sink Current vs Ambient Temperature  
(15) Cd Pin Sink Current vs Input Voltage  
XC6134  
XC6134  
VSEN=0V  
Cd/MRB=0.5V  
VSEN=0V  
Cd/MRB=0.5V  
V
V
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
IN=6.0V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
IN=3.0V  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
V
IN=1.6V  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage : VIN (V)  
Ambient Temperature : Ta ()  
(16) Cd Pin Threshold Voltage vs Ambient Temperature  
XC6134  
XC6134  
VSEN=0VVDF×1.1V  
VSEN=VDF  
×1.1V0V  
3.5  
3.5  
3.0  
2.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN=6.0V  
V
IN=6.0V  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN=1.6V  
VIN=1.6V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(17) MRB High Level Threshold Voltage vs Ambient Temperature  
(18) MRB Low Level Threshold Voltage vs Ambient Temperature  
XC6134  
XC6134  
VSEN=VDF  
×1.1V  
VSEN=VDF  
×
1.1V  
V
Cd/MRB=0V6.0V  
V
Cd/MRB=6.0V0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN=6.0V  
VIN=6.0V  
VIN=1.6V  
V
IN=1.6V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
22/28  
XC6134  
Series  
PACKAGING INFORMATION  
SOT-26 (unit:mm)  
2.9±0.2  
+0.1  
0.4  
-0.05  
+0.1  
0.4  
-0.05  
6
5
4
0~0.1  
1234  
1
2
3
+0.1  
-0.05  
0.15  
(0.95)  
(0.95)  
SOT-26 Reference Pattern Layout (unit:mm)  
0.7  
0.95  
0.95  
23/28  
XC6134 Series  
PACKAGING INFORMATION (Continued)  
USP-6C (unit:mm)  
USP-6C Reference Pattern Layout (unit:mm)  
USP-6C Reference Metal Mask Design  
24/28  
XC6134  
Series  
PACKAGING INFORMATION (Continued)  
SOT-26 Power Dissipation (Toprmax+125)  
Power dissipation data for the SOT-26 is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as the reference data taken in the following condition.  
40.0  
28.9  
1. Measurement Condition  
Condition: Mount on a board  
Ambient: Natural convection  
Soldering: Lead (Pb) free  
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board area  
In top and back faces  
(Board of SOT-26 is used)  
Material: Glass Epoxy (FR-4)  
Thickness: 1.6mm  
Through-hole 4 x 0.8 Diameter  
1.4  
2.54  
Evaluation Board (Unit: mm)  
2. Power Dissipation vs. Ambient Temperature  
Board Mount (Tjmax=125)  
Ambient Temperature ()  
Power Dissipation Pd (mW)  
Thermal Resistance (/W)  
25  
85  
600  
240  
166.67  
Pd vs Ta (Ta=125℃)  
700  
600  
500  
400  
300  
200  
100  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature : Ta(℃)  
25/28  
XC6134 Series  
PACKAGING INFORMATION (Continued)  
USP-6C Power Dissipation (Toprmax+125)  
Power dissipation data for the USP-6C is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as the reference data taken in the following condition.  
1. Measurement Condition  
Condition: Mount on a board  
Ambient: Natural convection  
Soldering: Lead (Pb) free  
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board  
area  
In top and back faces  
(Board of SOT-26 is used)  
Material: Glass Epoxy (FR-4)  
Thickness: 1.6mm  
Evaluation Board (Unit: mm)  
2. Power Dissipation vs. Ambient Temperature  
Board Mount (Tjmax=125)  
Ambient Temperature ()  
Power Dissipation Pd (mW)  
Thermal Resistance (/W)  
25  
85  
1000  
400  
100.00  
Pd vs Ta (Ta=125℃)  
1200  
1000  
800  
600  
400  
200  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature : Ta(℃)  
26/28  
XC6134  
Series  
MARKING RULE  
SOT-26  
USP-6C  
6
5
4
1
2
3
6
5
4
1
2
3
represents products series  
MARK  
PRODUCT SERIES  
XC6134******-G  
X
②,③ represents internal sequential number  
01, , 09, 10, , 99, A0, , A9, B0, , B9, , Z9repeated.  
(G, I, J, O, Q, W excluded)  
④,⑤ represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
27/28  
XC6134 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
28/28  

相关型号:

XC6134N37MER-G

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, USP-6
TOREX

XC6134N38MER-G

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, USP-6
TOREX

XC6134N47AMR-G

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-26, 6 PIN
TOREX

XC6134N48AMR-G

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-26, 6 PIN
TOREX

XC6134N49AMR-G

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-26, 6 PIN
TOREX

XC6135

Ultra-Low Power (44nA) Voltage Detector with Separated Sense Pin
TOREX

XC6135C

Ultra-Low Power (44nA) Voltage Detector with Separated Sense Pin
TOREX

XC6135C9DNR-G

Power Management Circuit,
TOREX

XC6135N

Ultra-Low Power (44nA) Voltage Detector with Separated Sense Pin
TOREX

XC6136

Ultra-Low Power (88nA) Voltage Detector
TOREX

XC6136C

Ultra-Low Power (88nA) Voltage Detector
TOREX

XC6136N

Ultra-Low Power (88nA) Voltage Detector
TOREX