XC9236A31DML [TOREX]

Switching Regulator/Controller;
XC9236A31DML
型号: XC9236A31DML
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator/Controller

文件: 总32页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9235/XC9236/XC9237Series  
ETR0514-009  
600mA Driver Tr. Built-In, Synchronous Step-Down DC/DC Converters  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XC9235/XC9236/XC9237 series is a group of synchronous-rectification type DC/DC converters with a built-in 0.42Ω  
P-channel driver transistor and 0.52ΩN-channel switching transistor, designed to allow the use of ceramic capacitors. Operating  
voltage range is from 2.0V to 6.0V (AC types), 1.8V to 6.0V (DG types). For the D/F types which have a reference voltage  
of 0.8V (accuracy: ±2.0%), the output voltage can be set from 0.9V by using two external resistors. The A/B/C/E/G types have  
a fixed output voltage from 0.8V to 4.0V in increments of 0.05V (accuracy: ±2.0%). The device provides a high efficiency, stable  
power supply with an output current of 600mA to be configured using only a coil and two capacitors connected externally.  
With the built-in oscillator, ether 1.2MHz or 3.0MHz can be selected for suiting to your particular application. As for operation  
mode, the XC9235 series is PWM control, the XC9236 series is automatic PWM/PFM switching control and the XC9237 series  
can be manually switched between the PWM control mode and the automatic PWM/PFM switching control mode, allowing fast  
response, low ripple and high efficiency over the full range of loads (from light load to heavy load).  
The soft start and current control functions are internally optimized. During stand-by, all circuits are shutdown to reduce current  
consumption to as low as 1.0μA or less. The B/F/G types have a high speed soft-start as fast as 0.25ms in typical for quick  
turn-on. With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel driver transistor is forced OFF when  
input voltage becomes 1.4V or lower.  
The B to G types integrate CL auto discharge function which enables the electric charge at the output capacitor CL to be  
discharged via the internal auto-discharge switch located between the LX and VSS pins. When the devices enter stand-by mode,  
output voltage quickly returns to the VSS level as a result of this function.  
Two types of package SOT-25 (A/B/C types only) and USP-6C are available.  
FEATURES  
APPLICATIONS  
Mobile phones, Smart phones  
Bluetooth headsets  
P-ch Driver Transistor Built-In : ON resistance 0.42Ω  
N-ch Driver Transistor Built-In : ON resistance 0.52Ω  
Input Voltage  
: 2.0V ~ 6.0V (A/B/C types)  
: 1.8V ~ 6.0V (D/E/F/G types)  
: 0.8V ~ 4.0V  
Mobile WiMAX PDAs, MIDs, UMPCs  
Portable game consoles  
Output Voltage  
Digital cameras, Camcorders  
MP3 Players, Portable Media Players  
Notebook computers  
High Efficiency  
: 92% (TYP.)  
Output Current  
: 600mA  
Oscillation Frequency  
Maximum Duty Cycle  
Control Methods  
: 1.2MHz, 3.0MHz (+15%)  
: 100%  
: PWM (XC9235)  
PWM/PFM Auto (XC9236)  
PWM/PFM Manual (XC9237)  
TYPICAL APPLICATION CIRCUIT  
Soft-Start Circuit Built-In  
Current Limiter Circuit Built-In (Constant Current & Latching)  
Low ESR Ceramic Capacitor Compatible  
XC9235/XC9236/XC9237  
A/B/C/E/G types (Output Voltage Fixed)  
Packages  
: SOT-25 (A/B/C types only), USP-6C  
: B/C/D/E/F/G types  
CL High Speed Discharge  
High Speed Soft Start  
: B/F/G types  
* Performance depends on external components and wiring on the PCB.  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
Efficiency vs. Output CurrentfOSC=1.2MHz, VOUT=1.8V)  
XC9235/XC9236/XC9237  
PWM/PFM A utomatic Sw itc hing Control  
100  
D/F types (Output Voltage Externally Set)  
90  
80  
VIN= 4.2V  
70  
PWM Control  
VIN= 4.2V  
3.6V  
2.4V  
3.6V  
2.4V  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
1/32  
XC9235/XC9236/XC9237 Series  
PIN CONFIGURATION  
Lx  
VOUT  
5
4
* Please short the VSS pin (No. 2 and 5).  
* The dissipation pad for the USP-6C  
package should be solder-plated in  
recommended mount pattern and metal  
masking so as to enhance mounting strength  
and heat release. If the pad needs to be  
connected to other pins, it should be  
connected to the VSS (No. 5) pin.  
1
Lx  
VIN  
VSS  
6
5
2
3
VSS  
CE/MODE  
4
VOUT  
1
2
3
VIN  
VSS  
CE/MODE  
SOT-25  
USP-6C  
(TOP VIEW)  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-25  
USP-6C  
1
2
3
6
2, 5  
4
VIN  
VSS  
CE / MODE  
VOUT  
FB  
Power Input  
Ground  
High Active Enable / Mode Selection Pin  
Fixed Output Voltage Pin (A/B/C/E/G types)  
Output Voltage Sense Pin (D/F types)  
Switching Output  
4
5
3
1
Lx  
2/32  
XC9235/XC9236/XC9237  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
*1  
*1  
*1  
(
(
(
)
)
)
XC9235①②③④⑤⑥-⑦  
XC9236①②③④⑤⑥-⑦  
XC9237①②③④⑤⑥-⑦  
Fixed PWM control  
PWM / PFM automatic switching control  
Fixed PWM control QPWM / PFM automatic switching manual selection  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
A
B
No CL auto discharge, Low speed soft-start  
Fixed Output voltage  
Operating Voltage from 2.0V  
CL auto discharge, High speed soft-start  
C
E
G
D
F
CL auto discharge, Low speed soft-start  
CL auto discharge, Low speed soft-start  
CL auto discharge, High speed soft-start  
CL auto discharge, Low speed soft-start  
CL auto discharge, High speed soft-start  
Fixed Output voltage  
Operating Voltage from 1.8V  
Adjustable Output voltage  
Operating Voltage from 1.8V  
Fixed output voltage types  
e.g. VOUT=2.8V→②=2, =8  
08 ~ 40  
VOUT=2.85V→②=2, =L  
0.05V increments: 0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E,  
0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M  
Output Voltage  
②③  
Adjustable Voltage types (Vref=0.8V) for D/F types  
08  
C
1.2MHz  
3.0MHz  
Oscillation Frequency  
D
MR  
MR-G  
ER  
SOT-25 (*3)  
SOT-25 (Halogen & Antimony free) (*3)  
Packages  
Taping Type (*2)  
⑤⑥-⑦  
USP-6C  
USP-6C (Halogen & Antimony free) (*4)  
ER-G  
(*1)  
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.  
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or  
representative. (Standard orientation: R-, Reverse orientation: L-)  
SOT-25 package is available for the A/B/C series only.  
The D/E/F/G series for halogen & antimony free and RoHS compliant is under development.  
(*2)  
(*3)  
(*4)  
3/32  
XC9235/XC9236/XC9237 Series  
BLOCK DIAGRAM  
XC9235 / XC9236 / XC9237  
XC9235/XC9236/XC9237  
A Series  
B/C/E/G Series  
Phase  
Compensation  
Phase  
Compensation  
Current Feedback  
Current Limit  
Current Feedback  
Current Limit  
VOUT  
VOUT  
VIN  
CFB  
CFB  
Error Amp.  
R2  
R2  
R1  
Error Amp.  
PWM  
PWM  
Comparator  
Comparator  
FB  
Synch  
Buffer  
Drive  
FB  
Synch  
Buffer  
Drive  
Logic  
Logic  
Lx  
Lx  
R1  
VSHORT  
VSHORT  
VIN  
Vref with  
Soft Start,  
CE  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
PWM/PFM  
Selector  
CE/  
Ramp Wave  
Generator  
OSC  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
UVLO Cmp  
UVLO  
UVLO  
R3  
R4  
R3  
R4  
VSS  
VSS  
CE/MODE  
Control  
Logic  
CE/MODE  
Control  
Logic  
CE/MODE  
CE/MODE  
XC9235 / XC9236 / XC9237  
D/F Series  
Phase  
Compensation  
Current Feedback  
Current Limit  
FB  
Error Amp.  
PWM  
Comparator  
Synch  
Buffer  
Drive  
Logic  
Lx  
VSHORT  
VIN  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
CE/  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
UVLO  
R3  
R4  
VSS  
CE/MODE  
Control  
Logic  
CE/MODE  
NOTE: The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "L" level inside,  
and XC9235 series chooses only PWM control.  
The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "H" level inside,  
and XC9236 series chooses only PWM/PFM automatic switching control.  
Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
UNIT  
PARAMETER  
VIN Pin Voltage  
SYMBOL  
VIN  
RATINGS  
- 0.3 ~ 6.5  
- 0.3 ~ VIN + 0.3 or 6.5V  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
- 0.3 ~ 6.5  
±1500  
V
V
Lx Pin Voltage  
VLx  
VOUT Pin Voltage  
FB Pin Voltage  
VOUT  
VFB  
V
V
CE / MODE Pin Voltage  
Lx Pin Current  
VCE  
V
ILx  
mA  
Power Dissipation  
SOT-25  
USP-6C  
250  
Pd  
mW  
(*Ta=25)  
100  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
- 40 ~ + 85  
- 55 ~ + 125  
OC  
OC  
4/32  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS  
XC9237A18Cxx, VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.0  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
VIN=VOUT(E)+2.0V, VCE=1.0V,  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
V
CE =VIN, VOUT=0V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
Supply Current  
IDD  
-
-
15  
0
33  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
1020  
120  
1200  
160  
1380  
200  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =VIN, IOUT=1mA (*12)  
DTYLIMIT_PFM VCE=VIN=(C-1), IOUT=1mA (*12)  
IPFM  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
200  
%
%
%
DTYMAX  
DTYMIN  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
When connected to external components,  
100  
-
-
-
-
0
Efficiency(*2)  
EFFI  
-
92  
-
%
V
CE=VIN=VOUT(E)+1.2V, IOUT=100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*10)  
RLxH  
RLxH  
RLxL  
RLxL  
ILeakH  
ILeakL  
ILIM  
VIN=VCE=5.0V, VOUT=0V, ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
-
Ω
VIN=VCE=3.6V (*4)  
-
Ω
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VOUT=5.0V, VCE=0V, Lx=5.0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
-
-
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△topr)  
VOUT/  
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
V
OUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
Voltage changes Lx to “H” level (*11)  
V
OUT=0V, Applied voltage to VCE ,  
V
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
PWM "H" Level Voltage  
VPWMH  
I
OUT=1mA (*6), Voltage which oscillation frequency  
-
-
VIN - 1.0  
V
becomes 1020 kHzfOSC1380kHz (*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC1020kHz (*13)  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V  
VIN=5.0V, VCE=0V, VOUT=0V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
1.0  
-
2.5  
ms  
ms  
V
CE=0V VIN, IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
Short Lx at 1Ω resistance (*7)  
,
tLAT  
20.0  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage  
VSHORT  
0.675 0.900 1.150  
V
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
5/32  
XC9235/XC9236/XC9237 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9237A18Dxx, VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.0  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
VIN=VOUT(E)+2.0V, VCE=1.0V,  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
V
CE=VIN, VOUT=0V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1,*11)  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
Supply Current  
IDD  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=VIN, IOUT=1mA (*12)  
DTYLIMIT_PFM VCE=VIN=(C-1), IOUT=1mA (*12)  
IPFM  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
-
100  
-
200  
300  
%
%
%
DTYMAX  
DTYMIN  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.1V  
When connected to external components,  
-
-
-
0
Efficiency  
EFFI  
-
86  
-
%
V
CE=VINVOUT(E)+1.2V, IOUT=100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*10)  
RLxH  
RLxH  
RLxL  
RLxL  
ILeakH  
ILeakL  
ILIM  
VIN=VCE=5.0V, VOUT =0V, ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT =0V, ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
-
Ω
VIN=VCE=3.6V (*4)  
-
Ω
-
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VOUT=5.0V, VCE=0V, Lx=5.0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
-
-
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△topr)  
VOUT/  
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
V
OUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
Voltage changes Lx to “H” level (*11)  
V
OUT=0V, Applied voltage to VCE,  
V
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
PWM "H" Level Voltage  
VPWMH  
I
OUT=1mA (*6), Voltage which oscillation frequency  
-
-
V
IN - 1.0  
V
becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC2550kHz (*13)  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V  
VIN=5.0V, VCE=0V, VOUT=0V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
0.9  
-
3.0  
20  
ms  
ms  
V
CE=0V VIN, IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT(E)  
Short Lx at 1Ω resistance (*7)  
,
tLAT  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes  
“L” level within 1ms  
Short Protection Threshold  
Voltage  
VSHORT  
0.675 0.900 1.150  
V
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
6/32  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9237B(C)(D)(G)18Cxx, VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
1.764  
1.800 1.836  
V
V
Operating Voltage Range (B/C series)  
Operating Voltage Range (E/G series)  
2.0  
1.8  
-
-
6.0  
6.0  
VIN  
VIN=VOUT(E)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
VUVLO  
600  
-
-
mA  
V
When connected to external components (*9)  
VCE =VIN, VOUT=VOUT(E)×0.5V (*14)  
1.00  
1.40  
1.78  
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current  
IDD  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
-
-
15  
0
33  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
1020  
120  
1200  
160  
1380  
200  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE =VIN, IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
VCE=VIN=(C-1), IOUT=1mA (*12)  
200  
%
%
%
DTYLIMIT_PFM  
DTYMAX  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
100  
-
-
-
-
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
0
DTYMIN  
When connected to external components,  
Efficiency(*2)  
EFFI  
-
92  
-
%
V
CE=VIN=VOUT(E)+1.2V, IOUT=100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
RLxH  
RLxH  
RLxL  
RLxL  
ILeakH  
ILIM  
VIN=VCE=5.0V, VOUT (E)×0.9V , ILx=100mA (*3)  
VIN=VCE=3.6V, VOUT (E)×0.9V , ILx=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
-
Ω
VIN=VCE=3.6V (*4)  
-
-
Ω
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
μA  
mA  
Current Limit (*10)  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△topr)  
VOUT  
/
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT  
Voltage changes Lx to “H” level (*11)  
VOUT VOUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
= VOUT(E)×0.9V, Applied voltage to VCE,  
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
=
,
V
When connected to external components, IOUT=1mA  
(*6), Voltage which oscillation frequency becomes 1020  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
kHzfOSC≦  
1380kHz (*13)  
When connected to external components, IOUT=1mA  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
(*6), Voltage which oscillation frequency becomes fOSC  
1020kHz (*13)  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT  
VIN=5.0V, VCE=0V, VOUT  
When connected to external components,  
CE=0V VIN, IOUT=1mA  
When connected to external components,  
CE=0V VIN, IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8 VOUT(E)  
Short Lx at 1  
resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
resistance, VOUT voltage which Lx becomes “L” 0.675 0.900 1.150  
=
VOUT(E)×0.9V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
=
VOUT(E)×0.9V  
Soft Start Time (B/C Series)  
Soft Start Time (E/G Series)  
Latch Time  
tSS  
tSS  
-
0.25  
1.0  
-
0.40  
2.5  
ms  
ms  
ms  
V
0.5  
1.0  
V
×
,
tLAT  
20.0  
Ω
Short Protection Threshold  
Voltage (B/C Series)  
VSHORT  
1
Ω
V
level within 1ms  
VIN=VCE=5.0V, The VOUT at Lx=”Low"(*11) while  
decreasing VOUT from VOUT (E)×0.4V  
Short Protection Threshold  
Voltage (E/G Series)  
VSHORT  
RDCHG  
0.338 0.450 0.563  
200 300 450  
V
CL Discharge  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=open  
Ω
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is VOUTVINVCE  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
*14: VIN is applied when VOUT (E) x 0.5V becomes more than VIN.  
7/32  
XC9235/XC9236/XC9237 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9237B(C)(E)(G)18Dxx, VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
1.764  
1.800 1.836  
V
V
Operating Voltage Range (B/C series)  
Operating Voltage Range (E/G series)  
2.0  
1.8  
-
-
6.0  
6.0  
VIN  
VIN=VOUT(E)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
VUVLO  
600  
-
-
mA  
V
When connected to external components (*9)  
VCE=VIN, VOUT=VOUT(E)×0.5V (*14)  
,
1.00  
1.40  
1.78  
Voltage which Lx pin holding “L” level (*1,*11)  
VIN=VCE=5.0V, VOUT=VOUT(E)×1.1V  
Supply Current  
IDD  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(E)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN=VOUT(E)+2.0V, VCE=VIN, IOUT=1mA (*12)  
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
VCE=VIN=(C-1), IOUT=1mA (*12)  
-
100  
-
200  
300  
%
%
%
DTYLIMIT_PFM  
DTYMAX  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V  
-
-
-
VIN=VCE=5.0V, VOUT=VOUT(E)×0.1V  
0
DTYMIN  
When connected to external components,  
Efficiency  
EFFI  
-
86  
-
%
V
CE=VINVOUT(E)+1.2V, IOUT=100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
RLxH  
RLxH  
RLxL  
RLxL  
ILeakH  
ILIM  
VIN=VCE=5.0V, VOUT  
VIN=VCE=3.6V, VOUT  
VIN=VCE=5.0V (*4)  
VIN=VCE=3.6V (*4)  
=
=
VOUT(E)×0.9V, ILx=100mA (*3)  
VOUT(E)×0.9V, ILx=100mA (*3)  
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
-
Ω
-
-
Ω
-
VIN=VOUT=5.0V, VCE=0V, Lx=0V  
VIN=VCE=5.0V, VOUT=VOUT(E)×0.9V (*8)  
μA  
mA  
Current Limit (*10)  
900  
1350  
Output Voltage  
Temperature Characteristics (VOUT・△topr)  
VOUT  
/
IOUT=30mA, -40℃≦Topr85℃  
-
±100  
-
ppm/  
VOUT  
=
VOUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “H” level (*11)  
VOUT(E)×0.9V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
VCEL  
0.65  
VSS  
-
-
6.0  
0.25  
V
VOUT  
=
,
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes 2550kHzfOSC3450kHz (*13)  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation frequency  
becomes fOSC2550kHz (*13)  
VIN  
0.25  
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT  
VIN=5.0V, VCE=0V, VOUT  
=
VOUT(E)×0.9V  
VOUT(E)×0.9V  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
=
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
When connected to external components,  
VCE=0V VIN, IOUT=1mA  
Soft Start Time (B Series)  
Soft Start Time (C Series)  
Latch Time  
tSS  
tSS  
-
0.32  
0.9  
-
0.50  
2.5  
20  
ms  
ms  
ms  
0.5  
1.0  
VIN=VCE=5.0V, VOUT=0.8  
Short Lx at 1  
resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
resistance, VOUT voltage which Lx becomes “L” 0.675 0.900 1.150  
×VOUT(E),  
tLAT  
Ω
Short Protection Threshold  
Voltage (B/C Series)  
VSHORT  
1
Ω
V
level within 1ms  
VIN=VCE=5.0V, The VOUT at Lx=”Low"(*11) while  
decreasing VOUT from VOUT (E)×0.4V  
Short Protection Threshold  
Voltage (E/G Series)  
VSHORT  
RDCHG  
0.338 0.450 0.563  
200 300 450  
V
CL Discharge  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=open  
Ω
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is VOUTVINVCE  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
*14: VIN is applied when VOUT (E) x 0.5V becomes more than VIN.  
8/32  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9237D(F)08Cxx, FB Type, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
VIN = VCE =5.0V, The VFB at Lx=High"(*11) while  
decreasing FB pin voltage from 0.9V.  
0.784  
0.800 0.816  
V
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
V
VIN=3.2V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE = VIN , VFB = 0.4V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1,*11)  
VIN =VCE=5.0V, VFB= 0.88V  
Supply Current  
IDD  
-
-
15  
0
μA  
μA  
Stand-by Current  
ISTB  
VIN =5.0V, VCE=0V, VFB= 0.88V  
1.0  
When connected to external components,  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
1020  
120  
1200  
160  
1380  
kHz  
mA  
V
IN = 3.2V, VCE=1.0V, IOUT=100mA  
When connected to external components,  
IN =3.2V, VCE = VIN , IOUT=1mA (*12)  
VCE= VIN =2.0V IOUT=1mA (*12)  
200  
V
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
200  
%
%
%
DTYLIMIT_PFM  
DTYMAX  
V
V
IN = VCE =5.0V, VFB = 0.72V  
IN = VCE =5.0V, VFB = 0.88V  
100  
-
-
-
-
0
DTYMIN  
When connected to external components,  
Efficiency(*2)  
EFFI  
RL  
-
92  
-
%
V
CE = VIN 2.4V, IOUT = 100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
VIN = VCE = 5.0V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
Ω
Ω
μA  
mA  
-
-
H
H
RL  
RL  
RL  
L
L
VIN = VCE = 3.6V (*4)  
ILeakH  
ILIM  
VIN = VFB = 5.0V, VCE = 0V, LX= 0V  
Current Limit (*10)  
VIN = VCE= 5.0V, VFB = 0.72V (*8)  
900  
1050  
1350  
Output Voltage  
Temperature Characteristics  
VOUT  
/
IOUT =30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
(VOUT・△topr)  
VFB =0.72V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
V
V
Voltage changes Lx to “H” level (*11)  
VFB =0.72V, Applied voltage to VCE  
Voltage changes Lx to “L” level (*11)  
,
VCEL  
0.25  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation  
PWM "H" Level Voltage  
VPWMH  
-
-
VIN - 1.0  
V
frequency becomes 1020kHzfOSC1380kHz  
(*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation  
frequency becomes fOSC1020kHz (*13)  
VIN = VCE =5.0V, VFB =0.72V  
VIN =5.0V, VCE = 0V, VFB =0.72V  
When connected to external components,  
VCE = 0V VIN , IOUT=1mA  
VIN  
0.25  
-
PWM "L" Level Voltage  
VPWML  
-
-
V
CE "H" Current  
CE "L" Current  
Soft Start Time (D series)  
Soft Start Time (F series)  
ICEH  
ICEL  
- 0.1  
- 0.1  
0.5  
-
-
-
0.1  
0.1  
2.5  
μA  
μA  
1.0  
0.25  
tSS  
ms  
ms  
0.40  
VIN  
=VCE=5.0V, VFB=0.64, Short Lx at 1Ω  
Latch Time  
tLAT  
1.0  
-
20.0  
resistance (*7)  
Short Protection Threshold  
Voltage  
VIN = VCE =5.0V, The VFB at Lx=”Low"(*11) while  
decreasing FB pin voltage from 0.4V.  
VSHORT  
RDCHG  
0.15  
0.200  
0.25  
V
CL Discharge  
VIN = 5.0V ,LX = 5.0V, VCE = 0V, VFB= open  
200  
300  
450  
Ω
Test conditions: VOUT=1.2V when the external components are connected. Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is  
OUTVINVCE  
NOTE:  
*1: Including hysteresis operating voltage range.  
V
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
9/32  
XC9235/XC9236/XC9237 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9237D(F)08Dxx, FB, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
V
IN = VCE =5.0V, The VFB at Lx=High"(*11) while  
decreasing FB pin voltage from 0.9V.  
0.784  
0.800 0.816  
V
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
V
VIN=3.2V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE = VIN , VFB = 0.4V ,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
VIN =VCE=5.0V, VFB= 0.88V  
Supply Current  
IDD  
-
-
21  
0
35  
μA  
μA  
Stand-by Current  
ISTB  
VIN =5.0V, VCE=0V, VFB= 0.88V  
1.0  
When connected to external components,  
VIN = 3.2V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
PFM Switching Current  
fOSC  
IPFM  
2550  
170  
3000  
220  
3450  
270  
kHz  
mA  
When connected to external components,  
VIN =3.2V, VCE = VIN , IOUT=1mA (*12)  
VCE= VIN =2.2V IOUT=1mA (*12)  
VIN = VCE =5.0V, VFB = 0.72V  
200  
300  
%
%
%
PFM Duty Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM  
DTYMAX  
100  
-
-
-
-
DTYMIN  
VIN = VCE =5.0V, VFB = 0.88V  
0
When connected to external components,  
Efficiency(*2)  
EFFI  
RL  
-
86  
-
%
V
CE = VIN 2.4V, IOUT = 100mA  
VIN = VCE = 5.0V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*10)  
H
H
RL  
RL  
RL  
Ω
L
L
VIN = VCE = 3.6V (*4)  
Ω
ILeakH  
ILIM  
VIN = VFB = 5.0V, VCE = 0V, LX= 0V  
VIN = VCE= 5.0V, VFB = 0.72V (*8)  
IOUT =30mA  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△topr)  
-40℃≦Topr85℃  
V
FB =0.72V , VCE,  
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
Voltage changes Lx to “H” level (*11)  
V
FB =0.72V, VCE,  
VCEL  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
IOUT = 1mA (*6), Voltage which oscillation frequency  
becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
IOUT = 1mA (*6), Voltage which oscillation frequency  
PWM "H" Level Voltage  
PWM "L" Level Voltage  
VPWMH  
-
-
-
V
IN - 1.0  
V
V
VIN  
0.25  
-
VPWML  
-
becomes f  
OSC2550kHz (*13)  
CE "H" Current  
CE "L" Current  
Soft Start Time (D series)  
Soft Start Time (F series)  
ICEH  
ICEL  
VIN = VCE =5.0V, VFB =0.72V  
VIN =5.0V, VCE = 0V, VFB =0.72V  
When connected to external components,  
- 0.1  
- 0.1  
0.5  
-
-
-
0.1  
0.1  
2.5  
μA  
μA  
1.0  
0.25  
tSS  
tLAT  
ms  
ms  
V
V
CE = 0V VIN , IOUT=1mA  
VIN VCE = 5.0V, VFB = 0.64,  
Short Lx at 1  
resistance (*7)  
IN = VCE =5.0V, The VFB at Lx=”Low"(*11) while  
0.40  
=
Latch Time  
1.0  
-
20.0  
0.25  
Ω
V
Short Protection Threshold  
Voltage  
VSHORT  
0.15  
0.200  
decreasing FB pin voltage from 0.4V.  
CL Discharge  
RDCHG  
VIN = 5.0V ,LX = 5.0V ,VCE = 0V ,VFB= open  
200  
300  
450  
Ω
Test conditions: VOUT=1.2V when the external components are connected. Unless otherwise stated, VIN=5.0V, VOUT(E)=Nominal Voltage, applied voltage sequence is  
OUTVINVCE  
NOTE:  
*1: Including hysteresis operating voltage range.  
V
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: R&D value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: The CE/MODE pin of the XC9237A series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the operation,  
control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus 0.3V, and to the PWM  
mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH  
.
*7: Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: XC9235 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*13: XC9235/9236 series exclude VPWMH and VPWML because those are only for the XC9237 series’ functions.  
10/32  
XC9235/XC9236/XC9237  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM Switching Current (IPFM) by Oscillation Frequency and Setting Voltage  
(mA)  
1.2MHz  
3.0MHz  
SETTING VOLTAGE  
MIN.  
140  
130  
120  
TYP.  
180  
170  
160  
MAX.  
240  
MIN.  
190  
180  
170  
TYP.  
260  
240  
220  
MAX.  
350  
VOUT(E) 1.2V  
1.2VVOUT(E) 1.75V  
1.8VVOUT(E)  
220  
300  
200  
270  
Input Voltage (VIN) for Measuring PFM Duty Limit (DTYLIMIT_PFM  
)
fOSC  
C-1  
1.2MHz  
3.0MHz  
VOUT(E)+1.0V  
VOUT(E)+0.5V  
Minimum operating voltage is 2.0V.  
ex.) Although when VOUT(E) is 1.2V and fOSC is 1.2MHz, (C-1) should be 1.7V, (C-1) becomes 2.0V for the minimum operating voltage 2.0V.  
Soft-Start Time, Setting VoltageXC9235B(G)/9236B(G)/9237B(G) Series only)  
SERIES  
fOSC  
SETTING VOLTAGE  
0.8V OUT(E)<1.5  
1.5V OUT(E)<1.8  
1.8V OUT(E)<2.5  
2.5V OUT(E)<4.0  
0.8V OUT(E)<2.5  
2.5V OUT(E)<4.0  
0.8V OUT(E)<1.8  
1.8V OUT(E)<4.0  
MIN.  
TYP.  
250  
320  
280  
320  
280  
320  
280  
320  
MAX.  
400μs  
500μs  
400μs  
500μs  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
3000kHz  
3000kHz  
-
-
-
-
-
-
-
-
XC9235B(G)/XC9237B(G)  
400μs  
500μs  
400μs  
500μs  
XC9236B(G)  
XC9235B(G)/  
XC9236B(G)/XC9237B(G)  
11/32  
XC9235/XC9236/XC9237 Series  
TYPICAL APPLICATION CIRCUIT  
XC9235/9236/9237A, B, C, E, G Series (Output Voltage Fixed)  
VOUT  
600mA  
L
fOSC=3.0MHz  
VIN  
Lx  
VIN  
L:  
CIN:  
CL:  
1.5μH  
4.7μF  
10μF  
(NR3015, TAIYO YUDEN)  
(Ceramic)  
VSS  
VSS  
C
IN  
(ceramic)  
C
L
CE/  
MODE  
(Ceramic)  
VOUT  
(ceramic)  
CE/MODE  
fOSC=1.2MHz  
L:  
CIN:  
CL:  
4.7μH  
4.7μF  
10μF  
(NR4018, TAIYO YUDEN)  
(Ceramic)  
(Ceramic)  
XC9235/9236/9237D, F Series (Output Voltage External Setting)  
<Setting for Output Voltage>  
Output voltage can be set externally by adding two resistors to the FB pin. The output voltage is calculated by the RFB1 and  
RFB2 value. The total of RFB1 and RFB2 is usually selected less than 1M.  
VOUT=0.8 × (RFB1+RFB2)/RFB2  
The value of the phase compensation speed-up capacitor CFB is calculated by the formula of fZFB = 1/(2×π×CFB1×RFB1) with  
fZFB <10kHz. For optimization, fZFB can be adjusted in the range of 1kHz to 20kHz depending on the inductance L and  
the load capacitance CL which are used.  
Formula】  
When RFB1=470kand RFB2=150k, VOUT1=0.8 × (470k+150k) / 150k=3.3V  
Example】  
VOUT  
(V)  
RFB1  
(kΩ)  
100  
RFB2  
(kΩ)  
820  
CFB  
(pF)  
150  
100  
220  
150  
VOUT  
(V)  
RFB1  
(kΩ)  
510  
RFB2  
(kΩ)  
240  
120  
150  
30  
CFB  
(pF)  
100  
150  
100  
470  
0.9  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
4.0  
150  
300  
330  
130  
150  
470  
300  
240  
120  
12/32  
XC9235/XC9236/XC9237  
Series  
OPERATIONAL DESCRIPTION  
The XC9235/XC9236/XC9237 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM  
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel  
MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block  
diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the  
feedback voltage from the VOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting  
error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The  
PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp  
wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle.  
This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel  
MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple  
feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used  
ensuring stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or  
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to  
synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal split resistors, R1 and R2. When a voltage lower than the reference voltage is fed back, the  
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed  
internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XC9235/XC9236/XC9237 series monitors the current flowing through the P-channel MOS  
driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension  
mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx  
pin at any given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over  
current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a  
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the  
driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be  
resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension mode does  
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in  
operation. The current limit of the XC9235/XC9236/XC9237 series can be set at 1050mA at typical. Besides, care must  
be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on the state  
of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the  
board should be laid out so that input capacitors are placed as close to the IC as possible.  
13/32  
XC9235/XC9236/XC9237 Series  
OPERATIONAL DESCRIPTION (Continued)  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT pin (refer to FB point in  
the block diagram shown in the previous page). In case where output is accidentally shorted to the Ground and when  
the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to  
the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. For the  
D/E/F/G series, it does not matter how much the current limit, once the FB voltage become less than the quarter of  
reference voltage (VREF), the short-circuit protection operates to latch the driver transistor. In latch mode, the  
operation can be resumed by either turning the IC off and on via the CE/MODE pin, or by restoring power supply to the  
VIN pin.  
When sharp load transient happens, a voltage drop at the VOUT is propagated to the FB point through CFB, as a result,  
short circuit protection may operate in the voltage higher than 1/2 VOUT voltage.  
<UVLO Circuit>  
When the VIN pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false  
pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8V or higher,  
switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output  
startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO  
operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be  
suspended; therefore, the internal circuitry remains in operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-ch MOSFET on. In this  
case, time that the P-ch MOSFET is kept on (TON) can be given by the following formula.  
TON= L×IPFM / (VINVOUT)  
IPFM①  
< PFM Duty Limit >  
In PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the  
duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even  
when coil current doesn’t reach to IPFM.  
IPFM②  
PFM Duty Limit  
Ton  
FOSC  
Lx  
Lx  
IPFM  
IPFM  
I Lx  
I Lx  
0mA  
0mA  
IPFM ①  
IPFM ②  
14/32  
XC9235/XC9236/XC9237  
Series  
OPERATIONAL DESCRIPTION (Continued)  
CL High Speed Discharge>  
XC9235B(C)(D)(E)(F)(G)/ XC9236B(C)(D)(E)(F)(G)/ XC9237B(C)(D)(E)(F)(G) series can quickly discharge the electric  
charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is  
inputted via the N-channel transistor located between the LX pin and the VSS pin. When the IC is disabled, electric charge at  
the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output  
capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL  
auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), discharge time of the output  
voltage after discharge via the N channel transistor is calculated by the following formulas.  
V = VOUT(E) x e –t/ or t=τln (VOUT(E) / V)  
τ
V : Output voltage after discharge  
VOUT(E) : Output voltage  
t: Discharge time,  
τ: C x R  
C= Capacitance of Output capacitor (CL)  
R= CL auto-discharge resistance  
Output Voltage Dischage Characteristics  
Rdischg = 300Ω(TYP)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
CL=10uF  
CL=20uF  
CL=50uF  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Discharge Time t (ms)  
15/32  
XC9235/XC9236/XC9237 Series  
OPERATIONAL DESCRIPTION (Continued)  
<CE/MODE Pin Function>  
The operation of the XC9235/XC9236/XC9237 series will enter into the shut down mode when a low level signal is input to the  
CE/MODE pin. During the shutdown mode, the current consumption of the IC becomes 0μA (TYP.), with a state of high  
impedance at the Lx pin and VOUT pin. The IC starts its operation by inputting a high level signal to the CE/MODE pin. The  
input to the CE/MODE pin is a CMOS input and the sink current is 0μA (TYP.).  
XC9235/XC9236 series - Examples of how to use CE/MODE pin  
(A)  
SW_CE  
ON  
STATUS  
Stand-by  
Operation  
OFF  
(B)  
SW_CE  
ON  
STATUS  
Operation  
Stand-by  
OFF  
(B)  
(A)  
XC9237 series - Examples of how to use CE/MODE pin  
(A)  
SW_CE  
ON  
SW_PWM/PFM  
STATUS  
PWM/PFM Automatic Switching Control  
PWM Control  
*
OFF  
ON  
OFF  
OFF  
Stand-by  
(B)  
SW_CE  
ON  
SW_PWM/PFM  
STATUS  
Stand-by  
*
(B)  
(A)  
OFF  
ON  
OFF  
PWM Control  
OFF  
PWM/PFM Automatic Switching Control  
Intermediate voltage can be generated by RM1 and RM2. Please set the value of each R1, R2, RM1, RM2 from  
few hundreds kΩ to few hundreds MΩ. For switches, CPU open-drain I/O port and transistor can be used.  
16/32  
XC9235/XC9236/XC9237  
Series  
OPERATIONAL DESCRIPTION (Continued)  
Soft Start>  
Soft start time is available in two options via product selection.  
The XC9235A/XC9236A/XC9237A/XC9235C/XC9236C/XC9237C series provide 1.0ms (TYP).  
The XC9225B/XC9236B/XC9237B series provide 0.25ms (TYP). However, for the D/F series, the soft-start time depends on  
the external components. Soft start time is defined as the time to reach 90% of the output setting voltage when the CE pin is  
turned on.  
90% of setting voltage  
FUNCTION CHART  
CE/MODE  
OPERATIONAL STATES  
XC9236  
VOLTAGE LEVEL  
XC9235  
XC9237  
Synchronous  
PWM/PFM  
Synchronous  
PWM/PFM  
Synchronous  
H Level (*1)  
M Level (*2)  
L Level (*3)  
PWM Fixed Control  
Automatic Switching  
Automatic Switching  
Synchronous  
PWM Fixed Control  
Stand-by  
Stand-by  
Stand-by  
Note on CE/MODE pin voltage level range  
(*1) H level: 0.65V < H level < VIN V (for XC9235/XC9236)  
H level: VIN – 0.25V < H level < VIN (for XC9237)  
(*2) M level: 0.65V < M level < VIN - 1.0V (for XC9237)  
(*3) L level: 0V < L level < 0.25V  
17/32  
XC9235/XC9236/XC9237 Series  
NOTE ON USE  
1. The XC9235/XC9236/XC9237 series is designed for use with ceramic output capacitors. If, however, the potential  
difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting  
high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an  
electrolytic capacitor in parallel to compensate for insufficient capacitance.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
3. Depending on the input-output voltage differential, or load current, some pulses may be skipped, and the ripple voltage may  
increase.  
4. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the  
possibility that some cycles may be skipped completely.  
5. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that some cycles may be skipped completely.  
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate  
the peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x fOSC) + IOUT  
L: Coil Inductance Value  
fOSC: Oscillation Frequency  
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off.  
During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current  
flows; therefore, care must be taken when selecting the rating for the external components such as a coil.  
8. When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
9. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending  
on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of  
noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.  
10. Use of the IC at voltages below the recommended voltage range may lead to instability.  
11. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
12. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the  
leak current of the driver transistor.  
13. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the  
current limit functions while the VOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for  
input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when  
N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the VOUT pin is shorted to the  
GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation,  
and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current,  
which is supposed to be limited originally. Even in this case, however, after the over current state continues for several  
ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent  
damage to the device.  
Current flows into P-ch MOSFET to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to  
OFF of P-ch MOSFET.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
Limit >  
#
ms  
Delay  
LX  
ILIM  
ILX  
18/32  
XC9235/XC9236/XC9237  
Series  
NOTE ON USE (Continued)  
14. In order to stabilize VIN’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be  
connected as close as possible to the VIN & VSS pins.  
15. High step-down ratio and very light load may lead an intermittent oscillation.  
16. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.  
Please verify with actual parts.  
17. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient  
temperature, setting voltage, oscillation frequency, and L value are not adequate.  
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation  
even if using the L values listed below.  
The Range of L Value  
<External Components>  
fOSC  
VOUT  
L Value  
3.0MHz  
0.8VVOUT<4.0V  
1.0μH2.2μH  
3.3μH6.8μH  
4.7μH6.8μH  
V
OUT2.5V  
1.2MHz  
2.5VVOUT  
*When  
a coil less value of 4.7μH is used at  
f
OSC=1.2MHz or when a coil less value of 1.5μH is  
used at fOSC=3.0MHz, peak coil current more easily  
reach the current limit ILMI. In this case, it may  
happen that the IC can not provide 600mA output  
current.  
18. It may happen to enter unstable operation when the IC operation mode goes into continuous operation mode under the  
condition of small input-output voltage difference. Care must be taken with the actual design unit.  
<External Components>  
19/32  
XC9235/XC9236/XC9237 Series  
NOTE ON USE (Continued)  
Instructions of pattern layouts  
1. In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to  
the VIN & VSS pins.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
5. This series’ internal driver transistors bring on heat because of the output current and ON resistance of driver transistors.  
XC9235/9236/9237A, B, C (Output Voltage Fixed)  
XC9235/9236/9237A, B, C, E, G (Output Voltage Fixed)  
Inductor  
Inductor  
For the VIN, VOUT, VSS/CE, please put the wire.  
For the VIN, VOUT, VSS/CE, please put the wire.  
XC9235/9236/9237D, F (Output Voltage External Setting)  
Chip  
Resistance  
Inductor  
For the VIN, VOUT, VSS/CE, please put the wire.  
20/32  
XC9235/XC9236/XC9237  
Series  
TEST CIRCUITS  
< Circuit No.1 >  
Wave Form Measure Point  
・A/B/C/E/G series  
・D/F series  
Wave Form Measure Point  
L
IOUT  
L
VIN  
Lx  
A
VIN  
Lx  
A
Cfb  
R1  
CIN  
CL  
CE/MODE  
VOUT  
V
RL  
RL  
V
CE/MODE  
FB  
CIN  
CL  
VSS  
VSS  
R2  
External Components  
L
: 1.5μH(NR4018) 3.0MHz  
: 4.7μH (NR3015) 1.2MHz  
VOUT=VFB×(R1+R2)/R2  
External Components  
CIN : 4.7μF  
CL : 10μF  
R1 : 150kΩ  
R2 : 300kΩ  
Cfb : 120pF  
L
:
1.5uH(NR3015) 3.0MHz  
4.7uH(NR4018) 1.2MHz  
CIN : 4.7μF(ceramic)  
CL :10μF(ceramic)  
< Circuit No.2 >  
< Circuit No.3 >  
Wave Form Measure Point  
VIN  
Lx  
VIN  
Lx  
A
VOUT  
(FB)  
VOUT  
(FB)  
Rpulldown  
200Ω  
CE/MODE  
CE/MODE  
1uF  
1uF  
VSS  
VSS  
< Circuit No.4 >  
< Circuit No.5 >  
VIN  
Lx  
VIN  
Lx  
A
ICEH  
VOUT  
(FB)  
VOUT  
(FB)  
100mA  
CE/MODE  
CE/MODE  
V
A
1uF  
1uF  
VSS  
VSS  
ICEL  
ON resistance = (VIN-VLx)/100mA  
< Circuit No.7 >  
< Circuit No.6 >  
Wave Form Measure Point  
Wave Form Measure Point  
VIN  
Lx  
VIN  
Lx  
Ilat  
VOUT  
(FB)  
VOUT  
(FB)  
ILIM  
CE/MODE  
CE/MODE  
VSS  
V
1uF  
1uF  
VSS  
Rpulldown  
1Ω  
< Circuit No.8 >  
< Circuit No.9 >  
ILx  
VIN  
Lx  
VIN  
Lx  
A
A
VOUT  
(FB)  
VOUT  
(FB)  
CE/MODE  
VSS  
CE/MODE  
1uF  
CIN  
VSS  
21/32  
XC9235/XC9236/XC9237 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9237A18C  
XC9237A18D  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
WM/PFM Automatic Sw itchng ontol  
PWM/PFM Automatc itching Control  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN= 4.2V  
VIN= 4.2V  
3.6V  
PWM Control  
VIN= 4.2V  
3.6V  
2.4V  
3.6V  
2.4V  
PWM Control  
VIN= 4.2V  
2.4V  
3.6V  
2.4V  
0.1  
1
10  
IO
100  
1000  
0.1  
1
10  
100  
1000  
O
ut  
p
u
t
C
u
rr  
e
n
t
:
U
T
(
m
A
)
Output Current: IOUT (mA)  
(2) Output Voltage vs. Output Current  
XC9237A18C  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
PWM/PFM Automatic Sw itching Control  
PWM/PFM Automatic Sw itching Control  
VIN 4.2V,3.6V,2.4V  
VIN 4.2V,3.6V,2.4V  
PWM Control  
PWM Control  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
XC9237A18C  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PWM/PFM Automatic  
PWM Control  
PWM/PFM A utomatic  
Sw itching Control  
Sw itching Control  
VIN 4.2V,3.6V,2.4V  
VIN 4.2V  
PWM Control  
VIN 4.2V  
3.6V  
VIN 4.2V,3.6V,2.4V  
3.6V  
2.4V  
ꢀꢀ  
2.4V  
ꢀꢀ  
0.1  
1
10  
t:  
100  
1000  
0.1  
1
10  
t:  
IO
100  
A)
1000  
O
u
tp
u
t
C
ur  
r
n
I
O
U
(m
A
)
O
u
tp  
u
t
C
u
r
re  
n
U
T
(
m
22/32  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
XC9237A18C  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
1.5  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(5) Supply Current vs. Ambient Temperature  
XC9237A18D  
XC9237A18C  
40  
40  
VIN=6.0V  
35  
30  
35  
30  
25  
20  
15  
10  
5
VIN=4.0V  
VIN=6.0V  
VIN=2.0V  
25  
20  
15  
10  
5
VIN=4.0V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(6) Output Voltage vs. Ambient Temperature  
(7) UVLO Voltage vs. Ambient Temperature  
XC9237A18D  
XC9237A18D  
2.1  
1.8  
CE=VIN  
2.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.9  
VIN=3.6V  
1.8  
1.7  
1.6  
1.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
23/32  
XC9235/XC9236/XC9237 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) CE "H" Voltage vs. Ambient Temperature  
(9) CE "L" Voltage vs. Ambient Temperature  
XC9237A18D  
XC9237A18D  
1.0  
1.0  
0.9  
0.8  
0.9  
0.8  
VIN=5.0V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
VIN=5.0V  
0.6  
0.5  
0.4  
VIN=3.6V  
0.3  
0.2  
0.1  
0.0  
VIN=3.6V  
VIN=2.4V  
VIN=2.4V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(10) Soft Start Time vs. Ambient Temperature  
XC9237A18C  
XC9237A18D  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
5
4
3
2
1
0
5
4
3
2
1
0
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
Ambient Temperature: Ta ()  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
XC9237A18D  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
Pch on Resistance  
0
1
2
3
4
5
6
Input Voltage: VIN (V)  
24/32  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(12) XC9235B/36B/37B Rise Wave Form  
XC9237B12C  
XC9237B33D  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
VIN=5.0V  
VIN=5.0V  
IOUT=1.0mA  
IOUT=1.0mA  
VOUT1.0V/div  
VOUT0.5V/div  
CE0.0V1.0V  
100μs/div  
CE0.0V1.0V  
100μs/div  
(13) XC9235B/36B/37B  
Soft-Start Time vs. Ambient Temperature  
XC9237B12C  
XC9237B33D  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
VIN=5.0V  
IOUT=1.0mA  
VIN=5.0V  
IOUT=1.0mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(℃)  
Ambient Temperature: Ta(℃)  
(14) XC9235B/36B/37B  
CL Discharge Resistance vs. Ambient Temperature  
XC9237B33D  
600  
500  
400  
300  
200  
100  
VIN=6.0V  
VIN=4.0V  
VIN=2.0V  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
25/32  
XC9235/XC9236/XC9237 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response  
XC9237A18C  
L=4.7μH (NR4018), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=VIN (PWM/PFM Automatic Switching Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
50μs/div  
50μs/div  
I
OUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
V
OUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
26/32  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18C  
L=4.7μH (NR4018), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=1.8V (PWM Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
50μs/div  
50μs/div  
I
OUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
V
OUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
27/32  
XC9235/XC9236/XC9237 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=VIN (PWM/PFM Automatic Switching Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
50μs/div  
50μs/div  
I
OUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
28/32  
XC9235/XC9236/XC9237  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
XC9237A18D  
L=1.5μH (NR3015), CIN=4.7μF (ceramic), CL=10μF (ceramic), Topr=25℃  
VIN=3.6V, VCE=1.8V (PWM Control)  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
50μs/div  
50μs/div  
I
OUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
29/32  
XC9235/XC9236/XC9237 Series  
PACKAGING INFORMATION  
SOT-25  
USP-6C  
USP-6C Reference Pattern Layout  
USP-6C Reference Metal Mask Design  
30/32  
XC9235/XC9236/XC9237  
Series  
MARKING RULE  
SOT-25 & USP-6C  
Represent product series  
PRODUCT  
XC9235  
XC9236  
XC9237  
SERIES  
A
B
C
D
E
F
4
C
K
K
4
5
D
L
6
E
M
M
6
L
5
2
7
B
E
G
C
D
SOT-25  
Represents integer number of output voltage and oscillation frequency  
A/B/C/F Series  
(TOP VIEW)  
OUTPUT  
MARK  
VOLTAGE (V)  
fOSC=1.2MHz  
fOSC=3.0MHz  
0.X  
1.X  
2.X  
3.X  
4.X  
A
B
C
D
E
F
H
K
L
M
E/G/D Series  
OUTPUT  
MARK  
VOLTAGE (V)  
fOSC=1.2MlHz  
fOSC=3.0MlHz  
USP-6C  
0.X  
1.X  
2.X  
3.X  
4.X  
N
P
R
S
T
U
V
X
Y
Z
(TOP VIEW)  
Represents decimal point of output voltage  
VOUT (V)  
X.00  
X.10  
X.20  
X.30  
X.40  
X.50  
X.60  
X.70  
X.80  
X.90  
MARK  
VOUT (V)  
X.05  
X.15  
X.25  
X.35  
X.45  
X.55  
X.65  
X.75  
X.85  
X.95  
MARK  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
H
K
L
M
④⑤Represents production lot number  
Order of 01, …09, 10, 11, …99, 0A, …0Z, 1A, …9Z, A0, …Z9, AA, …ZZ.  
(G, I, J, O, Q, W excepted)  
*No character inversion used.  
31/32  
XC9235/XC9236/XC9237 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
32/32  

相关型号:

XC9236A326DL

Analog Circuit
TOREX

XC9236A326DR

Analog Circuit
TOREX

XC9236A336DL

Analog Circuit
TOREX

XC9236A33CER-G

IC REG BUCK 3.3V 0.6A SYNC USP-6
TOREX

XC9236A33CML

Switching Regulator/Controller
TOREX

XC9236A33CML-G

Switching Regulator/Controller
TOREX

XC9236A33CMR-G

Switching Regulator/Controller, Current-mode, 0.6A, 1380kHz Switching Freq-Max, PDSO5
TOREX

XC9236A33DER-G

Switching Regulator/Controller, Current-mode, 0.6A, 3450kHz Switching Freq-Max, PDSO6
TOREX

XC9236A33DML-G

Switching Regulator/Controller
TOREX

XC9236A33DMR

600mA Driver Tr. Built-In, Synchronous Step-Down DC/DC Converters
TOREX

XC9236A33DMR-G

IC REG BCK 3.3V 0.6A SYNC SOT-25
TOREX

XC9236A346ML

Analog Circuit
TOREX