XC9268B75CER-G [TOREX]

36V Operation 600mA Synchronous Step-Down DC/DC Converters;
XC9268B75CER-G
型号: XC9268B75CER-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

36V Operation 600mA Synchronous Step-Down DC/DC Converters

文件: 总30页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9268Series  
36V Operation 600mA Synchronous Step-Down DC/DC Converters  
ETR05071-001a  
GENERAL DESCRIPTION  
The XC9268 series are 36V operation synchronous step-down DC/DC converter ICs with a built-in P-channel MOS driver transistor  
and N-channel MOS switching transistor. The XC9268 series has operating voltage range of 3.0V~36.0V and high-efficiency power  
supply up to an output current of 600mA. Low ESR capacitors such as ceramic capacitors can be used for the load capacitor (CL).  
A 0.75V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.0V to 25.0V using  
external resistors (RFB1, RFB2).  
1.2MHz or 2.2MHz can be selected for the switching frequency. In automatic PWM/PFM control, the IC operates by PFM control  
when the load is light to achieve high efficiency over the full load range from light to heavy.  
The soft-start time is internally set to 2.0ms (TYP.), but can be adjusted to set a longer time using an external resistor and capacitor.  
With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 2.7V or lower.  
The output state can be monitored using the power good function.  
Internal protection circuits include over current protection and thermal shutdown circuits to enable safe use.  
FEATURES  
Input Voltage Range  
Output Voltage Range  
FB Voltage  
APPLICATIONS  
Electric Meter  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
3.0 ~ 36V (Absolute Max 40V  
1.0 ~ 25V  
Gas Detector  
0.75V ± 1.5%  
Various Sensor  
Oscillation Frequency  
Output Current  
1.2MHz, 2.2MHz  
Industrial Equipment  
Home appliance  
600mA  
Quiescent Current  
12.5μA (1.2MHz)  
13.5μA (2.2MHz)  
Control Methods  
PWM/PFM Auto  
Efficiency 83%@12V→5V1mA  
Adjustable by RC  
Soft-start Time  
Protection Circuits  
Over Current Protection  
Thermal Shutdown  
Ceramic Capacitor  
- 40~ + 105℃  
Output Capacitor  
Operating Ambient Temperature  
Packages  
SOT-89-5 (Without Power Good)  
USP-6C (With Power Good)  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE  
CHARACTERISTICS  
L
VIN  
Lx  
CIN  
RFB1  
2.2μF  
CFB  
EN/SS  
FB  
CL  
RFB2  
10μF×2  
RPG  
GND  
PG  
1/30  
XC9268 Series  
BLOCK DIAGRAM  
XC9268 Series  
VIN  
Current  
SENSE  
LocalReg  
Chip  
Enable  
EN/SS  
each  
Current  
feed  
back  
Current  
Limit  
PFM  
circuit  
Current  
Limit  
High  
Side  
Buffer  
Gate  
CLAMP  
Under  
Voltage  
Lx  
Low  
Side  
Lock Out  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
PWM  
PWM/PFM  
ControlLOGIC  
FB  
Comparator  
-
GND  
Ramp  
Wave  
OSC  
PG  
(USP-6C Package Only)  
+
-
PowerGood  
Comparator  
*Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.  
2/30  
XC9268  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
(*1)  
XC9268①②③④⑤⑥-⑦  
PWM/PFM Auto  
ITEM  
DESIGNATOR  
SYMBOL  
DESCRIPTION  
Refer to Selection Guide  
Type  
B
75  
②③  
FB Voltage  
0.75V  
C
1.2MHz  
Oscillation Frequency  
Packages  
D
2.2MHz  
PR-G(*1)  
ER-G(*1)  
SOT-89-5 (1000pcs/Reel)  
USP-6C (3000pcs/Reel)  
⑤⑥-⑦  
(*1) The -Gsuffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
Selection Guide  
B TYPE  
FUNCTION  
SOT-89-5  
USP-6C  
Chip Enable  
UVLO  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Thermal Shutdown  
Soft Start  
Power-Good  
Current Limitter  
Yes  
Yes  
(Automatic Recovery)  
3/30  
XC9268 Series  
PIN CONFIGURATION  
VIN  
EN/SS  
4
5
2
1
2
3
Lx  
VIN  
EN/SS 5  
PG  
6
GND  
FB  
4
1
2
3
Lx  
GND  
FB  
SOT-89-5  
(TOP VIEW)  
USP-6C  
(BOTTOM VIEW)  
* The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as  
to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the  
GND (No. 2) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-89-5  
USP-6C  
1
2
3
-
1
2
3
4
5
6
Lx  
GND  
FB  
Switching Output  
Ground  
Output Voltage Sense  
Power-good Output  
Enable Soft-start  
Power Input  
PG  
4
5
EN/SS  
VIN  
4/30  
XC9268  
Series  
FUNCTION CHART  
PIN NAME  
SIGNAL  
STATUS  
Stand-by  
L
H
EN/SS  
Active  
OPEN  
Undefined State(*1)  
(*1) Please do not leave the EN/SS pin open. Each should have a certain voltage  
PIN NAME  
PG  
CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO  
Undefined State  
(VIN < VUVLO1  
Stand-by  
)
L (Low impedance)  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
VIN Pin Voltage  
EN/SS Pin Voltage  
FB Pin Voltage  
PG Pin Voltage(*1)  
PG Pin Current(*1)  
Lx Pin Voltage  
SYMBOL  
VIN  
RATINGS  
-0.3 ~ +40  
-0.3 ~ +40  
-0.3 ~ +6.2  
-0.3 ~ +6.2  
8
UNITS  
V
V
VEN/SS  
VFB  
V
VPG  
V
IPG  
mA  
V
VLx  
-0.3 ~ VIN + 0.3 or +40 (*2)  
Lx Pin Current  
ILx  
1800  
mA  
SOT-89-5  
1750 (JESD51-7 board) (*4)  
1250 (JESD51-7 board) (*4)  
+46(*3)  
Power  
Dissipation  
Pd  
mW  
USP-6C(DAF)  
Surge Voltage  
VSURGE  
Topr  
V
Operating Ambient Temperature  
Storage Temperature  
-40 ~ +105  
Tstg  
-55 ~ +125  
* All voltages are described based on the GND pin.  
(*1) For the USP-6C Package only.  
(*2) The maximum value should be either VIN+0.3 or 40 in the lowest.  
(*3) Applied Time400ms  
(*4) The power dissipation figure shown is PCB mounted and is for reference only.  
The mounting condition is please refer to PACKAGING INFORMATION.  
5/30  
XC9268 Series  
ELECTRICAL CHARACTERISTICS  
XC9268 Series  
Ta=25  
CIRCUIT  
PARAMETER  
SYMBOL  
VFBE  
CONDITIONS  
VFB=0.739V0.761V,  
FB Voltage when Lx pin voltage changes  
MIN.  
TYP.  
MAX.  
UNIT  
FB Voltage  
V
0.739 0.750 0.761  
V
from "H" level to "L" level  
Setting Output  
Voltage Range (*1)  
VOUTSET  
VIN  
-
1
3
-
-
25  
36  
V
V
-
-
Operating Input  
Voltage Range (*1)  
-
VEN/SS=12V,VIN:2.8V2.6V,VFB=0V  
UVLO Detect Voltage  
UVLO Release Voltage  
VUVLOD  
V
IN Voltage which Lx pin voltage holding  
"H" level  
EN/SS=12V,VIN:2.7V2.9V,VFB=0V  
2.6  
2.7  
2.7  
2.8  
2.8  
2.9  
V
V
V
VUVLOR  
VIN Voltage which Lx pin voltage holding  
"L" level  
XC9268B75C  
VFB=0.825V  
-
-
-
12.5  
13.5  
1.65  
21.0  
22.0  
2.50  
Quiescent Current  
Stand-by Current  
Iq  
μA  
μA  
XC9268B75D  
ISTBY  
VIN=12V, VEN/SS=VFB=0V  
XC9268B75C 1.098 1.200 1.302  
XC9268B75D 2.013 2.200 2.387  
Connected to external  
components,  
Oscillation Frequency  
fOSC  
MHz  
IOUT=200mA  
Minimum On Time  
Minimum Duty Cycle  
Maximum Duty Cycle  
Lx SW "H" On  
tONMIN  
DMIN  
Connected to external components  
VFB=0.825V  
-
-
85 (*2)  
-
0
-
ns  
%
%
-
-
DMAX  
VFB=0.675V  
100  
RLxH  
RLxL  
VFB=0.675V, ILx=200mA  
-
-
1.20  
1.38  
-
Ω
Ω
Resistance  
Lx SW "L" On  
0.60  
(*2)  
Resistance  
High side Current Limit  
ILIMH  
tSS1  
tSS2  
VFB=VFBE×0.98  
VFB=0.675V  
1.00  
1.6  
21  
1.30  
2.0  
26  
-
A
(*3)  
Internal Soft-Start Time  
2.4  
33  
ms  
ms  
External Soft-Start  
Time  
VFB=0.675V  
RSS=430KΩ, CSS=0.47μF  
Connected to external components,  
PFM Switch Current  
IPFM  
EFFI  
-
-
-
400  
83  
-
-
-
mA  
%
VIN=VEN/SS=12VIOUT=1mA  
Connected to external  
XC9268B75C  
XC9268B75D  
components,  
VIN=12V, VOUT=5V,  
IOUT=1mA  
Efficiency (*5)  
80  
%
ΔVFB  
(ΔTopr  
VFBE  
/
FB Voltage  
Temperature  
Characteristics  
-40℃≦Topr105℃  
-
±100  
-
ppm/℃  
)
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V  
Peripheral parts connection conditionsL=6.8μHRFB1=680kΩRFB2=120kΩCL=10μF×2CIN=2.2μF  
(*1) Please use within the range of VOUT/VINtONMIN[ns]×fOSC[MHz]×10-3  
(*2)Design reference value. This parameter is provided only for reference.  
(*3)Current limit denotes the level of detection at peak of coil current.  
(*4)For the USP-6C Package only.  
6/30  
XC9268  
Series  
ELECTRICAL CHARACTERISTICS  
XC9268 Series  
Ta=25℃  
CIRCUIT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
VFB=0.712V0.638V, RPG:100kΩ pull-up to  
5V  
PG detect voltage (*4)  
VPGDET  
0.638 0.675 0.712  
VFB Voltage when PG pin voltage changes  
from"H" level to "L" level  
PG Output voltage (*4)  
FB "H" Current  
VPG  
IFBH  
IFBL  
VFB=0.6V, IPG=1mA  
-
-
-
-
0.3  
0.1  
0.1  
V
VIN=VEN/SS=36V, VFB=3.0V  
VIN=VEN/SS=36V, VFB=0V  
-0.1  
-0.1  
μA  
μA  
FB "L" Current  
VEN/SS=0.3V2.5V, VFB=0.71V  
VEN/SS Voltage when Lx pin voltage  
changes from "L" level to "H" level  
EN/SS "H" Voltage  
EN/SS "L" Voltage  
VEN/SSH  
2.5  
-
-
-
36  
V
V
VEN/SS=2.5V0.3V, VFB=0.71V  
VEN/SS Voltage when Lx pin voltage  
changes from "H" level to "L" level  
VEN/SSL  
0.3  
EN/SS "H" Current  
EN/SS "L" Current  
IEN/SSH  
IEN/SSL  
VIN=VEN/SS=36V, VFB=0.825V  
-
0.1  
-
0.3  
0.1  
μA  
μA  
VIN=36V, VEN/SS=0V, VFB=0.825V  
-0.1  
Thermal Shutdown  
Temperature  
TTSD  
THYS  
Junction Temperature  
Junction Temperature  
-
-
150  
25  
-
-
-
-
Hysteresis Width  
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V  
Peripheral parts connection conditionsL=6.8μHRFB1=680kΩRFB2=120kΩCL=10μF×2CIN=2.2μF  
(*4) For the USP-6C Package only.  
7/30  
XC9268 Series  
TEST CIRCUITS  
CIRCUIT①  
V
IN  
A
Probe  
EN/SS  
PG  
L
V
V
O UT  
2.2μF  
Lx  
A
V
C
FB  
R
R
FB1  
FB  
V
FB2  
10μ2  
GND  
CIRCUIT②  
Probe  
V
IN  
V
Probe  
EN/SS  
2.2μF  
Lx  
1 00 kΩ  
V
PG  
FB  
V
A
A
V
1 00 kΩ  
GND  
V
Probe  
CIRCUIT③  
Probe  
V
IN  
4 30 kΩ  
Probe  
EN/SS  
Lx  
2.2μF  
V
V
PG  
0.47μF  
FB  
V
GND  
1 00 kΩ  
V
* PG Pin is USP-6C Package only.  
8/30  
XC9268  
Series  
TEST CIRCUITS  
CIRCUIT④  
V
IN  
A
EN/SS  
PG  
A
Lx  
V
V
FB  
A
GND  
V
CIRCUIT⑤  
Probe  
VIN  
V
Probe  
EN/SS  
CIN  
Lx  
RPG =100kΩ  
V
PG  
FB  
V
V
GND  
V
Probe  
* PG Pin is USP-6C Package only.  
9/30  
XC9268 Series  
TYPICAL APPLICATION CIRCUIT  
L
VIN  
Lx  
CIN  
RFB1  
CFB  
EN/SS  
FB  
CL  
RFB2  
RPG  
GND  
PG  
Inductance value setting>  
For the XC9268 Series, operation is optimized by setting the following inductance value according to the set frequency and  
setting output voltage.  
fOSCSET: Frequency setting , VOUTSET: Output voltage setting  
Typical Examples】  
fOSCSET  
conditions  
MANUFACTURER  
TDK  
PRODUCT NUMBER  
CLF5030NIT-3R3N  
XEL4030-332ME  
VALUE  
Coilcraft  
1VVOUTSET2V  
3.3μH  
Taiyo Yuden  
Tokyo Coil  
TDK  
NRS4018T3R3MDGJ  
SHP0420P-F3R3NAP  
CLF5030NIT-4R7N  
XEL4030-472ME  
Coilcraft  
2VVOUTSET3.3V  
4.7μH  
Taiyo Yuden  
Tokyo Coil  
TDK  
NRS5024T4R7MMGJ  
SHP0530P-F4R7AP  
CLF5030NIT-6R8N  
XEL4030-682ME  
1.2MHz  
Coilcraft  
3.3VVOUTSET6V  
6.8μH  
10μH  
Taiyo Yuden  
Tokyo Coil  
TDK  
NRS5024T6R8MMGJ  
SHP0530P-F6R8AP  
CLF5030NIT-100N  
NRS5040T100MMGJ  
6VVOUTSET25V  
Taiyo Yuden  
Tokyo Coil  
TDK  
SHP0530P-F100AP  
CLF5030NIT-1R5N  
L
Coilcraft  
Taiyo Yuden  
Tokyo Coil  
TDK  
XEL4030-152ME  
1.5μH  
1.6μH  
1VVOUTSET2V  
NRS4018T1R5NDGJ  
SHP0420P-F1R6NAP  
CLF5030NIT-2R2N  
Coilcraft  
Taiyo Yuden  
Tokyo Coil  
TDK  
XEL4030-222ME  
2VVOUTSET3.3V  
3.3VVOUTSET6V  
6VVOUTSET25V  
2.2μH  
3.3μH  
4.7μH  
NRS4018T2R2MDGJ  
SHP0420P-F2R2NAP  
CLF5030NIT-3R3N  
2.2MHz  
Coilcraft  
Taiyo Yuden  
Tokyo Coil  
TDK  
XEL4030-332ME  
NRS4018T3R3MDGJ  
SHP0420P-F3R3NAP  
CLF5030NIT-4R7N  
Coilcraft  
Taiyo Yuden  
Tokyo Coil  
TDK  
XEL4030-472ME  
NRS5024T4R7MMGJ  
SHP0530P-F4R7AP  
C2012X6S1H475K125AC  
C2012X6S1H475K125AC  
C2012X7R1H225K125AC  
C2012X7R1H225K125AC  
C2012X7R1A106K125AC  
C3216X7R1E106K160AB  
C3225X7R1H106M250AC  
VIN20V  
VIN20V  
VIN20V  
VIN20V  
4.7μF/50V  
1.2MHz  
2.2MHz  
TDK  
4.7μF/50V 2parallel  
2.2μF/50V  
CIN  
TDK  
TDK  
2.2μF/50V 2parallel  
10μF/10V 2parallel  
10μF/25V 2parallel  
10μF/50V 2parallel  
CL  
-
-
TDK  
10/30  
XC9268  
Series  
TYPICAL APPLICATION CIRCUIT(Continued)  
< Output voltage setting >  
The output voltage can be set by adding an external dividing resistor.  
The output voltage is determined by the equation below based on the values of RFB1 and RFB2  
.
VOUT=0.75V × (RFB1+RFB2)/RFB2  
With RFB2200kΩ and RFB1+RFB21MΩ  
<CFB setting>  
Adjust the value of the phase compensation speed-up capacitor CFB using the equation below.  
1
CFB  
=
2π × fzfb× RFB1  
1
A target value for fzfb of about fzfb =  
Setting Example】  
is optimum.  
2π CL × L  
To set output voltage to 5V with fosc=1.2MHz, CL=10μF×2, L=6.8μH  
When RFB1=680kΩ, RFB2=120kΩ, VOUTSET=0.75V× (680kΩ+120kΩ) / 120kΩ=5.0V  
And fzfb is set to a target of 13.65 kHz using the above equation,  
CFB=1/ (2×π×13.65 kHz×680kΩ) =17.15pF. A capacitor of E24 series is 18pF.  
XC9268B75Cxx / fOSC=1.2MHz  
RFB1 RFB2 CFB  
XC9268B75Dxx / fOSC=2.2MHz  
RFB1 RFB2 CFB  
VOUTSET  
1.2V  
3.3V  
5.0V  
12V  
L
fzfb  
VOUTSET  
1.2V  
3.3V  
5.0V  
12V  
L
fzfb  
120200kΩ 3.3μH 68pF 19.6kHz  
510kΩ 150kΩ 4.7μH 18pF 16.4kHz  
680kΩ 120kΩ 6.8μH 18pF 13.7kHz  
120200kΩ 1.5μH 47pF 29.1kHz  
510kΩ 150kΩ 2.2μH 12pF 24.0kHz  
680kΩ 120kΩ 3.3μH 12pF 19.6kHz  
360kΩ  
24kΩ 10μH 39pF 11.3kHz  
360kΩ  
24kΩ 4.7μH 27pF 16.4kHz  
<Soft-start Time Setting>  
The soft-start time can be adjusted by adding a capacitor and a resistor to the EN/SS pin.  
Soft-start time (tSS2) is approximated by the equation below according to values of VEN/SS, RSS, and CSS  
.
tss2=Css x Rss x ln ( VEN/SS / (VEN/SS-1.45) )  
Setting Example】  
When CSS=0.47μF, RSS=430kΩ and VEN/SS=12V, tSS2=0.47x10-6 x 430 x 103 x (ln (12/ (12-1.45)) =26ms (Approx.)  
*The soft-start time is the time from the start of VEN/SS until the output voltage reaches 90% of the set voltage.  
If the EN/SS pin voltage rises steeply without connecting CSS and RSS (RSS=0Ω), Output rises with taking the soft-start time of  
tSS1=2.0ms (TYP.) which is fixed internally.  
RSS  
VEN/SS  
EN/SS  
CSS  
VEN/SS  
90 % of setting voltage  
V
OUT  
tSS1  
tSS2  
11/30  
XC9268 Series  
OPERATIONAL EXPLANATION  
The XC9268 series consists internally of a reference voltage supply with soft-start function, error amp, PWM comparator, ramp  
wave circuit, oscillator circuit, Current limiting PFM circuit, phase compensation (Current feedback) circuit, current limiting circuit,  
High-side driver Tr., Low-side driver Tr., buffer drive circuit, internal power supply (Local Reg) circuit, under-voltage lockout  
(UVLO) circuit, gate clamp (CLAMP) circuit, thermal shutdown (TSD) circuit, power good comparator, PWM/PFM control block  
and other elements.  
The voltage feedback from the FB pin is compared to the internal reference voltage by the error amp, the output from the error  
amp is phase compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM  
operation. The output signal from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent  
to the buffer drive circuit and output from the LX pin as the duty width of switching. This operation is performed continuously to  
stabilize the output voltage.  
The driver transistor current is monitored at each switching by the phase compensation (Current feedback) circuit, and the  
output signal from the error amp is modulated as a multi-feedback signal. This allows a stable feedback system to be obtained  
even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the output voltage.  
XC9268 Series  
VIN  
Current  
SENSE  
LocalReg  
Chip  
Enable  
EN/SS  
each  
Current  
feed  
back  
Current  
Limit  
PFM  
circuit  
Current  
Limit  
High  
Side  
Buffer  
Gate  
CLAMP  
Under  
Voltage  
Lx  
Low  
Side  
Lock Out  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
PWM  
PWM/PFM  
ControlLOGIC  
FB  
Comparator  
-
GND  
Ramp  
Wave  
OSC  
PG  
(USP-6C Package Only)  
+
-
PowerGood  
Comparator  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
<Reference voltage source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Oscillator circuit>  
The oscillator circuit determines switching frequency.1.2MHz or 2.2MHz is available for the switching frequency.  
Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation.  
<Error amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal voltage divider, RFB1 and RFB2. When a voltage is lower than the reference voltage, then the  
voltage is fed back, the output voltage of the error amplifier increases. The error amplifier output is fixed internally to deliver an  
optimized signal to the mixer.  
12/30  
XC9268  
Series  
OPERATIONAL EXPLANATION(Continued)  
<Current limiting>  
The current limiting circuit of the XC9268 series monitors the current that flows through the High-side driver transistor and  
Low-side driver transistor, and when over-current is detected, the current limiting function activates.  
(1) High-side driver Tr. current limiting  
The current in the High-side driver Tr. is detected to equivalently monitor the peak value of the coil current. The High-side driver  
Tr. current limiting function forcibly turns off the High-side driver Tr. when the peak value of the coil current reaches the High-  
side driver current limit value ILIMH  
.
High-side driver Tr. current limit value ILIMH=1.3A (TYP.)  
(2) Low-side driver Tr. current limiting  
The current in the Low-side driver Tr. is detected to equivalently monitor the bottom value of the coil current. The Low-side  
driver Tr. current limiting function operates when the High-side driver Tr. current limiting value reaches ILIMH. The Low-side driver  
Tr. current limiting function prohibits the High-side driver Tr. from turning on in an over-current state where the bottom value of  
the coil current is higher than the Low-side driver Tr. current limit value ILIML  
.
Low side driver Tr. current limit value ILIML=0.9A (TYP.)  
The current foldback circuit operates control to lower the switching frequency fOSC. When the over-current state is released,  
normal operation resumes.  
Current Limit  
ILIMH=1.3A(TYP.)  
ILIML=0.9A(TYP.)  
ILX  
0A  
VLX  
VOUT  
0V  
13/30  
XC9268 Series  
OPERATIONAL EXPLANATION(Continued)  
<Soft-start function>  
The output voltage of XC9268 rises with soft start by slowly raising the reference voltage. The rise time of this reference  
voltage is the soft start time. The soft-start time is set to tss1 (TYP. 2.0ms) which is fixed internally or to the time set by adding a  
capacitor and a resistor to the EN / SS pin whichever is later.  
<Thermal shutdown>  
The thermal shutdown (TSD) as an over temperature limit is built in the XC9268 series.  
When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off. When the junction  
temperature falls to the release temperature while in the output stop state, restart takes place by soft-start.  
<UVLO>  
When the VIN pin voltage falls below VUVLO1 (TYP. 2.7V), the driver transistor is forcibly turned off to prevent false pulse output  
due to instable operation of the internal circuits. When the VIN pin voltage rises above VUVLO2 (TYP. 2.8V), the UVLO function is  
released, the soft-start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse  
output is stopped and the internal circuits continue to operate.  
<Power good>  
On USP-6C Package, the output state can be monitored using the power good function. The PG pin is an Nch open drain  
output, therefore a pull-up resistance (approx. 100kΩ) must be connected to the PG pin.  
CONDITIONS  
SIGNAL  
V
FBVPGDET  
FBVPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
Undefined State  
V
EN/SS=H  
EN/SS=L  
Thermal Shutdown  
UVLOVIN<VUVLOD  
)
Stand-by  
L (Low impedance)  
14/30  
XC9268  
Series  
NOTE ON USE  
1) In the case of a temporary and transient voltage drop or voltage rise.  
If the absolute maximum ratings are exceeded, the IC may be deteriorate or destroyed.  
Case 1  
If a voltage exceeding the absolute maximum voltage is applied to the IC due to chattering caused by a mechanical switch or an  
external surge voltage, please use a protection element such as TVS and a protection circuit as a countermeasure.  
L
VIN  
Lx  
CIN  
RFB1  
CFB  
EN/SS  
FB  
CL  
TVS  
RFB2  
RPG  
GND  
PG  
Case 2  
Under conditions where the input voltage drops below the output voltage, overcurrent may flow to the parasitic diode inside the  
IC, and the absolute maximum rating of the Lx pin may be exceeded. If current is drawn to the input side with low impedance  
between Vin and GND, please take measures such as adding an SBD between VOUT and VIN.  
SBD  
L
VOUT  
VIN  
Lx  
CIN  
RFB1  
CFB  
EN/SS  
FB  
CL  
RFB2  
RPG  
GND  
PG  
2) Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.  
3) The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics  
of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which  
components to select.  
Be especially careful of the capacitor characteristics and use X7R or X5R (EIA standard) ceramic capacitors.  
The capacitance decrease caused by the bias voltage may become remarkable depending on the external size of the  
capacitor.  
15/30  
XC9268 Series  
NOTE ON USE(Continued)  
4) The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage  
is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied  
which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil inductance  
and sufficiently check the operation.  
The following formula is used to show the peak current.  
Peak Current: Ipk = (VIN – VOUT) × VOUT / VIN / (2 × L × fOSC) + IOUT  
L: Coil Inductance [H]  
fOSC: Oscillation Frequency [Hz]  
IOUT: Load Current [A]  
5) If there is a large dropout voltage, a circuit delay could create the ramp-up of coil current with staircase waveform exceeding  
the current limit.  
6) Even in the PWM control, the intermittent operation occurs and the ripple voltage becomes higher, when the minimum On  
Time is faster than 85ns (TYP.) as well as the dropout voltage is large.  
7The ripple voltage could be increased when switching from discontinuous conduction mode to continuous conduction mode  
and at switching to 100% Duty cycle. Please evaluate IC well on customer’s PCB.  
8) PWM/PFM auto series may cause superimposed ripple voltage by continuous pulses if it uses in high temperature and no  
load. It is necessary to set an idle current of higher than 100 μA from VOUT if it uses at no load.  
It can make an effect as same as RFB2 is lower than 7.5 kΩ, Please refer to the < Output voltage setting > in the TYPCAL  
APPLICATION CIRCUIT..  
9) If the voltage at the EN/SS Pin does not start from 0V but it is at the midpoint potential when the power is switched on, the  
soft start function may not work properly and it may cause the larger inrush current and bigger ripple voltages.  
10) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs  
and post-aging protection treatment when using Torex products in their systems.  
11) Instructions of pattern layouts  
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is  
high, please place the input capacitor(CIN) and the output capacitor (CL) as close to the IC as possible.  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible  
to the VIN and GND pins.  
(2) Please mount each external component as close to the IC as possible.  
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused  
by high ground currents at the time of switching may result in instability of the IC.  
(5) Please note that internal driver transistors bring on heat because of the load current and ON resistance  
of High side driver transistor, Low side driver transistor. Please make sure that the heat is dissipated properly,  
especially at higher temperatures.  
16/30  
XC9268  
Series  
<Reference Pattern Layout>  
USP-6C  
Layer 1  
Layer 2  
Layer 4  
Layer 3  
SOT-89-5  
Layer 1  
Layer 2  
Layer 3  
Layer 4  
17/30  
XC9268 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9268B75Cxx  
XC9268B75Cxx  
(VIN=12V, VOUT=3.3V, fOSC=1.2MHz)  
(VIN=12V, VOUT=5V, fOSC=1.2MHz)  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9268B75Dxx  
XC9268B75Dxx  
(VIN=12V, VOUT=5V, fOSC=2.2MHz)  
(VIN=12V, VOUT=3.3V, OSC=2.2MHz)  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(2) Output Voltage vs. Output Current  
XC9268B75Cxx  
XC9268B75Cxx  
(VIN=12V, VOUT=5V, fOSC=1.2MHz)  
(VIN=12V, VOUT=3.3V, fOSC=1.2MHz)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
6.00  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
4.30  
4.10  
3.90  
3.70  
3.50  
3.30  
3.10  
2.90  
2.70  
2.50  
2.30  
5.80  
5.60  
5.40  
5.20  
5.00  
4.80  
4.60  
4.40  
4.20  
4.00  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
18/30  
XC9268  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(2) Output Voltage vs. Output Current  
XC9268B75Dxx  
XC9268B75Dxx  
(VIN=12V, VOUT=3.3V, fOSC=2.2MHz)  
(VIN=12V, VOUT=5V, fOSC=2.2MHz)  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
4.30  
6.00  
4.10  
3.90  
3.70  
3.50  
3.30  
3.10  
2.90  
2.70  
2.50  
2.30  
5.80  
5.60  
5.40  
5.20  
5.00  
4.80  
4.60  
4.40  
4.20  
4.00  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(3) Ripple Voltage vs. Output Current  
XC9268B75Cxx  
XC9268B75Dxx  
(VIN=12V, VOUT=5V, fOSC=1.2MHz)  
(VIN=12V, VOUT=5V, fOSC=2.2MHz)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(4) FB Voltage vs. Ambient Temperature  
XC9268B75xxx  
(5) UVLO Voltage vs. Ambient Temperature  
XC9268B75xxx  
VIN=12V  
0.760  
0.755  
0.750  
0.745  
0.740  
3.0  
VUVLO1(DetectVoltage)  
2.9  
VUVLO2(ReleaseVoltage)  
2.8  
2.7  
2.6  
2.5  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
19/30  
XC9268 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(6) Oscillation Frequency vs. Ambient Temperature  
XC9268B75Cxx  
(fOSC=1.2MHz)  
XC9268B75Dxx  
(fOSC=2.2MHz)  
VIN=12V  
VIN=12V  
2650  
2500  
2350  
2200  
2050  
1900  
1750  
1440  
1360  
1280  
1200  
1120  
1040  
960  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(7) Stand-by Current vs. Ambient Temperature  
XC9268B75xxx  
(8) Lx SW ON Resistance vs. Ambient Temperature  
XC9268B75xxx  
VIN=12V  
VIN=12V  
2.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Highside SW.  
Lowside SW.  
1.5  
1.0  
0.5  
0.0  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(9) Quiescent Current vs. Ambient Temperature  
XC9268B75Dxx  
(fOSC=2.2MHz)  
XC9268B75Cxx  
(fOSC=1.2MHz)  
VIN=12V  
VIN=12V  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
20/30  
XC9268  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(10) Internal Soft-Start Time vs. Ambient Temperature  
(11) External Soft-Start Time vs. Ambient Temperature  
XC9268B75xxx  
XC9268B75xxx  
VIN=12V, RSS=430, CSS=0.47μF  
VIN=12V  
4.0  
35  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
30  
25  
20  
15  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(12) PG Detect Voltage vs. Ambient Temperature  
XC9268B75xxx  
(13) PG Output Voltage vs. Ambient Temperature  
XC9268B75xxx  
VIN=12V  
VIN=12V, IPG=1mA  
0.75  
0.4  
0.3  
0.2  
0.1  
0.0  
0.70  
0.65  
0.60  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(14) EN/SS Voltage vs. Ambient Temperature  
XC9268B75xxx  
VIN=12V  
4.0  
3.0  
2.0  
1.0  
0.0  
EN/SS"H"  
EN/SS"L"  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
21/30  
XC9268 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(15) Load Transient Response  
XC9268B75CxxfOSC=1.2MHz  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=24V, VOUT=3.3V, IOUT=10mA300mA  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
XC9268B75CxxfOSC=1.2MHz  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
XC9268B75DxxfOSC=2.2MHz  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
IOUT=10mA300mA  
VOUT: 500mV/div  
22/30  
XC9268  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(15) Load Transient Response  
XC9268B75DxxfOSC=2.2MHz  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA  
XC9268B75DxxfOSC=2.2MHz  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
(16) Input Transient Response  
XC9268B75CxxfOSC=1.2MHz  
VIN=8V16V, VOUT=3.3V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=16V32V, VOUT=3.3V, IOUT=300mA  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
XC9268B75CxxfOSC=1.2MHz  
VIN=8V16V, VOUT=5.0V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=16V32V, VOUT=5.0V, IOUT=300mA  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
23/30  
XC9268 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(16) Input Transient Response  
XC9268B75DxxfOSC=2.2MHz  
VIN=8V16V, VOUT=3.3V, IOUT=300mA  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
VIN=8V16V  
VOUT: 200mV/div  
XC9268B75DxxfOSC=2.2MHz  
VIN=8V16V, VOUT=5.0V, IOUT=300mA  
XC9268B75DxxfOSC=2.2MHz  
VIN=16V32V, VOUT=5.0V, IOUT=300mA  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
(17) EN/SS Rising Response  
XC9268B75CxxfOSC=1.2MHz  
VIN=12V, VENSS=012V, VOUT=3.3V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=24V, VENSS=024V, VOUT=3.3V, IOUT=300mA  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
24/30  
XC9268  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(17) EN/SS Rising Response  
XC9268B75CxxfOSC=1.2MHz  
VIN=12V, VENSS=012V, VOUT=5V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=24V, VENSS=024V, VOUT=5V, IOUT=300mA  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
XC9268B75DxxfOSC=2.2MHz  
VIN=12V, VENSS=012V, VOUT=3.3V, IOUT=300mA  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
VEN/SS=0V→12V  
VOUT : 2V/div  
XC9268B75DxxfOSC=2.2MHz  
VIN=12V, VENSS=012V, VOUT=5V, IOUT=300mA  
XC9268B75DxxfOSC=2.2MHz  
VIN=24V, VENSS=024V, VOUT=5V, IOUT=300mA  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
25/30  
XC9268 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(18) VIN Rising Response  
XC9268B75CxxfOSC=1.2MHz  
IN=012V, VENSS=012V, VOUT=3.3V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
VIN=024V, VENSS=024V, VOUT=3.3V, IOUT=300mA  
V
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=4.7μH(CLF5030NIT-4R7), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VIN=0V→24V  
VIN=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
XC9268B75CxxfOSC=1.2MHz  
IN=012V, VENSS=012V, VOUT=5V, IOUT=300mA  
XC9268B75CxxfOSC=1.2MHz  
IN=024V, VENSS=024V, VOUT=5V, IOUT=300mA  
V
V
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
L=6.8μH(CLF5030NIT-6R8), CIN=4.7μF×2(C2012X6S1H475K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
XC9268B75DxxfOSC=2.2MHz  
VIN=012V, VENSS=012V, VOUT=3.3V, IOUT=300mA  
L=2.2μH(CLF5030NIT-2R2), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
VEN/SS=0V→12V  
VOUT : 2V/div  
26/30  
XC9268  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(18) VIN Rising Response  
XC9268B75DxxfOSC=2.2MHz  
VIN=012V, VENSS=012V, VOUT=5V, IOUT=300mA  
XC9268B75DxxfOSC=2.2MHz  
VIN=024V, VENSS=024V, VOUT=5V, IOUT=300mA  
L=3.3μH(CLF5030NIT-3R3N-D), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
L=3.3μH(CLF5030NIT-3R3N-D), CIN=2.2μF×2(C2012X7R1H225K)  
CL=10μF×2 (C3216X7R1E106K)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
27/30  
XC9268 Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
SOT-89-5  
OUTLIN / LAND PATTERN  
SOT-89-5 PKG  
THERMAL CHARACTERISTICS  
Standard Board  
SOT-89-5 Power Dissipation  
JESD51-7 Board  
Standard Board  
JESD51-7 Board  
USP-6C  
USP-6C PKG  
USP-6C Power Dissipation  
28/30  
XC9268  
Series  
MARKING RULE  
SOT-89-5  
①② represents product series, products type,  
5
2
4
MARK  
PRODUCT SERIES  
XC9268B75***-G  
6
1
USP-6CUnder dot  
1
2
3
presents Oscillation Frequency  
USP-6C(Under dot)  
MARK  
Oscillation Frequency  
PRODUCT SERIES  
N
U
1.2MHz  
2.2MHz  
XC9268B75C**-G  
XC9268B75D**-G  
1
2
3
6
5
4
④⑤ represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ repeated  
(GIJOQW excluded)* No character inversion used.  
29/30  
XC9268 Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
30/30  

相关型号:

XC9268B75CPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75DER-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75DPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271A083QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271A085QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271B083QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271B085QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9272A0614R-G

IC REG BUCK 0.6V 50MA SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9272A06B4R-G

IC REG BUCK 0.65V 50MA SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9272A0714R-G

IC REG BUCK 0.7V 50MA SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9272A0814R-G

IC REG BUCK 0.8V 50MA SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9272A08B4R-G

IC REG BUCK 0.85V 50MA SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX