XC9235A18DMR-G [TOREX]

IC REG BCK 1.8V 0.6A SYNC SOT-25;
XC9235A18DMR-G
型号: XC9235A18DMR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

IC REG BCK 1.8V 0.6A SYNC SOT-25

文件: 总33页 (文件大小:1132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9235/XC9236/XC923
7
Series  
ETR0514-016  
600mA Driver Tr. Built-In, Synchronous Step-Down DC/DC Converters  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XC9235/XC9236/XC9237 series is a group of synchronous-rectification type DC/DC converters with a built-in 0.42Ω P-  
channel MOS driver transistor and 0.52Ω N-channel MOS switching transistor, designed to allow the use of ceramic capacitors.  
Operating voltage range is from 2.0V to 6.0V (A~C types), 1.8V to 6.0V (D~G types). For the D/F types which have a reference  
voltage of 0.8V (accuracy:±2.0%), the output voltage can be set from 0.9V by using two external resistors. The A/B/C/E/G types  
have a fixed output voltage from 0.8V to 4.0V in increments of 0.05V (accuracy:±2.0%). The device provides a high efficiency,  
stable power supply with an output current of 600mA to be configured using only a coil and two capacitors connected externally.  
With the built-in oscillator, either 1.2MHz or 3.0MHz can be selected for suiting to your particular application. As for operation  
mode, the XC9235 series is PWM control, the XC9236 series is automatic PWM/PFM switching control and the XC9237 series  
can be manually switched between the PWM control mode and the automatic PWM/PFM switching control mode, allowing fast  
response, low ripple and high efficiency over the full range of loads (from light load to heavy load).  
The soft start and current control functions are internally optimized. During stand-by, all circuits are shutdown to reduce current  
consumption to as low as 1.0μA or less. The B/F/G types have a high speed soft-start as fast as 0.25ms in typical for quick turn-  
on. With the built-in UVLO function, the internal P-channel MOS driver transistor is forced OFF when input voltage becomes 1.4V  
or lower.  
The B to G types integrate CL  
discharge function which enables the electric charge at the output capacitor CL to be discharged  
via the internal discharge switch located between the LX and VSS pins. When the devices enter stand-by mode, output voltage  
quickly returns to the VSS level as a result of this function.  
Four types of package SOT-25, USP-6C, USP-6EL and WLP-5-03 are available.  
APPLICATIONS  
FEATURES  
Smart phones / Mobile phones  
Bluetooth  
Driver Transistor Built-In  
: 0.42Ω P-ch driver transistor  
0.52Ω N-ch switch transistor  
: 2.0V ~ 6.0V (A/B/C types)  
1.8V ~ 6.0V (D/E/F/G types)  
: 0.8V ~ 4.0V (Internally set)  
0.9V ~ 6.0V (Externally set)  
: 92% (TYP.)*  
Input Voltage  
Mobile devices / terminals  
Portable game consoles  
Digital still cameras / Camcorders  
Note PCs / Tablet PCs  
Output Voltage  
High Efficiency  
Output Current  
: 600mA  
Oscillation Frequency  
Maximum Duty Cycle  
Control Methods  
: 1.2MHz, 3.0MHz (+15%)  
: 100%  
: PWM (XC9235)  
PWM/PFM Auto (XC9236)  
PWM/PFM Manual (XC9237)  
: Current Limiter Circuit Built-In  
(Constant Current & Latching)  
CL Discharge (B/C/D/E/F/G types)  
High Speed Soft Start (B/F/G type)  
: Low ESR Ceramic Capacitor  
:-40~ +85℃  
TYPICAL APPLICATION CIRCUIT  
Function  
XC9235/XC9236/XC9237  
A/B/C/E/G types (Output Voltage Fixed)  
Capacitor  
Operating Ambient Temperature  
Packages  
VOUT  
600mA  
L
V
IN  
Lx  
V
IN  
: SOT-25 (A/B/C types only)  
USP-6C  
VSS  
VSS  
CIN  
(ceramic)  
USP-6EL (A/B/C/G types only)  
WLP-5-03 (A/B types only)  
: EU RoHS Compliant, Pb Free  
C
L
CE/  
MODE  
VOUT  
(ceramic)  
CE/MODE  
Environmentally Friendly  
* Performance depends on external components and wiring on the PCB.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs. Output Current (fOSC=1.2MHz, VOUT=1.8V)  
XC9235/XC9236/XC9237  
D/F types (Output Voltage Externally Set)  
PWM/PFM Automatic Sw itching Control  
100  
90  
80  
VOUT  
L
VIN= 4.2V  
70  
600mA  
V
IN  
V
IN  
Lx  
PWM Control  
VIN= 4.2V  
3.6V  
2.4V  
3.6V  
2.4V  
60  
50  
40  
30  
20  
10  
0
VSS  
VSS  
C
IN  
RFB1  
RFB2  
C
(ceramic)  
L
CFB  
(ceramic)  
CE/  
MODE  
FB  
CE/MODE  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
1/40  
XC9235/XC9236/XC9237
Series  
BLOCK DIAGRAM  
XC9235 / XC9236 / XC9237 A Series  
XC9235 / XC9236 / XC9237 B/C/E/G  
Phase  
Compensation  
Phase  
Compensation  
Current Feedback  
Current Limit  
Current Feedback  
Current Limit  
VOUT  
VOUT  
CFB  
CFB  
Error Amp.  
R2  
R2  
R1  
Error Amp.  
PWM  
Comparator  
PWM  
Comparator  
Synch  
Buffer  
Drive  
Synch  
Buffer  
Drive  
FB  
FB  
Logic  
Logic  
R1  
Lx  
Lx  
VSHORT  
VSHORT  
VIN  
VIN  
Vref with  
Soft Start,  
CE  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
PWM/PFM  
Selector  
CE/  
Ramp Wave  
UVLO Cmp  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
Generator  
OSC  
UVLO  
R3  
R4  
UVLO  
R3  
R4  
VSS  
VSS  
CE/MODE  
Control  
Logic  
CE/MODE  
Control  
Logic  
CE/MODE  
CE/MODE  
XC9235 / XC9236 / XC9237 D/F Series  
Phase  
Compensation  
Current Feedback  
Current Limit  
FB  
Error Amp.  
PWM  
Comparator  
Synch  
Buffer  
Drive  
FB  
Logic  
Lx  
VSHORT  
VIN  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
CE/  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
UVLO  
R3  
R4  
VSS  
CE/MODE  
Control  
Logic  
CE/MODE  
NOTE: The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "L" level inside,  
and XC9235 series chooses only PWM control.  
The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "H" level inside,  
and XC9236 series chooses only PWM/PFM automatic switching control.  
Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
2/33  
XC9235/XC9236/XC9237  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
(
(
(
)
)
)
*1  
*1  
*1  
XC9235①②③④⑤⑥-⑦  
XC9236①②③④⑤⑥-⑦  
XC9237①②③④⑤⑥-⑦  
Fixed PWM control  
PWM / PFM automatic switching control  
Fixed PWM control PWM / PFM automatic switching manual selection  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
B
C
E
G
D
F
VIN2.0V, No CL discharge, Low speed soft-start  
VIN2.0V, CL discharge, High speed soft-start  
VIN2.0V, CL discharge, Low speed soft-start  
VIN1.8V, CL discharge, Low speed soft-start  
VIN1.8V, CL discharge, High speed soft-start  
VIN1.8V, CL discharge, Low speed soft-start  
VIN1.8V, CL discharge, High speed soft-start  
Fixed Output voltage (VOUT  
)
Functional selection  
Adjustable Output voltage (FB)  
Functional selection  
Output voltage options  
e.g. VOUT=2.8V→②=2, =8  
Fixed Output Voltage (VOUT  
)
08 ~ 40  
VOUT=2.85V→②=2, =L  
②③  
0.05V increments: 0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E,  
0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M  
Reference voltage is fixed in 0.8V  
=0, =8  
Adjustable Output Voltage  
(FB)  
08  
C
1.2MHz  
3.0MHz  
Oscillation Frequency  
D
MR  
MR-G  
ER  
SOT-25(*2) (3,000pcs/Reel)  
SOT-25(*2) (3,000pcs/Reel)  
USP-6C (3,000pcs/Reel)  
USP-6C (3,000pcs/Reel)  
USP-6EL(*4) (3,000pcs/Reel)  
WLP-5-03 (*3) (3,000pcs/Reel)  
Packages  
⑤⑥-⑦  
(Order Unit)  
ER-G  
4R-G  
0R-G  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
(*2) SOT-25 package are available for the A/B/C series only.  
(*3) WLP-5-03 package is available for the A/B series only.  
(*4) USP-6EL package are available for the A/B/C/G series only.  
3/33  
XC9235/XC9236/XC9237
Series  
PIN CONFIGURATION  
Lx  
VOUT  
5
4
VIN  
VSS  
6
5
4
1
2
3
Lx  
VIN  
VSS  
6
5
4
1
2
3
Lx  
VSS  
VSS  
VOUT  
CE/MODE  
VOUT (FB)  
CE/MODE  
1
2
3
VIN  
VSS CE/MODE  
SOT-25  
(Top View)  
USP-6C  
(BOTTOM VIEW)  
USP-6EL  
(BOTTOM VIEW)  
1
2
4
CE/MODE  
VIN  
VOUT  
Lx  
* Please short the VSS pin (No. 2 and 5).  
* The dissipation pad for the USP-6C/USP-6EL packages should be solder-  
plated in recommended mount pattern and metal masking so as to enhance  
mounting strength and heat release. We recommend keeping the dissipation pas  
electrically isolated from the other Pins. If the pad needs to be connected to other  
pins, it should be connected to the VSS (No. 5) pin.  
5
VSS  
3
WLP-5-03  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
SOT-25  
USP-6C/USP-6EL  
WLP-5-03  
1
2
3
6
2, 5  
4
2
3
1
VIN  
VSS  
Power Input  
Ground  
CE / MODE  
VOUT  
High Active Enable / Mode Selection Pin  
Fixed Output Voltage Pin (A/B/C/E/G types)  
Output Voltage Sense Pin (D/F types)  
Switching Output  
4
5
3
1
4
5
FB  
Lx  
FUNCTION  
OPERATIONAL STATES  
XC9237  
OPERATIONAL STATES  
CE/MODE  
H Level (*3)  
CE/MODE  
XC9235  
XC9236  
Synchronous  
PWM/PFM  
Automatic Switching  
Synchronous PWM Fixed Control  
Stand-by  
Synchronous  
PWM Fixed  
Control  
Synchronous  
PWM/PFM  
Automatic Switching  
H Level (*1)  
L Level (*2)  
M Level (*4)  
L Level (*5)  
Stand-by  
Stand-by  
CE/MODE pin voltage level range  
(*1) H Level VIN 0.65V H Level 6.0V  
(*2) L Level 0V L Level 0.25V  
(*3) H Level VIN - 0.25V H Level 6.0V  
(*4) M Level 0.65V M Level VIN - 1.0V  
(*5) L Level 0V L Level 0.25V  
(*6) For XC9235 / XC9236 / XC9237B ~ G types, the internal resistance turns on during standby.  
Discharge the CL charge through the CL discharge resistor.  
(*7) Please do not leave the CE/MODE pin open.  
4/33  
XC9235/XC9236/XC9237  
Series  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
SYMBOL  
VIN  
RATINGS  
- 0.3 ~ 6.5  
- 0.3 ~ VIN + 0.3  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
±1500  
UNIT  
V
Lx Pin Voltage  
VLX  
V
VOUT Pin Voltage  
FB Pin Voltage  
VOUT  
VFB  
V
V
CE/MODE Pin Voltage  
Lx Pin Current  
VCE/MODE  
ILx  
V
mA  
250  
SOT-25  
600 (40mm x 40mm Standard board)(*1)  
760 (JESD51-7 board)(*1)  
120  
Power  
Dissipation  
(Ta=25)  
USP-6C  
Pd  
1000 (40mm x 40mm Standard board )(*1)  
1250 (JESD51-7 board(*1)  
120  
1000 (40mm x 40mm Standard board )(*1)  
750 (40mm x 40mm Standard board )(*1)  
- 40 ~ + 85  
mW  
USP-6EL  
WLP-5-03  
Operating Ambient Temperature  
Storage Temperature  
(*1) The power dissipation figure shown is PCB mounted and is for reference only.  
Topr  
Tstg  
OC  
OC  
- 55 ~ + 125  
Please refer to PACKAGING INFORMATION for the mounting condition.  
5/33  
XC9235/XC9236/XC9237
Series  
ELECTRICAL CHARACTERISTICS  
XC9235A18Cxx/XC9236A18Cxx/XC9237A18Cxx, VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.0  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
VIN=VOUT(E)+2.0V, VCE=1.0V,  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE =VIN, VOUT=0V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current  
IDD  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
-
-
15  
0
33  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
1020  
120  
1200  
160  
1380  
200  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =VIN, IOUT=1mA (*12)  
IPFM  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM VCE=VIN=(C-1), IOUT=1mA (*12)  
200  
300  
%
%
%
DMAX  
DMIN  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
100  
-
-
-
-
0
When connected to external components,  
VCE=VIN=VOUT(E)+1.2V, IOUT=100mA  
Efficiency (*2)  
EFFI  
-
92  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*10)  
RLxH  
RLxH  
VIN=VCE=5.0V, VOUT=0V, ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
RLxL  
-
Ω
RLxL  
VIN=VCE=3.6V (*4)  
-
Ω
ILEAKH  
ILEAKL  
ILIM  
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VOUT=5.0V, VCE=0V, Lx=5.0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
-
-
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△Topr)  
VOUT/  
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
Voltage changes Lx to “H” level (*11)  
VOUT=0V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
,
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes 1020 kHzfOSC1380kHz (*13)  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC1020kHz (*13)  
VIN  
0.25  
-
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V  
VIN=5.0V, VCE=0V, VOUT=0V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
1.0  
-
2.5  
ms  
ms  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
,
tLAT  
20.0  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage  
VSHORT  
0.675 0.900 1.150  
V
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage  
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
6/33  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9235A18Dxx/XC9236A18Dxx/XC9237A18Dxx, VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.0  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
VIN=VOUT(E)+2.0V, VCE=1.0V,  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE=VIN, VOUT=0V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1,*11)  
Supply Current  
IDD  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=VIN, IOUT=1mA (*12)  
IPFM  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM VCE=VIN=(C-1), IOUT=1mA (*12)  
-
100  
-
200  
300  
%
%
%
DMAX  
DMIN  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
-
-
-
VIN=VCE=5.0V, VOUT=VOUT(E)×0.1V  
0
When connected to external components,  
VCE=VINVOUT(E)+1.2V, IOUT=100mA  
VIN=VCE=5.0V, VOUT =0V, ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT =0V, ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
Efficiency (*2)  
EFFI  
-
86  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*10)  
RLxH  
RLxH  
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
RLxL  
-
Ω
RLxL  
VIN=VCE=3.6V (*4)  
-
Ω
-
ILEAKH  
ILEAKL  
ILIM  
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VOUT=5.0V, VCE=0V, Lx=5.0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
-
-
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△Topr)  
VOUT/  
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
Voltage changes Lx to “H” level (*11)  
VOUT=0V, Applied voltage to VCE  
,
V
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes 2550kHzfOSC3450kHz (*13)  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC2550kHz (*13)  
VIN  
0.25  
-
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V  
VIN=5.0V, VCE=0V, VOUT=0V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
0.9  
-
2.5  
20  
ms  
ms  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
,
tLAT  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage  
VSHORT  
0.675 0.900 1.150  
V
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage  
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
7/33  
XC9235/XC9236/XC9237
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9235B(C)(E)(G)18Cxx/XC9236B(C)(E)(G)18Cxx/XC9237B(C)(E)(G)18Cxx, VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
1.764  
1.800 1.836  
V
V
Operating Voltage Range (B/C series)  
Operating Voltage Range (E/G series)  
2.0  
1.8  
-
-
6.0  
6.0  
VIN  
VIN=VOUT(E)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
VUVLO  
600  
-
-
mA  
V
When connected to external components (*9)  
VCE =VIN, VOUT=VOUT(E)×0.5V (*14)  
1.00  
1.40  
1.78  
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current  
IDD  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
-
-
15  
0
33  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
1020  
120  
1200  
160  
1380  
200  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =VIN, IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
VCE=VIN=(C-1), IOUT=1mA (*12)  
200  
300  
%
%
%
DTYLIMIT_PFM  
DMAX  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
100  
-
-
-
-
0
DMIN  
When connected to external components,  
VCE=VIN=VOUT(E)+1.2V, IOUT=100mA  
Efficiency (*2)  
EFFI  
-
92  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
RLxH  
RLxH  
RLxL  
RLxL  
ILEAKH  
ILIM  
VIN=VCE=5.0V, VOUT (E)×0.9V , ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT (E)×0.9V , ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
-
Ω
VIN=VCE=3.6V (*4)  
-
-
Ω
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
μA  
mA  
Current Limit (*10)  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△Topr)  
VOUT  
/
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT  
Voltage changes Lx to “H” level (*11)  
VOUT OUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
= VOUT(E)×0.9V, Applied voltage to VCE,  
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
=
V
,
V
When connected to external components,  
PWM "H" Level Voltage  
VPWMH  
IOUT=1mA (*6), Voltage which oscillation frequency  
-
-
VIN - 1.0  
V
becomes 1020 kHzfOSC1380kHz (*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC1020kHz (*13)  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT  
VIN=5.0V, VCE=0V, VOUT  
=
V
OUT(E)×0.9V  
OUT(E)×0.9V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
=
V
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
Soft Start Time (B/G Series)  
Soft Start Time (C/E Series)  
Latch Time  
tSS  
tSS  
-
0.25  
1.0  
-
0.40  
2.5  
ms  
ms  
ms  
0.5  
1.0  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
,
tLAT  
20.0  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage (B/C Series)  
VSHORT  
0.675 0.900 1.150  
V
Short Protection Threshold  
Voltage (E/G Series)  
VIN=VCE=5.0V, The VOUT at Lx=”Low"(*11) while  
decreasing VOUT from VOUT (E)×0.4V  
VSHORT  
RDCHG  
0.338 0.450 0.563  
V
CL Discharge  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=open  
200  
300  
450  
Ω
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is VOUTVINVCE  
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
(*14)  
VIN is applied when VOUT (E) x 0.5V becomes more than VIN  
.
8/33  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9235B(C)(E)(G)18Dxx/XC9236B(C)(E)(G)18Dxx/XC9237B(C)(E)(G)18Dxx, VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
1.764  
1.800 1.836  
V
V
Operating Voltage Range (B/C series)  
Operating Voltage Range (E/G series)  
2.0  
1.8  
-
-
6.0  
6.0  
VIN  
VIN=VOUT(E)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
VUVLO  
600  
-
-
mA  
V
When connected to external components (*9)  
VCE=VIN, VOUT=VOUT(E)×0.5V (*14)  
,
1.00  
1.40  
1.78  
Voltage which Lx pin holding “L” level (*1,*11)  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
Supply Current  
IDD  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=VIN, IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
VCE=VIN=(C-1), IOUT=1mA (*12)  
-
100  
-
200  
300  
%
%
%
DTYLIMIT_PFM  
DMAX  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.1V  
-
-
-
0
DMIN  
When connected to external components,  
VCE=VINVOUT(E)+1.2V, IOUT=100mA  
Efficiency(*2)  
EFFI  
-
86  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*10)  
RLxH  
RLxH  
RLxL  
RLxL  
ILEAKH  
ILIM  
VIN=VCE=5.0V, VOUT  
VIN=VCE=3.6V, VOUT  
VIN=VCE=5.0V (*4)  
VIN=VCE=3.6V (*4)  
=
V
V
OUT(E)×0.9V, ILx=100mA (*3)  
OUT(E)×0.9V, ILx=100mA (*3)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
=
-
-
Ω
-
-
Ω
-
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△Topr)  
VOUT/  
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT=V  
OUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “H” level (*11)  
OUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
,
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
VOUT=V  
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes 2550kHzfOSC3450kHz (*13)  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC2550kHz (*13)  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT  
VIN=5.0V, VCE=0V, VOUT  
=
V
OUT(E)×0.9V  
OUT(E)×0.9V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
=
V
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
Soft Start Time (B/G Series)  
Soft Start Time (C/E Series)  
Latch Time  
tSS  
tSS  
-
0.32  
0.9  
-
0.50  
2.5  
20  
ms  
ms  
ms  
0.5  
1.0  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
,
tLAT  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage (B/C Series)  
VSHORT  
0.675 0.900 1.150  
V
Short Protection Threshold  
Voltage (E/G Series)  
VIN=VCE=5.0V, The VOUT at Lx=”Low"(*11) while  
decreasing VOUT from VOUT (E)×0.4V  
VSHORT  
RDCHG  
0.338 0.450 0.563  
V
CL Discharge  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=open  
200  
300  
450  
Ω
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is VOUTVINVCE  
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
(*14)  
VIN is applied when VOUT (E) x 0.5V becomes more than VIN  
.
9/33  
XC9235/XC9236/XC9237
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9235D(F)08Cxx/XC9236D(F)08Cxx/XC9237D(F)08Cxx, FB Type, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
VIN = VCE =5.0V, The VFB at Lx=”High"(*11) while  
decreasing FB pin voltage from 0.9V.  
0.784 0.800 0.816  
V
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
V
VIN=3.2V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE = VIN , VFB = 0.4V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1,*11)  
VIN =VCE=5.0V, VFB= 0.88V  
Supply Current  
IDD  
-
-
15  
0
μA  
μA  
Stand-by Current  
ISTB  
VIN =5.0V, VCE=0V, VFB= 0.88V  
1.0  
When connected to external components,  
VIN = 3.2V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
1020  
120  
1200  
160  
1380  
kHz  
mA  
When connected to external components,  
200  
VIN =3.2V, VCE = VIN , IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
VCE= VIN =2.0V IOUT=1mA (*12)  
VIN = VCE =5.0V, VFB = 0.72V  
VIN = VCE =5.0V, VFB = 0.88V  
200  
300  
%
%
%
DTYLIMIT_PFM  
DMAX  
100  
-
-
-
-
0
DMIN  
When connected to external components,  
VCE = VIN 2.4V, IOUT = 100mA  
VIN = VCE = 5.0V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
Efficiency (*2)  
EFFI  
-
92  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
Ω
Ω
μA  
-
-
VIN = VCE = 3.6V (*4)  
VIN = VFB = 5.0V, VCE = 0V, LX= 0V  
VIN = VCE= 5.0V, VFB = 0.72V (*8)  
900  
1350  
mA  
Output Voltage  
Temperature Characteristics (VOUT・△Topr)  
VOUT  
/
IOUT =30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
VFB =0.72V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
Voltage changes Lx to “H” level (*11)  
VFB =0.72V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
,
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes 1020kHzfOSC1380kHz (*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC1020kHz (*13)  
PWM "H" Level Voltage  
PWM "L" Level Voltage  
VPWMH  
-
-
-
VIN - 1.0  
V
V
VIN  
0.25  
-
VPWML  
-
CE "H" Current  
CE "L" Current  
Soft Start Time (D series)  
Soft Start Time (F series)  
ICEH  
ICEL  
VIN = VCE =5.0V, VFB =0.72V  
VIN =5.0V, VCE = 0V, VFB =0.72V  
When connected to external components,  
VCE = 0V VIN , IOUT=1mA  
- 0.1  
- 0.1  
0.5  
-
-
-
0.1  
0.1  
2.5  
μA  
μA  
1.0  
0.25  
tSS  
ms  
ms  
0.40  
VIN=VCE=5.0V, VFB=0.64, Short Lx at 1Ω  
Latch Time  
tLAT  
1.0  
-
20.0  
resistance (*7)  
Short Protection Threshold  
Voltage  
VIN = VCE =5.0V, The VFB at Lx=”Low" (*11) while  
decreasing FB pin voltage from 0.4V.  
VSHORT  
RDCHG  
0.15  
0.200  
0.25  
V
CL Discharge  
VIN = 5.0V ,LX = 5.0V, VCE = 0V, VFB= open  
200  
300  
450  
Ω
Test conditions: VOUT=1.2V when the external components are connected. Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is  
OUTVINVCE  
V
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VFB with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
10/33  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9235D(F)08Dxx/XC9236D(F)08Dxx/XC9237D(F)08Dxx, FB, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
V
IN = VCE =5.0V, The VFB at Lx=”High"(*11) while  
decreasing FB pin voltage from 0.9V.  
0.784  
0.800 0.816  
V
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
V
VIN=3.2V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE = VIN , VFB = 0.4V ,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
VIN =VCE=5.0V, VFB= 0.88V  
Supply Current  
IDD  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN =5.0V, VCE=0V, VFB= 0.88V  
1.0  
When connected to external components,  
VIN = 3.2V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN =3.2V, VCE = VIN , IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM  
DMAX  
VCE= VIN =2.2V IOUT=1mA (*12)  
200  
300  
%
%
%
VIN = VCE =5.0V, VFB = 0.72V  
100  
-
-
-
-
DMIN  
VIN = VCE =5.0V, VFB = 0.88V  
0
When connected to external components,  
VCE = VIN 2.4V, IOUT = 100mA  
VIN = VCE = 5.0V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
Efficiency (*2)  
EFFI  
-
86  
-
%
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
Ω
Ω
μA  
mA  
-
-
VIN = VCE = 3.6V (*4)  
VIN = VFB = 5.0V, VCE = 0V, LX= 0V  
VIN = VCE= 5.0V, VFB = 0.72V (*8)  
900  
1350  
IOUT =30mA  
-40℃≦Topr85℃  
VFB =0.72V , VCE,  
Voltage changes Lx to “H” level (*11)  
Output Voltage  
Temperature Characteristics  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△Topr)  
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
VFB =0.72V, VCE  
,
VCEL  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
IOUT = 1mA (*6), Voltage which oscillation frequency  
becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
IOUT = 1mA (*6), Voltage which oscillation frequency  
PWM "H" Level Voltage  
PWM "L" Level Voltage  
VPWMH  
-
-
-
VIN - 1.0  
V
V
VIN  
0.25  
-
VPWML  
-
becomes f  
OSC2550kHz (*13)  
CE "H" Current  
CE "L" Current  
Soft Start Time (D series)  
Soft Start Time (F series)  
ICEH  
ICEL  
VIN = VCE =5.0V, VFB =0.72V  
- 0.1  
- 0.1  
0.5  
-
-
-
0.1  
0.1  
2.5  
μA  
μA  
VIN =5.0V, VCE = 0V, VFB =0.72V  
When connected to external components,  
VCE = 0V VIN , IOUT=1mA  
1.0  
0.25  
tSS  
tLAT  
ms  
ms  
V
0.40  
VIN  
Short Lx at 1  
V
IN = VCE =5.0V, The VFB at Lx=”Low" (*11) while  
=
VCE = 5.0V, VFB = 0.64,  
Latch Time  
1.0  
-
20.0  
0.25  
Ω
resistance (*7)  
Short Protection Threshold  
Voltage  
VSHORT  
0.15  
0.200  
decreasing FB pin voltage from 0.4V.  
CL Discharge  
RDCHG  
VIN = 5.0V ,LX = 5.0V ,VCE = 0V ,VFB= open  
200  
300  
450  
Ω
Test conditions: VOUT=1.2V when the external components are connected. Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is  
OUTVINVCE  
V
NOTE:  
(*1)  
Including hysteresis operating voltage range.  
EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
(*2)  
(*3)  
(*4)  
(*5)  
(*6)  
R&D value  
When temperature is high, a current of approximately 10μA (maximum) may leak.  
The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
(*7)  
(*8)  
(*9)  
Time until it short-circuits VFB with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
Current limit denotes the level of detection at peak of coil current.  
“H”=VIN~VIN-1.2V, “L”=+0.1V~-0.1V  
XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
XC9235/XC9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
(*10)  
(*11)  
(*12)  
(*13)  
11/33  
XC9235/XC9236/XC9237
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM Switching Current (IPFM) by Oscillation Frequency and Setting Voltage  
(mA)  
MAX.  
1.2MHz  
3.0MHz  
TYP.  
260  
SETTING VOLTAGE  
MIN.  
140  
130  
120  
TYP.  
180  
170  
160  
MAX.  
240  
MIN.  
190  
180  
170  
VOUT(E) 1.2V  
350  
300  
270  
1.2VVOUT(E) 1.75V  
1.8VVOUT(E)  
220  
240  
200  
220  
Input Voltage (VIN) for Measuring PFM Duty Limit (DTYLIMIT_PFM  
)
fOSC  
C-1  
1.2MHz  
3.0MHz  
VOUT(E)+1.0V  
VOUT(E)+0.5V  
Minimum operating voltage is 2.0V.  
ex.) Although when VOUT(E) is 1.2V and fOSC is 1.2MHz, (C-1) should be 1.7V, (C-1) becomes 2.0V for the minimum operating voltage 2.0V.  
Soft-Start Time, Setting Voltage (XC9235B(G)/XC9236B(G)/XC9237B(G) Series only)  
(μs)  
SERIES  
fOSC  
SETTING VOLTAGE  
MIN.  
TYP.  
MAX.  
1.2MHz  
1.2MHz  
1.2MHz  
1.2MHz  
0.8V OUT(E)<1.5  
1.5V OUT(E)<1.8  
1.8V OUT(E)<2.5  
2.5V OUT(E)<4.0  
-
-
-
-
250  
320  
250  
320  
400  
500  
400  
500  
XC9235B(G)/XC9237B(G)  
1.2MHz  
1.2MHz  
0.8V OUT(E)<2.5  
2.5V OUT(E)<4.0  
0.8V OUT(E)<1.8  
1.8V OUT(E)<4.0  
-
-
-
-
250  
320  
250  
320  
400  
500  
400  
500  
XC9236B(G)  
3.0MHz  
3.0MHz  
XC9235B(G)/  
XC9236B(G)/XC9237B(G)  
12/33  
XC9235/XC9236/XC9237  
Series  
TYPICAL APPLICATION CIRCUIT  
XC9235/XC9236/XC9237A, B, C, E, G Series (Output Voltage Fixed)  
VOUT  
600mA  
L
VIN  
Lx  
VIN  
VSS  
VSS  
C
IN  
(ceramic)  
C
L
CE/  
MODE  
VOUT  
(ceramic)  
CE/MODE  
fOSC=3.0MHz  
fOSC=1.2MHz  
L: 4.7μH (NR4018 TAIYO YUDEN)  
CIN : 4.7μF (Ceramic)  
CL : 10μF (Ceramic)  
L :  
CIN : 4.7μF  
CL : 10μF  
1.5μH (NR3015 TAIYO YUDEN)  
(Ceramic)  
(Ceramic)  
XC9235/XC9236/XC9237D, F Series (Output Voltage External Setting)  
V
OUT  
L
600mA  
V
IN  
V
IN  
Lx  
VSS  
VSS  
C
IN  
RFB1  
RFB2  
C
(ceramic)  
L
CFB  
(ceramic)  
CE/  
MODE  
FB  
CE/MODE  
<Setting for Output Voltage>  
Output voltage can be set externally by adding two resistors to the FB pin. The output voltage is calculated by the RFB1  
and RFB2 value. The total of RFB1 and RFB2 is usually selected less than 1MΩ.  
Output voltages can be set in the range of 0.9V to 0.6V by use of 0.8V±2.0% reference voltage. However, when input  
voltage (VIN) is lower than the setting output voltage, output voltage (VOUT) can not be higher than the input voltage (VIN).  
VOUT=0.8 × (RFB1+RFB2)/RFB2  
The value of the phase compensation speed-up capacitor CFB is calculated by the formula of fZFB = 1/(2×π×CFB×RFB1) with  
fZFB <10kHz. For optimization, fZFB can be adjusted in the range of 1kHz to 20kHz depending on the inductance L and the  
load capacitance CL which are used.  
Formula】  
When RFB1=470kΩ and RFB2=150k, VOUT1=0.8 × (470k+150k) / 150k=3.3V  
Example】  
VOUT  
(V)  
RFB1  
(kΩ)  
100  
RFB2  
(kΩ)  
820  
CFB  
(pF)  
150  
100  
220  
150  
VOUT  
(V)  
RFB1  
(kΩ)  
510  
RFB2  
(kΩ)  
240  
120  
150  
30  
CFB  
(pF)  
100  
150  
100  
470  
0.9  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
4.0  
150  
300  
330  
130  
150  
470  
300  
240  
120  
13/33  
XC9235/XC9236/XC9237
Series  
OPERATIONAL DESCRIPTION  
The XC9235/XC9236/XC9237 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM  
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel  
MOS switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram  
above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the  
feedback voltage from the VOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting  
error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The  
PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp  
wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle.  
This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel  
MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple  
feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used  
ensuring stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or  
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to  
synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal split resistors, R1 and R2. When a voltage lower than the reference voltage is fed back, the  
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed  
internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XC9235/XC9236/XC9237 series monitors the current flowing through the P-channel MOS  
driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension  
mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx  
pin at any given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over  
current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a  
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the  
driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be  
resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension mode does  
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in  
operation. The current limit of the XC9235/XC9236/XC9237 series can be set at 1050mA at typical. Besides, care must be  
taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on the state of  
the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the  
board should be laid out so that input capacitors are placed as close to the IC as possible.  
Limit<#ms  
Limit>#ms  
ILIM  
ILx  
0mA  
V
OUT  
VSS  
Lx  
VCE  
Restart  
V
IN  
14/33  
XC9235/XC9236/XC9237  
Series  
OPERATIONAL DESCRIPTION (Continued)  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT pin (refer to FB point  
in the block diagram shown in the previous page). In case where output is accidentally shorted to the Ground and when  
the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to  
the Pch MOS driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor.  
For the D/E/F/G series, it does not matter how much the current limit, once the FB voltage become less than the quarter  
of reference voltage (VREF), the short-circuit protection operates to latch the Pch MOS driver transistor. In latch mode,  
the operation can be resumed by either turning the IC off and on via the CE/MODE pin, or by restoring power supply to  
the VIN pin.  
When sharp load transient happens, a voltage drop at the VOUT is propagated to the FB point through CFB, as a result,  
short circuit protection may operate in the voltage higher than 1/2 VOUT voltage.  
<UVLO Circuit>  
When the VIN pin voltage becomes 1.4V or lower, the Pch MOS driver transistor output driver transistor is forced OFF to  
prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8V or  
higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate  
output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO  
operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be  
suspended; therefore, the internal circuitry remains in operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the Pch MOS driver transistor  
on. In this case, time that the Pch MOS driver transistor is kept on (TON) can be given by the following formula.  
tON= L×IPFM / (VINVOUT)  
IPFM①  
< PFM Duty Limit >  
In PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the  
duty increases (e.g. the condition that the step-down ratio is small), it’s possible for Pch MOS driver transistor to be turned  
off even when coil current doesn’t reach to IPFM.  
IPFM②  
tON  
DTYLIMIT_PFM  
fOSC  
Lx  
Lx  
IPFM  
IPFM  
ILx  
ILx  
0mA  
0mA  
Fig. IPFM  
Fig. IPFM  
15/33  
XC9235/XC9236/XC9237
Series  
OPERATIONAL DESCRIPTION (Continued)  
CL High Speed Discharge>  
XC9235B(C)(D)(E)(F)(G)/ XC9236B(C)(D)(E)(F)(G)/ XC9237B(C)(D)(E)(F)(G) series can quickly discharge the electric  
charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is  
inputted via the Nch MOS switch transistor located between the LX pin and the VSS pin. When the IC is disabled, electric  
charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of  
the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time  
constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), discharge time  
of the output voltage after discharge via the N channel transistor is calculated by the following formulas.  
τ
V = VOUT(E) x e –t/ or t=τLn (VOUT(E) / V)  
V : Output voltage after discharge  
VOUT(E) : Output voltage  
t: Discharge time  
τ: C x R  
C= Capacitance of Output capacitor (CL)  
R= CL auto-discharge resistance  
Output Voltage Dischage Characteristics  
Rdischg = 300Ω TYP  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CL=10uF  
CL=20uF  
CL=50uF  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Discharge Time t (ms)  
16/33  
XC9235/XC9236/XC9237  
Series  
OPERATIONAL DESCRIPTION (Continued)  
<CE/MODE Pin Function>  
The operation of the XC9235/XC9236/XC9237 series will enter into the shut down mode when a low level signal is input to the  
CE/MODE pin. During the shutdown mode, the current consumption of the IC becomes 0μA (TYP.), with a state of high  
impedance at the Lx pin and VOUT pin. The IC starts its operation by inputting a high level signal to the CE/MODE pin. The input  
to the CE/MODE pin is a CMOS input and the sink current is 0μA (TYP.).  
XC9235/XC9236 series - Examples of how to use CE/MODE pin  
(B)  
(A)  
V
IN  
V
IN  
V
DD  
V
DD  
R1  
SW_CE  
CE/MODE  
CE/MODE  
R2  
SW_CE  
< IC inside >  
< IC inside >  
(A)  
(B)  
SW_CE  
ON  
STATUS  
Stand-by  
Operation  
SW_CE  
ON  
STATUS  
Operation  
Stand-by  
OFF  
OFF  
XC9237 series - Examples of how to use CE/MODE pin  
(B)  
(A)  
V
IN  
VIN  
V
DD  
VDD  
RM1  
RM2  
SW_PWM/PFM  
RM1  
SW_CE  
CE/MODE  
CE/MODE  
SW_PWM/PFM  
SW_CE  
RM2  
< IC inside >  
< IC inside >  
(A)  
(B)  
SW_CE  
SW_PWM/PFM  
STATUS  
Stand-by  
SW_CE  
ON  
SW_PWM/PFM  
STATUS  
ON  
OFF  
OFF  
*
*
PWM/PFM Automatic Switching Control  
PWM Control  
ON  
OFF  
PWM Control  
OFF  
OFF  
ON  
OFF  
PWM/PFM Automatic Switching Control  
Stand-by  
Intermediate voltage can be generated by RM1 and RM2. Please set the value of each R1, R2, RM1, RM2 from  
few hundreds kΩ to few hundreds MΩ. For switches, CPU open-drain I/O port and transistor can be used.  
17/33  
XC9235/XC9236/XC9237
Series  
OPERATIONAL DESCRIPTION (Continued)  
Soft Start>  
Soft start time is available in two options via product selection.  
The A,C,D,and E types of XC9235/XC9236/XC9237 series provide 1.0ms (TYP).  
The B,F, and G types of XC9235/ XC9236/XC9237 series provide 0.25ms (TYP). However, for the D/F the soft-start time can  
be set by the external components. Soft start time is defined as the time interval to reach 90% of the output voltage from the  
time when the CE pin is turned on.  
tSS  
VCEH  
0V  
90% of setting voltage  
VOUT  
0V  
18/33  
XC9235/XC9236/XC9237  
Series  
NOTE ON USE  
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be  
exceeded.  
2. The XC9235/XC9236/XC9237 series is designed for use with ceramic output capacitors. If, however, the potential  
difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the  
resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large,  
connect an electrolytic capacitor in parallel to compensate for insufficient capacitance.  
3. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
4. Depending on the input-output voltage differential, or load current, some pulses may be skipped, and the ripple voltage  
may increase.  
5. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the  
possibility that some cycles may be skipped completely.  
6. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that some cycles may be skipped completely.  
7. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate  
the peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x fOSC) + IOUT  
L: Coil Inductance Value  
fOSC: Oscillation Frequency  
8. When the peak current which exceeds limit current flows within the specified time, the built-in Pch MOS driver transistor  
turns off. During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit  
current flows; therefore, care must be taken when selecting the rating for the external components such as a coil.  
9. When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
10. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode.  
Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to  
avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.  
11. Use of the IC at voltages below the recommended voltage range may lead to instability.  
12. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
13. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the  
leak current of the driver transistor.  
14. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the  
current limit functions while the VOUT pin is shorted to the GND pin, when Pch MOS driver transistor is ON, the potential  
difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast,  
when Nch MOS driver transistor is ON, there is almost no potential difference at both ends of the coil since the VOUT pin  
is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of  
this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the  
amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state  
continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in  
order to prevent damage to the device.  
Current flows into Pch MOS driver transistor to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to  
OFF of Pch MOS driver transistor.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
Limit >  
# ms  
Delay  
Lx  
ILIM  
ILx  
19/33  
XC9235/XC9236/XC9237
Series  
NOTE ON USE (Continued)  
15. In order to stabilize VIN’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be  
connected as close as possible to the VIN & VSS pins.  
16. High step-down ratio and very light load may lead an intermittent oscillation.  
17. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.  
Please verify with actual parts.  
18. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient  
temperature, setting voltage, oscillation frequency, and L value are not adequate.  
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage  
operation even if using the L values listed below.  
The Range of L Value  
<External Components>  
fOSC  
VOUT  
L Value  
3.0MHz  
0.8VVOUT<4.0V  
1.0μH2.2μH  
3.3μH6.8μH  
4.7μH6.8μH  
V
OUT2.5V  
1.2MHz  
2.5VVOUT  
*When a coil less value of 4.7μH is used at fOSC=1.2MHz  
or when a coil less value of 1.5μH is used at fOSC=3.0MHz,  
peak coil current more easily reach the current limit ILMI.  
In this case, it may happen that the IC can not provide  
600mA output current.  
19. It may happen to enter unstable operation when the IC goes into continuous operation mode under the condition of large  
input-output voltage difference. Care must be taken with the actual design unit.  
<External Components>  
20. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
20/33  
XC9235/XC9236/XC9237  
Series  
NOTE ON USE (Continued)  
21. Instructions of pattern layouts  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to  
the VIN & VSS pins.  
(2) Please mount each external component as close to the IC as possible.  
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(4) Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
(5) This series’ internal driver transistors bring on heat because of the output current and ON resistance of driver  
transistors.  
XC9235/XC9236/XC9237 A,B,C,E,GOutput Voltage Fixed  
(PKG:USP-6C/USP-6EL)  
XC9235/XC9236/XC9237 A,B,COutput Voltage Fixed  
(PKG:SOT-25)  
L
Ceramic_Cap  
Inductor  
Ceramic_Cap  
Inductor  
L
VOUT  
CL  
VIN  
CIN  
CIN  
IC  
VOUT  
IC  
VIN  
VSS  
CE  
VSS  
VSS  
VSS  
CE  
For the VIN, VOUT, VSS, CE, please put the wire.  
For the VIN, VOUT, VSS, CE, please put the wire.  
XC9235/XC9236/XC9237 A,BOutput Voltage Fixed  
(PKG:WLP-5-03)  
XC9235/XC9236/XC9237 D,FOutput Voltage External Setting  
(PKG:USP-6C)  
CL  
VOUT  
Ceramic_Cap  
VSS  
CE  
IC  
VSS  
VIN  
VOUT  
CL  
Chip Resistance  
L
CFB  
Lx  
VIN  
Inductor  
CIN  
IC  
For the VIN, VOUT, VSS, CE, please put the wire.  
RFB1  
RFB2  
CE  
VSS  
Ceramic_Cap  
Inductor  
For the VIN, VOUT, VSS, CE, please put the wire.  
22. NOTE ON MOUNTING (WLP-5-03)  
(1) Mount pad design should be optimized for user's conditions.  
(2) Sn-AG-Cu is used for the package terminals. If eutectic solder is used, mounting reliability is decreased. Please do not  
use eutectic solder paste.  
(3) When underfill agent is used to increase interfacial bonding strength, please take enough evaluation for selection. Some  
underfill materials and applied conditions may decrease bonding reliability.  
(4) The IC has exposed surface of silicon material in the top marking face and sides so that it is weak against mechanical  
damages. Please take care of handling to avoid cracks and breaks.  
(5) The IC has exposed surface of silicon material in the top marking face and sides. Please use the IC with keeping the  
circuit open (avoiding short-circuit from the out).  
(6) Semi-transparent resin is coated on the circuit face of the package. Please be noted that the usage under strong lights  
may affects device performance.  
21/33  
XC9235/XC9236/XC9237
Series  
TEST CIRCUITS  
< Circuit No.1 >  
A/B/C/E/G series  
Wave Form Measure Point  
D/F series  
Wave Form Measure Point  
IOUT  
L
L
VIN  
Lx  
A
VIN  
Lx  
A
Cfb  
CIN  
R1  
R2  
CL  
CE/MODE  
VSS  
VOUT  
V
RL  
RL  
V
CE/MODE  
FB  
CIN  
CL  
VSS  
※ꢀExternal Components  
ꢀꢀL  
: 1.5μH(NR4018) 3.0MHz  
: 4.7μH (NR3015) 1.2MHz  
CIN : 4.7μF  
VOUT=VFB×(R1+R2)/R2  
※ꢀExternal Components  
ꢀꢀL  
:
1.5uH(NR3015) 3.0MHz  
4.7uH(NR4018) 1.2MHz  
CL : 10μF  
R1 : 150kΩ  
R2 : 300kΩ  
Cfb : 120pF  
ꢀꢀꢀꢀꢀꢀ  
ꢀꢀCIN : 4.7μF(ceramic)  
ꢀꢀCL :10μF(ceramic)  
< Circuit No.2 >  
< Circuit No.3 >  
Wave Form Measure Point  
VIN  
Lx  
VIN  
Lx  
A
VOUT  
(FB)  
VOUT  
(FB)  
Rpulldown  
200Ω  
CE/MODE  
CE/MODE  
1uF  
1uF  
VSS  
VSS  
< Circuit No.4 >  
< Circuit No.5 >  
VIN  
Lx  
VIN  
Lx  
A
ICEH  
VOUT  
(FB)  
VOUT  
(FB)  
100mA  
CE/MODE  
CE/MODE  
V
A
1uF  
1uF  
VSS  
VSS  
ICEL  
ON resistance = (VIN-VLx)/100mA  
< Circuit No.7 >  
< Circuit No.6 >  
Wave Form Measure Point  
Wave Form Measure Point  
VIN  
Lx  
VIN  
Lx  
Ilat  
VOUT  
(FB)  
VOUT  
(FB)  
ILIM  
CE/MODE  
CE/MODE  
VSS  
V
1uF  
1uF  
VSS  
Rpulldown  
1Ω  
< Circuit No.8 >  
< Circuit No.9 >  
ILx  
VIN  
Lx  
VIN  
Lx  
A
A
VOUT  
(FB)  
VOUT  
(FB)  
CE/MODE  
VSS  
CE/MODE  
1uF  
CIN  
VSS  
22/33  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9237A18C  
XC9237A18D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
PWM/PFM Automatic Sw itching Control  
PWM/PFM Automatic Sw itching Control  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN= 4.2V  
VIN= 4.2V  
3.6V  
PWM Control  
VIN= 4.2V  
3.6V  
2.4V  
3.6V  
2.4V  
PWM Control  
VIN= 4.2V  
3.6V  
2.4V  
2.4V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
(2) Output Voltage vs. Output Current  
XC9237A18C  
XC9237A18D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
PWM/PFM Automatic Sw itching Control  
PWM/PFM Automatic Sw itching Control  
VIN4.2V,3.6V,2.4V  
VIN4.2V,3.6V,2.4V  
PWM Control  
PWM Control  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
(3) Ripple Voltage vs. Output Current  
XC9237A18C  
XC9237A18D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PWM/PFM Automatic  
Sw itching Control  
VIN4.2V  
PWM Control  
VIN4.2V,3.6V,2.4V  
PWM/PFM Automatic  
Sw itching Control  
VIN4.2V  
PWM Control  
VIN4.2V,3.6V,2.4V  
3.6V  
3.6V  
ꢀꢀ2.4V  
ꢀꢀ2.4V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
23/33  
XC9235/XC9236/XC9237
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
XC9237A18D  
XC9237A18C  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(5) Supply Current vs. Ambient Temperature  
XC9237A18D  
XC9237A18C  
40  
40  
VIN=6.0V  
VIN=4.0V  
35  
30  
35  
30  
25  
20  
15  
10  
5
VIN=6.0V  
VIN=2.0V  
25  
20  
15  
10  
5
VIN=4.0V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(6) Output Voltage vs. Ambient Temperature  
(7) UVLO Voltage vs. Ambient Temperature  
XC9237A18D  
XC9237A18D  
2.1  
1.8  
CE=V IN  
2.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.9  
VIN=3.6V  
1.8  
1.7  
1.6  
1.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
24/33  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) CE "H" Voltage vs. Ambient Temperature  
XC9237A18D  
(9) CE "L" Voltage vs. Ambient Temperature  
XC9237A18D  
1.0  
0.9  
0.8  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
VIN=5.0V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN=5.0V  
VIN=3.6V  
VIN=3.6V  
VIN=2.4V  
VIN=2.4V  
0.0  
-50  
-50  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(10) Soft Start Time vs. Ambient Temperature  
XC9237A18C  
XC9237A18D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
5
4
3
2
1
0
5
4
3
2
1
VIN=3.6V  
VIN=3.6V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
XC9237A18D  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
Pch on Resistance  
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
25/33  
XC9235/XC9236/XC9237
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(12) XC9235B/36B/37B Rise Wave Form  
XC9237B12C  
XC9237B33D  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
VIN=5.0V  
VIN=5.0V  
IOUT=1.0mA  
IOUT=1.0mA  
VOUT1.0V/div  
VOUT0.5V/div  
CE0.0V1.0V  
100μs/div  
CE0.0V1.0V  
100μs/div  
(13) XC9235B/36B/37B  
Soft-Start Time vs. Ambient Temperature  
XC9237B12C  
XC9237B33D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
VIN=5.0V  
IOUT=1.0mA  
VIN=5.0V  
IOUT=1.0mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(℃)  
Ambient Temperature: Ta(℃)  
(14) XC9235B/36B/37B  
CL Discharge Resistance vs. Ambient Temperature  
XC9237B33D  
600  
500  
400  
300  
200  
100  
VIN=6.0V  
VIN=4.0V  
VIN=2.0V  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
26/33  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response  
XC9237A18C  
L=4.7μH (NR4018), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=VIN (PWM/PFM Automatic Switching Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
OUT: 50mV/div  
2ch  
V
VOUT: 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
27/33  
XC9235/XC9236/XC9237
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18C  
L=4.7μH (NR4018), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=1.8V (PWM Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
OUT: 50mV/div  
2ch  
V
VOUT: 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
28/33  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=VIN (PWM/PFM Automatic Switching Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
OUT: 50mV/div  
2ch  
V
VOUT: 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
29/33  
XC9235/XC9236/XC9237
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=1.8V (PWM Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
OUT: 50mV/div  
2ch  
V
VOUT: 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
30/33  
XC9235/XC9236/XC9237  
Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
SOT-25  
OUTLINE / LAND PATTERN  
SOT-25 PKG  
THERMAL CHARACTERISTICS  
Standard Board  
SOT-25 Power Dissipation  
JESD51-7 Board  
Standard Board  
JESD51-7 Board  
Standard Board  
Standard Board  
USP-6C  
USP-6C PKG  
USP-6C Power Dissipation  
USP-6EL  
WLP-5-03  
USP-6EL PKG  
WLP-5-03 PKG  
USP-6EL Power Dissipation  
WLP-5-03 Power Dissipation  
31/33  
XC9235/XC9236/XC9237
Series  
MARKING RULE  
SOT-25  
represents product series  
PRODUCT  
SERIES  
XC9235  
XC9236  
XC9237  
5
4
A
B
C
D
E
F
4
C
K
K
4
5
D
L
6
E
M
M
6
④ ⑤  
L
5
2
7
B
E
1
2
3
G
C
D
SOT-25  
represents integer number of output voltage and oscillation frequency  
A/B/C/F Series  
(TOP VIEW)  
MARK  
OUTPUT  
VOLTAGE (V)  
fOSC=1.2MHz  
fOSC=3.0MHz  
USP-6C/USP-6EL  
0.X  
1.X  
2.X  
3.X  
4.X  
A
B
C
D
E
F
H
K
L
M
E/G/D Series  
OUTPUT  
MARK  
VOLTAGE (V)  
fOSC=1.2MlHz  
fOSC=3.0MlHz  
USP-6C/USP-6EL  
(TOP VIEW)  
0.X  
1.X  
2.X  
3.X  
4.X  
N
P
R
S
T
U
V
X
Y
Z
WLP-5-03  
2
3
1
represents decimal point of output voltage  
VOUT (V)  
X.00  
X.10  
X.20  
X.30  
X.40  
X.50  
X.60  
X.70  
X.80  
X.90  
MARK  
VOUT (V)  
X.05  
X.15  
X.25  
X.35  
X.45  
X.55  
X.65  
X.75  
X.85  
X.95  
MARK  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
4
5
WLP-5-03  
(TOP VIEW)  
H
K
L
M
④⑤ represents production lot number  
Order of 0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ.  
(G, I, J, O, Q, W excluded)  
*No character inversion used.  
32/33  
XC9235/XC9236/XC9237  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
33/33  

相关型号:

XC9235A1ACDR

Analog Circuit
TOREX

XC9235A1H6DR

Analog Circuit
TOREX

XC9235A1KCML

Switching Regulator/Controller
TOREX

XC9235A1L6DR

Analog Circuit
TOREX

XC9235A1M6MR

Analog Circuit
TOREX

XC9235A1MDDR

Analog Circuit
TOREX

XC9235A226DL

Analog Circuit
TOREX

XC9235A2FCDR

Analog Circuit
TOREX

XC9235A2FDEL

Switching Regulator/Controller
TOREX

XC9235A2FDEL-G

Switching Regulator/Controller
TOREX

XC9235A2FDML-G

Switching Regulator/Controller
TOREX

XC9235A2KDDL

Analog Circuit
TOREX