XC61N1202MR [TOREX]

Low Voltage Detectors Standard Voltage Detectors; 低电压检测器的标准电压检测器
XC61N1202MR
型号: XC61N1202MR
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Low Voltage Detectors Standard Voltage Detectors
低电压检测器的标准电压检测器

文件: 总17页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC61CSeries  
ETR0201_013a  
Low Voltage Detectors (VDF= 0.8V1.5V)  
Standard Voltage Detectors (VDF 1.6V6.0V)  
GENERAL DESCRIPTION  
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser  
trimming technologies.  
Detect voltage is extremely accurate with minimal temperature drift.  
Both CMOS and N-channel open drain output configurations are available.  
APPLICATIONS  
Microprocessor reset circuitry  
Memory battery back-up circuits  
Power-on reset circuits  
FEATURES  
Highly Accurate  
: ± 2%  
:
± 1%(Standard Voltage VD: 2.6V~5.0V)  
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]  
Detect Voltage Range : 0.8V ~ 6.0V in 0.1V increments  
Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage)  
0.7V10.0V (Standard Voltage)  
Power failure detection  
Detect Voltage Temperature Characteristics  
: ±100ppm/(TYP.)  
System battery life and charge voltage monitors  
Output Configuration  
Packages  
: N-channel open drain or CMOS  
: SSOT-24  
SOT-23  
SOT-89  
TO-92  
Environmentally Friendly : EU RoHS Compliant, Pb Free  
TYPICAL APPLICATION CIRCUITS  
TYPICAL PERFORMANCE CHARACTERISTICS  
1/17  
XC61C Series  
PIN CONFIGURATION  
(SIDE VIEW)  
(SIDE VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SSOT-24 SOT-23  
SOT-89  
TO-92 (T)  
TO-92 (L)  
Supply Voltage  
2
4
1
3
3
2
1
-
2
3
1
-
2
3
1
-
1
2
3
-
VIN  
VSS  
VOUT  
NC  
t
I
t
Ground  
Output  
No Connection  
PRODUCT CLASSIFICATION  
Ordering Information  
*1  
(
)
XC61C①②③④⑤⑥⑦-⑧  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
C
N
CMOS output  
Output Configuration  
N-ch open drain output  
e.g.0.9V → ②0, 9  
e.g.1.5V → ②1, 5  
No delay  
② ③  
Detect Voltage  
08 ~ 60  
Output Delay  
0
1
Within ±1% (VDF(T)=2.6V~5.0V)  
Within ±2%  
Detect Accuracy  
2
NR  
NR-G  
MR  
SSOT-24 (SC-82)  
SSOT-24 (SC-82) (Halogen & Antimony free)  
SOT-23  
MR-G  
PR  
PR-G  
SOT-23 (Halogen & Antimony free)  
SOT-89  
SOT-89 (Halogen & Antimony free)  
Packages  
⑥⑦-⑧  
Taping Type (*2)  
TH  
TO-92 (Standard) Taping Type: Paper type  
TB  
LH  
TO-92 (Standard) Taping Type: Bag  
TO-92 (Custom pin configuration) Taping Type: Paper type  
(Discontinued Product)  
TO-92 (Custom pin configuration) Taping Type: Bag  
(Discontinued Product)  
LB  
(*1)  
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.  
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or  
representative. (Standard orientation: R-, Reverse orientation: L-)  
(*2)  
2/17  
XC61C  
Series  
BLOCK DIAGRAMS  
(1) CMOS Output  
(2) N-ch Open Drain Output  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25OC  
UNITS  
PARAMETER  
Input Voltage  
SYMBOL  
RATINGS  
9.0  
*1  
*2  
VIN  
V
12.0  
Output Current  
CMOS  
IOUT  
50  
mA  
V
VSS -0.3 ~ VIN +0.3  
VSS -0.3 ~ 9.0  
VSS -0.3 ~ 12.0  
150  
Output Voltage  
Power Dissipation  
VOUT  
Pd  
N-ch Open Drain Output *1  
N-ch Open Drain Output *2  
SSOT-24  
SOT-23  
150  
mW  
SOT-89  
500  
TO-92  
300  
-40+85  
-40+125  
OC  
OC  
Operating Temperature Range  
Topr  
Tstg  
Storage Temperature Range  
*1: Low voltage: VDF(T)=0.8V~1.5V  
*2: Standard voltage: VDF(T)=1.6V~6.0V  
3/17  
XC61C Series  
ELECTRICAL CHARACTERISTICS  
VDF (T) = 0.8V to 6.0V ± 2%  
VDF (T) = 2.6V to 5.0V ± 1%  
Ta=25℃  
CIRCUITS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
VDF(T)  
x 0.98  
VDF(T)  
x 0.99  
VDF  
TYP.  
MAX. UNITS  
VDF(T)=0.8V~1.5V *1  
VDF(T)=1.6V~6.0V *2  
VDF(T)  
V
VDF(T)  
1
1
1
x 1.02  
Detect Voltage  
VDF  
VDF(T)  
V
VDF(T)=2.6V~5.0V *2  
VDF(T)  
VDF  
x 1.01  
VDF  
V
Hysteresis Range  
Supply Current  
VHYS  
ISS  
x 0.02 x 0.05  
x 0.08  
VIN = 1.5V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
-
-
0.7  
0.8  
0.9  
1.0  
1.1  
-
2.3  
2.7  
μA  
2
1
-
3.0  
-
3.2  
-
3.6  
Operating Voltage *1  
Operating Voltage *2  
VDF(T) = 0.8V to 1.5V  
VDF(T) = 1.6V to 6.0V  
0.7  
0.7  
0.10  
0.85  
-
6.0  
VIN  
V
-
10.0  
VIN = 0.7V  
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 8.0V  
CMOS  
0.80  
2.70  
-7.5  
2.2  
7.7  
10.1  
11.5  
13.0  
-10.0  
10  
-
N-ch VDS = 0.5V  
3
4
Output Current *1  
-
CMOS, P-ch VDS = 2.1V  
-1.5  
1.0  
3.0  
5.0  
6.0  
7.0  
-
-
IOUT  
mA  
nA  
-
N-ch VDS = 0.5V  
3
-
Output Current *2  
Leak Current  
-
-
CMOS, P-ch VDS = 2.1V  
VIN=6.0V, VOUT=6.0V*1  
-2.0  
-
4
-
Ileak  
3
VIN=10.0V, VOUT=10.0V*2  
N-ch Open Drain  
-
10  
100  
Temperature  
Characteristics  
Delay Time  
ΔVDF  
ppm/  
-40℃ ≦ Topr 85℃  
Inverts from VDR to VOUT  
-
-
±100  
-
-
Δ
Topr・  
V
DF  
tDLY  
0.03  
0.20  
ms  
5
(VDRVOUT inversion)  
NOTE:  
*1: Low Voltage: VDF(T)=0.8V~1.5V  
*2: Standard Voltage: VDF(T)=1.6V~6.0V  
VDF (T): Setting detect voltage  
Release Voltage: VDR = VDF + VHYS  
4/17  
XC61C  
Series  
OPERATIONAL EXPLANATION  
(Especially prepared for CMOS output products)  
When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage  
(VSS) level.  
When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become  
unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.)  
When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the  
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)  
level will be maintained.  
When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
The difference between VDR and VDF represents the hysteresis range.  
Timing Chart  
5/17  
XC61C Series  
NOTES ON USE  
1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent  
damage to the device.  
2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur  
as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)  
3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch  
output configurations, oscillation may occur as a result of through current at the time of voltage release even if load  
current (IOUT) does not exist. (refer to the Oscillation Description (2) below )  
4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's  
supply current flowing through the VIN pin.  
5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than  
several μ sec / V.  
6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source.  
In such cases, please ensure that RIN is less than 10kand that C is more than 0.1μF.  
Oscillation Description  
(1) Output current oscillation with the CMOS output configuration  
When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load  
current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input  
(IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level  
at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence.  
Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at  
the VIN pin will rise and release operations will begin over again.  
Oscillation may occur with this " release - detect - release " repetition.  
Further, this condition will also appear via means of a similar mechanism during detect operations.  
(2) Oscillation as a result of through current  
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during  
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through  
current's resistor (RIN) during release voltage operations. (refer to Figure 3)  
Since hysteresis exists during detect operations, oscillation is unlikely to occur.  
6/17  
XC61C  
Series  
100kΩ*  
7/17  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Low Voltage  
8/17  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Low Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
0902  
XC61CC  
)
1102  
XC61CC  
)
1102 V  
XC61CC (.)  
(.9  
(.1  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=25℃  
Ta=25℃  
Ta=25℃  
V
IN =1.0V  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
VDS (V)  
V
DS (V)  
1502  
XC61CC  
)
1502 V  
XC61CC (.)  
(.5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8.0  
6.0  
4.0  
2.0  
0
Ta=25℃  
Ta=25℃  
V
IN =1.4V  
V
IN =0.8V  
1.2V  
0.7V  
1.0V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
DS (V)  
V
DS (V)  
V
(5) N-ch Driver Output Current vs. Input Voltage  
0902  
)
1102  
XC61CC  
)
1502  
XC61CC  
(.)  
XC61CC  
(.9  
(.1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0
10  
8
Ta=-40℃  
25℃  
V
DS=0.5V  
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
25℃  
6
4
Ta=85℃  
25℃  
85℃  
80℃  
2
-40℃  
0.8  
0
0
0.2  
0.4  
0.6  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(6) P-ch Driver Output Current vs. Input Voltage  
0902  
XC61CC  
)
1102  
1502  
XC61CC  
(.)  
(.9  
XC61CC  
(.1  
)
12  
10  
8
12  
10  
8
12  
10  
8
Ta= 25℃  
Ta= 25℃  
V
DS=2.1V  
VDS=2.1V  
Ta= 25℃  
VDS=2.1V  
1.5V  
1.5V  
1.5V  
1.0V  
0.5V  
1.0V  
0.5V  
1.0V  
0.5V  
6
6
6
4
4
4
2
2
2
0
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
9/17  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage  
(1) Supply Current vs. Input Voltage  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85℃  
Ta=85℃  
25℃  
25℃  
-40℃  
-40℃  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(2) Detect, Release Voltage vs. Ambient Temperature  
XC61CC1802 (.8V)  
XC61CC2702 (.7V)  
1.90  
2.80  
2.75  
2.70  
2.65  
V
DR  
1.85  
1.80  
1.75  
V
DR  
V
DF  
V
DF  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
XC61CC3602 (.6V)  
XC61CC4502 (.5V)  
3.8  
3.7  
3.6  
3.5  
4.7  
4.6  
4.5  
4.4  
V
DR  
V
DR  
V
DF  
V
DF  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
10/17  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(3) Output Voltage vs. Input Voltage  
XC61CN1802 .V)  
XC61CN2702 .7V)  
2
1
0
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
0
1
2
3
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CN3602 (.V)  
XC61CN4502 (.V)  
4
3
2
1
0
5
4
3
2
1
0
Ta=25℃  
Ta=25℃  
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
Note : The N-channel open drain pull up resistance value is 100kΩ.  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.8V)  
XC61CC2702 (.V)  
10  
30  
25  
20  
15  
10  
5
Ta=25℃  
VIN =1.5V  
Ta=25℃  
VIN =2.5V  
8
6
4
2
0
2.0V  
1.0V  
1.5V  
1.0V  
0
0
0.5  
1.0  
DS (V)  
1.5  
2.0  
0
0.5  
1.0  
1.5  
DS (V)  
2.0  
2.5  
3.0  
V
V
XC61CC4502 (4.5V)  
XC61CC3602 (.6V)  
80  
40  
30  
20  
10  
0
Ta=25℃  
Ta=25℃  
70  
V
IN =3.0V  
2.5V  
60  
V
IN=4.0V  
3.5V  
50  
40  
3.0V  
30  
2.0V  
2.5V  
20  
2.0V  
1.5V  
1.5  
10  
1.5V  
0
0
0.5  
1.0  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
V
DS (V)  
DS (V)  
V
11/17  
XC61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(4) N-ch Driver Output Current vs. VDS  
XC61CC1802 (.V)  
XC61CC2702 .V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
V
IN =0.8V  
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Ta=25℃  
Ta=25℃  
V
IN =0.8V  
V
IN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
DS (V)  
V
DS (V)  
(5) N-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
25  
20  
15  
10  
5
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
10  
5
25℃  
85℃  
85℃  
0
0
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
V
DS=0.5V  
VDS=0.5V  
Ta=-40℃  
Ta=-40℃  
25℃  
25℃  
85℃  
85℃  
0
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
12/17  
XC61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Standard Voltage (Continued)  
(6) P-ch Driver Output Current vs. Input Voltage  
XC61CC1802 (.V)  
XC61CC2702 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
0.5V  
1.5V  
1.0V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XC61CC3602 (.V)  
XC61CC4502 (.V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
VDS=2.1V  
1.5V  
1.0V  
1.5V  
1.0V  
0.5V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
13/17  
XC61C Series  
PACKAGING INFORMATION  
SSOT-24 (SC-82)  
SOT-23  
TO-92  
SOT-89  
14/17  
XC61C  
Series  
MARKING RULE  
SSOT-24, SOT-23, SOT-89  
represents integer of detect voltage and  
CMOS Output (XC61CC series)  
4
3
MARK  
CONFIGURATION  
VOLTAGE (V)  
A
B
C
D
E
F
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
1
2
H
3
N-Channel Open Drain Output (XC61CN series)  
1
③ ④  
MARK  
CONFIGURATION  
VOLTAGE (V)  
K
L
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
N-ch  
0.X  
1.X  
2.X  
3.X  
4.X  
5.X  
6.X  
2
M
N
P
R
S
represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
0
1
2
3
4
X.0  
X.1  
X.2  
X.3  
X.4  
5
6
7
8
9
X.5  
X.6  
X.7  
X.8  
X.9  
1
2
3
represents delay time  
(Except for SSOT-24)  
MARK  
3
DELAY TIME  
No Delay Time  
PRODUCT SERIES  
XC61Cxxx0xxx  
represents production lot number  
Based on the internal standard. (G, I, J, O, Q, W excluded)  
15/17  
XC61C Series  
MARKING RULE (Continued)  
TO-92  
represents output configuration  
OUTPUT  
CONFIGURATION  
MARK  
C
N
CMOS  
N-ch  
, represents detect voltage (ex.)  
MARK  
VOLTAGE (V)  
3
3
3.3  
5.0  
5
0
represents delay time  
MARK  
DELAY TIME  
0
No delay  
represents detect voltage accuracy  
MARK  
DETECT VOLTAGE ACCURACY  
1
2
Within ± 1% (Semi-custom)  
Within ± 2%  
represents a least significant digit of production year  
MARK  
PRODUCTION YEAR  
5
6
2005  
2006  
represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)  
* No character inversion used.  
16/17  
XC61C  
Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
17/17  

相关型号:

XC61N1202MR-G

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1202NR

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1202NR-G

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1202PL

Power Management Circuit, Fixed, +1.2VV, CMOS,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1202TH

Power Management Circuit, Fixed, +1.2VV, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1301MR

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1301MR-G

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1301NR

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1301NR-G

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1302DR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1302MR

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC61N1302MR-G

Low Voltage Detectors Standard Voltage Detectors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX