XC9223081DL [TOREX]

Switching Regulator/Controller;
XC9223081DL
型号: XC9223081DL
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator/Controller

文件: 总21页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GO-Compatible  
Step-Down DC/DC Converters  
Built-in P-channel MOSFET : 0.21Ω  
Built-in Synchronous  
APPLICATIONS  
HDD  
Notebook computers  
CD-R / RW, DVD  
PDAs, Portable communication modems  
Digital cameras, Video recorders  
N-channel MOSFET  
: 0.23Ω  
(No Schottky Barrier Diode Required)  
Output Current  
High Efficiency  
: Up to 1A  
: 95%  
(VIN=5.0V, VOUT=3.3V)  
Various general-purpose power supplies  
Oscillation Frequency :1.0MHz, 2.0MHz  
(Small Inductor for High Frequency Selectable)  
Synchronized with an External Clock Signal  
Ceramic Capacitor Compatible  
MSOP-10, USP-10B (Preliminary) Packages  
GENERAL DESCRIPTION  
FEATURES  
The XC9223/9224 series are synchronous step-down  
DC/DC converters with a 0.21(TYP.) P-channel driver  
transistor and a synchronous 0.23(TYP.) N-channel  
switching transistor built-in. A highly efficient and stable  
current can be supplied up to 1.0A by reducing ON  
resistance of the built-in transistor.  
Input Voltage Range  
Output Voltage Range  
: 2.5V ~ 6.0V  
: 0.9V ~ VIN  
(Can be set freely with 0.8V [+2%] of  
reference voltage by the external  
resistors.)  
Oscillation Frequency  
Output Current  
: 1MHz, 2MHz (+15% accuracy)  
: 1.0A  
With a high switching frequency of 1.0MHz or 2.0MHz, a  
small inductor is selectable; therefore, the XC9223/9224  
series are ideally suited to applications with height limitation  
such as HDD or space-saving applications. Current limit  
value can be chosen either 1.5A (MIN.) when the LIM pin is  
high level, or 0.5A (MIN.) when the LIM pin is low level for  
using the power supply which current limit value differs such  
as USB or AC adapter. With the MODE/SYNC pin, the  
XC9223/9224 series provide mode selection of the fixed  
PWM control or automatically switching current limit  
PFM/PWM control. As for preventing unwanted switching  
noise, the XC9223/9224 series can be synchronized with an  
external clock signal within the range of ± 25% toward an  
Maximum Current Limit : 0.6A (MIN.) ~ 0.9A (MAX)  
with LIM pin=’L’  
: 1.2A (MIN.) ~ 2.0A (MAX.)  
with LIM pin=’H’  
Controls  
: PWM/PFM externally switching  
: Synchronized with  
an external clock signal  
: Thermal shutdown  
Protection Circuits  
: Integral latch method  
(Over current limit)  
: Short-circuit protection  
: 1ms (TYP.) internally set  
: 0.712V detect,  
Soft-Start Time  
internal clock signal via the MODE/SYNC pin.  
For  
Voltage Detector  
protection against heat damage of the ICs, the  
XC9223/9224 series build in three protection functions:  
integral latch protection, thermal shutdown, and short-circuit  
protection. With the built-in U.V.L.O. (Under Voltage Lock  
Out) function, the internal P-channel driver transistor is  
forced OFF when input voltage becomes 1.8V or lower.  
The series’ detector function monitors the discretional  
voltage by external resistors.  
N-ch open-drain output  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
Efficiency vs. Output Current  
XC9223B081Ax  
VIN=5V, FOSC=1MHz, L=4.7uH(CDRH4D28C),  
CIN=10uF(ceramic), CL=10uF(ceramic)  
100  
TYPICAL APPLICATION CIRCUIT  
90  
80  
70  
CIN  
VOUT=3.3V  
60  
VIN  
50  
PGND  
LX  
1
2
3
4
5
VIN  
10  
9
L
VOUT  
CL  
VOUT=1.5V  
VDIN  
40  
VDIN  
AGND  
CE  
30  
CFB  
CE  
8
MODE/SYNC  
LIM  
VDOUT  
MODE/  
20  
10  
0
PWM/PFM  
PWM  
VDOUT  
FB  
7
(ceramic)  
RFB1  
SYNC  
LIM  
6
1
10  
100  
1000  
RFB2  
Output Current: IOUT (mA)  
1
XC9223_9224 ETR0509_003.doc  
XC9223/9224 Series  
PIN CONFIGURATION  
FB 5  
VDOUT 4  
AGND 3  
VDIN 2  
6 LIM  
VIN 1  
VDIN 2  
AGND 3  
VDOUT 4  
FB 5  
10 PGND  
9 LX  
7 MODE/SYNC  
8 CE  
8 CE  
7 MODE/SYNC  
9 LX  
6 LIM  
VIN 1  
10 PGND  
USP-10B  
(BOTTOM VIEW)  
(Preliminary)  
MSOP-10  
(TOP VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
Input  
Voltage Detector Input  
Analog Ground  
MSOP-10  
USP-10B  
1
2
3
4
5
6
7
8
VIN  
VDIN  
AGND  
VDOUT  
FB  
VD Output  
Output Voltage Monitor  
Over Current Limit Setting  
Mode Switch / External Clock Input  
Chip Enable  
LIM  
MODE/SYNC  
CE  
9
10  
Lx  
PGND  
Switch  
Power Ground  
FUNCTION CHART  
CE Pin Function  
CE PIN  
OPERATIONAL STATE  
H
ON  
L
OFF *1  
*1: Except for a voltage detector block in the XC9224 series.  
MODE Pin Function  
MODE PIN  
FUNCTION  
PWM Control  
H
L
PWM/PFM Automatic Control  
LIM Pin Function  
LIM PIN  
FUNCTION  
H
L
Maximum Output Current: 1.0A  
Maximum Output Current: 0.4A  
2
XC9223/9224  
Series  
PACKAGE INFORMATION  
MSOP-10  
USP-10B (Preliminary)  
1
0.15+0.08  
2.9+0.15  
AAA  
AAAA  
1
3.00+0.10  
0.2+0.05  
0.45+0.05  
0.45+0.05  
0.2+0.05  
0.2+0.05  
0.125  
0.15  
0.2  
0.325 0.3 0.3  
+0.1  
(0.5)  
1 0.20  
-0.05  
0.65  
0.65  
2.5+0.1  
0.5  
0.5  
0.1+0.03  
0.1+0.03  
PRODUCT CLASSIFICATION  
Ordering Information  
XC9223B①②③④⑤ <The CE pin is commonly used in the DC/DC block and the voltage detector block.>  
XC9224B①②③④⑤ <No CE pin in the voltage detector block. (The voltage detector block is constantly operated) >  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
: Fixed voltage  
=0, =8  
0
①②  
Reference Voltage  
8
1
2
: 1.0MHz  
: 2.0MHz  
: MSOP-10  
DC/DC Oscillation Frequency  
Package  
A
D
R
L
: USP-10B (Preliminary)  
: Embossed tape, standard feed  
: Embossed tape, reverse feed  
Device Orientation  
3
XC9223/9224 Series  
MARKING RULE  
MSOP-10  
Represents products series  
10 9  
8
7
6
MARK  
0
PRODUCT SERIES  
XC9223xxxxAx  
A
XC9224xxxxAx  
① ② ③  
④ ⑤ ⑥ ⑦  
Represents type of DC/DC converters  
MARK  
B
PRODUCT SERIES  
XC9223/9224BxxxAx  
③④Represents reference voltage  
MARK  
PRODUCT SERIES  
XC9223/9224x08xAx  
1
2
3
4
5
0
8
MSOP-10  
(TOP VIEW)  
Represents oscillation frequency  
MARK  
OSCILLATION FREQUENCY  
PRODUCT SERIES  
XC9223/9224xxx1Ax  
XC9223/9224xxx2Ax  
1
2
1.0MHz  
2.0MHz  
Represents production lot number  
01 to 09, 0A to 0Z, 10 to 19, 1A~ in order. (G, I, J, O, Q, W excepted)  
Note: No character inversion used.  
4
XC9223/9224  
Series  
BLOCK DIAGRAM  
VIN  
LIM  
Current Limit  
PFM  
Error Amp.  
Comparator  
PWM  
FB  
Buffer  
Driver  
Logic  
Current  
Feedback  
LX  
Vref with  
Soft-Start,  
CE  
CE  
PGND  
AGND  
Ramp Wave  
Thermal  
MODE/  
SYNC  
PMW/PFM  
Generator,  
OSC  
Shutdown  
VD  
VDOUT  
VDIN  
ABSOLUTE MAXIMUM RATINGS  
Ta=25OC  
PARAMETER  
VIN Pin Voltage  
VDIN Pin Voltage  
VDOUT Pin Voltage  
VDOUT Pin Current  
FB Pin Voltage  
SYMBOL  
VIN  
VDIN  
VDOUT  
IDOUT  
VFB  
VLIM  
VMODE/SYNC  
VCE  
RATINGS  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
10  
UNITS  
V
V
V
mA  
V
V
V
V
V
mA  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ VDD + 0.3  
2000  
LIM Pin Voltage  
MODE/SYNC Pin Voltage  
CE Pin Voltage  
Lx Pin Voltage  
Lx Pin Current  
VLx  
ILx  
MSOP-10  
USP-10B (*2)  
350 (*1)  
150  
Power Dissipation  
Pd  
mW  
Operating Temperature Range  
Topr  
Tstg  
- 40 ~ + 85  
- 55 ~ +125  
Storage Temperature Range  
*1: When implemented on a PCB.  
*2: Preliminary  
5
XC9223/9224 Series  
ELECTRICAL CHARACTERISTICS  
XC9223/9224 Series  
Topr=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
Input Voltage  
FB Voltage  
Output Voltage Setting Range  
VIN  
VFB  
VOUTSET  
2.5  
0.784  
0.9  
-
0.800  
-
6.0  
0.816  
VIN  
V
V
V
-
1
3
Maximum Output Current 1 (*1)  
Maximum Output Current 2 (*1)  
IOUTMAX1  
IOUTMAX2  
0.4  
1.0  
-
-
-
-
A
A
3
3
FB=VFB x 0.9, VIN Voltage which Lx pin  
voltage holding ‘L’ level (*8)  
FB=VFB x 0.9, MODE/SYNC=0V  
U.V.L.O. Voltage  
Supply Current 1  
Supply Current 2  
Stand-by Current  
Oscillation Frequency  
VUVLO  
1.55  
1.80  
2.00  
V
1
2
2
2
3
IDD1  
D1-1 (*2)  
D1-2 (*2)  
D1-6 (*2)  
D1-3 (*2)  
µA  
FB=VFB x 1.1 (Oscillation stops),  
IDD2  
µA  
MODE/SYNC=0V  
ISTB  
CE=0V  
µA  
Connected to external components,  
FOSC  
MHz  
IOUT=10mA  
Connected to external components,  
IOUT=10mA, apply an external clock signal  
to the MODE/SYNC  
External Clock Signal  
SYNCOSC  
D1-4 (*2)  
MHz  
4
Synchronized Frequency  
External Clock Signal Duty  
Maximum Duty Ratio  
Minimum Duty Ratio  
SYNCDTY  
MAXDTY  
MINDTY  
25  
100  
-
-
-
-
75  
-
0
%
%
%
4
1
1
FB=VFB x 0.9  
FB=VFB x 1.1  
Connected to external components,  
PFM Switch Current  
IPFM  
-
200  
250  
mA  
3
MODE/SYNC=0V, IOUT=10mA  
Connected to external components,  
VIN=5.0V, VOUT=3.3V, IOUT=200mA  
Efficiency (*3)  
EFFI  
RLxH  
-
-
95  
-
%
3
1
Lx SW ‘H’ On Resistance (*4)  
FB=VFB x 0.9, ILx=VIN-0.05V  
0.21  
0.3 (*7)  
Lx SW ‘L’ On Resistance  
Current Limit 1  
RLxL  
ILIM1  
ILIM2  
-
0.23  
-
-
0.3 (*7)  
0.9  
2.0  
A
A
-
1
1
0.6  
1.2  
Current Limit 2  
Integral Latch Time (*5)  
Short Detect Voltage  
TLAT  
FB=VFB x 0.9, Short Lx by 1resistance  
D1-5 (*2)  
0.4  
ms  
V
1
1
VSHORT  
FB Voltage which Lx becomes ‘L’ (*8)  
0.3  
0.5  
0.5  
2.0  
Connected to external components,  
Soft-Start Time  
TSS  
1.0  
ms  
1
CE=0VVIN, IOUT=1mA  
O
Thermal Shutdown Temperature  
Hysteresis Range  
TTSD  
THYS  
-
-
150  
20  
-
-
C
-
-
O
C
FB=VFB x 0.9, Voltage which Lx becomes  
‘H’ after CE voltage changed from 0.4V to  
1.2V (*8)  
CE ‘H’ Voltage  
CE ‘L’ Voltage  
VCEH  
VCEL  
1.2  
-
-
-
-
V
V
1
1
FB=VFB x 0.9, Voltage which Lx becomes  
‘L’ after CE voltage changed from 1.2V to  
0.4V (*8)  
0.4  
MODE/SYNC ‘H’ Voltage  
MODE/SYNC ‘L’ Voltage  
LIM ‘H’ Voltage  
VMODE/SYNCH  
VMODE/SYNCL  
VLIMH  
1.2  
-
-
-
-
-
0.4  
-
V
V
V
3
3
1
1.2  
IOUT=ILIM1 x 1.1, Check LIM voltage which  
Lx oscillated after CE voltage changed  
from 1.2V to 0.4V  
LIM ‘L’ Voltage  
VLIML  
-
-
0.4  
V
1
CE ‘H’ Current  
CE ‘L’ Current  
ICEH  
ICEL  
VIN=CE-6.0V  
-
- 0.1  
-
-
-
-
-
-
-
-
-
-
-
0.1  
-
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
5
5
5
5
5
5
5
5
6
6
VIN=6.0V, CE=0V  
VIN=6.0V  
MODE/SYNC ‘H’ Current  
MODE/SYNC ‘L’ Current  
LIM ‘H’ Current  
IMODE/SYNCH  
IMODE/SYNCL  
ILIMH  
0.1  
-
VIN=6.0V, MODE/SYNC=0V  
VIN=LIM=6.0V  
- 0.1  
-
0.1  
-
LIM ‘L’ Current  
ILIML  
VIN=6.0V, LIM=0V  
VIN=FB=6.0V  
- 0.1  
-
FB ‘H’ Current  
IFBH  
0.1  
-
FB ‘L’ Current  
IFBL  
VIN=6.0V, FB=0V  
VIN=Lx=6.0V, CE=0V  
VIN=6.0V, Lx=CE=0V  
- 0.1  
-
Lx SW ‘H’ Leak Current  
Lx SW ‘L’ Leak Current (*6)  
ILeakH  
1.0  
-
ILeakL  
- 3.0  
6
XC9223/9224  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9223/9224 Series (Continued), Voltage Detector Block  
Topr=25℃  
PARAMETER  
Detect Voltage  
Release Voltage  
SYMBOL  
CONDITIONS  
MIN.  
0.676  
0.716  
TYP.  
0.712  
0.752  
MAX.  
UNIT CIRCUIT  
VDIN Voltage which VDOUT becomes  
‘H’ to ‘L’, Pull-up resistor 200kΩ  
VDIN Voltage which VDOUT becomes  
‘L’ to ‘H’, Pull-up resistor 200kΩ  
VDF  
0.744  
0.784  
V
V
7
7
VDR  
Hysteresis Range  
Output Current  
VHYS  
IDOUT  
VHYS=(VDR-VDF) / VDF x 100  
-
5
-
-
%
-
VDIN=VDF x 0.9, apply 0.25V to VDOUT  
2.5  
4.0  
mA  
7
Time until VDOUT becomes ‘L’ to ‘H’ after  
Delay Time  
TDLY  
0.5  
2.0  
8.0  
ms  
7
VDIN changed from 0V to 1.0V  
VDIN ‘H’ Current  
VDIN ‘L’ Current  
VDOUT ‘H’ Current  
VDOUT ‘L’ Current  
IVDINH  
IVDINL  
VIN=VDIN=6.0V  
-
-
-
-
-
0.1  
-
µA  
µA  
µA  
µA  
5
5
5
5
VIN=6.0V, VDIN=0V  
- 0.1  
-
IVDOUTH  
IVDOUTL  
VIN=VDIN=VDOUT=6.0V  
VIN=VDIN=6.0V, VDOUT=0V  
1.0  
-
- 1.0  
Test Condition: Unless otherwise stated, VIN=3.6V, CE=VIN, MODE/SYNC=VIN  
NOTE:  
*1: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*2: Refer to the chart below.  
*2: EFFI = { ( output voltage x output current ) / ( input voltage x input current) } x 100  
*4: On resistance ()= (VIN- Lx pin measurement voltage) / 100mA  
*5: Time until it short-circuits Lx with GND through 1of resistance from a state of operation and is set to Lx=Low from current limit pulse  
generating.  
*6: When temperature is high, a current of approximately 100µA may leak.  
*7: Designed value.  
*8: Whether the Lx pin is high level or low level is judged at the condition of “H”>VIN-0.1V and “L”<0.05V.  
Electrical Characteristics Standard Values  
1MHz  
TYP.  
380  
30  
1.00  
2MHz  
TYP.  
440  
45  
No.  
PARAMETER  
SYMBOL  
MIN.  
-
-
MAX.  
700  
60  
MIN.  
-
-
MAX.  
800  
80  
D1-1  
D1-2  
D1-3  
Supply Current 1  
Supply Current 2  
Oscillation Frequency  
IDD1  
IDD2  
FOSC  
0.85  
1.15  
1.7  
2.0  
2.3  
External Clock  
Synchronous Oscillation  
Integral Latch Time  
D1-4  
D1-5  
SYNCOSC  
TLAT  
0.75  
-
-
1.25  
15  
1.5  
-
-
2.5  
15  
6.0  
3.0  
XC9223 SERIES  
XC9224 SERIES  
No.  
PARAMETER  
SYMBOL  
ISTB  
MIN.  
TYP.  
0.1  
MAX.  
MIN.  
TYP.  
7.0  
MAX.  
D1-6  
Stand-by Current  
-
2.0  
-
15  
7
XC9223/9224 Series  
TYPICAL APPLICATION CIRCUITS  
CIN  
VIN  
PGND  
LX  
1
2
3
4
5
VIN  
10  
9
L
VOUT  
CL  
VDIN  
VDIN  
AGND  
CE  
CFB  
CE  
8
MODE/SYNC  
LIM  
VDOUT  
MODE/  
VDOUT  
FB  
7
(ceramic)  
RFB1  
SYNC  
6
LIM  
RFB2  
<Output Voltage Setting>  
Output voltage can be set by adding external split resistors. Output voltage is determined by the following equation,  
based on the values of RFB1 and RFB2. The sum of RFB1 and RFB2 should normally be 1Mor less.  
VOUT = 0.8 x (RFB1 + RFB2) / RFB2  
The value of CFB, speed-up capacitor for phase compensation, should be fzfb = 1 / (2 x π CFB1 x RFB1) which is equal to  
20kHz. Adjustments are required from 1kHz to 50kHz depending on the application, value of inductance (L), and value of  
load capacity (CL).  
[Example of calculation]  
When RFB1=470k, RFB2=150k,  
VOUT1 = 0.8 x (470k + 150k) / 150k =3.3V  
[Typical example]  
VOUT (V)  
1.0  
CFB (pF)  
110  
51  
VOUT (V)  
2.5  
CFB (pF)  
15  
RFB1 (k)  
75  
RFB2 (k)  
300  
RFB1 (k)  
510  
RFB2 (k)  
240  
1.2  
150  
300  
3.0  
330  
120  
24  
1.5  
1.8  
130  
300  
150  
240  
62  
27  
3.3  
5.0  
470  
430  
150  
82  
18  
18  
* When fzfb = 20kHz  
[External components]  
1MHz:  
L: 4.7uH (CDRH4D28C, SUMIDA)  
CL: 10uF (ceramic)  
CIN: 10uF (ceramic)  
2MHz:  
L: 2.2uH (CDRH4D28, SUMIDA)  
2.2uH (VLCF4020T-2R2N1R7, TDK)  
CL: 10uF (ceramic)  
CIN: 10uF (ceramic)  
* As for CIN and CL, use output capacitors of 10μF or more. (Ceramic capacitor compatible)  
* High ESR (Equivalent Series Resistance) that comes by using a tantalum or an electrolytic capacitor causes high ripple voltage.  
Furthermore, it can cause an unstable operation. Use the IC after you fully confirm with an actual device.  
8
XC9223/9224  
Series  
OPERATIONAL EXPLANATION  
Each unit of the XC9223/9224 series consists of a reference voltage source, a ramp wave circuit, error amplifier, PWM  
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel  
MOS synchronous rectification switching transistor, current limiter circuit, U.V.L.O. circuit and others. The series  
compares, using the error amplifier, the internal reference voltage to the VOUT pin with the voltage fedback via resistors RFB1  
and RFB2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM  
comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage  
level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to  
the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to  
ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each  
switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a  
stable feedback loop even when a low ESR capacitor, such as a ceramic capacitor, is used, ensuring stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.0MHz  
and 2.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and  
to synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal resistors (RFB1 and RFB2). When a voltage lower than the reference voltage is fed back, the  
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are  
fixed internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XC9223/9224 series monitors the current flowing through the P-channel MOS driver  
transistor connected to the Lx pin, and features a combination of the constant-current type current limit mode and the  
operation suspension mode. For the current limit values, please select the values either from 1.2A (MIN.) when the LIM  
pin is high level or 0.6A (MIN.) when the LIM pin is low level.  
1When the driver current is greater than a specific level, the constant-current type current limit function operates to turn  
off the pulses from the Lx pin at any given time.  
2When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
3At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an  
over current state.  
4 When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps 1 through 3. If an over current state continues for  
several msec and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of  
the driver transistor, and goes into operation suspension mode. After being put into suspension mode, the IC can resume  
operation by turning itself off once and then starting it up using the CE pin, or by restoring power to the VIN pin. Integral  
latch time may be released from a current limit detection state because of the noise. Depending on the state of a substrate,  
it may result in the case where the latch time may become longer or the operation may not be latched. Please locate an  
input capacitor as close as possible.  
Limit < # mS  
Limit > # mS  
Current Limit LEVEL  
0mA  
IOUT  
VOUT  
LX  
VSS  
CE  
Restart  
VIN  
9
XC9223/9224 Series  
OPERATIONAL EXPLANATION (Continued)  
<Thermal Shutdown>  
For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal  
shutdown circuit starts operating and the driver transistor will be turned off when the chip’s temperature reaches 150OC.  
When the temperature drops to 130OC or less after shutting of the current flow, the IC performs the soft start function to  
initiate output startup operation.  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors FB voltage. In case where output is accidentally shorted to the Ground and  
when the FB voltage decreases less than half of the FB voltage, the short-circuit protection operates to turn off and to  
latch the driver transistor. In latch mode, the operation can be resumed by either turning the IC off and on via the CE pin,  
or by restoring power supply to the VIN pin.  
<Voltage Detector>  
The detector block of the XC9223/9224 series detects a signal inputted from the VDIN pin by the VDOUT pin (N-ch  
open-drain).  
<U.V.L.O. Circuit>  
When the VIN pin voltage becomes 1.8V (TYP.) or lower, the driver transistor is forced OFF to prevent false pulse output  
caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 2.0V (TYP.) or higher, switching  
operation takes place. By releasing the U.V.L.O. function, the IC performs the soft-start function to initiate output startup  
operation. The U.V.L.O. function operates even when the VIN pin voltage falls below the U.V.L.O. operating voltage for  
tens of ns.  
<MODE/SYNC>  
A MODE/SYNC pin has two functions, a MODE switch and an input of external clock signal. The MODE/SYNC pin  
operates as the PWM mode when applying high level of direct current and the PFM/PWM automatic switching mode by  
applying low level of direct current, which is the same function as the normal MODE pin. By applying the external clock  
signal (±25% of the internal clock signal, ON duty 25% to 75%), the MODE/SYNC pin switches to the internal clock signal.  
Also the circuit will synchronize with the falling edge of external clock signal. While synchronizing with the external clock  
signal, the MODE/SYNC pin becomes the PWM mode automatically. If the MODE/SYNC pin holds high or low level of the  
external clock signal for several µS, the MODE/SYNC pin stops synchronizing with the external clock and switches to the  
internal clock operation. (Refer to the chart below.)  
External Clock Synchronization Function  
VOUT  
50mV/div  
Synchronous with the  
external clock  
Operates by the  
internal clock  
1.2MHz  
1MHz  
Lx  
2V/div  
External Clock Signal  
1.2MHz Duty50%  
MODE/SYNC  
2V/div  
Delay time to the external clock synchronization  
1.0μs/div  
* When an input of MODE/SYNC is changed from “L” voltage into a clock signal of 1.2MHz and 50% duty.  
10  
XC9223/9224  
Series  
NOTES ON USE  
1. The XC9223/9224 series is designed for use with ceramic output capacitors. If, however, the potential difference between  
dropout voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on  
the output. In this case, use a larger capacitor etc. to compensate for insufficient capacitance.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
3. In PWM control, very narrow pulses will be outputted, and there is the possibility that some cycles may be skipped  
completely. This may happens while synchronizing with an external clock.  
4. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that some cycles may be skipped completely.  
5. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operating, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate  
the peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x FOSC) + IDOUT  
L: Coil Inductance Value  
FOSC: Oscillation Frequency  
6. When the peak current, which exceeds limit current, flows within the specified time, the built-in P-ch driver transistor is  
turned off (an integral latch circuit). During the time until it detects limit current and before the built-in transistor can be  
turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the coil.  
7. The voltage drops because of ON resistance of a driver transistor or in-series resistance of a coil. For this, the current  
limit may not be attained to the limit current value, when input voltage is low.  
8. Malfunction may occur in the U.V.L.O. circuit because of the noise when pulling current at the minimum operation voltage.  
9. This IC and the external components should be used within the stated absolute maximum ratings in order to prevent  
damage to the device.  
10. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. The board  
should be laid out so that capacitors are placed as close to the chip as possible.  
11. In heavy load, the noise of DC/DC may influence and the delay time of the voltage detector may be prolonged.  
12. Output voltage may become unstable when synchronizing high internal frequency with the external clock.  
In such a case, please use a larger output capacitor etc. to compensate for insufficient capacitance.  
13. When a voltage lower than minimum operating voltage is applied, the output voltage may fall before reaching the over  
current limit.  
14. When the IC is used in high temperature, output voltage may increase up to input voltage level at light load (less than  
100uA) because of the leak current of the driver transistor.  
15. The current limit is set to LIM=H: 2000mA (MAX.). However, the current of 2000mA or more may flow. In case that the  
current limit functions while the VOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference  
for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast,  
when N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the VOUT pin is shorted to  
the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this  
operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the  
amount of current, which is supposed to be limited originally. The short protection does not operate during the soft-start  
time. The short protection starts to operate and the circuit will be disabled after the soft-start time. Current larger than  
over current limit may flow because of a delay time of the IC when step-down ratio is large. A coil should be used within  
the stated absolute maximum rating in order to prevent damage to the device.  
Current flows into P-ch MOSFET to reach the current limit (ILIM).  
The current of ILIM (2000mA, MAX.) or more flows since the delay time of the circuit occurs during from the detection of  
the current limit to OFF of P-ch MOSFET.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several msec.  
The short protection operates, stopping its operation.  
#ms  
Delay  
VLX  
Overcurrent  
Limit Value  
ILX  
Coil Current)  
11  
XC9223/9224 Series  
TEST CIRCUITS  
Circuit 2  
Circuit 1  
Waveform Measurement Point  
A
VIN  
CE  
LX  
FB  
ILx  
LX  
A
VIN  
CE  
MODE/  
SYNC  
ILIM  
1uF  
MODE/  
FB  
1uF  
SYNC  
ILIM  
V
VDIN  
VDOUT  
AGND  
VDIN  
PGND  
VDOUT  
AGND  
PGND  
Circuit 3  
Waveform Measurement Point  
L
IOUT  
LX  
VIN  
CE  
A
A
RFB1  
RFB2  
V
CFB  
V
MODE/  
SYNC  
ILIM  
FB  
CIN  
CL  
VDOUT  
AGND  
VDIN  
V
PGND  
* External Components  
L (1MHz) : 4.7μH (CDRH4D28C, SUMIDA)  
L (2MHz) : 2.2μH (VLCF4020T-2R2N1R7, TDK)  
ꢀꢀCIN : 10μF (ceramic)  
ꢀꢀCL : 10μF (ceramic)  
ꢀꢀRFB1 : 130kΩ  
ꢀꢀRFB2 : 150kΩ  
ꢀꢀCFB : 62pF (ceramic)  
Circuit 4  
Waveform Measurement Point  
L
IOUT  
VIN  
CE  
LX  
RFB1  
RFB2  
CFB  
MODE/  
SYNC  
ILIM  
FB  
CL  
CIN  
VDIN  
VDOUT  
AGND  
PULSE  
PGND  
* External Components  
L (1MHz) : 4.7μH (CDRH4D28C, SUMIDA)  
L (2MHz) : 2.2μH (VLCF4020T-2R2N1R7, TDK)  
ꢀꢀCIN : 10μF (ceramic)  
ꢀꢀCL : 10μF (ceramic)  
ꢀꢀRFB1 : 130kΩ  
ꢀꢀRFB2 : 150kΩ  
ꢀꢀCFB : 62pF (ceramic)  
12  
XC9223/9224  
Series  
TEST CIRCUITS (Continued)  
Circuit 5  
LX  
FB  
VIN  
CE  
MODE/  
SYNC  
ILIM  
A
A
A
A
A
1μF  
A
A
VDOUT  
AGND  
VDIN  
PGND  
Circuit 6  
LX  
FB  
VIN  
CE  
MODE/  
SYNC  
ILIM  
A
1μF  
VDOUT  
VDIN  
AGND  
PGND  
Circuit 7  
LX  
FB  
VIN  
CE  
MODE/  
SYNC  
ILIM  
1μF  
200kΩ  
A
VDIN  
VDOUT  
PGND  
AGND  
Waveform Measurement Point  
13  
XC9223/9224 Series  
INSTRUCTION ON LAYOUT  
1. In order to stabilize VIN’s voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as  
possible to the VIN & VSS pins.  
2. Please mount each external component, especially CIN, as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high  
ground currents at the time of switching may result in instability of the IC.  
TOP VIEW  
VIN  
VDIN  
VOUT  
VDOUT  
R
C
RFB1  
CFB  
R
Inductor  
L
RFB2  
LO  
ILIM  
HI  
IC  
0
0
R
C
Jumper Chip  
Resistor  
Lx  
L
MODE/  
SYN  
Ceramic Capaticor  
VSS  
TOREX  
BOTTOM VIEW  
XC9223/24  
Rev.2.0  
MSOP10  
14  
XC9223/9224  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9223B082Ax  
XC9223B081Ax  
VIN=5V, FOSC=2MHz, L=2.2uH(CDRH4D28),  
VIN=5V, FOSC=1MHz, L=4.7uH(CDRH4D28C),  
CIN=10uF(ceramic), CL=10uF(ceramic)  
CIN=10uF(ceramic), CL=10uF(ceramic)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=3.3V  
VOUT=1.5V  
VOUT=3.3V  
VOUT=1.5V  
PWM/PFM  
PWM  
PWM/PFM  
PWM  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
XC9223B081Ax  
XC9223B082Ax  
VIN=3.3V, FOSC=2MHz, L=2.2uH(CDRH4D28),  
CIN=10uF(ceramic), CL=10uF(ceramic)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=2.5V  
VOUT=1.5V  
VOUT=2.5V  
VOUT=1.5V  
PWM/PFM  
PWM  
PWM/PFM  
PWM  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(2) Output Voltage vs. Output Current  
XC9223B081Ax  
XC9223B082Ax  
VIN=5.0V, Topr=25oC, L:4.7uH(CDRH4D28C),  
CIN=10uF(ceramic),CL=10uF(ceramic)  
VIN=5.0V,Topr=25oC, L:4.7uH(CDRH4D28C),  
CIN=10uF(ceramic),CL=10uF(ceramic)  
1.6  
1.55  
1.5  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
PWM Control  
PWM Control  
1.45  
1.4  
PWM/PFM Automatic Switching Control  
PWM/PFM Automatic Switching Control  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
15  
XC9223/9224 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current (Continued)  
XC9223B082Ax  
XC9223B081Ax  
VIN=3.3V,Topr=25oC, L:4.7uH(CDRH4D28C),  
CIN=10uF(ceramic), CL=10uF(ceramic)  
VIN=3.3V,Topr=25oC, L:4.7uH(CDRH4D28C),  
CIN=10uF(ceramic),CL=10uF(ceramic)  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
1.6  
1.55  
1.5  
PWM Control  
PWM Control  
PWM/PFM Automatic Switching Control  
1.45  
1.4  
PWM/PFM Automatic Switching Control  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(3) Oscillation Frequency vs. Ambient Temperature  
(4) U.V.L.O. Voltage vs. Ambient Temperature  
XC9223/24 Series  
XC9223/24 Series  
1.40  
2.8  
2.8  
2.6  
UVLO2  
1MHz  
1.20  
2.4  
2
2.4  
2.2  
2.0  
1.8  
1.00  
2MHz  
0.80  
1.6  
1.2  
1.6  
1.4  
UVLO  
-25  
0.60  
-50  
-25  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
Ambient Temperature : Ta (oC)  
Ambient Temperature : Ta (oC)  
(5) Supply Current 2 vs. Input Voltage  
XC9223/9424 Series (1MHz)  
XC9223/24 Series (2MHz)  
CE=FB=VIN, MODE=0V  
CE=FB=VIN, MODE=0V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
2
3
4
5
6
7
2
3
4
5
6
7
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
16  
XC9223/9224  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(6) Soft Start Time  
XC9223/24 Series  
XC9223/24 Series  
VIN=5.0V,VOUT=3.3V,CE=0 5V  
VIN=5.0V,VOUT=1.5V,CE=0 5V  
IOUT=1mA,MODE=VIN  
IOUT=1mA,MODE=0V  
CE : 5V/div  
CE : 5V/div  
VOUT : 1V/div  
VOUT : 1V/div  
500usec/div  
500usec/div  
(7) FB Voltage vs. Supply Voltage  
XC9223/9424 Series  
IOUT=0.1mA,Topr=25oC  
0.816  
0.808  
0.800  
0.792  
0.784  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
Input Voltage: VIN (V)  
17  
XC9223/9224 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) Load Transient Response  
XC9223B081Ax <1MHz>  
VIN=5.0V, VOUT=3.3V, MODE/SYNC=VIN (PWM control)  
L=4.7uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
500usec/div  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=800mA  
IOUT=800mA  
IOUT=200mA  
IOUT=200mA  
50usec/div  
500usec/div  
VIN=5.0V, VOUT=3.3V, MODE/SYNC=0V (PWM/PFM automatic switching control)  
L=4.7uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
500usec/div  
18  
XC9223/9224  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) Load Transient Response (Continued)  
XC9223B081Ax <1MHz> (Continued)  
VIN=5.0V, VOUT=1.5V, MODE/SYNC=VIN (PWM control)  
L=4.7uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
200usec/div  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=800mA  
IOUT=800mA  
IOUT=200mA  
IOUT=200mA  
50usec/div  
200usec/div  
VIN=5.0V, VOUT=1.5V, MODE/SYNC=0V (PWM/PFM automatic switching control)  
L=4.7uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
200usec/div  
19  
XC9223/9224 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) Load Transient Response (Continued)  
XC9223B082Ax <2MHz>  
VIN=5.0V, VOUT=3.3V, MODE/SYNC=VIN (PWM control)  
L=2.2uH (CDRH4D28), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
500usec/div  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=800mA  
IOUT=800mA  
IOUT=200mA  
IOUT=200mA  
500usec/div  
50usec/div  
VIN=5.0V, VOUT=3.3V, MODE/SYNC=0V (PWM/PFM automatic switching control)  
L=2.2uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
500usec/div  
20  
XC9223/9224  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) Load Transient Response (Continued)  
XC9223B082Ax <2MHz> (Continued)  
VIN=5.0V, VOUT=1.5V, MODE/SYNC=VIN (PWM control)  
L=2.2uH (CDRH4D28), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
50usec/div  
200usec/div  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=800mA  
IOUT=800mA  
IOUT=200mA  
IOUT=200mA  
50usec/div  
200usec/div  
VIN=5.0V, VOUT=1.5V, MODE/SYNC=0V (PWM/PFM automatic switching control)  
L=2.2uH (CDRH4D28C), CIN=10uF (ceramic), CL=10uF (ceramic), Topr=25OC  
VOUT:200mV/div  
VOUT:200mV/div  
IOUT=200mA  
IOUT=200mA  
IOUT=1mA  
IOUT=1mA  
200usec/div  
50usec/div  
21  

相关型号:

XC9223081DR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223082AL

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223082AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01AL

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01AR

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01DL

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01DR

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01SL

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B01SR

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B02AL

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B02AR

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9223B02DL

1A Driver Transistor Built-In Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX