XC61CC1202MR [TOREX]

Low Voltage Detectors; 低电压检测器
XC61CC1202MR
型号: XC61CC1202MR
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Low Voltage Detectors
低电压检测器

文件: 总19页 (文件大小:892K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS  
APPLICATIONS  
Highly Accurate:±1% (VDF=2.6V~5.0V)  
±2% (VDF=0.8V~6.0V)  
Low Power Consumption: 0.7μA  
(VIN=1.5V)  
Microprocessor reset circuitry  
Memory battery back-up circuits  
Power-on reset circuits  
Power failure detection  
System battery life and charge voltage monitors  
FEATURES  
GENERAL DESCRIPTION  
The XC61C series are highly precise, low power  
consumption voltage detectors, manufactured using  
CMOS and laser trimming technologies.  
Detect voltage is extremely accurate with minimal  
temperature drift.  
Highly Accurate  
: ± 2%  
(Low Voltage VD: 0.8V~1.5V)  
(Standard Voltage VD: 1.6V~6.0V)  
± 1%  
(Standard Voltage VD: 2.6V~5.0V)  
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]  
Detect Voltage Range  
:0.8V ~ 6.0V in 100mV increments  
Operating Voltage Range :0.7V ~ 6.0V (Low Voltage)  
0.7V10.0V (Standard Voltage)  
Both CMOS and N-channel open drain output  
configurations are available.  
Detect Voltage Temperature Characteristics  
O
: ±100ppm/(TYP.) @Ta=25 C  
Output Configuration  
Ultra Small Packages  
: N-channel open drain or CMOS  
: SSOT-24 (150mW)  
SOT-23 (250mW)  
SOT-25 (250mW)  
SOT-89 (500mW)  
TO-92 (300mW)  
USP-6B (100mW)  
USP-6C (100mW)  
USP-4 (120mW)  
TYPICAL APPLICATION CIRCUITS  
TYPICAL PERFORMANCE CHARACTERISTICS  
1/19  
XC61C ETR0201_004  
XC61C Series  
PIN CONFIGURATION  
1 VSS  
NC 6  
VIN 5  
2 NC  
3 VOUT  
NC 4  
USP-6C  
(BOTTOM VIEW)  
3
4
NC  
VIN  
VSS  
VOUT  
2
1
USP-4  
BOTTOM VIEW)  
SOT-25  
(TOP VIEW)  
*Please use the circuit without connecting  
the heat dissipation pad. If the pad needs  
to be connected to other pins, it should be  
connected to the VIN pin.  
PIN ASSIGNMENT  
PIN NUMBER  
SSOT-24 SOT-23 SOT-25 SOT-89 TO-92 (T) TO-92 (L) USP-6B USP-6C USP-4  
PIN NAME  
FUNCTION  
Supply Voltage  
2
4
1
3
3
2
1
-
2
3
1
2
3
1
-
2
3
1
-
1
2
3
-
5
1
3
5
1
3
4
2
1
3
VIN  
VSS  
VOUT  
NC  
t
I
t
Ground  
Output  
No Connection  
4, 5  
2,4,6  
2,4,6  
PRODUCT CLASSIFICATION  
Ordering Information  
XC61C①②③④⑤⑥⑦  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
C
N
: CMOS output  
Output Configuration  
: N-ch open drain output  
: e.g.0.9V → ②0, 9  
: e.g.1.5V → ②1, 5  
: No delay  
: Within ±1%  
: Within ±2%  
② ③  
Detect Voltage  
08 ~ 60  
Output Delay  
0
1
2
Detect Accuracy  
N
: SSOT-24 (SC-82)  
M
P
S
: SOT-23  
: SOT-89  
: SOT-25  
Package  
T
: TO-92 (Standard)  
: TO-92 (Custom pin configuration)  
: USP-6B  
L
D
E
G
R
L
: USP-6C  
: USP-4  
: Embossed tape, standard feed  
: Embossed tape, reverse feed  
: Paper type (TO-92)  
: Bag (TO-92)  
Device Orientation  
H
B
2/19  
XC61C  
Series  
PACKAGING INFORMATION  
SSOT-24 (SC-82)  
SOT-25  
SOT-23  
3/19  
XC61C Series  
PACKAGING INFORMATION (Continued)  
SOT-89  
TO-92  
4/19  
XC61C  
Series  
PACKAGING INFORMATION (Continued)  
USP-6C  
USP-4  
*
Soldering fillet surface is not  
formed because the sides of the  
pins are plated.  
5/19  
XC61C Series  
MARKING RULE  
SSOT-24, SOT-23, SOT-25,  
SOT-89, USP-4  
Represents integer of detect voltage and  
CMOS Output (XC61CC series)  
4
3
MARK  
CONFIGURATION  
VOLTAGE (V)  
A
B
C
D
E
F
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
1
2
H
3
N-Channel Open Drain Output (XC61CN series)  
1
③ ④  
MARK  
CONFIGURATION  
VOLTAGE (V)  
K
L
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
2
M
N
P
R
S
5
4
3
Represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
1
2
0
1
2
3
4
X.0  
X.1  
X.2  
X.3  
X.4  
5
6
7
8
9
X.5  
X.6  
X.7  
X.8  
X.9  
SOT-25  
(TOP VIEW)  
Represents delay time  
(Except for SSOT-24)  
MARK  
3
DELAY TIME  
No Delay Time  
PRODUCT SERIES  
XC61Cxxx0xxx  
1
2
3
Represents production lot number  
Based on the internal standard. (G, I, J, O, Q, W excepted)  
USP-4  
(TOP VIEW)  
6/19  
XC61C  
Series  
MARKING RULE (Continued)  
TO-92  
Represents output configuration  
OUTPUT  
CONFIGURATION  
MARK  
C
N
CMOS  
N-ch  
, Represents detect voltage (ex.)  
MARK  
VOLTAGE (V)  
3
5
3
0
3.3  
5.0  
Represents delay time  
MARK  
0
DELAY TIME  
No delay  
Represents detect voltage accuracy  
MARK  
DETECT VOLTAGE ACCURACY  
1
2
Within ± 1% (Semi-custom)  
Within ± 2%  
Represents a least significant digit of production year  
MARK  
PRODUCTION YEAR  
5
6
2005  
2006  
Represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)  
* No character inversion used.  
USP-6B, USP-6C  
, Represents product series  
MARK  
PRODUCT SERIES  
1
C
XC61Cxxx0xDx  
Represents output configuration  
MARK  
C
N
OUTPUT CONFIGURATION  
PRODUCT SERIES  
XC61CCxx0xDx  
XC61CNxx0xDx  
USP-6B  
(TOP VIEW)  
CMOS  
N-ch  
, Represents detect voltage  
(ex.)  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
3
0
3.3  
5.0  
XC61Cx330xDx  
XC61Cx500xDx  
5
USP-6C  
(TOP VIEW)  
Represents production lot number  
0 to 9, A to Z repeated (G, I, J, O, Q, W excepted)  
Note: No character inversion used.  
7/19  
XC61C Series  
BLOCK DIAGRAMS  
(1) CMOS Output  
(2) N-ch Open Drain Output  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25OC  
UNITS  
PARAMETER  
Input Voltage  
SYMBOL  
RATINGS  
9.0  
*1  
*2  
VIN  
V
12.0  
Output Current  
CMOS  
IOUT  
50  
mA  
V
VSS -0.3 ~ VIN +0.3  
VSS -0.3 ~ 9.0  
VSS -0.3 ~ 12.0  
150  
Output Voltage  
Power Dissipation  
VOUT  
Pd  
N-ch Open Drain Output *1  
N-ch Open Drain Output *2  
SSOT-24  
SOT-23  
250  
250  
500  
300  
SOT-25  
SOT-89  
TO-92  
mW  
USP-6B  
USP-6C  
100  
100  
USP-4  
120  
-40+85  
-40+125  
OC  
OC  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
*1: Low voltage: VDF(T)=0.8V~1.5V  
*2: Standard voltage: VDF(T)=1.6V~6.0V  
8/19  
XC61C  
Series  
ELECTRICAL CHARACTERISTICS  
VDF (T) = 0.8V to 6.0V ± 2%  
VDF (T) = 2.6V to 5.0V ± 1%  
Ta=25℃  
CIRCUITS  
PARAMETER  
Detect Voltage  
SYMBOL  
VDF  
CONDITIONS  
VDF(T)=0.8V~1.5V *1  
VDF(T)=1.6V~6.0V *2  
MIN.  
VDF(T)  
x 0.98  
VDF(T)  
x 0.99  
VDF  
TYP.  
MAX. UNITS  
VDF(T)  
x 1.02  
VDF(T)  
V
1
1
1
VDF(T)  
x 1.01  
VDF(T)=2.6V~5.0V *2  
VDF(T)  
VDF  
V
VDF  
x 0.08  
Hysteresis Range  
Supply Current  
VHYS  
ISS  
V
x 0.02 x 0.05  
VIN = 1.5V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
-
-
-
-
0.7  
0.8  
0.9  
1.0  
1.1  
-
2.3  
2.7  
3.0  
μA  
2
1
3.2  
3.6  
-
Operating Voltage *1  
Operating Voltage *2  
VDF(T) = 0.8V to 1.5V  
VDF(T) = 1.6V to 6.0V  
0.7  
0.7  
0.10  
0.85  
-
1.0  
3.0  
5.0  
6.0  
7.0  
-
6.0  
10.0  
VIN  
V
-
VIN = 0.7V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 8.0V  
CMOS  
0.80  
2.70  
-7.5  
2.2  
7.7  
10.1  
11.5  
13.0  
-10.0  
10  
-
-
N-ch VDS = 0.5V  
3
4
Output Current *1  
CMOS, P-ch VDS = 2.1V  
-1.5  
-
-
-
-
IOUT  
mA  
nA  
N-ch VDS = 0.5V  
3
Output Current *2  
Leak Current  
-
CMOS, P-ch VDS = 2.1V  
VIN=6.0V, VOUT=6.0V*1  
-2.0  
-
100  
4
-
-
Ileak  
3
VIN=10.0V, VOUT=10.0V*2  
N-ch Open Drain  
10  
Temperature  
Characteristics  
Delay Time  
ΔVDF  
ppm/  
-40℃ ≦ Topr 85℃  
Inverts from VDR to VOUT  
-
-
±100  
-
-
Δ
Topr  
V
DF  
tDLY  
0.03  
0.20  
ms  
5
(VDR  
VOUT inversion)  
NOTE:  
*1: Low Voltage: VDF(T)=0.8V~1.5V  
*2: Standard Voltage: VDF(T)=1.6V~6.0V  
VDF (T): Setting detect voltage  
Release Voltage: VDR = VDF + VHYS  
9/19  
XC61C Series  
OPERATIONAL EXPLANATION  
