XC61CN2502MR-G [TOREX]

Power Supply Support Circuit, Fixed, 1 Channel, +2.5VV, CMOS, PDSO3, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, SOT-23, 3 PIN;
XC61CN2502MR-G
型号: XC61CN2502MR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Power Supply Support Circuit, Fixed, 1 Channel, +2.5VV, CMOS, PDSO3, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, SOT-23, 3 PIN

光电二极管
文件: 总18页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC61CSeries  
ETR0201_015a  
Low Voltage Detectors (VDF= 0.8V1.5V)  
Standard Voltage Detectors (VDF 1.6V6.0V)  
GENERAL DESCRIPTION  
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser  
trimming technologies.  
Detect voltage is extremely accurate with minimal temperature drift.  
Both CMOS and N-ch open drain output configurations are available.  
APPLICATIONS  
Microprocessor reset circuitry  
Memory battery back-up circuits  
Power-on reset circuits  
FEATURES  
Highly Accurate  
: ± 2%  
:
± 1%(Standard Voltage VD: 2.6V~5.1V)  
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]  
Detect Voltage Range : 0.8V ~ 6.0V in 0.1V increments  
Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage)  
0.7V10.0V (Standard Voltage)  
Power failure detection  
Detect Voltage Temperature Characteristics  
: ±100ppm/(TYP.)  
System battery life and charge voltage monitors  
Output Configuration  
Packages  
: N-ch open drain or CMOS  
: SSOT-24  
SOT-23  
SOT-89  
TO-92  
Environmentally Friendly : EU RoHS Compliant, Pb Free  
TYPICAL APPLICATION CIRCUITS  
TYPICAL PERFORMANCE CHARACTERISTICS  
1/18  
XC61C Series  
PIN CONFIGURATION  
TO-92  
(SIDE VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
SSOT-24  
SOT-23  
SOT-89  
TO-92  
2
4
1
3
3
2
1
-
2
3
1
-
2
3
1
-
VIN  
VSS  
VOUT  
NC  
Supply Voltage Input  
Ground  
Output  
No Connection  
PRODUCT CLASSIFICATION  
Ordering Information  
*1  
(
)
XC61C①②③④⑤⑥⑦-⑧  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
C
N
CMOS output  
Output Configuration  
Detect Voltage  
N-ch open drain output  
e.g.0.9V → ②0, 9  
e.g.1.5V → ②1, 5  
No delay  
②③  
08 ~ 60  
Output Delay  
0
1
Within ±1% (VDF(T)=2.6V~5.1V)  
Within ±2%  
Detect Accuracy  
2
NR  
SSOT-24 (3,000/Reel)  
SSOT-24 (3,000/Reel)  
SOT-23 (3,000/Reel)  
SOT-23 (3,000/Reel)  
SOT-89 (1,000/Reel)  
SOT-89 (1,000/Reel)  
NR-G  
MR  
MR-G  
PR  
(*1)  
⑥⑦-⑧  
Packages (Order Unit)  
PR-G  
TH  
TO-92 Taping Type: Paper type (2,000/Tape)  
TO-92 Taping Type: Paper type (2,000/Tape)  
TO-92 Taping Type: Bag (500/Bag)  
TH-G  
TB  
TB-G  
TO-92 Taping Type: Bag (500/Bag)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.  
2/18  
XC61C  
Series  
BLOCK DIAGRAMS  
(1) CMOS Output  
(2) N-ch Open Drain Output  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25OC  
UNITS  
PARAMETER  
Input Voltage  
SYMBOL  
RATINGS  
VSS-0.3 ~ 9.0  
VSS-0.3 ~ 12.0  
*1  
*2  
VIN  
V
Output Current  
CMOS  
IOUT  
50  
mA  
V
VSS -0.3 ~ VIN +0.3  
VSS -0.3 ~ 9.0  
VSS -0.3 ~ 12.0  
150  
Output Voltage  
Power Dissipation  
VOUT  
N-ch Open Drain Output *1  
N-ch Open Drain Output *2  
SSOT-24  
SOT-23  
150  
Pd  
mW  
SOT-89  
500  
TO-92  
300  
Operating Ambient Temperature  
Topr  
Tstg  
-40+85  
-55+125  
Storage Temperature  
*1: Low voltage: VDF(T)=0.8V~1.5V  
*2: Standard voltage: VDF(T)=1.6V~6.0V  
3/18  
XC61C Series  
ELECTRICAL CHARACTERISTICS  
VDF (T) = 0.8V to 6.0V ± 2%  
VDF (T) = 2.6V to 5.1V ± 1%  
Ta=25℃  
CIRCUITS  
PARAMETER  
SYMBOL  
CONDITIONS  
VDF(T)=0.8V~1.5V *1  
MIN.  
VDF(T)  
x 0.98  
VDF(T)  
x 0.99  
VDF  
TYP.  
MAX. UNITS  
VDF(T)  
V
VDF(T)  
1
1
1
VDF(T)=1.6V~6.0V *2  
x 1.02  
Detect Voltage  
VDF  
VDF(T)  
V
VDF(T)=2.6V~5.1V *2  
VDF(T)  
VDF  
x 1.01  
VDF  
V
Hysteresis Range  
Supply Current  
VHYS  
ISS  
x 0.02 x 0.05  
x 0.08  
VIN = 1.5V  
-
-
0.7  
0.8  
2.3  
2.7  
VIN = 2.0V  
VIN = 3.0V  
-
0.9  
3.0  
μA  
2
1
VIN = 4.0V  
-
1.0  
3.2  
VIN = 5.0V  
-
1.1  
3.6  
Operating Voltage *1  
Operating Voltage *2  
VDF(T) = 0.8V to 1.5V  
VDF(T) = 1.6V to 6.0V  
0.7  
0.7  
0.10  
0.85  
-
-
6.0  
VIN  
V
-
10.0  
VIN = 0.7V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 8.0V  
0.80  
2.70  
-7.5  
2.2  
-
N-ch VDS = 0.5V  
3
4
Output Current *1  
-
CMOS, P-ch VDS = 2.1V  
-1.5  
1.0  
3.0  
5.0  
6.0  
7.0  
-
-
IOUT  
mA  
7.7  
-
N-ch VDS = 0.5V  
3
10.1  
11.5  
13.0  
-10.0  
-
Output Current *2  
-
-
CMOS, P-ch VDS = 2.1V  
-2.0  
4
CMOS  
Output  
VIN=VDFx0.9, VOUT=0V  
-
-
-10  
10  
-
Leakage  
Current  
(Pch)  
N-ch  
ILEAK  
nA  
3
VIN=6.0V, VOUT=6.0V*1  
VIN=10.0V, VOUT=10.0V*2  
Open  
Drain  
100  
Temperature  
ΔVDF  
/
ppm/  
-40℃ ≦ Topr 85℃  
-
-
±100  
-
1
5
Characteristics  
Delay Time  
(
Δ
Topr VDF  
)
tDLY  
Inverts from VDR to VOUT  
0.03  
0.20  
ms  
(VDRVOUT inversion)  
NOTE:  
*1: Low Voltage: VDF(T)=0.8V~1.5V  
*2: Standard Voltage: VDF(T)=1.6V~6.0V  
VDF (T): Nominal detect voltage  
Release Voltage: VDR = VDF + VHYS  
4/18  
XC61C  
Series  
OPERATIONAL EXPLANATION  
(Especially prepared for CMOS output products)  
When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS  
level.  
)
When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become  
unstable. (As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)  
When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the  
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS  
level will be maintained.  
)
When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
The difference between VDR and VDF represents the hysteresis range.  
Timing Chart  
5/18  
XC61C Series  
NOTES ON USE  
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising  
phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may  
occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)  
3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of  
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release even  
if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below )  
4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power source.  
In such cases, please ensure that RIN is less than 10kand that C is more than 0.1μF, please test with the actual device.  
(refer to the Oscillation Description (1) below)  
5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the  
power supply voltage as a result of the IC's supply current flowing through the VIN pin.  
6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ s/ V.  
7. Torex places an importance on improving our products and its reliability.  
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.  
Power supply  
Oscillation Description  
(1) Load current oscillation with the CMOS output configuration  
When the voltage applied at power supply, release operations commence and the detector's output voltage increases.  
Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the  
power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the  
voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will  
commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the  
voltage level at the VIN pin will rise and release operations will begin over again.  
Oscillation may occur with this " release - detect - release " repetition.  
Further, this condition will also appear via means of a similar mechanism during detect operations.  
(2) Oscillation as a result of through current  
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during  
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through  
current's resistor (RIN) during release voltage operations. (refer to Figure 3)  
Since hysteresis exists during detect operations, oscillation is unlikely to occur.  
Power supply  
Power supply  
6/18  
XC61C  
Series  
100kΩ*  
7/18  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Low Voltage  
Note : Unless otherwise stated, the N-ch open drain pull-up resistance value is 100kΩ.  
8/18  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Low Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
0902  
XC61CC  
)
1102  
XC61CC  
)
1102 V  
XC61CC (.)  
(.9  
(.1  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=25℃  
Ta=25℃  
Ta=25℃  
V
IN =1.0V  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
VDS (V)  
V
DS (V)  
1502  
XC61CC  
)
1502 V  
XC61CC (.)  
(.5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8.0  
6.0  
4.0  
2.0  
0
Ta=25℃  
Ta=25℃  
V
IN =1.4V  
V
IN =0.8V  
1.2V  
0.7V  
1.0V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
DS (V)  
V
DS (V)  
V
(5) N-ch Driver Output Current vs. Input Voltage  
0902  
)
1102  
XC61CC  
)
1502  
XC61CC  
(.)  
XC61CC  
(.9  
(.1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0
10  
8
Ta=-40℃  
25℃  
V
DS=0.5V  
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
25℃  
6
4
Ta=85℃  
25℃  
85℃  
80℃  
2
-40℃  
0.8  
0
0
0.2  
0.4  
0.6  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(6) P-ch Driver Output Current vs. Input Voltage  
0902  
XC61CC  
)
1102  
1502  
XC61CC  
(.)  
(.9  
XC61CC  
(.1  
)
12  
10  
8
12  
10  
8
12  
10  
8
Ta= 25℃  
Ta= 25℃  
V
DS=2.1V  
VDS=2.1V  
Ta= 25℃  
VDS=2.1V  
1.5V  
1.5V  
1.5V  
1.0V  
0.5V  
1.0V  
0.5V  
1.0V  
0.5V  
6
6
6
4
4
4
2
2
2
0
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
9/18  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage  
(1) Supply Current vs. Input Voltage  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(2) Detect, Release Voltage vs. Ambient Temperature  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
1.90  
2.80  
2.75  
2.70  
2.65  
V
DR  
1.85  
1.80  
1.75  
V
DR  
V
DF  
V
DF  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.8  
3.7  
3.6  
3.5  
4.7  
4.6  
4.5  
4.4  
V
DR  
V
DR  
V
DF  
V
DF  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
10/18  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(3) Output Voltage vs. Input Voltage  
XC61CN1802 .V)  
XC61CN2702 .7V)  
2
1
0
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
0
1
2
3
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CN3602 (.V)  
XC61CN4502 (.V)  
4
3
2
1
0
5
4
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Note : The N-ch open drain pull up resistance value is 100kΩ.  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.8V)  
XC61CC2702 (.V)  
10  
30  
25  
20  
15  
10  
5
Ta=25℃  
VIN =1.5V  
Ta=25℃  
VIN =2.5V  
8
6
4
2
0
2.0V  
1.0V  
1.5V  
1.0V  
0
0
0.5  
1.0  
DS (V)  
1.5  
2.0  
0
0.5  
1.0  
1.5  
DS (V)  
2.0  
2.5  
3.0  
V
V
XC61CC4502 (4.5V)  
XC61CC3602 (.6V)  
80  
40  
30  
20  
10  
0
Ta=25℃  
Ta=25℃  
70  
V
IN =3.0V  
2.5V  
60  
V
IN=4.0V  
3.5V  
50  
40  
3.0V  
30  
2.0V  
2.5V  
20  
2.0V  
1.5V  
1.5  
10  
1.5V  
0
0
0.5  
1.0  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
V
DS (V)  
DS (V)  
V
11/18  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.V)  
XC61CC2702 .V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
V
IN =0.8V  
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
(5) N-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
25  
20  
15  
10  
5
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
10  
5
25℃  
85℃  
85℃  
0
0
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
25℃  
85℃  
85℃  
0
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
12/18  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(6) P-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
0.5V  
1.5V  
1.0V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
1.5V  
1.0V  
0.5V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
13/18  
XC61C Series  
PACKAGING INFORMATION  
SSOT-24  
SOT-23  
2.0±0.1  
+0.15  
0.25 -0.1  
+0.15  
0.25 -0.1  
+0.1  
0 -0  
+0.1  
-0.05  
+0.15  
0.25 -0.1  
0.125  
+0.15  
0.35 -0.1  
0.05  
1.3±0.2  
SOT-89  
14/18  
XC61C  
Series  
PACKAGING INFORMATION(Continued)  
TO-92  
TB TYPE  
TH TYPE  
+0.35  
-0.45  
+0.35  
-0.45  
4.65  
4.65  
3.7±0.3  
3.7±0.3  
0.45±0.1  
0.4±0.05  
0.4±0.05  
0.45±0.1  
+0.4  
-0.1  
+0.4  
-0.1  
(1.27)  
2.5  
2.5  
15/18  
XC61C Series  
MARKING RULE  
SSOT-24, SOT-23, SOT-89  
represents integer of detect voltage and  
CMOS Output (XC61CC series)  
4
3
MARK  
CONFIGURATION  
VOLTAGE (V)  
A
B
C
D
E
F
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
1
2
H
3
N-Channel Open Drain Output (XC61CN series)  
1
③ ④  
MARK  
CONFIGURATION  
VOLTAGE (V)  
K
L
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
2
M
N
P
R
S
represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
0
1
2
3
4
X.0  
X.1  
X.2  
X.3  
X.4  
5
6
7
8
9
X.5  
X.6  
X.7  
X.8  
X.9  
1
2
3
represents delay time  
(Except for SSOT-24)  
MARK  
3
DELAY TIME  
No Delay Time  
PRODUCT SERIES  
XC61Cxxx0xxx  
represents production lot number  
Based on the internal standard. (G, I, J, O, Q, W excluded)  
16/18  
XC61C  
Series  
MARKING RULE (Continued)  
TO-92  
represents output configuration  
OUTPUT  
CONFIGURATION  
MARK  
C
N
CMOS  
N-ch  
, represents detect voltage (ex.)  
MARK  
VOLTAGE (V)  
3
3
3.3  
5.0  
5
0
TO-92  
represents delay time  
(SIDE VIEW)  
MARK  
0
DELAY TIME  
No delay  
represents detect voltage accuracy  
MARK  
DETECT VOLTAGE ACCURACY  
1
2
Within ± 1% (Semi-custom)  
Within ± 2%  
represents a least significant digit of production year  
MARK  
PRODUCTION YEAR  
5
6
2005  
2006  
represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)  
* No character inversion used.  
17/18  
XC61C Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
18/18  

相关型号:

XC61CN2502NL

Power Management Circuit, Fixed, +2.5VV, CMOS,
TOREX

XC61CN2502PL

Power Management Circuit, Fixed, +2.5VV, CMOS,
TOREX

XC61CN2601NL-G

Power Management Circuit
TOREX

XC61CN2602LB

Power Management Circuit
TOREX

XC61CN2602MR-G

IC SUPERVISOR 2.6V SOT23-3
TOREX

XC61CN2602NR

Power Supply Support Circuit, Fixed, 1 Channel, +2.6VV, CMOS, PDSO4, ROHS COMPLIANT, SC-82, SSOT-24, 4 PIN
TOREX

XC61CN2602PR

Power Supply Support Circuit, Fixed, 1 Channel, +2.6VV, CMOS, PSSO3, ROHS COMPLIANT, SOT-89, 3 PIN
TOREX

XC61CN2701LH

Power Management Circuit
TOREX

XC61CN2701LH-G

Power Management Circuit
TOREX

XC61CN2701PL

Power Management Circuit, Fixed, +2.7VV, CMOS,
TOREX

XC61CN2701PL-G

Power Management Circuit
TOREX

XC61CN2702LB

Power Management Circuit
TOREX