XCL212B082DR [TOREX]

3.1mm×4.7mm, h=1.3mm;
XCL212B082DR
型号: XCL212B082DR
厂家: Torex Semiconductor    Torex Semiconductor
描述:

3.1mm×4.7mm, h=1.3mm

文件: 总16页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCL211/XCL212Series  
ETR28006-001  
2.0A Inductor Built-in Step-Down “micro DC/DC” Converters  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XCL211/XCL212series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in  
one tiny package (3.1mm×4.7mm, h=1.3mm).  
An internal coil simplifies the circuit and enables minimization of noise and other operational trouble due to the circuit wiring.  
A wide operating voltage range of 2.7V to 6.0V enables support for applications that require an externally set output voltage can  
be selected. The XCL211/XCL212 series uses synchronous rectification at an operating frequency of 2.4MHz. PWM control  
(XCL211) or automatic PWM/PFM switching control (XCL212) can be selected. The XCL211 series has a fixed frequency,  
enabling the suppression of output ripple. The XCL212 series achieves high efficiency while holding down output ripple across the  
full range of loads, from light to heavy, enabling the extension of battery operation time.  
The series have a high speed soft-start as fast as 1ms in typical for quick turn-on. With the built-in UVLO (Under Voltage Lock  
Out) function, the internal P-channel driver transistor is forced OFF when input voltage becomes 2.4V or lower. It’s suitable for  
large-current application due to limit current is configured 4.0A in typical. The integrated CL discharge function which enables the  
electric charge at the output capacitor CL to be discharged via the internal discharge switch located between the LX and GND  
pins. Due to CL discharge function, malfunction on LX is prevented when Stand-by mode.  
APPLICATIONS  
Note PCs  
FEATURES  
Package Size  
: 3.1mm×4.7mm, h=1.3mm  
: 2.7V6.0V  
Printers  
Input Voltage  
Tablet PCs  
Output Voltage  
High Efficiency  
Output Current  
: 0.9VVIN (FB Voltage=0.8V±2%)  
: 94% (VIN=5.0V, VOUT=3.3V)  
: 2.0A  
PND(Portable Navigation Device)  
Oscillation Frequency : 2.4MHz (±15%)  
Maximum Duty Cycle : 100%  
Control Methods  
: PWM (XCL211)  
PWM/PFM (XCL212)  
Functions  
: Current Limit Circuit (automatic return)  
Soft-Start Circuit Built-In  
CL Discharge, UVLO  
Output Capacitor  
: Low ESR Ceramic Capacitor  
Operating Ambient Temperature : -40℃~+85℃  
Package  
: USP-11B01  
Environmental Friendly : EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
XCL211B082DR /XCL212B082DR  
100  
XCL212  
80  
XCL211  
60  
40  
VIN=5.0V  
VOUT=3.3V  
20  
0
0.1  
1
10  
100  
1000  
10000  
Output Current : IOUT (mA)  
1/16  
XCL211/XCL212 series  
BLOCK DIAGRAM  
XCL211/XCL212 Series (USP-11B01)  
Inductor  
L1  
L2  
UVLO Cmp  
AVIN  
UVLO  
R1  
R2  
PVIN  
Current Feedback  
Current Limit  
Error  
Amp.  
PWM  
Comparator  
Synch  
Buffer  
Drive  
FB  
CE  
Logic  
Lx  
Vref with  
Soft Start,  
CE  
Ramp Wave  
Phase  
Compensation  
Generator  
OSC  
CE/B  
CE  
Control  
Logic  
Thermal  
Shutdoun  
PWM/PFM  
Selector  
GND  
* The XCL211 offers a fixed PWM control, a Control Logic of PWM/PFM Selector is fixed at “PWM” internally.  
The XCL212 control scheme is a fixed PWM/PFM automatic switching, a Control Logic of PWM/PFM Selector is fixed at “PWM/PFM automatic  
switching” internally.  
Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
PRODUCT CLASSIFICATION  
Ordering Information  
XCL211①②③④⑤⑥  
XCL212①②③④⑤⑥  
DESIGNATOR  
Fixed PWM  
PWM/PFM Auto Switching  
SYMBOL  
ITEM  
Type  
DESCRIPTION  
Refer to Selection Guide  
Reference Voltage is fixed at 0.8V  
2.4MHz  
②③  
B
Reference Voltage  
Oscillation Frequency  
Package (Order Unit)  
08  
2
(*1)  
⑤⑥  
DR  
USP-11B01 (*2) (1,000pcs/Reel)  
(*1) Halogen free and EU RoHS compliant.  
(*2) The USP-11B01 reels are shipped in a moisture-proof packing.  
Selection Guide  
SOFT-START  
TIME  
CHIP  
CURRENT  
LIMITER  
THERMAL  
CL AUTO-  
UVLO  
TYPE  
B
ENABLE  
SHUTDOWN  
DISCHARGE  
Fixed  
Yes  
Yes  
Yes  
Yes  
Yes  
2/16  
XCL211/XCL212  
Series  
PIN CONFIGURATION  
PVIN  
AVIN  
CE  
FB  
NC  
NC  
Lx  
Lx  
* Please connect the AVIN pin (No.7) and the PVIN pin (No.9) when operating.  
* Please connect the LX pins (No.2 and No.3).  
USP-11B01  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
1
2
NC  
No Connection  
Switching Output  
Switching Output  
No Connection  
Output Voltage Monitor  
Chip Enable  
Lx  
3
Lx  
4
NC  
5
FB  
6
CE  
7
AVIN  
GND  
PVIN  
L1  
Analog Input  
8
Ground  
9
Power Input  
10  
11  
Inductor Electrodes  
Inductor Electrodes  
L2  
CE PIN FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
Low  
Stand-by  
Active  
CE  
High  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
PVIN Pin Voltage  
AVIN Pin Voltage  
CE Pin Voltage  
FB Pin Voltage  
Lx Pin Voltage  
Lx Pin Current  
SYMBOL  
VPVIN  
VAVIN  
VCE  
RATINGS  
UNIT  
V
-0.3 ~ +7.0 (*1)  
-0.3 ~ +7.0  
-0.3 ~ +7.0  
-0.3 ~ +7.0 or VPVIN +0.3 (*2)  
V
V
VFB  
VLx  
V
ILx  
±6.0 (*3)  
A
Power Dissipation  
USP-11B01  
Pd  
1000  
mW  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40 ~ +85  
-55 ~ +125  
All voltages are described based on the ground voltage of GND.  
(*1) Please connect PVIN pin (No.9) and AVIN pin (No.7) for use.  
(*2) The maximum value should be either +7.0 or VPVIN+0.3 in the lowest.  
(*3) It is measured when the two Lx pins (No.2 and 3) are tied up to each other.  
3/16  
XCL211/XCL212 series  
ELECTRICAL CHARACTERISTICS  
XCL211B082DR/XCL212B082DR,  
Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
VIN=5.0V, VCE=5.0V  
MIN.  
TYP.  
MAX.  
0.816  
UNIT  
V
CIRCUIT  
FB Voltage  
VFB  
Voltage to start oscillation while  
0.784  
0.800  
VFB=0.72V 0.88V  
Operating Voltage Range  
Maximum Output Current  
VIN  
When connected to external components  
2.7  
2.0  
-
-
6.0  
-
V
A
VIN=VCE=5.0V (*1,*2)  
IOUTMAX  
When connected to external components  
V
CE=5.0V, VFB=0.72V  
UVLO Voltage  
VUVLO  
2.00  
-
2.68  
V
Voltage which Lx pin holding “L” level (*3)  
Quiescent Current  
Stand-by Current  
Iq  
VIN=VCE=5.0V, VFB=0.88V  
-
-
53  
92  
μA  
μA  
ISTB  
VIN=5.0V, VCE=0V, VFB=0.88V  
0.01  
1.00  
VIN=VCE=5.0V, IOUT=300mA  
Oscillation Frequency  
PFM Switch Current (*4)  
PFM Duty Limit (*4)  
fOSC  
IPFM  
2040  
2400  
680  
2760  
-
kHz  
mA  
%
When connected to external components  
VIN=VCE=6.0V, IOUT=1mA  
-
-
When connected to external components  
VIN=VCE=2.7V, IOUT=1mA  
DTYLIMIT_PFM  
180  
250  
When connected to external components  
Maximum Duty Cycle  
Minimum Duty Cycle  
LXSW”H”ON Resistance  
LXSW”L”ON Resistance  
LXSW”H” Leakage Current  
Current Limit  
DMAX  
DMIN  
RLXH  
RLXL  
ILeakH  
ILIM  
VIN=VCE=5.0V, VFB=0.72V  
VIN=VCE=5.0V, VFB=0.88V  
VIN=VCE=4.0V, VFB=0.72V (*6)  
100  
-
-
0
%
%
-
-
-
-
-
-
-
0.11  
0.12  
0.01  
4.0  
0.21  
0.30 (*7)  
1.00 (*8)  
-
VIN=5.0V, VCE=0V, VFB=0.88V, VLx=0V  
VIN=VCE=5.0V, VFB=0.72V (*9)  
μA  
A
Output Voltage  
Temperature  
IOUT=100mA  
VOUT  
/
-40℃≦Topr85℃  
-
±100  
-
ppm/℃  
(toprVOUT  
)
Characteristics  
When connected to external components  
VIN=5.0V, VFB=0.72V Applied voltage to VCE  
Voltage changes Lx to “H” level  
VIN=5.0V, VFB=0.72V Applied voltage to VCE  
Voltage changes Lx to “L” level  
CE ”H” Voltage  
CE ”L” Voltage  
VCEH  
1.2  
-
-
VIN  
0.4  
V
V
VCEL  
GND  
CE ”H” Current  
CE ”L” Current  
FB ”H” Current  
FB ”L” Current  
ICEH  
ICEL  
IFBH  
IFBL  
VIN=5.0V, VCE=5.0V, VFB=0V  
VIN=5.0V, VCE=0V, VFB=0V  
VIN=5.0V, VCE =0V, VFB=5.0V  
VIN=5.0V, VCE=0V, VFB=0V  
-0.1  
-0.1  
-0.1  
-0.1  
-
-
-
-
0.1  
0.1  
0.1  
0.1  
μA  
μA  
μA  
μA  
VIN=5.0V, VCE=0V 5.0V, IOUT=1mA  
Soft-Start Time  
tSS  
0.3  
1.0  
2.0  
ms  
When connected to external components  
Thermal Shutdown Temperature  
Hysteresis Width  
TTSD  
THYS  
RDCHG  
L
-
-
150  
20  
-
-
-
-
CL Discharge Resistance  
Inductance  
VIN=5.0V, VCE=0V, VFB=0.72V, VLx=1.0V  
Test Freq.=1.0MHz  
80  
-
130  
1.5  
2.3  
160  
-
-
-
μH  
A
Inductor Rated Current  
IDC  
T=+40℃  
-
-
External Components: CIN1=20μF(ceramic), CIN2=1μF(ceramic), CL=20μF(ceramic), R1=15k, R2=30k, CFB=1000pF  
Condition: Unless otherwise stated,”H”= VIN ~ VIN - 1.2V, “L”= + 0.1V ~ -0.1V  
(*1) Mount conditions affect heat dissipation. Maximum output current is not guaranteed when TTSD starts to operate earlier.  
(*2) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
(*3) These values include UVLO detect voltage, UVLO release voltage and hysteresis operating voltage range.  
UVLO release voltage is defined as the VIN voltage which makes Lx pin “H”.  
(*4) XCL211 series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
(*5) On resistance = (VIN – Lx pin measurement voltage) / 0.1A  
(*6) Design value  
(*7) When temperature is high, a current of approximately 20μA (maximum) may leak.  
(*8) Current limit denotes the level of detection at peak of coil current.  
4/16  
XCL211/XCL212  
Series  
TEST CIRCUITS  
< Circuit No.① >  
Wave Form Measure Point  
L
L2  
L1  
LX  
※External Components  
ꢀCIN1ꢀ:20μF(ceramic)  
C
IN2ꢀ:1μF(ceramic)  
PVIN  
CL :20μF(ceramic)  
R1 :15kΩ  
R2 :30kΩ  
CFB  
R1  
AVIN  
FB  
A
A
C
L
V
IN  
CIN2  
V
I
OUT  
CFB :1000pF(ceramic)  
C
IN1  
CE  
GND  
R2  
ꢀL  
:1.5μH(Selected goods)  
V
CE  
CE  
CE  
CE  
< Circuit No.② >  
< Circuit No.③ >  
L2  
L1  
LX  
L2  
L1  
LX  
Wave Form Measure Point  
PVIN  
AVIN  
CE  
PVIN  
AVIN  
CE  
FB  
FB  
A
200Ω  
V
IN  
VIN  
1μF  
1μF  
VFB  
VFB  
GND  
GND  
V
VCE  
< Circuit No.④ >  
< Circuit No.⑤ >  
L2  
L1  
LX  
L2  
L1  
LX  
Wave Form Measure Point  
ILeakH  
A
IFBH  
PVIN  
AVIN  
CE  
PVIN  
AVIN  
CE  
A
FB  
FB  
A
1μF  
ILx  
ICEH  
V
IN  
VIN  
1μF  
IFBL  
V
FB  
VFB  
A
GND  
GND  
V
CE  
ICEL  
V
< Circuit No.⑥ >  
L2  
L1  
LX  
ILx  
A
PVIN  
AVIN  
CE  
FB  
V
V
IN  
1μF  
V
Lx  
VFB  
GND  
V
5/16  
XCL211/XCL212 series  
TYPICAL APPLICATION CIRCUIT  
VOUT  
CFB  
L2  
L1  
LX  
R1  
R2  
PVIN  
AVIN  
CE  
VIN  
CL  
FB  
CIN1  
CIN2  
GND  
VCE  
NOTE:  
The integrated Inductor can be used only for this DC/DC converter. Please do not use this inductor for other reasons.  
External Components】  
VALUE  
PRODUCT NUMBER  
LMK212ABJ106KG (TaiyoYuden)  
LMK212AB7106MG (TaiyoYuden)  
C2012JB1A106K125AC (TDK)  
C2012X7R1A106K125AC (TDK)  
LMK212BBJ226MG (TaiyoYuden)  
C2012JB1A226M125AB (TDK)  
EMK107BJ105KA (TaiyoYuden)  
EMK107B7105KA (TaiyoYuden)  
C1005JB1C105K050BC (TDK)  
C1005X5R1C105K050BC (TDK)  
C1608X7R1C105K080AC (TDK)  
10V/10μF  
CIN1  
CL  
10V/22μF  
16V/1μF  
CIN2  
NOTE:  
The minimum value of the CIN1 should be 10μF, and it is optimum to set a capacitance value depends on the input impedance.  
The value of the CL should be within the range from 20μF to 47μF.  
<Output Voltage Setting>  
Output voltage can be set by adding external split resistors. Output voltage is determined by the following equation, based on the values of  
RFB1 and RFB2. The sum of RFB1 and RFB2 should normally be 100kΩ or less. Output voltage range is 0.9V~5.5V by a 0.8V (±2.0%)  
reference voltage. When input voltage (VIN) setting output voltage, output voltage (VOUT) can not output the power more than input voltage (VIN).  
V
OUT = 0.8 x (R1 + R2) / R2  
The value of CFB, speed-up capacitor for phase compensation, should be fZFB= 1 / (2 x π x CFB x RFB1) which is equal to 20kHz. Adjustments  
are required from 1kHz to 10kHz depending on the application, value of inductance (L), and value of load capacitance (CL).  
[Example of calculation]  
When RFB1=47k, RFB2=15k, VOUT=0.8×(47k+15k) / 15k=3.3V  
When CFB=330pF, fzfb= 1/(2×π×330pF×47 k) =10.26kHz  
VOUT  
(V)  
RFB1  
RFB2  
CFB  
VOUT  
(V)  
RFB1  
RFB2  
CFB  
(k)  
(k)  
(pF)  
(k)  
(k)  
(pF)  
1.0  
1.2  
1.5  
1.8  
7.5  
15  
26  
30  
30  
30  
30  
24  
2000  
1000  
560  
2.5  
3.0  
3.3  
5.0  
51  
33  
47  
43  
24  
12  
15  
8.2  
300  
470  
330  
390  
510  
6/16  
XCL211/XCL212  
Series  
OPERATIONAL DESCRIPTION  
The XCL211/XCL212 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation  
circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel MOS switching transistor for the synchronous switch,  
current limiter circuit, UVLO circuit and others. (See the BLOCK DIAGRAM below) The series ICs compare, using the error amplifier, the  
voltage of the internal voltage reference source with the feedback voltage from the FB pin. Phase compensation is performed on the resulting  
error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator  
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting  
output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable  
output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates  
the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such  
as a ceramic capacitor is used ensuring stable output voltage.  
VOUT  
CFB  
L2  
L1  
LX  
R1  
R2  
PVIN  
AVIN  
CE  
V
IN  
CL  
FB  
CIN1  
CIN2  
GND  
VCE  
<BLOCK DIAGRAM>  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 2.4MHz.  
Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal  
circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by  
the external split resistors, R1 and R2. When a voltage lower than the reference voltage is fed back, the output voltage of the error amplifier  
increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The XCL211/XCL212 series includes a fold-back circuit, which aids the operation of the current limiter and circuit protection. The  
XCL211/XCL212 series monitors the current flowing through the P-channel MOS driver transistor  
When current flowing through P-channel MOS driver transistor reaches current limit ILIM, the current limiter circuit operates to limit the  
inductor current ILX  
.
If this state continues, the fold-back circuit operates and limit the output current in order to protect the IC from damage.  
The output voltage is automatically resumed if the load goes light. When it is resumed, the soft-start function operates.  
7/16  
XCL211/XCL212 series  
OPERATIONAL DESCRIPTION (Continued)  
<Thermal Shutdown>  
For protection against heat damage, the thermal shutdown function monitors chip temperature. When the chip’s temperature reaches 150OC  
(TYP.), the thermal shutdown circuit starts operating and the P-channel driver transistor will be turned off. At the same time, the output voltage  
decreases. When the temperature drops to 130OC (TYP.) after shutting off the current flow, the IC performs the soft start function to initiate  
output startup operation.  
< Function of CE pin >  
The XCL211/212 series will enter into stand-by mode by inputting a low level signal to the CE pin. During a stand-by mode, the current  
consumption of the IC becomes 0μA (TYP.). The IC starts its operation by inputting a high level signal to the CE pin. The input of the CE pin is  
a CMOS input and the sink current is 0μA (TYP.).  
<UVLO>  
When the VIN pin voltage becomes 2.4V (TYP.) or lower, the P-channel MOS driver transistor output driver transistor is forced OFF to prevent  
false pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 2.68V (MAX.) or higher, switching  
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start  
function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a  
complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.  
<Soft Start>  
The XCL211/XCL212 series provide 1.0ms (TYP). Soft start time is defined as the time interval to reach 90% of the output voltage from the time  
when the VCE is turned on.  
<CL High Speed Discharge>  
The XCL211/XCL212 series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which  
enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch transistor located between the LX pin and the VGND pin.  
When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge  
time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL  
auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), discharge time of the output voltage after discharge via  
the N-channel transistor is calculated by the following formulas.  
V = VOUT(E)×e -t /τ or t = τln (VOUT(E) /V)  
V : Output voltage after discharge  
VOUT(E) : Output voltage  
t: Discharge time  
τ: CL×RDCHG  
CL : Capacitance of Output capacitor  
RDCHG : CL auto-discharge resistance  
Output Voltage Dischage characteristics  
RDCHG  
= 130(TYP.)  
C =20  
μF  
L
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT =1.2V  
V=1.8V
OUT  
V
=3.3V  
OUT  
0
2
4
6
8
10 12 14 16 18 20  
Discharge Time: t(ms)  
8/16  
XCL211/XCL212  
Series  
OPERATIONAL DESCRIPTION (Continued)  
<PFM Switch Current> (*1)  
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-channel MOS driver transistor on. In this  
case, time that the P-channel MOS driver transistor is kept on (tON) can be given by the following formula. Please refer to IPFM①  
t
ON = L × IPFM / (VIN - VOUT  
)
<PFM Duty Limit> (*1)  
In PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g.  
the condition that the step-down ratio is small), it’s possible for P-channel MOS driver transistor to be turned off even when coil current doesn’t  
reach to IPFM. Please refer to IPFM  
(*1) XCL211 Series is excluded.  
Fig.  
Fig.  
9/16  
XCL211/XCL212 series  
NOTE ON USE  
1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon,  
the IC is liable to malfunction should the ratings be exceeded.  
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.  
Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.  
3. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the possibility that some  
cycles may be skipped completely.  
4. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and there is the  
possibility that some cycles may be skipped completely.  
5. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or  
load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil  
inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula:  
Ipk = (VIN-VOUT)×OnDuty / (2×L×fOSC) + IOUT  
L : Coil Inductance Value  
fOSC: Oscillation Frequency  
6. Use of the IC at voltages below the recommended voltage range may lead to instability.  
7. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
8. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the  
P-channel driver transistor.  
9. The XCL211/XCL212 uses fold-back circuit limiter. However, fold-back may become “droop” affected by the wiring conditions. Care must  
be taken especially for CIN distance and position.  
10. If CL capacitance reduction happens such as in the case of low temperature, the IC may enter unstable operation. Care must be taken for  
CL capacitor selection and its capacitance value.  
Ta = - 50  
1ch VLx 2.0V/di  
V = 3.6V, VOUT = 0.9V, fOSC = 2.4MHz  
IN  
CIN = 20 F(Ceramic)  
μ
C = 14.7 F(Ceramic)  
μ
L
IOUT = 300mA  
2ch VOUT 50mV/di  
x-axis : 2.0μs / div  
11. Torex places an importance on improving our products and its reliability.  
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.  
10/16  
XCL211/XCL212  
Series  
NOTE ON USE(Continued)  
12) Instructions of pattern layouts  
(1) In order to stabilize VIN voltage level, we recommend that that a by-pass capacitor (CIN) be connected as close as possible to PVIN pin, AVIN  
pin and GND pins.  
(2) Make sure to avoid noise from the PVIN pin to the AVIN pin.  
(3) Please mount each external component as close to the IC as possible.  
(4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
(5) Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of  
switching may result in instability of the IC.  
(6) This series’ internal driver transistors bring on heat because of the output current and ON resistance of P-channel and N-channel MOS  
driver transistors.  
<Reference Pattern Layout>  
<1st>  
<2nd>  
<4th>  
<3rd>  
11/16  
XCL211/XCL212 series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Output Voltage vs. Output Current  
VOUT=1.8  
VOUT=3.3  
2.0  
1.9  
1.8  
1.7  
1.6  
3.5  
3.4  
3.3  
3.2  
3.1  
VIN=5.0V  
XCL211  
VIN=3.7V,5.0V  
XCL211  
XCL212  
XCL212  
VIN=3.7V,5.0V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(2) Efficiency vs. Output Current  
VOUT=1.8  
VOUT=3.3  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
XCL212  
XCL212  
XCL211  
VIN=5.0V  
5.0V  
VIN=3.7V  
XCL211  
100  
0.1  
1
10  
1000  
10000  
0.1  
1
10  
100  
1000 10000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
VOUT=1.8  
VOUT=3.3  
100  
100  
80  
60  
40  
20  
0
VIN=5.0V  
80  
XCL212  
VIN=3.7V,5.0V  
XCL211  
VIN=3.7V,5.0V  
60  
40  
20  
0
XCL211  
XCL212  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
12/16  
XCL211/XCL212  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Output Voltage vs. Ambient Temperature  
VOUT=1.8V  
VOUT=3.3V  
2.1  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
VOUT =3.3V  
IOUT =1000mA  
VOUT =1.8V  
XCL212  
XCL211  
VIN=5.0V  
IOUT =1000mA  
VIN=3.3V,5.0V  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
XCL211  
VIN=3.0V,5.0V  
XCL212  
VIN=5.0V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(5) Oscillation Frequency vs. Ambient Temperature  
XCL211B082DR VOUT=1.8V  
XCL211B082DR VOUT=3.3V  
2.8  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
VOUT =1.8V  
IOUT =1mA  
VOUT =3.3V  
IOUT =1mA  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
VIN=3.0V  
VIN=4.0V  
VIN=4.0V  
VIN=5.0V  
VIN=5.0V  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature : Ta ()  
Ambient Temperature : Ta ()  
(6) Load Transient Response  
XCL211B082DR Vout=1.8V  
XCL212B082DR Vout=1.8V  
VOUT =1.8V  
VOUT =1.8V  
1
2
1
2
IOUT =1mA2000mA  
IOUT =1mA2000mA  
1ch:100mV/div, 2ch:IOUT SW 2.0V/div, H:100us/div  
1ch:100mV/div, 2ch:IOUT SW 2.0V/div, H:100us/div  
13/16  
XCL211/XCL212 series  
PACKAGING INFORMATION  
USP-11B01 (unit:mm)  
1pin INDENT  
3.1±0.1  
(1.9)  
(0.2)  
(0.9)  
1.0±0.05  
(0.3)  
10  
11  
3
2
1
4
5
6
9
8
7
0.25±0.05  
(0.3)  
(0.2)  
(0.5)  
(0.8)  
2.2±0.1  
USP-11B01 Reference Pattern Layout (unit: mm)  
USP-11B01 Reference Metal Mask Design (unit: mm)  
14/16  
XCL211/XCL212  
Series  
MARKING RULE  
USP-11B01  
represents product series  
MARK  
PRODUCT SERIES  
XCL211******  
C
D
XCL212******  
represents integer of the reference voltage  
MARK  
A
OUTPUT VOLTAGE (V)  
0.8 (fix)  
PRODUCT SERIES  
XCL21**08***  
represents oscillation frequency  
MARK  
2
OSCILLATION FREQUENCY (MHz)  
2.4  
PRODUCT SERIES  
XCL21****2**  
④⑤ represents production lot number  
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to AZ, B1 to ZZ repeated  
(G, I, J, O, Q, W excluded)  
*No character inversion used.  
15/16  
XCL211/XCL212 series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
16/16  

相关型号:

XCL214B103DR

DC/DC CONVERTER 1V 2W
TOREX

XCL214B123DR

DC/DC CONVERTER 1.2V 2W
TOREX

XCL214B153DR

DC/DC CONVERTER 1.5V 2W
TOREX

XCL214B183DR

DC/DC CONVERTER 1.8V 3W
TOREX

XCL214B253DR

DC/DC CONVERTER 2.5V 4W
TOREX

XCL214B303DR

DC/DC CONVERTER 3V 5W
TOREX

XCL214B333DR

DC/DC CONVERTER 3.3V 5W
TOREX

XCL214E303DR

Switching Regulator/Controller,
TOREX

XCL219B103FR-G

1A INDUCTOR BUILT-IN PWM STEP-DO
TOREX

XCL219B123FR-G

1A INDUCTOR BUILT-IN PWM STEP-DO
TOREX

XCL219B153FR-G

DC DC CONVERTER 1.5V
TOREX

XCL219B183FR-G

1A INDUCTOR BUILT-IN PWM STEP-DO
TOREX