(Especially prepared for CMOS output products)  
When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage  
(VSS) level.  
When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become  
unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.)  
When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the  
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)  
level will be maintained.  
When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
The difference between VDR and VDF represents the hysteresis range.  
Timing Chart  
10/19  
XC61C  
Series  
NOTES ON USE  
1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent  
damage to the device.  
2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur  
as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)  
3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch  
output configurations, oscillation may occur as a result of through current at the time of voltage release even if load  
current (IOUT) does not exist. (refer to the Oscillation Description (2) below )  
4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's  
supply current flowing through the VIN pin.  
5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than  
several µ sec / V.  
6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source.  
In such cases, please ensure that RIN is less than 10kand that C is more than 0.1µF.  
Oscillation Description  
(1) Output current oscillation with the CMOS output configuration  
When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load  
current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input  
(IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level  
at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence.  
Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at  
the VIN pin will rise and release operations will begin over again.  
Oscillation may occur with this " release - detect - release " repetition.  
Further, this condition will also appear via means of a similar mechanism during detect operations.  
(2) Oscillation as a result of through current  
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during  
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through  
current's resistor (RIN) during release voltage operations. (refer to Figure 3)  
Since hysteresis exists during detect operations, oscillation is unlikely to occur.  
11/19  
XC61C Series  
100kΩ*  
12/19  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Low Voltage  
13/19  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Low Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
0902  
XC61CC  
)
1102  
XC61CC  
)
1102  
(.9  
(.1  
XC61CC (.)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=25℃  
Ta=25℃  
Ta=25℃  
V
IN =1.0V  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
VDS (V)  
V
DS (V)  
1502  
XC61CC  
)
1502 V  
XC61CC (.)  
(.5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8.0  
6.0  
4.0  
2.0  
0
Ta=25℃  
Ta=25℃  
V
IN =1.4V  
V
IN =0.8V  
1.2V  
0.7V  
1.0V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
DS (V)  
V
DS (V)  
V
(5) N-ch Driver Output Current vs. Input Voltage  
0902  
)
1102  
XC61CC  
1502  
XC61CC  
XC61CC  
(.9  
(.1  
)
(.)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0
10  
8
Ta=-40℃  
25℃  
V
DS=0.5V  
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
25℃  
6
4
Ta=85℃  
25℃  
85℃  
80℃  
2
-40℃  
0.8  
0
0
0.2  
0.4  
0.6  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(6) P-ch Driver Output Current vs. Input Voltage  
0902  
XC61CC  
1102  
1502  
XC61CC  
(.9  
)
XC61CC  
(.1  
)
(.)  
12  
10  
8
12  
10  
8
12  
10  
8
Ta= 25℃  
Ta= 25℃  
V
DS=2.1V  
VDS=2.1V  
Ta= 25℃  
V
DS=2.1V  
1.5V  
1.5V  
1.5V  
1.0V  
0.5V  
1.0V  
0.5V  
1.0V  
0.5V  
6
6
6
4
4
4
2
2
2
0
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
14/19  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage  
(1) Supply Current vs. Input Voltage  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(2) Detect, Release Voltage vs. Ambient Temperature  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
1.90  
2.80  
2.75  
2.70  
2.65  
V
DR  
1.85  
1.80  
1.75  
V
DR  
V
DF  
V
DF  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.8  
3.7  
3.6  
3.5  
4.7  
4.6  
4.5  
4.4  
VDR  
V
DR  
V
DF  
V
DF  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
15/19  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(3) Output Voltage vs. Input Voltage  
XC61CN1802 .V)  
XC61CN2702 .7V)  
2
1
0
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
0
1
2
3
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CN3602 (.V)  
XC61CN4502 (.V)  
4
3
2
1
0
5
4
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Note : The N-channel open drain pull up resistance value is 100kΩ.  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.8V)  
XC61CC2702 (.V)  
10  
30  
25  
20  
15  
10  
5
Ta=25℃  
VIN =1.5V  
Ta=25℃  
VIN =2.5V  
8
6
4
2
0
2.0V  
1.0V  
1.5V  
1.0V  
1.5  
DS (V)  
0
0
0.5  
1.0  
DS (V)  
1.5  
2.0  
0
0.5  
1.0  
2.0  
2.5  
3.0  
V
V
XC61CC4502 (4.5V)  
80  
XC61CC3602 (.6V)  
Ta=25℃  
40  
30  
20  
10  
0
70  
Ta=25℃  
V
IN =3.0V  
2.5V  
60  
V
IN=4.0V  
3.5V  
50  
40  
3.0V  
2.5V  
30  
2.0V  
20  
2.0V  
10  
1.5V  
1.5V  
1.5  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
0
0.5  
1.0  
2.0  
2.5  
3.0  
V
DS (V)  
V
DS (V)  
16/19  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.V)  
XC61CC2702 .V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
V
IN =0.8V  
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
(5) N-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
25  
20  
15  
10  
5
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
10  
5
25℃  
85℃  
85℃  
0
0
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
25℃  
85℃  
85℃  
0
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
17/19  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(6) P-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
0.5V  
1.5V  
1.0V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
1.5V  
1.0V  
0.5V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
18/19  
XC61C  
Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this catalog is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this catalog.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this catalog.  
4. The products in this catalog are not developed, designed, or approved for use with such  
equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this catalog within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this catalog may be copied or reproduced without the  
prior permission of Torex Semiconductor Ltd.  
19/19  

相关型号:

XC61CC1202MR-G

IC SUPERVISOR 1.2V SOT23-3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202NB

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202NH

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202NL

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202NL-G

Power Management Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202NR

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202PB

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202PH

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202PL

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202PL-G

Power Management Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202PR

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61CC1202TB

Low Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX