XCL303A052KR-G [TOREX]

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters;
XCL303A052KR-G
型号: XCL303A052KR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters

文件: 总24页 (文件大小:778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCL303/XCL304 Series  
ETR28016-001  
Inductor Built-in Negative Output Voltage “micro DC/DC” Converters  
Green Operation Compatible  
GENERAL DESCRIPTION  
The XCL303/XCL304 series are small coil-integrated negative voltage micro DC/DC converter IC. The oscillating frequency is a  
fast 2.5MHz and the small 2.5 x 2.0 x 1.0mm package contributes significantly to space saving in PCB area.  
Further, integrating the coil together with the DC/DC simplifies the circuit board layout and minimizes potential noise interference.  
Compared to a charge pump type solution, the switching method of the XCL303/XCL304 maintains a stable output voltage even  
when the input voltage fluctuates. In addition, this new micro DC/DC can support larger output current than a charge pump  
solution.  
The PWM controlled XCL303 series can be selected for applications where low noise is important, and the PWM/PFM automatic  
switching controlled XCL304 series can be selected for applications where high efficiency at light load current and low noise at  
high load current is important.  
The XCL303/XCL304 series allows users to select either a PWM control or PWM/PFM automatic switching control method,  
which are optimum for applications where low noise and high efficiency are important.  
Output voltage can be adjusted within the range of -1.2V to -6.0V using externally mounted resistors.  
FEATURES  
Input Voltage Range  
Output Voltage Range  
FB Voltage  
APPLICATIONS  
:
:
2.7V ~ 5.5V  
Negative power supply for Optical transceiver  
-1.2V ~ -6.0V  
Negative power supply for AMP  
0.5V ± 10mV  
Negative power supply for LCD  
VREF Voltage  
1.6V ± 40mV  
Output Current  
:
:
:
:
:
:
:
300mA @VOUT=-3.0V, VIN=3.3V(TYP.)  
250μA (TYP.)  
Negative power supply for CCD  
Quiescent Current  
Control Methods  
General purpose Negative power supply  
PWM Control (XCL303 Series)  
PWM/PFM Control (XCL304 Series)  
2.5MHz  
Oscillation Frequency  
Protection Function  
Function  
Current Limit (1.1A TYP.)  
Soft Start Time External Adjustment  
UVLO  
Operating Ambient Temperature  
Packages  
:
:
:
-40 ~ +105  
CL-2025-02 (2.5 x 2.0 x 1.0mm)  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
XCL303/304 (VIN = 3.7V, VOUT = -3.3V)  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA7)  
SD=PMEG2010BELD, RFB1=150kΩ, RFB2=43kΩ  
7
SD  
L1  
1
VIN  
GND  
CE  
6
5
4
Lx  
RFB1  
CIN  
2
3
FB  
RFB2  
CL  
VREF  
L2  
8
CVREF  
1/24  
XCL303/XCL304 Series  
BLOCK DIAGRAM  
L1  
L2  
Inductor  
AVDD  
Phase  
Compensation  
Current Sense  
Current Limiter  
PVDD  
FB  
AVDD  
Error Amp  
-
PWM  
Comparator  
VREF  
VIN start up  
Controller  
-
PWM/PFM  
Controller Logic  
Buffer  
Driver  
VREF  
+
+
Each  
LX  
Circuit  
CE  
CE Controller Logic  
RAMP Wave  
Generatar  
Oscillator  
PVDD  
AVDD  
VIN  
GND  
UVLO  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
PRODUCT CLASSIFICATION  
Ordering information  
XCL303①②③④⑤⑥-PWM Control  
XCL304①②③④⑤⑥-PWM/PFM Automatic Switching Control  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
②③  
Product Type  
A
05  
Refer to Selection Guide  
Feedback Voltage  
Oscillation Frequency  
Packages (Order Unit)  
Feedback Voltage is fixed at 0.5V  
2.5MHz  
2
(*1)  
⑤⑥-⑦  
KR-G  
CL-2025-02 (3,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
Selection Guide  
OUTPUT  
CHIP  
CURRENT  
LIMIT  
SOFT  
TYPE  
A
UVLO  
Yes  
VOLTAGE  
ENABLE  
START  
External set  
Yes  
Yes  
Yes  
2/24  
XC9140 (De  
XCL303/XCL304  
Series  
PIN CONFIGURATION  
L1  
7
VIN  
6
1
2
3
LX  
FB  
VREF  
GND  
5
4
CE  
8
L2  
(BOTTOM VIEW)  
* The dissipation pad should be solder-plated in recommended mount pattern and metal masking to enhance mounting  
strength and heat release. If the pad needs to be connected to other pins, it should be connected to the GND (No. 5)  
pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
CL-2025-02  
1
2
3
4
5
6
7
8
LX  
FB  
Switching Output  
Feedback Voltage  
Reference Voltage  
Chip Enable  
VREF  
CE  
GND  
VIN  
Ground  
Power Input  
L1  
Inductor Electrodes  
Inductor Electrodes  
L2  
FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
Operation  
Stand-by  
H
L
CE  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25˚C  
PARAMETER  
SYMBOL  
RATINGS  
UNITS  
V
VIN Pin Voltage  
LX Pin Voltage  
VIN  
-0.3 ~ +6.2  
VIN-13.0 ~ VIN+0.3 or +6.2 (*1)  
-0.3 ~ VIN+0.3 or +6.2 (*1)  
-1.0 ~ +1.0 (*3)  
VLX  
V
FB Pin Voltage  
VFB  
V
VREF Pin Current  
IREF  
mA  
V
VREF Pin Voltage  
VREF  
VCE  
-0.3 ~ VIN+0.3 or +6.2 (*1)  
CE Pin Voltage  
-0.3 ~ +6.2  
V
1000 (40mm x 40mm Standard board) (*2)  
Power Dissipation  
Pd  
mW  
˚C  
Operating Ambient Temperature  
Storage Temperature  
* All voltages are described based on the GND pin.  
Topr  
Tstg  
-40 ~ +105  
-55 ~ +125  
˚C  
(*1) The maximum value should be either VIN+0.3V or +6.2V in the lowest.  
(*2)  
The power dissipation figure shown is PCB mounted and is for reference only.  
The mounting condition is please refer to PACKAGING INFORMATION.  
Please do not apply voltage to the VREF pin from outside.  
(*3)  
3/24  
XCL303/XCL304 Series  
ELECTRICAL CHARACTERISTICS  
XCL303A052KR-G, XCL304A052KR-G  
Ta=25˚C  
MIN.  
2.7  
PARAMETER  
Input Voltage  
SYMBOL  
VIN  
CONDITIONS  
TYP.  
-
MAX. UNITS CIRCUIT  
-
5.5  
0.51  
1.64  
-
V
V
V
V
-
VIN=VCE=3.7V, The voltage which LX starts  
oscillation while VFB is increasing.  
(*2)  
FB Voltage  
VREF Voltage  
VFB(E)  
0.49  
1.56  
1.85  
0.50  
1.60  
2.10  
VREF  
VIN=VCE=3.7V  
VIN=VCE,VFB=VFB(T)×1.025 (*3)  
Voltage which Lx pin holding “L” level (*1)  
VIN=VCE, VFB(T)×1.025 (*3)  
,
UVLO Detection Voltage  
VUVLOD  
,
-
2.25  
2.60  
V
UVLO Release Voltage  
VUVLOR  
Voltage which Lx pin holding “H” level (*1)  
0.08  
215  
-
0.15  
250  
0
0.25  
310  
0.1  
V
UVLO Hysteresis Width  
Supply Current  
VUVLOH  
IDD  
VUVLOH=VUVLOR - VUVLOD  
-
VIN=VCE=5.5V, VFB=VFB(T)×0.975 (*3)  
VIN=5.5V, VCE=0V  
μA  
μA  
Stand-by Current  
ISTB  
PFM Switch Current  
(XCL304 Series)  
When connected to external components,  
IOUT=1mA  
IPFM  
-
300  
1.5  
-
mA  
ms  
FB Voltage rise up time,  
VFB=0VVFB(T)×0.95 (*3), VCE=0VVIN,  
Soft Start Time  
tSS  
0.5  
2.5  
IOUT=1mA, CVREF=0.47uF  
Oscillation Frequency  
Maximum ON Time  
Minimum ON Time  
fOSC  
VFB=VFB(T)×1.025 (*3)  
VFB=VFB(T)×1.025 (*3)  
2.1  
300  
-
2.5  
350  
-
2.9  
385  
0
MHz  
ns  
tONMAX  
tONMIN  
VFB=VFB(T)×0.975 (*3)  
ns  
When connected to external components,  
-
-
75  
-
%
Efficiency  
EFFI  
RLXH  
VOUT=-3.3V, IOUT =100mA  
LX SW "H" ON  
Resistance (*4)  
VIN=5.0V, ILX=100mA  
0.50  
0.65  
Ω
LX SW "L" Leakage  
Current  
ILEAKL  
ILIM  
VIN=5.5V, VCE=0V, VLX=0V  
-
-
0.01  
0.1  
-
μA  
Maximum Current Limit  
When connected to external components  
1100  
mA  
VREF Voltage Temperature  
Characteristics  
VREF  
/
-40< Topr < 105℃  
-
-
±50  
±50  
-
-
ppm / oC  
ppm / oC  
(VREF  
topr)  
FB Voltage Temperature  
Characteristics  
VFB  
/
-40< Topr < 105℃  
(VFB・  
topr)  
VIN=5.5V, VFB=VFB(T)×1.025 (*3)  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
Applied voltage to VCE, voltage changes LX to  
"H" level (*1)  
1.2  
-
-
5.5  
0.4  
V
V
VIN=5.5V, VFB=VFB(T)×1.025 (*3)  
,
VCEL  
Applied voltage to VCE, voltage changes LX to GND  
"L" level (*1)  
CE "H" Current  
CE "L" Current  
FB "H"" Current  
FB "L" Current  
Inductance Value  
ICEH  
ICEL  
IFBH  
IFBL  
L
VIN=VCE=5.5V  
-0.1  
-0.1  
-0.1  
-0.1  
-
-
0.1  
0.1  
0.1  
0.1  
-
μA  
μA  
μA  
μA  
μH  
-
VIN=5.5V, VCE=0V  
VIN=VCE=VFB=5.5V  
VIN=VCE =5.5V, VFB=0V  
Test Frequency=1MHz  
-
-
-
2.2  
Inductor  
IDC  
ΔT=+40℃  
-
850  
-
mA  
-
Rated Current  
Unless otherwise stated, VIN=VCE=3.7V  
(*1) "H" = VIN ~ VIN -1.2V, "L" = +0.1V ~ -0.1V  
(*2)  
V
V
: Effective FB Voltage,  
FB(E)  
(*3)  
: Setting FB Voltage(0.5V)  
FB(T)  
(*4) ON resistance = (VIN – VLX pin measurement voltage) / 100mA  
4/24  
XC9140 (De  
XCL303/XCL304  
Series  
TEST CIRCUITS  
< Test Circuit No.>  
< Test Circuit No.>  
Wave Form Meas ur e P oi nt  
L2  
L1  
L2  
L1  
LX  
LX  
CE  
VIN  
CE  
VIN  
FB  
FB  
CIN  
CIN  
A
A
VREF  
VREF  
GND  
GND  
RLX  
CVR EF  
CVR EF  
V
< Test Circuit No.>  
< Test Circuit No.>  
V
Wave Form Meas ur e P oi nt  
Wave Form Meas ur e P oi nt  
L2  
L1  
LX  
L2  
L1  
LX  
CE  
VIN  
CE  
RFB 1  
VIN  
FB  
FB  
CIN  
CIN  
RFB 2  
RL  
CL  
VREF  
GND  
VREF  
GND  
CVR EF  
IS  
CVR EF  
< Test Circuit No.>  
< Test Circuit No.>  
L2  
L1  
L2  
L1  
LX  
CE  
LX  
CE  
VIN  
VIN  
FB  
FB  
CIN  
CIN  
A
VREF  
GND  
VREF  
A
GND  
CVR EF  
CVR EF  
A
5/24  
XCL303/XCL304 Series  
TYPICAL APPLICATION CIRCUIT  
EXTERNAL COMPONENTS SELECTION  
7
SD  
L1  
1
VIN  
GND  
CE  
6
5
4
Lx  
RFB1  
CIN  
2
3
FB  
RFB2  
CL  
VREF  
L2  
8
CVREF  
Typical example】  
Notes  
MANUFACTURE  
PRODUCT NUMBER  
LMK105CBJ106MV  
VALUE  
Ta85℃  
Ta105℃  
Ta85℃  
Ta105℃  
Ta105℃  
-
Taiyo Yuden  
Murata  
10μF/10V  
10μF/10V  
10μF/10V  
10μF/10V  
1μF/10V  
1A/20V  
CIN  
GRM188D71A106KA73D  
LMK105CBJ106MV  
GRM188D71A106KA73D  
GRM155C71A105KE11  
PMEG2010BELD  
Taiyo Yuden  
Murata  
CL  
CVREF  
SD  
Murata  
Nexperia  
-
ON Semiconductor  
NSR1020MW2  
1A/20V  
* Take capacitance loss, withstand voltage, rated current and other conditions into consideration when selecting components.  
* 10μF ~ 44μF output capacitor (CL) value is recommended.  
When the output capacitor (CL) is large, there is a possibility that the output voltage will be unstable.  
* If a tantalum or electrolytic capacitor is used for the output capacitor (CL), ripple voltage will increase, and there is a possibility  
that operation will become unstable. Test fully using the actual device.  
* When Schottky Diodes, which have a large junction capacity are used, there is a possibility that the output voltage will be  
unstable.  
Output voltage (VOUTSET) setting>  
Output voltage can be set by adding an external resistor.  
Output voltage is set by the following equation according to RFB1, RFB2, VFB and VREF  
.
VOUTSET = VFB - RFB1 / RFB2 × ( VREF - VFB  
)
Please select within 100kΩ RFB1 + RFB2 500kΩ range.  
VOUTSET  
-1.2V  
RFB1  
RFB2  
130kΩ  
43kΩ  
43kΩ  
200kΩ  
150kΩ  
220kΩ  
-3.3V  
-5.0V  
6/24  
XC9140 (De  
XCL303/XCL304  
Series  
TYPICAL APPLICATION CIRCUIT  
EXTERNAL COMPONENTS SELECTION (Continued)  
Setting soft start time (tSS)>  
Soft start time is determined by the capacity of the CVREF connected to the VREF terminal.  
Please select the capacitance value of CVREF within the range of 0.47μF ~ 10μF referring to the below graph.  
50  
VIN = 3.7V, VOUT = -3.3V  
IOUT = 1mA, 200mA  
Ta = 25  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
10  
CVREF Capacitance (uF)  
7/24  
XCL303/XCL304 Series  
OPERATIONAL EXPLANATION  
This IC consists of a standard voltage reference, error amp, ramp wave circuit, oscillator circuit, PWM comparator, PWM/PFM  
controller, Pch driver transistor, current sensing circuit, UVLO circuit, VREF startup circuit and etc.  
Control method is a current mode control method which allows for the use of low ESR ceramic capacitors.  
L1  
L2  
Inductor  
AVDD  
Phase  
Compensation  
Current Sense  
Current Limiter  
PVDD  
FB  
AVDD  
Error Amp  
-
PWM  
Comparator  
VREF  
VIN start up  
Controller  
-
PWM/PFM  
Controller Logic  
Buffer  
Driver  
VREF  
+
+
Each  
LX  
Circuit  
CE  
CE Controller Logic  
RAMP Wave  
Generatar  
Oscillator  
PVDD  
AVDD  
VIN  
GND  
UVLO  
XCL303/XCL304 Series block diagram  
8/24  
XC9140 (De  
XCL303/XCL304  
Series  
OPERATIONAL EXPLANATION (Continued)  
<Normal Operation>  
The FB terminal voltage divided by the output voltage is compared with the VREF voltage by the error amp. Phase compensation  
is applied to the error amp output, which is then forwarded to the PWM comparator. At the PWM comparator the error amp output  
and ramp wave are compared to determine the ON time during PWM control.  
The XCL303 series (PWM control) is switched using a constant switching frequency (fOSC) independent of the output current.  
During light load current, the ON time is short, and the IC operates in a non-continuous mode. As the output current increases,  
the ON time becomes longer, and the IC operates in a continuous mode.  
At high load currents, the ON time depends heavily on the input voltage, output voltage, and output current, and the maximum  
ON time (tONMAX) restriction determines the maximum output current that can flow under the conditions of each input voltage and  
output voltage.  
Refer to the typical performance characteristics for the maximum output current under each condition.  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IPFM  
Coil  
Current  
Coil  
Current  
IOUT  
IOUT  
0mA  
0mA  
XCL303 Series: Example of operation at light load current  
XCL303 Series: Example of operation at high load currents  
The XCL304 series (PWM/PFM automatic switching control) turns ON the Pch driver transistor until the coil current reaches the  
PFM current (IPFM) and to lower the switching frequency during light load current. This operation reduces loss during light loads to  
achieve high efficiency from light to high load currents.  
As the output current grows larger, the switching frequency increases proportional to the output current, and when the switching  
frequency reaches the fOSC to switch from PFM control to PWM control the switching frequency is fixed.  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IPFM  
Coil  
Current  
Coil  
IOUT  
Current  
IOUT  
0mA  
0mA  
XCL304 Series: Example of operation at high load currents  
XCL304 Series: Example of operation at light load current  
Further, the phase compensation circuit optimizes the error amp frequency characteristics and is used to phase compensate the  
Pch driver transistor current feedback signal. This achieves output voltage stability even when low ESR capacitors, such as  
ceramic capacitors are used.  
9/24  
XCL303/XCL304 Series  
OPERATIONAL EXPLANATION (Continued)  
<CE Function>  
When a “H” voltage (VCEH) is input to the CE terminal, it operates normally after the output voltage is started by the soft start  
function.  
When a “L” voltage (VCEL) is input to the CE terminal, it goes to the stand-by state, the quiescent current is suppressed to the  
stand-by current ISTB (TYP.0 μA) level and the Pch driver transistor turns OFF.  
<UVLO Function>  
When the VIN terminal voltage drops below the UVLO detect voltage level (VUVLOD), the UVLO function operates and turns off the  
Pch driver transistor to prevent any erroneous pulse output due to possible unstable action of the internal circuit.  
When the VIN terminal voltage increases above the UVLO release voltage level (VUVLOR), the UVLO function is released. After  
the UVLO function is released, the soft start function starts the output voltage and the IC operates normally.  
The UVLO function operates even if the VIN terminal momentarily drops below the UVLO detect voltage.  
In addition, whilst the UVLO function is in operation, rather than being in a stand-by state, the IC is in a switching operation  
stopped state, so the internal circuit is still operating.  
<Soft Start Function>  
This gently starts up the output voltage when the IC starts up and the UVLO function is released to suppress the inrush current.  
The VREF startup circuit operates after the “H” voltage (VCEH) is input to the CE terminal and after the UVLO function is released.  
The VREF startup circuit charges the CVREF with current and can gently raise the VREF voltage and FB voltage. In response to this,  
the output voltage is lowered proportionally to the increase in the VREF voltage and FB voltage. This action makes it possible to  
prevent input current inrush and to smoothly lower the output voltage.  
The output voltage startup time (soft start time) is determined by the capacity of the CVREF connected to the VREF terminal.  
In the stand-by state and during the UVLO function operation, the charge accumulated in the CVREF is discharged and the VREF  
voltage is made to be 0V.  
Soft Start Time : tss  
Normal operation  
Stand-by  
(Depend on CVRE F  
)
0V  
VOUT  
VOUTSE T  
Fall time depends on Iout  
VREF Voltage  
1.6V (TYP.)  
VREF  
VFB  
VFB Voltage  
0.5V (TYP.)  
0V  
VCE  
VCEH  
VCEL  
0V  
10/24  
XC9140 (De  
XCL303/XCL304  
Series  
OPERATIONAL EXPLANATION (Continued)  
<Current Limit Function>  
The current limit circuit monitors the current flowing to the Pch driver transistor to restrict overcurrent. The current limit function  
operates as follows.  
1) The current flowing to the Pch driver transistor is increased, and when the current limit value of ILIM=1100mA (TYP.) is  
reached, the current limit state is entered and the Pch driver transistor is turned OFF.  
2) The Pch driver transistor is turned OFF for a period of 4μs (TYP.), and the coil current is greatly decreased.  
During this time, lowering the coil current that has reached the current limit lowers the input current and output current  
while the current is restricted.  
3) Other switching operations are performed, and when the output voltage is a load resistance that does not reach the set  
voltage, the coil current increases and the current limit function operates again.  
4) Operations 1) to 3) are repeated during the current limit state period.  
5) When the load resistance increases much more than the load resistance during current limit detection, the current limit  
state is released and the IC automatically returns to normal operation.  
11/24  
XCL303/XCL304 Series  
NOTE ON USE  
1) For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be  
exceeded.  
2) Switching regulators like this DC/DC converter generate spike noise and ripple voltage. This greatly affects the surrounding  
components (Schottky diodes, capacitors, peripheral component circuit board layout etc.). When making a design, please be  
sure to sufficiently check this in an actual device.  
3) The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally  
connected components, so refer to EXTERNAL COMPONENTS SELECTION and the specifications of each component and  
be careful when selecting the components. Be especially careful of the characteristics of the capacitor used for the load  
capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.  
4) The maximum output current of this IC is determined by the current limit value and the maximum ON time restrictions, and this  
depends greatly on the input voltage and output voltage. Further, when the input voltage is low and during low temperature,  
there is a possibility that the maximum ON time decreases and the maximum output current drops. For the maximum output  
current, please refer to the typical performance characteristics of “Maximum Output Current vs. Output Voltage.”  
5) With the XCL303 series, there is a possibility that the switching frequency will decline when the input voltage is high and the  
load current is light.  
6) When Schottky Diodes, which have a large junction capacity, are used or when the CL output capacity is large, there is a  
possibility that the output voltage will be unstable.  
7) When there is steep output current fluctuation, there could be a large drop in the output voltage that can cause the duty to  
increase which in turn triggers the operation of the current limit function.  
8) If the IC is started under a condition where the output current is large, there is a possibility that the inrush current will increase  
and the current limit function may operate.  
9) When the input voltage is lowered below the UVLO detect voltage level for a short time, there are times when it is not possible  
to discharge the CVREF charge. When the input voltage is started again in this state, the shortening of the soft start time at startup  
could trigger the current limit function.  
10) Under the condition where the input voltage is close to 1V, there is a possibility that the UVLO function will not operate.  
11) Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
12) The proper position of mounting is based on the coil terminal  
12/24  
XC9140 (De  
XCL303/XCL304  
Series  
NOTE ON USE (Continued)  
13) Note on board layout  
1. In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the  
VIN & GND pins.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
5. This series’ internal driver transistors bring on heat because of the output current and ON resistance of Pch driver  
transistors.  
6. As precautions on mounting, please set the mounting position accuracy within 0.05 mm.  
Recommended Pattern Layout  
Layer1  
Layer2  
Layer3  
Layer4  
14) Appearance (Coil)  
1. Coils are compliant with general surface mount type chip coil (inductor) specifications and may have scratches,  
flux contamination and the like.  
13/24  
XCL303/XCL304 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Currrent  
XCL304A052 VOUT = -1.8V  
XCL303A052 VOUT = -1.8V  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = VCE  
Ta = 25  
VIN=5.0V  
VIN=5.0V  
VIN=3.7V  
VIN = VCE  
Ta = 25℃  
VIN=2.7V  
VIN=3.7V  
VIN=2.7V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL304A052 VOUT = -3.3V  
XCL303A052 VOUT = -3.3V  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = VCE  
Ta = 25℃  
VIN=5.0V  
VIN = VCE  
Ta = 25℃  
VIN=3.7V  
VIN=5.0V  
VIN=2.7V  
VIN=3.7V  
VIN=2.7V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL303A052 VOUT = -5.0V  
XCL304A052 VOUT = -5.0V  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5.0V  
VIN = VCE  
VIN = VCE  
Ta = 25℃  
VIN=3.7V  
Ta = 25℃  
VIN=2.7V  
VIN=5.0V  
VIN=3.7V  
VIN=2.7V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
14/24  
XC9140 (De  
XCL303/XCL304  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current  
XCL304A052 VOUT = -1.8V  
XCL303A052 VOUT = -1.8V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
-2.0  
-1.9  
-1.8  
-1.7  
-1.6  
-2.0  
-1.9  
-1.8  
-1.7  
-1.6  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL303A052 VOUT = -3.3V  
XCL304A052 VOUT = -3.3V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=150kΩ,  
RFB2=43kΩ  
-3.5  
-3.4  
-3.3  
-3.2  
-3.1  
-3.5  
-3.4  
-3.3  
-3.2  
-3.1  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL303A052 VOUT = -5.0V  
XCL304A052 VOUT = -5.0V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
-5.2  
-5.1  
-5.0  
-4.9  
-4.8  
-5.2  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
-5.1  
-5.0  
-4.9  
-4.8  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
15/24  
XCL303/XCL304 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current  
XCL303A052 VOUT = -1.8V  
XCL304A052 VOUT = -1.8V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=160kΩ, RFB2=75kΩ  
200  
150  
100  
50  
200  
150  
100  
50  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
0
0
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL303A052 VOUT = -3.3V  
XCL304A052 VOUT = -3.3V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
200  
150  
100  
50  
200  
150  
100  
50  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
0
0
1
10  
100  
1000  
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XCL304A052 VOUT = -5.0V  
XCL303A052 VOUT = -5.0V  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD  
RFB1=200kΩ, RFB2=39kΩ  
200  
150  
100  
50  
200  
150  
100  
50  
VIN = VCE  
Ta = 25℃  
VIN = 2.7V, 3.7V, 5.0V  
VIN = VCE  
Ta = 25℃  
VIN=2.7V,3.7V  
VIN=5.0V  
0
0
1
10  
100  
1000  
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
16/24  
XC9140 (De  
XCL303/XCL304  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Maximum Output Current vs. Output Voltage  
(5) VREF Voltage vs. Ambient Temperature  
XCL30xA052  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
1.8  
400  
VIN = 3.7V  
VIN = VCE  
VIN = VCE  
350  
1.7  
300  
250  
VIN=3.3V  
1.6  
1.5  
1.4  
200  
VIN=4.2V  
VIN=3.7V  
150  
100  
50  
VIN=5.5V  
VIN=2.7V  
0
-6.0  
-5.0  
-4.0  
-3.0  
-2.0  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta()  
Output Voltage : VOUT (V)  
(6) FB Voltage vs. Ambient Temperature  
(7) Supply Current vs. Ambient Temperature  
XCL30xA052  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73),  
C
VREF=1μF(GRM155C71A105KE11)  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
500  
400  
300  
200  
100  
0
VIN = VCE = 5.5V  
VFB = VFB(T)×0.975  
VIN = VCE = 3.7V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
(8) Stand-by Current vs. Ambient Temperature  
(9) UVLO Voltage vs. Ambient Temperature  
XCL30xA052  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.5  
2.3  
2.1  
1.9  
1.7  
VIN = VCE = 3.7V  
VIN = 5.5V  
VCE = 0V  
VUVLOR  
VUVLOD  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
17/24  
XCL303/XCL304 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) PFM Switch Current vs. Ambient Temperature  
(11) Maximum Current Limit vs. Ambient Temperature  
XCL304A052  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD,  
RFB1=150kΩ, RFB2=43kΩ  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD,  
RFB1=150kΩ, RFB2=43kΩ  
600  
1800  
VIN = VCE, VOUT = -3.3V  
VIN = VCE, VOUT = -3.3V  
500  
VIN=2.7V  
1500  
VIN=5.0V  
VIN=5.0V  
VIN=3.7V  
VIN=3.7V  
VIN=2.7V  
400  
1200  
300  
200  
100  
0
900  
600  
300  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(12) Oscillation Frequency vs. Ambient Temperature  
(13) Maximum ON Time vs. Ambient Temperature  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73),CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11),SD:PMEG2010BELD,  
RFB1=150kΩ, RFB2=43kΩ  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
2.9  
500  
VIN = 2.7V,3.7V,5.0V  
VIN = VCE  
VFB = VFB(T)×1.025  
VIN = 2.7V,3.7V,5.0V  
VFB = VFB(T)×1.025  
VOUT = -3.3V  
400  
2.7  
VIN = VCE  
300  
200  
100  
0
2.5  
2.3  
2.1  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
(14) Minimum OFF Time vs. Ambient Temperature  
(15) Lx SW "H" ON Resistance vs. Ambient Temperature  
XCL30xA052  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
CIN=10μF(GRM188D71A106KA73), CVREF=1μFGRM155C71A105KE11)  
100  
1.0  
VIN = 2.7V,3.7V,5.0V  
VIN = VCE  
VIN = VCE  
ILX = 100mA  
VIN=5.0V  
VFB = VFB(T)×1.025  
VIN=3.7V  
80  
0.8  
0.6  
0.4  
0.2  
0.0  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
18/24  
XC9140 (De  
XCL303/XCL304  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) Lx SW "L" Leakage Current vs. Ambient Temperature  
(17) CE "H" Voltage vs. Ambient Temperature  
XCL30xA052  
XCL30xA052  
CIN=10μF(GRM188D71A106KA73),  
C
VREF=1μF(GRM155C71A105KE11)  
CIN=10μF(GRM188D71A106KA73), CVREF=1μF(GRM155C71A105KE11)  
1.4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 5.0V  
1.2  
VCE = VLX = 0V  
VIN=5.0V  
VIN=2.7V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(18) CE "L" Voltage vs. Ambient Temperature  
XCL30xA052
CIN=10μF(GRM188D71A106KA73)), C=1μF(GRM155C71A105KE11)  
VREF  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN = 2.7V,5.0V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature: Ta ()  
19/24  
XCL303/XCL304 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) Rising Output Voltage  
XCL303A052  
XCL304A052  
VIN = VCE = 03.7V, IOUT = 1mA  
VIN = VCE = 03.7V, IOUT = 1mA  
Ta = 25, VOUT = -3.3V  
Ta = 25, VOUT = -3.3V  
VIN (5V/div)  
VLX (5V/div)  
VIN (5V/div)  
VLX (5V/div)  
VOUT (2V/div)  
VOUT (2V/div)  
500μs/div  
500μs/div  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
XCL303A052  
XCL304A052  
VIN = VCE=0→3.7V,  
IOUT = 300mA  
VIN = VCE=03.7V, IOUT = 300mA  
Ta = 25, VOUT = -3.3V  
Ta = 25, VOUT = -3.3V  
VIN (5V/div)  
VIN (5V/div)  
VLX (5V/div)  
VOUT (2V/div)  
VLX (5V/div)  
VOUT (2V/div)  
500μs/div  
500μs/div  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
20/24  
XC9140 (De  
XCL303/XCL304  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(20) Load Transient Response  
XCL304A052  
XCL303A052  
VIN = VCE = 3.7V, IOUT = 10mA50mA (tr=tf=10μs)  
VIN = VCE= 3.7V, IOUT = 10mA50mA (tr=tf=10μs)  
Ta = 25, VOUT = -3.3V  
Ta = 25, VOUT = -3.3V  
VOUT  
VOUT (500mV/div)  
VLX (5V/div)  
VOUT (500mV/div)  
VLX (5V/div)  
VLX  
IOUT  
IOUT (50mA/div)  
IOUT (50mA/div)  
500μs/div  
500μs/div  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
XCL303A052  
VIN = VCE = 3.7V, IOUT = 10mA100mA  
Ta = 25, VOUT = -3.3V  
XCL304A052  
VIN = VCE = 3.7V, IOUT = 10mA100mA  
Ta = 25, VOUT = -3.3V  
VOUT (500mV/div)  
VLX (5V/div)  
VOUT (500mV/div)  
VLX (5V/div)  
IOUT (100mA/div)  
IOUT (100mA/div)  
500μs/div  
500μs/div  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
XCL304A052  
XCL303A052  
VIN = VCE = 3.7V, IOUT = 100mA300mA (tr=tf=10μs)  
VIN = VCE = 3.7V, IOUT = 100mA→300mA (tr=tf=10μs)  
Ta = 25, VOUT = -3.3V  
Ta = 25, VOUT = -3.3V  
VOUT (500mV/div)  
VLX (5V/div)  
VOUT (500mV/div)  
VLX (5V/div)  
IOUT (100mA/div)  
IOUT (100mA/div)  
500μs/div  
500μs/div  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
CIN=10μF(GRM188D71A106KA73), CL=10μF(GRM188D71A106KA73)  
CVREF=1μF(GRM155C71A105KE11), SD:PMEG2010BELD  
RFB1=150kΩ, RFB2=43kΩ  
21/24  
XCL303/XCL304 Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
OUTLINE / LAND PATTERN  
CL-2025-02 PKG  
THERMAL CHARACTERISTICS  
Standard Board CL-2025-02 Power Dissipation  
CL-2025-02  
22/24  
XC9140 (De  
XCL303/XCL304  
Series  
MARKING RULE  
CL-2025-02  
Represents products series  
MARK  
PRODUCT SERIES  
N
P
XCL303******-G  
XCL304******-G  
1
2
3
6
5
4
Represents product type and FB voltage  
MARK  
0
PRODUCT TYPE  
A
FB VOLTAGE (V)  
0.5  
PRODUCT SERIES  
XCL30*A05*KR-G  
Represents integer of Oscillation frequency  
MARK  
2
OSCILLATION FREQUENCY  
2.5MHz  
PRODUCT SERIES  
XCL303/4***2KR-G  
, represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order.  
(G, I, J, O, Q, W excluded)  
Note: No character inversion used.  
23/24  
XCL303/XCL304 Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm  
that the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any  
intellectual property rights of ours or any third party concerning with the information in this  
datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required  
by such laws and regulations should also be followed, when the product or any information  
contained in this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause  
loss of human life, bodily injury, serious property damage including but not limited to devices or  
equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile  
industry and other transportation industry and 5) safety devices and safety equipment to control  
combustions and explosions. Do not use the product for the above use unless agreed by us in  
writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent  
personal injury and/or property damage resulting from such failure, customers are required to  
incorporate adequate safety measures in their designs, such as system fail safes, redundancy  
and fire prevention features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by  
Torex Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
24/24  

相关型号:

XCL304

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCL304A052KR-G

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCLA00811001C

Array/Network Resistor, Isolated, Thin Film, 0.05W, 11000ohm, 100V, 0.2% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00811102B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 111000ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00812702C

Array/Network Resistor, Isolated, Thin Film, 0.05W, 127000ohm, 100V, 0.2% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00817401B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 17400ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA0082100BF

Array/Network Resistor, Isolated, Thin Film, 0.05W, 21ohm, 100V, 1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA0082430BD

Array/Network Resistor, Isolated, Thin Film, 0.05W, 24.3ohm, 100V, 0.5% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00828001B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 28000ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00844202F

Array/Network Resistor, Isolated, Thin Film, 0.05W, 442000ohm, 100V, 1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00845901D

Array/Network Resistor, Isolated, Thin Film, 0.05W, 45900ohm, 100V, 0.5% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00854202C

Array/Network Resistor, Isolated, Thin Film, 0.05W, 542000ohm, 100V, 0.2% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY