XC9140A1824R-G [TOREX]

Switching Regulator,;
XC9140A1824R-G
型号: XC9140A1824R-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator,

开关
文件: 总28页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9140 Series  
ETR04015-003  
Step-UpSynchronous PFM DC/DC Converter  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XC9140 series are step-up synchronous DC/DC converters that support ceramic capacitors and have an internal 0.6  
(TYP.) Nch driver transistor and an internal 0.65(TYP.) Pch synchronous rectifier switch transistor. PFM control enables a low  
quiescent current, making these products ideal for portable devices that require high efficiency.  
When the output voltage is 3.3V and the load current is 1mA (XC9140Axx1 type and XC9140Cxx1 type), startup from an input  
voltage of VIN = 0.9V is possible which means that these products can be used in applications that start using a single alkaline or  
nickel-metal hydride battery. The output voltage can be set from 1.8V to 5.0V (±2.0%) in steps of 0.1V.  
The XC9140 features a load disconnect function to break continuity between the input and output at shutdown (XC9140A), and  
also a bypass mode function to maintain continuity between the input and output (XC9140C).  
A version with a UVLO (Under Voltage Lock-out) function is also available. This function enables the prevention of battery leakage  
by stopping IC’s operation when the input voltage is low. The standard product has a UVLO release voltage of 2.15V (±3.0%), and a  
custom version with a release voltage selectable from between 1.65V to 2.2V, in steps of 0.05V, is also available.  
FEATURES  
Input Voltage Range  
Output Voltage Setting  
Output Current  
APPLICATIONS  
:
:
:
:
0.9V~5.5V  
Mouses, Keyboards  
1.8V~5.0V (±2.0%) 0.1V increments  
100mAVOUT=3.3V, VBAT=1.8V (TYP.)  
0.6Nch driver transistor  
0.65Pch synchronous rectifier switch transistor  
6.3μA (VBAT=VOUT+0.5V)  
PFM Control  
Bluetooths  
Household use Medical equipments  
Remote controls  
Driver Transistor  
Game consoles  
Devices with 1~3 Alkaline, 1~3 Nickel Hydride,  
1 Lithium and 1 Li-ion  
Supply Current  
:
:
:
:
:
Control Method  
High speed transient response  
PFM Switching Current  
Functions  
50mV@VOUT=3.3V, VBAT=1.8V, IOUT=150mA  
350mA  
Load Disconnection Function or  
Bypass Mode Function  
UVLO Function  
Ceramic Capacitor  
-40℃~+85℃  
:
Operating Ambient Temperature  
Packages  
:
:
SOT-25, USP-6EL  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
TYPICAL APPLICATION CIRCUIT  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
Efficiency vs. Output Current  
XC9140A331MR-G(VOUT=3.3V)  
L=4.7μH(VLF302512M-4R7M),CIN =4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
100  
L=4.7μH  
2.5V  
VOUT  
LX  
80  
CL=10μF  
3.0V  
VBAT=1.8V  
60  
40  
20  
0
CE  
VIN=0.9~5.5V  
VBAT  
GND  
CIN=4.7μF  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
1/28  
XC9140 Series  
BLOCK DIAGRAM  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
The XC9140A /XC9140C series do not have the CL discharge function.  
The XC9140Axx1/XC9140Cxx1 series do not have the UVLO function.  
PRODUCT CLASSIFICATION  
Ordering Information  
XC9140①②③④⑤⑥-⑦  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
C
Load Disconnection Without CL Auto Discharge  
VBAT Bypass Without CL Auto Discharge  
Output Voltage  
(*1)  
Product Type  
Output Voltage  
(*2)  
②③  
1850  
e.g. VOUT=3.3V=3, =3  
No UVLO  
1
(*3)  
UVLO Function  
2
UVLO Function VUVLO_R=2.15V  
USP-6EL (3,000/Reel)  
4R-G  
(*4)  
⑤⑥-⑦  
Packages (Order Unit)  
MR-G  
SOT-25 (3,000/Reel)  
(*1) The product with the CL discharge function is a semi-custom product.  
(*2)  
V
=3.3V is standard.  
OUT  
(*3)  
The standard product has a UVLO release voltage of 2.15V. For other voltages, consult our sales department.  
(*4) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
2/28  
XC9140 (Design Target)  
PIN CONFIGURATION  
XC9140  
Series  
LX  
VOUT  
5
4
1
2
3
CE  
GND VBAT  
SOT-25  
(TOP VIEW)  
* The dissipation pad for the USP-6EL package should be solder-plated in  
recommended mount pattern and metal masking so as to enhance mounting  
strength and heat release.  
The mount pattern should be connected to GND pin (No.6).  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
USP-6EL SOT-25  
1
5
LX  
Switching  
Output Voltage  
Power Input  
Chip Enable  
No Connection  
Ground  
2
3
4
5
6
4
3
1
-
VOUT  
VBAT  
CE  
NC  
2
GND  
CE PIN FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
H
L
Active (All Series)  
CE  
Stand-by (XC9140A Series) or Bypass Mode (XC9140C Series)  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25˚C  
PARAMETER  
BAT Pin Voltage  
LX Pin Voltage  
VOUT Pin Voltage  
CE Pin Voltage  
LX Pin Current  
SYMBOL  
VBAT  
VLX  
RATINGS  
-0.3 ~ +7.0  
UNITS  
V
V
-0.3 ~ VOUT+0.3 or +7.0 (*1)  
VOUT  
VCE  
-0.3 ~ +7.0  
V
-0.3 ~ +7.0  
V
700  
ILX  
mA  
SOT-25  
250  
120  
Power Dissipation  
Pd  
mW  
USP-6EL  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40 ~ +85  
-55 ~ +125  
˚C  
˚C  
* All voltages are described based on the GND.  
(*1) The maximum value should be either VOUT+0.3 or +7.0 or in the lowest.  
3/28  
XC9140 Series  
ELECTRICAL CHARACTERISTICS  
Ta=25˚C  
CIRCUIT  
-
XC9140Axx1 Type, without UVLO function, without CL discharge function  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
TYP.  
-
MAX.  
5.5  
UNITS  
V
-
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
IOUT=1mA  
(*2)  
Output Voltage  
VOUT(E)  
E1  
V
Operation Start Voltage  
Operation Hold Voltage  
VST1  
VHLD  
-
-
-
0.9  
-
V
V
RL=1k  
0.7  
Oscillation stops,  
Supply Current  
Iq  
E2  
μA  
VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
Input Pin Current  
Stand-by Current  
LX Leak Current  
IBAT  
ISTB  
ILXL  
-
-
-
0.25  
0.1  
1.0  
1.0  
1.0  
μA  
μA  
μA  
0.1  
PFM Switching Current  
Maximum ON Time  
Efficiency (*3)  
IPFM  
tONMAX  
EFFI  
IOUT=3mA  
295  
3.1  
-
350  
4.6  
81  
405  
6.0  
-
mA  
μs  
%
VPULL=1.5V, VOUT=VOUT( )×0.98V (*1)  
V
BAT=VCE=1.8V, VOUT(T) (*1)=2.5V,  
OUT=30mA  
BAT=VCE=1.8V, VOUT(T) (*1)=3.3V,  
OUT=30mA  
BAT=VCE=1.8V, VOUT(T) (*1)=5.0V,  
OUT=30mA  
I
V
Efficiency (*3)  
Efficiency (*3)  
EFFI  
EFFI  
RLXP  
RLXN  
-
-
85  
86  
-
-
%
%
I
V
I
LX SW “Pch” ON  
Resistance (*4)  
VBAT=VLX=VCE=VOUT(T)+0.5V (*1)  
,
E3  
0.6  
IOUT=200mA  
LX SW “Nch” ON  
Resistance (*5)  
VBAT=VCE=3.3V, VOUT=1.7V  
VBAT=VPULL=1.5V,  
-
-
VOUT=VOUT( )×0.98V (*1)  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
While VCE=0.30.75V,  
Voltage to start oscillation  
VBAT=VPULL=1.5V,  
VOUT=VOUT( )×0.98V (*1)  
VCEL  
GND  
0.3  
While VCE=0.750.3V,  
Voltage to stop oscillation  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT=VLX=VOUT=5.5V, VCE=0V  
Unless otherwise stated, VBAT=VCE=1.5V  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
4/28  
XC9140 (Design Target)  
XC9140  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9140Cxx1 Type, without UVLO function, without CL discharge function  
Ta=25˚C  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
-
TYP.  
-
MAX.  
5.5  
UNITS CIRCUIT  
V
V
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
IOUT=1mA  
(*2)  
Output Voltage  
VOUT(E)  
E1  
Operation Start Voltage  
Operation Hold Voltage  
VST1  
VHLD  
-
-
-
0.9  
-
V
V
RL=1kΩ  
0.7  
Oscillation stops,  
Supply Current  
Iq  
E2  
μA  
VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX=5.5V, VCE=0V  
Input Pin Current  
IBAT  
IBYP  
-
-
0.25  
3.5  
1.0  
6.1  
μA  
μA  
Bypass Mode Current  
PFM Switching Current  
Maximum ON Time  
Efficiency (*3)  
IPFM  
tONMAX  
EFFI  
IOUT=3mA  
295  
3.1  
-
350  
4.6  
81  
405  
6.0  
-
mA  
μs  
%
VPULL=1.5V, VOUT=VOUT( )×0.98V (*1)  
VBAT=VCE=1.8V, VOUT(T) (*1)=2.5V,  
IOUT=30mA  
VBAT=VCE=1.8V, VOUT(T) (*1)=3.3V,  
IOUT=30mA  
Efficiency (*3)  
Efficiency (*3)  
EFFI  
EFFI  
RLXP  
RLXN  
-
-
85  
86  
-
-
%
%
V
BAT=VCE=1.8V, VOUT(T) (*1)=5.0V,  
I
OUT=30mA  
LX SW “Pch” ON  
Resistance (*4)  
VBAT=VLX=VCE= VOUT(T)+0.5V (*1)  
,
E3  
0.6  
IOUT=200mA  
LX SW “Nch” ON  
Resistance (*5)  
VBAT=VCE=3.3V, VOUT=1.7V  
VBAT=VPULL=1.5V,  
-
-
VOUT=VOUT( )×0.98V (*1)  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
While VCE=0.30.75V,  
Voltage to start oscillation  
VBAT=VPULL=1.5V,  
VOUT=VOUT( )×0.98V (*1)  
VCEL  
GND  
0.3  
While VCE=0.750.3V,  
Voltage to stop oscillation  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT=VLX=VOUT=5.5V, VCE=0V  
Unless otherwise stated, VBAT=VCE=1.5V  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) EFFI={[(Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)]}×100  
(*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
5/28  
XC9140 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9140Axxx types (types other than XC9140Axx1), with UVLO function, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
5.5  
UNITS  
V
CIRCUIT  
Input Voltage  
VBAT  
-
-
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
Output Voltage  
Operation Start Voltage  
Operation Hold Voltage  
Supply Current2  
VOUT(E)  
E1  
-
V
V
VRELEASE(E)  
VST1  
VHLD  
Iq  
IOUT=1mA  
-
(*7)  
VDETECT(E)  
RL=1kΩ  
-
-
V
(*8)  
Oscillation stops,  
E4  
μA  
VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
IOUT=3mA  
Input Pin Current2  
Stand-by Current  
IBAT  
ISTB  
ILXL  
IPFM  
E5  
0.1  
0.1  
350  
μA  
μA  
μA  
mA  
-
-
1.0  
1.0  
LX Leak Current  
PFM Switching Current  
295  
405  
VPULL= VRELEASE(T)+0.1V (*6)  
,
Maximum ON Time  
tONMAX  
3.1  
4.6  
6.0  
μs  
VOUT=VOUT( )×0.98V (*1)  
Efficiency (*3)  
Efficiency (*3)  
Efficiency (*3)  
EFFI  
EFFI  
EFFI  
VOUT(T) (*1)=2.5V, IOUT=30mA  
VOUT(T) (*1)=3.3V, IOUT=30mA  
VOUT(T) (*1)=5.0V, IOUT=30mA  
VBAT=VLX=VCE=VOUT(T)+0.5V (*1)  
IOUT=200mA  
-
-
-
81  
85  
86  
-
-
-
%
%
%
LX SW “Pch” ON  
Resistance (*4)  
LX SW “Nch” ON  
Resistance (*5)  
,
RLXP  
E3  
RLXN  
VBAT=VCE=3.3V, VOUT=1.7V  
-
0.6  
-
VBAT=VPULL= VRELEASE(T)+0.1V (*6)  
,
,
VOUT=VOUT( )×0.98V (*1)  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
While VCE=0.30.75V,  
Voltage to start oscillation  
VBAT=VPULL= VRELEASE(T)+0.1V (*6)  
VOUT=VOUT( )×0.98V (*1)  
VCEL  
GND  
0.3  
While VCE=0.750.3V,  
Voltage to stop oscillation  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT=VLX=VOUT=5.5V, VCE=0V  
VBAT= VCE= VDETECT(E) - 0.1V (*8)  
,
UVLO Current  
IDQ  
E6  
μA  
IOUT=0mA  
VPULL= VOUT= VOUT( )×0.98V (*1)  
,
VRELEASE(E) VBAT= VCE  
UVLO Release Voltage  
E7  
V
(*7)  
Voltage to start oscillation while  
VBAT is increasing  
VPULL= VOUT= VOUT( )×0.98V (*1)  
,
UVLO Hysteresis  
Voltage  
VBAT= VCE  
(*9)  
VHYS(E)  
0.1  
0.15  
0.2  
V
VRELEASE(E) - Voltage to stop oscillation  
while VBAT is decreasing(*7)  
Unless otherwise stated,, VBAT=VCE=VRELEASE(T)+0.1V (*6)  
(*1)  
V
V
= Nominal Output Voltage  
= Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage,  
including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.  
(*3) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
(*6)  
V
V
V
V
= Nominal UVLO release voltage  
= Actual UVLO release voltage  
=VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage  
RELEASE(T)  
(*7)  
(*8)  
(*9)  
RELEASE(E)  
DETECT(E)  
= Actual UVLO hysteresis voltage  
HYS(E)  
6/28  
XC9140 (Design Target)  
XC9140  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9140Cxxx type (types other than XC9140Cxx1), with UVLO function, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
5.5  
UNITS CIRCUIT  
Input Voltage  
VBAT  
-
-
V
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
Output Voltage  
Operation Start Voltage  
Operation Hold Voltage  
Supply Current2  
VOUT(E)  
E1  
-
V
V
VRELEASE(E)  
VST1  
VHLD  
Iq  
IOUT=1mA  
-
(*7)  
VDETECT(E)  
RL=1kΩ  
-
-
V
(*8)  
Oscillation stops,  
E4  
μA  
VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX= VRELEASE(T)+0.1V (*6), VCE=0V  
IOUT=3mA  
Input Pin Current2  
Bypass Mode Current  
PFM Switching Current  
IBAT  
IBYP  
IPFM  
E5  
5.5  
μA  
μA  
mA  
-
8.1  
295  
350  
405  
VPULL= VRELEASE(T)+0.1V (*6)  
,
Maximum ON Time  
tONMAX  
3.1  
4.6  
6.0  
μs  
VOUT=VOUT( )×0.98V (*1)  
Efficiency (*3)  
Efficiency (*3)  
Efficiency (*3)  
EFFI  
EFFI  
EFFI  
VOUT(T) (*1)=2.5V, IOUT=30mA  
VOUT(T) (*1)=3.3V, IOUT=30mA  
VOUT(T) (*1)=5.0V, IOUT=30mA  
VBAT=VLX=VCE= VOUT(T)+0.5V (*1)  
IOUT=200mA  
-
-
-
81  
85  
86  
-
-
-
%
%
%
LX SW “Pch” ON  
Resistance (*4)  
LX SW “Nch” ON  
Resistance (*5)  
,
RLXP  
E3  
RLXN  
VBAT=VCE=3.3V, VOUT=1.7V  
-
0.6  
-
VBAT=VPULL= VRELEASE(T)+0.1V (*6)  
,
,
VOUT=VOUT( )×0.98V (*1)  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
While VCE=0.30.75V,  
Voltage to start oscillation  
VBAT=VPULL= VRELEASE(T)+0.1V (*6)  
VOUT=VOUT( )×0.98V (*1)  
VCEL  
GND  
0.3  
While VCE=0.750.3V,  
Voltage to stop oscillation  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT=VLX=VOUT=5.5V, VCE=0V  
V
BAT= VCE= VDETECT(E) - 0.1V (*8)  
OUT=0mA  
VBAT= VLX= VDETECT(E) - 0.1V (*8), VCE=0V  
VPULL= VOUT= VOUT( )×0.98V (*1)  
,
UVLO Current  
IDQ  
E6  
E8  
μA  
μA  
I
UVLO Bypass Current  
IDBYP  
,
VRELEASE(E)  
V
BAT= VCE  
Voltage to start oscillation while  
BAT is increasing  
VPULL= VOUT= VOUT( )×0.98V (*1)  
UVLO Release Voltage  
E7  
V
V
(*7)  
V
,
UVLO Hysteresis  
Voltage  
V
BAT= VCE  
(*9)  
VHYS(E)  
0.1  
0.15  
0.2  
V
RELEASE(E) - Voltage to stop oscillation  
while VBAT is decreasing(*7)  
Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V (*6)  
(*1)  
V
V
=Nominal Output Voltage  
OUT(T)  
(*2)  
=Effective Output Voltage  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage,  
including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.  
(*3) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
(*6)  
V
V
V
V
= Nominal UVLO release voltage  
= Actual UVLO release voltage  
= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage  
RELEASE(T)  
(*7)  
(*8)  
(*9)  
RELEASE(E)  
DETECT(E)  
= Actual UVLO hysteresis voltage  
HYS(E)  
7/28  
XC9140 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9140 Voltage Chart 1  
SYMBOL  
PARAMETER  
UNITS: V  
E1  
E2  
E3  
E4  
LX SW “Pch” ON  
RESISTANCE  
Output Voltage  
Supply Current  
Supply Current2  
UNITS: V  
UNITS: μA  
UNITS: Ω  
UNITS: μA  
OUTPUT  
MIN.  
MAX.  
TYP.  
MAX.  
TYP.  
0.84  
MAX.  
1.08  
TYP.  
6.8  
MAX.  
9.7  
VOLTAGE  
1.8  
1.9  
2.0  
2.1  
1.764  
1.862  
1.960  
2.058  
1.836  
1.938  
2.040  
2.142  
6.1  
9.4  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.312  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
6.2  
9.7  
0.75  
0.97  
6.9  
9.8  
6.3  
6.4  
6.5  
10.0  
10.2  
10.4  
0.65  
0.61  
0.57  
0.85  
0.78  
0.74  
7.0.  
7.1  
7.2  
10.0  
10.1  
10.2  
6.7  
10.7  
0.53  
0.72  
7.3  
10.3  
8/28  
XC9140 (Design Target)  
XC9140  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9140 Voltage Chart 2  
SYMBOL  
PARAMETER  
UNITS: V  
E5  
E6  
E7  
E8  
UVLO RELEASE  
VOLTAGE  
Input Pin Current2  
UNITS: μA  
UVLO Current  
UNITS: μA  
UVLO Bypass Current  
UNITS: μA  
UNITS: V  
UVLO  
Release  
Voltage  
TYP.  
MAX.  
TYP.  
MAX.  
MIN.  
MAX.  
TYP.  
MAX.  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
1.601  
1.649  
1.698  
1.746  
1.795  
1.843  
1.892  
1.940  
1.989  
2.037  
2.086  
2.134  
1.699  
1.751  
1.802  
1.854  
1.905  
1.957  
2.008  
2.060  
2.111  
2.163  
2.214  
2.266  
0.71  
0.73  
0.75  
0.77  
0.79  
0.82  
1.50  
1.60  
1.60  
1.60  
1.70  
1.70  
3.25  
3.27  
3.29  
3.31  
3.33  
3.35  
6.00  
6.10  
6.20  
6.20  
6.30  
6.30  
2.15  
2.20  
2.30  
2.35  
2.40  
2.45  
4.10  
4.20  
4.20  
4.30  
4.30  
4.40  
9/28  
XC9140 Series  
TEST CIRCUITS  
<LX SW “Nch” ON Resistance Measurement Method>  
Use Test Circuit No.8 to adjust Vpull so that the LX pin voltage becomes 100mV when the Nch drive Tr is ON and then the voltage at both ends  
of Rpull is measured to find the Lx SW "Nch" ON resistance.  
RLXN=0.1 / {(V1 - 0.1) / 4.7)}  
Note that V1 is the Rpull previous voltage when the Nch driver Tr is ON. Use an oscilloscope or other instrument to measure the LX pin voltage  
and V1.  
10/28  
XC9140 (Design Target)  
XC9140  
Series  
TYPICAL APPLICATION CIRCUIT  
Reference External Components】  
MANUFACTURE  
PRODUCT NUMBER  
VALUE  
L
TDK  
VLF302512M-4R7  
LMK107BJ475MA  
LMK107BJ106MA  
4.7μH  
CIN  
CL  
TAIYO YUDEN  
TAIYO YUDEN  
4.7μF/10V  
10μF/10V  
* When selecting components, take into consideration capacitance reduction, voltage, etc.  
* The characteristics are dependent on the variation in the coil inductance value, so check these carefully in the actual product.  
* A coil inductance value of 4.7 to 10.0μH can be used, but using 4.7μH is recommended.  
* The ripple voltage will increase if tantalum or electrolytic capacitors are used for the load capacitor CL. The operation could also become  
unstable, so carefully check this in the actual product.  
11/28  
XC9140 Series  
OPERATIONAL EXPLANATION  
The XC9140 Series consists of a standard voltage source, a PFM comparator, a Nch driver Tr, a Pch synchronous rectifier switch Tr, a  
current sense circuit, a PFM control circuit and a CE control circuit, etc. (refer to the block diagram below.)  
LX  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
CL  
Buffer  
Driver  
and  
Inrush  
Currrent  
Protection  
Discharge  
FB  
-
+
GND  
VOUT  
VREF  
VBAT–VOUT Detector  
VDD  
CE and Bypass  
Controller Logic  
CE  
Hysteresis UVLO  
VBAT  
Comparator  
+
-
Current limit PFM control is used for the control method to make it difficult for the output voltage ripple to increase even when the switching  
current is superimposed, so the product can be used within a wide voltage and current range. Further, because PFM control is used, it has  
excellent transient response to support low capacity ceramic capacitors to realize a compact, high-performance boost DC/DC converter.  
The synchronous driver and rectifier switch Tr efficiently sends the coil energy to the capacitor connected to the VOUT pin to achieve highly  
efficient operation from low to high loads.  
The electrical characteristics actual output voltage VOUT(E) is the PFM comparator threshold voltage shown in the block diagram. Therefore,  
the booster circuit output voltage average value, including the peripheral components, depends on the ripple voltage, so this must be carefully  
evaluated before being used in the actual product.  
VBAT=VCE=2.0V V =3.3V I =70mA L=4.7μH C =10μF Ta=25  
L
VBAT=VCE=2.0V V =3.3V I =20mA L=4.7μH C =10μF Ta=25  
OUT  
OUT  
OUT  
OUT  
L
VLX  
VLX  
VLX:2V/div  
VOUT Voltage  
Average  
VOUT Voltage  
Average  
VOUT  
VOUT:50mV/div  
ILX:200mA/div  
VOUT  
VOUT(E)  
VOUT(E)  
IPFM  
ILX  
ILX  
2[μs/div]  
2[μs/div]  
< Reference Voltage Source (VREF)>  
The reference voltage source (VREF voltage) provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
< PFM Control >  
The voltage from the output voltage divided by the division resistors RFB1 and RFB2 in the IC is used as feedback voltage (FB voltage), and the PFM  
comparator is compared with the FB voltage and VREF. If the FB voltage is lower than VREF, the signal is sent to the buffer driver via the PFM control circuit  
and the Nch driver Tr is turned ON. If the FB voltage is higher than VREF, the PFM comparator sends a signal that does not turn ON the Nch driver Tr.  
The current sense circuit monitors the current flowing in the Nch driver Tr connected to the Lx pin when the Nch driver Tr is ON. When the  
prescribed PFM switching current (IPFM) is reached, the signal is sent to the buffer driver via the PFM control circuit to turn OFF the Nch driver Tr  
and turn ON the Pch synchronous rectifier switch Tr.  
The Pch synchronous rectifier switch Tr ON time (off time) is dynamically optimized internally. After the off time has passed, when the PFM  
comparator confirms the VOUT voltage has exceeded the set voltage, a signal that does not allow the Nch driver Tr to be turned on is sent from the  
PFM comparator to the PFM control circuit, but if the VOUT voltage remains lower than the set voltage, then Nch driver Tr ON is started.  
The intervals of the above ①②③ linked operations are continuously adjusted in response to the load current to ensure the output voltage is kept  
stable from low to high loads and that it is done with good efficiency.  
12/28  
XC9140 (Design Target)  
XC9140  
Series  
OPERATIONAL EXPLANATION (Continued)  
<PFM Switching Current>  
The PFM switching current unit monitors the current flowing in the Nch driver Tr and functions to limit the current flowing in the Nch driver Tr,  
but if the load current becomes much larger than the PFM switching energy, the VOUT voltage becomes lower and prevents the coil current in the  
Nch driver Tr OFF period from lowering, which affects the internal circuit delay time and results in an excessive current that is larger than the PFM  
switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr.  
<Load Disconnection Function, Bypass Mode>  
When a "L" voltage is input to the CE pin, the XC9140A type enters into standby mode and the XC9140C type enters into bypass mode to stop  
the circuit required for the boost operation.  
In the standby mode the load cut-off function operates and both the Nch driver Tr and Pch synchronous rectifier switch Tr are turned OFF, which  
cuts off the current to the LX pin and VOUT pin and the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous  
rectifier switch Tr to the LX pin . In the bypass mode the Nch driver Tr is OFF, the Pch synchronous rectifier switch Tr is ON when VLX > VOUT, and  
the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the VOUT pin . Also, when VLX  
OUT, the Pch synchronous rectifier switch Tr is turned OFF and the parasitic diode cathode is connected to the VOUT pin .  
<
V
Note: Except for the moment when the VBAT voltage is input.  
< VBAT-VOUT Voltage Detection Circuit>  
The VBAT-VOUT voltage detection circuit compares the VBAT pin voltage with the VOUT pin voltage, and whichever is the highest is operated to  
become the IC power supply (VDD).  
In addition, if, during normal operation, the input voltage becomes higher than the output voltage, the Nch driver Tr is turned OFF and the  
Pch synchronous rectifier switch Tr is kept ON so that the input voltage pass through to the output voltage (through mode). When the input  
voltage becomes lower than the output voltage, the circuit automatically returns to the normal boost operation. This detection circuit does not  
operate when in the standby mode.  
<Inrush Current Protection Function>  
When the VBAT or VCE power supply is input, CL is charged via the stable current that results from the inrush current protection function (refer  
to graphs below). Therefore, this function minimizes potential over current from the VBAT pin to the VOUT pin. Also, this current value depends on  
the VBAT voltage. After CL is charged by the aforementioned stable current and VOUT reaches around the VBAT voltage level, the inrush current  
protection function will be released after several hundred μs ~ several ms and the IC will then move to step-up mode, by pass mode or through  
mode.  
Inrush Current Protection Characteristics  
L=4.7μH(VLF302512M-4R7M),C =4.7μF(LMK107BJ475MA),  
IN  
CL=10μF(LMK107BJ106MA),IOUT =1mA,Ta=25  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage: VBAT (V)  
13/28  
XC9140 Series  
OPERATIONAL EXPLANATION (Continued)  
<UVLO Function >  
The UVLO function is selectable on the XC9140 series as an option. When the VBAT pin voltage falls below the UVLO detect voltage, the IC  
stops switching or BYPASS operation and cuts off the current to the LX pin and VOUT pin (UVLO mode). In addition, when the VBAT pin voltage  
recovers to above the UVLO release voltage, the IC begins operating again.  
<CL Discharge Function>  
With the XC9140 Series an optional CL discharge function (under development) can be selected. This function uses the Nch Tr connected  
between VOUT and GND to discharge, at high speed, the load capacity CL charge when the "L" voltage is input to the CE pin (when in the IC  
standby mode). This is done to prevent malfunction of the application caused by a residual charge in CL when the IC is stopped. The discharge  
time is determined by the CL discharge resistance RDCHG, including the Nch Tr, and CL. The constant τ=CL×RDCHG is determined at this time, and  
the following formula is used to find the output voltage discharge time. However, the CL discharge resistance RDCHG varies depending on the VBAT  
or VOUT voltage, so the discharge time cannot be determined easily. Therefore, carefully check this in the actual product.  
V=VOUT × e - t /τ or t=τIn(VOUT / V)  
V: Output voltage after discharge  
V
OUT: Output voltage  
: Discharge time  
τ: CL × RDCHG  
CL: Capacity value of the load capacitor (CL)  
RDCHG: Low resistance value of the CL discharge resistance.  
However, this changes depending on the voltage.  
The XC9140A/ XC9140C series do not have a CL discharge function as standard.  
14/28  
XC9140 (Design Target)  
XC9140  
Series  
NOTE ON USE  
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.  
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected  
components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the  
characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA  
Standard) ceramic capacitor.  
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC  
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.  
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.  
5. An excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr, which  
could destroy the IC.  
6. When in the bypass mode, the internal Pch synchronous rectifier switch Tr turns ON to allow current to flow to the Lx pin and VOUT pin. When an  
excessive current comes from the VOUT pin when this bypass operates, it could destroy the Pch synchronous rectifier switch Tr.  
7. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.  
8. The coil inductance value applicable range is 4.7μH to 10μH, but 4.7μH is recommended because at this value the coil size and DC/DC  
performance are optimized. If you want to use another inductance value other than 4.7μH but which is in the above applicable range, be sure  
to carefully evaluate it first before use.  
9. At high temperatures, the product performance could vary causing the efficiency to decline. Evaluate this carefully before use if the product will  
be used at high temperatures.  
10. Please note that the leak current of the Pch synchronous rectifier switch Tr during high-temperature standby operation could cause the output  
voltage to increase.  
11. The output voltage ripple effect from the load current causes the output voltage average value to fluctuate, so carefully evaluate this in the  
actual product before use.  
12. When the booster circuit is activated by a low input voltage, during the time until the output voltage reaches about 1.7V, the PFM switching  
current function might not operate causing the coil current to be superimposed. (See the figure below.)  
VBAT=VCE=0 0.9V  
V
=1.8V  
OUT  
I
=1mA L=4.7μH C =10μF Ta=25  
OUT  
L
VOUT  
VBAT=VCE  
VLX  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
ILX:200mA/div  
ILX  
200[μs/div]  
VOUT  
VBAT=VCE  
VLX  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
Zoom  
ILX:200mA/div  
ILX  
50[μs/div]  
=1.8V I =1mA L=4.7μH C =10μF Ta=25  
OUT OUT  
VBAT=VCE=0 1.7V  
V
L
VOUT  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
VBAT=VCE  
VLX  
ILX  
ILX:200mA/div  
200[μs/div]  
VOUT  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
VBAT=VCE  
VLX  
Zoom  
ILX  
ILX:200mA/div  
50[μs/div]  
15/28  
XC9140 Series  
NOTE ON USE (Continued)  
13. If the CL capacity or load current becomes excessively large, the output voltage start-up time, when the power is turned on, will increase, so  
the coil current might be superimposed during the time it takes for the output voltage to become sufficiently higher than the VBAT voltage.  
14. If the input voltage is higher than the output voltage, then the circuit automatically enters the through mode. When the input voltage becomes  
close to the output voltage, there could be repeated switching between the boost mode and through mode causing the ripple voltage to  
fluctuate. (Refer to the graphic below)  
VBAT=VCE=3.316V,VOUT=3.412V,IOUT=3mA,L=4.7μH,C =10μF,Ta=25  
L
VOUT  
VBAT  
VOUT:100mV/div  
VBAT:100mV/div  
VLX  
VLX:2.0V/div  
200[μs/div]  
15. If a different power supply is connected from an external source to the XC9140A/XC9140C, the IC could be destroyed.  
16. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
17. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.  
18. With the XC9140A, when the VBAT or VCE power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to  
the load current being more than the inrush protection current, step-up mode or through mode operations won’t function correctly.  
19. With the XC9140C, when the VBAT power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to the  
load current being more than the inrush protection current, by pass mode operations won’t function correctly.  
20. In the case of products with the UVLO function that do not have CL discharge, the output voltage may occasionally rise due to leakage current  
from the Pch synchronous switch Tr when high-temperature UVLO mode operates.  
16/28  
XC9140 (Design Target)  
XC9140  
Series  
NOTE ON USE (Continued)  
Instructions of pattern layouts  
1. In order to stabilize VBAT voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VBAT and ground pins.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of  
switching may result in instability of the IC.  
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.  
Recommended Pattern Layout (SOT-25)  
FRONT  
BACK  
Recommended Pattern Layout (USP-6EL)  
FRONT  
BACK  
17/28  
XC9140 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9140A331MR-G(VOUT=3.3V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140A331MR-G(VOUT=3.3V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
2.5V  
2.5V  
3.0V  
3.0V  
VBAT=1.8V  
VBAT=1.8V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9140A501MR-G(VOUT=5.0V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140A501MR-G(VOUT=5.0V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
4.2V  
4.2V  
VBAT=3.0V  
3.7V  
3.7V  
VBAT=3.0V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(2) Output Voltage vs. Output Current  
XC9140A331MR-G(VOUT=3.3V)  
XC9140A331MR-G(VOUT=3.3V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
L=4.7μH(VLF302512M-4R7M),C =4.7μF(LMK107BJ475MA),  
IN  
C =10μF(LMK107BJ106MA)  
L
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.5V  
3.0V  
2.5V  
3.0V  
VBAT=1.8V  
VBAT=1.8V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
18/28  
XC9140 (Design Target)  
XC9140  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current (Continued)  
XC9140A501MR-G(VOUT=5.0V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140A501MR-G(VOUT=5.0V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.2V  
4.2V  
VBAT=3.0V  
VBAT=3.0V 3.7V  
3.7V  
0.01  
0.1  
1
10  
100  
1000  
1000  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
XC9140A331MR-G(VOUT=3.3V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140A331MR-G(VOUT=3.3V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
3.0V  
2.5V  
2.5V  
VBAT=1.8V  
3.0V  
VBAT=1.8V  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9140A501MR-G(VOUT=5.0V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140A501MR-G(VOUT=5.0V)  
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
3.7V  
4.2V  
3.7V  
4.2V  
VBAT=3.0V  
VBAT=3.0V  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
19/28  
XC9140 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Output Voltage vs. Ambient Temperature  
XC9140x33x(VOUT=3.3V)  
XC9140x50x(VOUT=5.0V)  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta(  
)
(5) Supply Current vs. Ambient Temperature  
(6) Input Pin Current vs. Ambient Temperature  
XC9140xxx1  
XC9140xxx1  
20  
2.0  
18  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT=5.0V  
3.0V  
VOUT=5.0V  
3.0V  
16  
14  
12  
10  
8
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta (  
)
(7) Stand-by Current vs. Ambient Temperature  
XC9140A  
3.0  
VOUT=5.0V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0V  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
20/28  
XC9140 (Design Target)  
XC9140  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) PFM Switching Current vs. Ambient Temperature  
(9) PFM Switching Current vs. Input Voltage  
XC9140  
XC9140x50x  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
CL=10μF(LMK107BJ106MA)  
500  
500  
VOUT=5.0V  
450  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.0V  
1.8V  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
Ambient Temperature: Ta (  
)
Input Voltage: VBAT (V)  
(10) MAX. ON Time vs. Ambient Temperature  
(11) Lx SW “Nch” ON Resistance vs. Output Voltage  
XC9140  
XC9140  
10.0  
1.2  
Ta=85  
VOUT=3.0V  
5.0V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25  
8.0  
6.0  
4.0  
2.0  
0.0  
-40  
1.8V  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Output Voltage : VOUT (V)  
(12) Lx SW “Pch” ON Resistance vs. Output Voltage  
(13) Lx Leak Current vs. Ambient Temperature  
XC9140Axx1  
XC9140xxx1  
VBAT=VLX=VCE=VOUT(E)+0.5V,IOUT=200mA  
VBAT=VLX=VOUT(E), VOUT=VCE=0V  
1.2  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=85  
VLX=5.0V  
3.3V  
25  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40  
1.8V  
-50  
-25  
0
25  
50  
75  
100  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Ambient Temperature: Ta ()  
Output Voltage : VOUT (V)  
21/28  
XC9140 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(14) CE “High” Voltage vs. Output Voltage  
(15) CE “Low” Voltage vs. Output Voltage  
XC9140  
XC9140  
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Ta=-40  
Ta=-40℃  
25℃  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
25℃  
85℃  
85℃  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage : VOUT (V)  
Output Voltage : VOUT (V)  
(16) Operation Start Voltage vs. Ambient Temperature  
(17) Operation Hold Voltage vs. Ambient Temperature  
XC9140xxx1  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA),RL=1kΩ  
1.0  
XC9140xxx1  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA),RL=VOUT(E)/1mA  
1.0  
VOUT=1.8V  
VOUT=5.0V  
0.9  
3.3V  
5.0V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
3.3V  
1.8V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
as  
XC9140x18x(VOUT=1.8V)  
(18) UVLO Rele e Voltage vs. Ambient Temperature  
XC9140x50x(VOUT=5.0V)  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
2.35  
VRELEASE(T)= 1.65V  
VRELEASE(T)= 2.2V  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
22/28  
XC9140 (Design Target)  
XC9140  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) UVLO Detect Voltage vs. Ambient Temperature  
XC9140x18x(VOUT=1.8V)  
XC9140x50x(VOUT=5.0V)  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
VRELEASE(T)= 1.65V  
VRELEASE(T)= 2.2V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)  
Ambient Temperature: Ta ()  
(20) UVLO Hysteresis Voltage vs. Ambient Temperature  
XC9140x50x(VOUT=5.0V)  
XC9140x18x(VOUT=1.8V)  
0.30  
0.30  
VRELEASE(T)= 1.65V  
VRELEASE(T)= 2.2V  
0.25  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
0.05  
0.00  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(21) No Load Input Current vs. Input Voltage  
XC9140x50x(VOUT=5.0V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
XC9140x18x(VOUT=1.8V)  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA  
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VRELEASE(T)= 2.2V  
VRELEASE(T)= 1.65V  
Ta=25  
Ta=25  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
0.95  
1.15  
1.35  
1.55  
1.75  
Input Voltage: VBAT (V)  
Input Voltage: VBAT (V)  
23/28  
XC9140 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(22) UVLO Bypass Current vs. Input Voltage  
XC9140C18x(VOUT=1.8V)  
XC9140C50x(VOUT=5.0V)  
25  
20  
15  
10  
5
25  
VRELEASE(T)= 2.2V  
VRELEASE(T)= 1.65V  
Ta=25℃  
Ta=25℃  
20  
15  
10  
5
0
0
1.0  
1.5  
2.0  
2.5  
3.0  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage: VBAT (V)  
Input Voltage: VBAT (V)  
(23) Rising Output Voltage  
XC9140x331  
XC9140x331  
VOUT=3.3V,VBAT=VCE=01.8V,RL=330  
VOUT=3.3V,VBAT=VCE=00.9V,RL=3300Ω  
VOUT  
VOUT  
VBAT=VCE  
VBAT=VCE  
VLX  
VLX  
ILX  
ILX  
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140x501  
XC9140x501  
VOUT=5.0V,VBAT=VCE=03.3V,RL=500Ω  
VOUT=5.0V,VBAT=VCE=05.5V,RL=500Ω  
VOUT  
VBAT=VCE  
VBAT=VCE VOUT  
VLX  
VLX  
ILX  
ILX  
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
24/28  
XC9140 (Design Target)  
XC9140  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(24) Load Transient Response  
XC9140x181  
XC9140x181  
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=1mA25mA  
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=25mA1mA  
VOUT  
VOUT  
VLX  
ILX  
VLX  
ILX  
IOUT  
IOUT  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50s/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140x331  
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=1mA50mA  
XC9140x331  
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=50mA1mA  
VOUT  
VOUT  
VLX  
ILX  
VLX  
ILX  
IOUT  
IOUT  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
XC9140x501  
XC9140x501  
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=1mA100mA  
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=100mA1mA  
VOUT  
VOUT  
VLX  
VLX  
ILX  
ILX  
IOUT  
IOUT  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div  
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),  
CL=10μF(LMK107BJ106MA)  
25/28  
XC9140 Series  
PACKAGING INFORMATION  
SOT-25 (unit: mm)  
USP-6EL (unit: mm)  
1.8±0.05  
1PIN INDENT  
0.3±0.05  
1
2
3
* A part of the pin may appear from the  
6
5
4
(0.55)  
side of the package because of it’s  
1.5±0.05  
structure, but reliability of the package  
and strength will not be changed below  
the standard.  
USP-6EL Reference Pattern Layout (unit: mm)  
USP-6EL Reference Metal Mask Design (unit: mm)  
26/28  
XC9140 (Design Target)  
MARKING RULE  
XC9140  
Series  
represents product series  
MARK  
PRODUCT SERIES  
XC9140A**1/2**-G  
XC9140C**1/2**-G  
SOT-25  
4
5
4
represents output voltage  
OUTPUT  
OUTPUT  
MARK  
MARK  
VOLTAGE  
VOLTAGE  
1
2
3
0
1
2
3
4
5
6
7
8
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
3.5  
3.6  
9
A
B
C
D
E
F
2.7  
2.8  
4.4  
4.5  
USP-6EL  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
4.6  
4.7  
4.8  
4.9  
5.0  
-
1
2
3
6
5
4
H
represents product function  
UVLO Release  
Voltage  
OUTPUT  
MARK  
PRODUCT SERIES  
VOLTAGE  
N
P
R
S
T
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
No UVLO  
XC9140A**1**-G  
2.15  
No UVLO  
2.15  
XC9140A**2**-G  
XC9140C**1**-G  
XC9140C**2**-G  
U
V
X
④⑤ represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
*No character inversion used.  
27/28  
XC9140 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
28/28  

相关型号:

XC9140A331MR-G

Switching Regulator, Voltage-mode, PDSO5,
TOREX

XC9140A392MR-G

Switching Regulator,
TOREX

XC9140A501MR-G

IC REG BST 5V 295MA SYNC SOT-25
TOREX

XC9140C331MR-G

Switching Regulator, Voltage-mode, PDSO5,
TOREX

XC9140C3614R-G

Switching Regulator, Voltage-mode, PDSO6,
TOREX

XC9140C3624R-G

Switching Regulator,
TOREX

XC9140C362MR-G

Switching Regulator,
TOREX

XC9140C371MR-G

Switching Regulator, Voltage-mode, PDSO5,
TOREX

XC9140C3824R-G

Switching Regulator,
TOREX

XC9140C391MR-G

Switching Regulator, Voltage-mode, PDSO5,
TOREX

XC9140C3924R-G

Switching Regulator,
TOREX

XC9140C392MR-G

Switching Regulator,
TOREX