XCM520AE03DR-G [TOREX]

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator; 600mA同步降压型DC / DC转换器+双路LDO稳压器
XCM520AE03DR-G
型号: XCM520AE03DR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
600mA同步降压型DC / DC转换器+双路LDO稳压器

转换器 稳压器
文件: 总43页 (文件大小:965K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCM520Series  
ETR2427-002a  
600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator  
GENERAL DESCRIPTION  
The XCM520 series is a multi chip module which comprises of a 600mA driver transistor built-in synchronous step–down  
DC/DC converter and a dual CMOS LDO regulator. The device is housed in small USP-12B01 package which is ideally  
suited for space conscious applications.  
The XCM520 can replace this dual DC/DC to eliminate one inductor and reduce output noise.  
The DC/DC converter with a built-in 0.42ΩP-channel MOS and a 0.52ΩN-channel MOS provides a high efficiency, stable  
power supply up to 600mA to using only a coil and two ceramic capacitors connected externally.  
The highly accurate, low noise, dual CMOS LDO regulator includes a reference voltage source, error amplifiers, driver  
transistors, current limiters and phase compensation circuits internally. The series is also fully compatible with low ESR  
ceramic capacitors.  
This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response  
performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each  
regulator to be turned off independently, resulting in greatly reduced power consumption.  
FEATURES  
APPLICATIONS  
Mobile phones, Smart phones  
Bluetooth headsets  
<DC/DC Convertor Block>  
Driver Transistor  
: 0.42P-channel MOS Built-in  
Switching Transistor : 0.52N-channel MOS Built-in  
Input Voltage Range : 2.7V 6.0V  
Output Voltage Range : 0.8V 4.0V  
WLAN PC cards  
Portable HDDs, SSDs  
High Efficiency  
Output Current  
: 92% (TYP.) *  
: 600mA  
PDAs, PNDs, UMPCs  
MP3 players, Media players  
Portable game consoles  
Cordless phones, Radio communication equipment  
Oscillation Frequency : 1.2MHz,3.0MHz (±15%)  
Soft-Start : Built-In Soft-Start  
Current Limiter Circuit : Constant Current & Latching  
Control : Fixed PWM, Auto PWM/PFM  
*Performance depends on external components and wiring on PCB wiring.  
<Dual LDO Regulator Block>  
Maximum Output Current  
:
150mA (Limiter 300mA TYP.)  
Dropout Voltage  
: 100mV @ 100mA  
TYPICAL APPLICATION CIRCUIT  
Operating Voltage Range : 1.5V~6.0V  
VOUT1  
1.8V  
Output Voltage Range : 0.8V~5.0V (0.05V increments)  
VOUT2  
1.2V  
CL1  
High Accuracy  
: ±2% (VOUT>1.5V)  
VOUT2  
1
2
3
VOUT1 12  
±30mV (VOUT1.5V)  
CL2  
1μF  
1μF  
VSS 11  
EN2  
Low Power Consumption : 25μA (TYP.)  
CIN1  
1μF  
Stand-by Current  
: Less than 0.1μA(TYP.)  
VIN1  
EN1  
EN3  
10  
9
High Ripple Rejection : 70dB @1kHz  
Low Output Noise  
VIN2  
PGND  
Lx  
4
5
6
VIN  
3.3V  
CIN2  
4.7μF  
Operating Temperature Range : -40~+85℃  
AGND  
VOUT3  
8
Low ESR Capacitor  
Package  
:Ceramic Capacitor Compatible  
: USP-12B01  
CL3  
10μF  
7
VOUT3  
2.3V  
Standard Voltage Combinations  
XCM520xx01D  
: VOUT1  
1.8V  
1.8V  
1.8V  
1.8V  
1.0V  
0.8V  
VOUT2  
1.2V  
1.3V  
1.2V  
1.2V  
1.2V  
1.5V  
VOUT3  
2.3V  
2.3V  
2.2V  
2.8V  
1.8V  
1.8V  
L
XCM520xx02D  
1.5μH  
XCM520xx03D  
XCM520xx04D  
* The dashed lines denote the connection using through-holes  
at the backside of the PC board.  
* The above circuit uses XCM520AA01 series.  
XCM520xx05D  
XCM520xx06D  
*Other combinations are available as semi-custom products.  
* The DC/DC block VOUT3 is connected to the dual LDO regulator  
V
IN1 in this connection.  
Environmentally Friendly : EU RoHS Compliant, Pb Free  
* Also, it is possible to operate two VIN independently.  
1/43  
XCM520 Series  
PIN CONFIGURATIOIN  
PIN No  
XCM520  
VOUT2  
EN2  
XC6401  
VOUT2  
EN2  
VIN  
XC9235/XC9236  
1
2
3
4
5
6
12  
11  
10  
9
VOUT2  
VOUT1  
VSS  
VOUT2  
EN2  
VOUT1  
VSS  
1
2
XC6401  
EN2  
VIN  
VIN  
PGND  
Lx  
3
VIN1  
4
VIN2  
VIN  
EN1  
VIN1  
VIN2  
PGND  
Lx  
EN1  
5
PGND  
Lx  
PGND  
Lx  
6
EN/MODE  
EN3  
XC9235/9236  
7
VOUT3  
AGND  
EN3  
VOUT  
AGND  
CE  
8
AGND  
AGND  
VOUT3  
8
9
7
VOUT3  
10  
11  
12  
EN1  
EN1  
VSS  
VOUT1  
VSS  
(TOP VIEW)  
VOUT1  
1
VOUT2  
12  
11  
VOUT1  
VSS  
NOTE:  
* The two heat-sink pads on the back side are electrically isolated in the package.  
*1: The pad of the regulator should be VSS level.  
*1  
2
EN2  
*2: The pad of the DC/DC should be VSS level.  
EN1  
10  
3 VIN1  
* The DC/DC ground pin (No. 5 and 8) should be connected for use.  
* The two pads are recommended to open on the board, but care must be taken for  
voltage level of each heat-sink pad when they are electrically connected.  
VIN2  
VSSD  
Lx  
EN3/MODE  
VSSA  
9
8
4
5
*2  
7
6
VOUT3  
(TOP VIEW)  
PIN ASSIGNMENT  
PIN No  
XCM520  
VOUT2  
EN2  
FUNCTIONS  
Voltage Regulator Output2  
1
2
3
4
5
6
7
8
9
Voltage Regulator ON/OFF Control 2  
Voltage Regulator Power Input  
DC/DC Power Input  
VIN1  
VIN2  
PGND  
Lx  
DC/DC Power Ground  
DC/DC Inductor Pin  
VOUT3  
AGND  
EN3  
DC/DC Output Voltage  
DC/DC Analog Ground  
DC/DC ON/OFF Control  
10  
EN1  
Voltage Regulator ON/OFF Control 1  
11  
12  
VSS  
Voltage Regulator Ground  
VOUT1  
Voltage Regulator Output Voltage 1  
2/43  
XCM520  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XCM520①②③④⑤⑥-⑦  
(*1)  
DESIGNATOR  
①②  
DESCRIPTION  
Options  
SYMBOL  
DESCRIPTION  
See the chart below  
See the chart below  
③④  
Output Voltage combination  
Packages  
⑤⑥-⑦  
DR-G  
USP-12B01  
Taping Type (*2)  
(*1)  
The XCM520 series is Halogen and Antimony free as well as being fully RoHS compliant.  
The device orientation is fixed in its embossed tape pocket.  
(*2)  
DESIGNATOR①②(Combination of XC6401 series and XC9235/XC9236 series)  
DESCRIPTION  
①②  
COMBINATION OF EACH IC  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
XC6401FF**XC9235A**D  
XC6401FF**XC9235A**C  
XC6401FF**XC9236A**D  
XC6401FF**XC9236A**C  
XC6401FF**XC9235B**D  
XC6401FF**XC9235B**C  
XC6401FF**XC9236B**D  
XC6401FF**XC9236B**C  
Fixed PWM, fOSC=3.0MHz  
Fixed PWM, fOSC=1.2MHz  
Auto PWM/PFM, fOSC=3.0MHz  
Auto PWM/PFM, fOSC=1.2MHz  
Fixed PWM, fOSC=3.0MHz, VOUT3 CL Discharge  
Fixed PWM, fOSC=1.2MHz, VOUT3 CL Discharge  
Auto PWM/PFM, fOSC=3.0MHz, VOUT3 CL Discharge  
Auto PWM/PFM, fOSC=1.2MHz, VOUT3 CL Discharge  
DESIGNATOR③④(Output Voltage)  
③④  
VOUT1(VR_1ch)  
VOUT2(VR_2ch)  
VOUT3(DC/DC)  
01  
1.8  
1.8  
1.8  
1.2  
1.3  
1.2  
2.3  
2.3  
2.2  
02  
03  
04  
05  
06  
1.8  
1.0  
0.8  
1.2  
1.2  
1.5  
2.8  
1.8  
1.8  
*This series are semi-custom products. For other combinations of output voltages please consult with your Torex sales contact.  
3/43  
XCM520 Series  
BLOCK DIAGRAMS  
XC9235B/XC9236B  
XC9235A/XC9236A  
Available with CL Discharge, High Speed Soft-Start  
* XC9235 control scheme is a fixed PWM because that the “CE/MODE Control Logic” outputs a low level signal to the “PWM/PFM Selector”.  
* XC9236 control scheme is an auto PWM/PFM switching because the “CE/MODE Control Logic” outputs a high level signal to the “PWM/PFM Selector”.  
XC6401FF  
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
MAXIMUM ABSOLUTE RATINGS  
PARAMETER  
VIN1 Voltage  
VOUT Current  
VOUT Voltage  
EN1,EN2 Voltage  
VIN2 Voltage  
Lx Voltage  
SYMBOL  
RATINGS  
6.5  
700 *2  
UNITS  
VIN1  
V
mA  
V
1
IOUT1+IOUT2  
*
VOUT1 / VOUT2  
VEN1 / VEN2  
VIN2  
VSS-0.3VIN1+0.3  
VSS-0.36.5  
-0.36.5  
V
V
VLX  
-0.3VIN2+0.36.5  
-0.36.5  
V
VOUT3 Voltage  
EN3 Voltage  
Lx Current  
VOUT3  
V
VEN3  
-0.36.5  
V
ILX  
±1500  
mA  
USP12-B01  
150  
USP12-B01 *3  
800 (1ch operate)  
600 (both 2ch operate)  
-40+85  
Power Dissipation  
Pd  
(PCB mounted)  
mW  
Topr  
Tstg  
Operating Temperature Range  
Storage Temperature Range  
-55+125  
*1. Rating is defined as a total of VR1 and VR2 in the VR bloc.  
*2. Pd > { (VIN1 - VOUT1)×IOUT1+(VIN1 - VOUT2)×IOUT2  
}
*3. The power dissipation figure shown is PCB mounted. Please refer to page 41 for details. Also, the power dissipation value above is  
for each channel.  
4/43  
XCM520  
Series  
ELECTRICAL CHARACTERISTICS  
XCM520AB, AD (DC/DC BLOCK)  
VOUT3 = 1.8V, fOSC=1.2MHz, Ta = 25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT3  
CONDITIONS  
MIN.  
1.764  
2.7  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN2 = VEN3 =5.0V, IOUT3 =30mA  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
VIN2  
-
-
6.0  
-
When connected to external components,  
VIN2=VOUT(E)+2.0V, VEN3=1.0V (*8)  
IOUT3MAX  
600  
mA  
VEN3=VIN2, VOUT3=0V,  
UVLO Voltage  
Supply Current  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
-
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *10)  
XCM520AB  
XCM520AD  
V
IN2=VEN3=5.0V,  
22  
15  
0
50  
33  
μA  
VOUT3 =VOUT3(E)×1.1V  
Stand-by Current  
V
IN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V  
-
1.0  
μA  
When connected to external components,  
VIN2 = VOUT3(E) + 2.0V, VEN3 = 1.0V, IOUT3 = 100mA  
Oscillation Frequency  
1020  
1200  
160  
1380  
200  
kHz  
When connected to external components,  
PFM Switching Current  
IPFM  
120  
mA  
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11)  
V
EN3 = VIN2 = (C-1) IOUT3 = 1mA (*11)  
200  
300  
%
%
%
PFM Duty Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
DTYLIMIT_PFM  
DMAX  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V  
100  
-
-
-
-
0
DMIN  
When connected to external components,  
VEN3=VIN2=VOUT3(E)+1.2V,IOUT3= 100mA (*7)  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3)  
Efficiency (*2)  
EFFI  
RL  
-
92  
-
%
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*9)  
H
H
RL  
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 0V (*4)  
RL  
RL  
Ω
L
L
VIN2 = VEN3 = 3.6V (*4)  
-
-
-
Ω
V
V
IN2 = VOUT3 = 5.0V, VEN3 = 0V, LX = 0V  
IN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V  
μA  
μA  
mA  
ILEAKH  
ILEAKL  
ILIM  
1.0  
1350  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
900  
Output Voltage  
Temperature  
Characteristics  
VOUT3  
/
VOUT3 = 30mA  
-40℃ ≦ Topr 85℃  
-
±100  
-
ppm/ ℃  
(VOUT3・△topr)  
VOUT3= 0V, Applied voltage to VEN3,  
Voltage changes Lx to “H” level (*10)  
VOUT3=30V, Applied voltage to VEN3,  
Voltage changes Lx to “L” level (*10)  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V  
CE "H" Level Voltage  
CE "L" Level Voltage  
VEN3H  
0.65  
VSS  
-
-
6.0  
V
V
VEN3L  
0.25  
CE "H" Current  
CE "L" Current  
IEN3H  
IEN3L  
- 0.1  
- 0.1  
0.1  
0.1  
μA  
μA  
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V  
-
When connected to external components,  
Soft Start Time  
tSS  
0.5  
1.0  
1.0  
2.5  
ms  
ms  
V
EN3 = 0V VIN2 , VOUT3 = 1mA  
VIN2 VEN3 = 5.0V, VOUT3 = 0.8  
Short Lx at 1resistance (*6)  
Sweeping VOUT3 VIN2 VEN3 = 5.0V, Short Lx at  
=
× VOUT3 (E)  
Integral Latch Time  
tLAT  
-
20.0  
,
=
Short Protection  
Threshold Voltage  
VSHORT  
1resistance, VOUT3 voltage which Lx becomes “L” 0.675  
level within 1ms  
0.900  
1.125  
V
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: VOUT3(E)+1.2V<2.7V, VIN2=2.7V.  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VIN2VIN2 - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM520A/B series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*The electrical characteristics above are when the voltage regulator block is in stop.  
5/43  
XCM520 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM520AA/AC (DC/DC BLOCK)  
VOUT3 = 1.8V, fOSC= 3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
Output Voltage  
VOUT3  
VIN2  
1.764  
2.7  
1.800 1.836  
V
V
V
IN2 = VEN3 = 5.0V, IOUT3 = 30mA  
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
IN2=VOUT3(E)+2.0V, VEN3=1.0V (*8)  
IOUT3MAX  
600  
mA  
V
VEN3 = VIN2 , VOUT3 = 0V ,  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
-
1.40  
1.78  
V
UVLO Voltage  
Supply Current  
Voltage which Lx pin holding “L” level (*1, *10)  
XCM520AA  
XCM520AC  
46  
21  
0
65  
35  
VIN2=VEN3=5.0V,  
VOUT3=VOUT3(E)×1.1V  
μA  
-
1.0  
μA  
Stand-by Current  
V
IN2 = 5.0V, VEN = 0V, VOUT3 = VOUT3(E) × 1.1V  
When connected to external components,  
IN2 = VOUT3(E) + 2.0V , VEN3=1.0V, VOUT3 = 100mA  
2550  
3000  
220  
3450  
270  
kHz  
Oscillation Frequency  
V
When connected to external components,  
IPFM  
170  
mA  
PFM Switching Current  
V
IN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11)  
EN3 = VIN2 = (C-1) IOUT3 = 1mA (*11)  
V
200  
300  
%
%
%
PFM Duty Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
DTYLIMIT_PFM  
DMAX  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V  
When connected to external components,  
100  
-
-
-
-
0
DMIN  
Efficiency (*2)  
EFFI  
RL  
-
86  
-
%
V
EN3 = VIN2 VOUT3 (E) + 1.2V, VOUT3 = 100mA (*7)  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 =5.0V (*4)  
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*9)  
H
H
RL  
RL  
RL  
Ω
L
L
VIN2 = VEN3 = 3.6V (*4)  
-
-
-
Ω
V
V
IN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V  
IN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V  
μA  
μA  
mA  
ILEAKH  
ILEAKL  
ILIM  
1.0  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT3  
/
VOUT3 = 30mA  
-40℃ ≦ Topr 85℃  
-
±100  
-
ppm/ ℃  
(VOUT3・△topr)  
VOUT3 =0V, Applied voltage to VEN3,  
Voltage changes Lx to “H” level (*10)  
VOUT3 =0V, Applied voltage to VEN3,  
Voltage changes Lx to “L” level (*10)  
VENH  
0.65  
VSS  
-
-
6.0  
V
V
EN "H" Level Voltage  
EN "L" Level Voltage  
VEN3L  
0.25  
IEN3H  
IEN3L  
VIN2 = VEN3 =5.0V, VOUT3 = 0V  
- 0.1  
- 0.1  
0.1  
0.1  
μA  
μA  
EN "H" Current  
EN "L" Current  
VIN2 =5.0V, VEN3 = 0V, VOUT3 = 0V  
-
When connected to external components,  
Soft Start Time  
tSS  
0.5  
1.0  
0.9  
2.5  
ms  
ms  
V
EN3 = 0V VIN2 , VOUT3 = 1mA  
VIN2 VEN3 = 5.0V, VOUT3 = 0.8  
Short Lx at 1resistance (*6)  
Sweeping VOUT3 VIN2 VEN3 = 5.0V, Short Lx at  
=
× VOUT3  
(E)  
Integral Latch Time  
tLAT  
-
20.0  
,
=
Short Protection  
Threshold Voltage  
VSHORT  
0.675  
0.900  
1.125  
V
1resistance, VOUT3 voltage which Lx becomes “L”  
level within 1ms  
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VIN2VIN2 - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM520AA series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*The electrical characteristics above are when the voltage regulator block is in stop.  
6/43  
XCM520  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM520AF,AH (DC/DC BLOCK)  
VOUT3=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
Output Voltage  
VOUT3  
VIN2  
1.764  
2.7  
1.800 1.836  
V
V
V
IN2 = VEN3 = 5.0V, IOUT3 = 30mA  
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN2 = VOUT3(E)+2.0V, VEN3=1.0V (*8)  
IOUT3MAX  
600  
mA  
VEN3 = VIN2, VOUT3 = 0V,  
VUVLO  
1.00  
-
1.40  
1.78  
V
UVLO Voltage  
Voltage which Lx pin holding “L” level (*1, *10)  
XCM520AF  
XCM520AH  
22  
15  
0
50  
33  
VIN2 =VEN3= 5.0V,  
VOUT3= VOUT3(E)×1.1V  
IDD  
ISTB  
fOSC  
μA  
μA  
kHz  
Supply Current  
Stand-by Current  
V
IN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V  
-
1.0  
When connected to external components,  
1020  
1200  
160  
1380  
200  
Oscillation Frequency  
VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3=100mA  
When connected to external components,  
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA (*11)  
IPFM  
120  
mA  
PFM Switching Current  
V
EN3 = VIN2 = (C-1) VOUT3 = 1mA (*11)  
200  
300  
%
%
%
PFM Duty Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
DTYLIMIT_PFM  
DMAX  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V  
When connected to external components,  
100  
-
-
-
-
0
DMIN  
Efficiency (*2)  
EFFI  
RL  
-
92  
-
%
V
EN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA (*7)  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*9)  
H
H
RL  
RL  
RL  
Ω
L
L
VIN2 = VEN3 = 3.6V (*4)  
Ω
V
IN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V  
μA  
mA  
ILEAKH  
ILIM  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT3  
/
IOUT3 = 30mA  
-40℃ ≦ Topr 85℃  
-
±100  
-
ppm/ ℃  
(VOUT3・△topr)  
VOUT3 =0V, Applied voltage to VEN3,  
Voltage changes Lx to “H” level (*10)  
VOUT3 =0V, Applied voltage to VEN3,  
Voltage changes Lx to “L” level (*10)  
VIN2 = VEN3 =5.0V, VOUT3 = 0V  
EN "H" Level Voltage  
EN "L" Level Voltage  
VENH  
0.65  
VSS  
-
-
6.0  
V
V
VEN3L  
0.25  
EN "H" Current  
EN "L" Current  
IEN3H  
IEN3L  
- 0.1  
- 0.1  
0.1  
0.1  
μA  
μA  
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V  
-
When connected to external components,  
Soft Start Time  
tSS  
-
0.25  
0.4  
ms  
ms  
V
EN3 = 0V VIN2 , VOUT3 = 1mA  
VIN2 VEN3 = 5.0V, VOUT3 = 0.8  
Short Lx at 1resistance (*6)  
Sweeping VOUT3 VIN2 VEN3 = 5.0V, Short Lx at  
=
× VOUT3  
(E)  
Integral Latch Time  
tLAT  
1.0  
-
20.0  
,
=
Short Protection  
Threshold Voltage  
VSHORT  
RDCHG  
0.675  
200  
0.900  
300  
1.150  
450  
V
1resistance, VOUT3 voltage which Lx becomes “L”  
level within 1ms  
VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open  
CL Discharge  
Ω
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VIN2VIN2 - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM520AF series exclude IPFM and DLIMIT_PFM because those are only for the PFM control’s functions.  
*The electrical characteristics above are when the voltage regulator block is in stop.  
7/43  
XCM520 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM520AE,AG (DC/DC BLOCK)  
VOUT3=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
Output Voltage  
VOUT3  
VIN2  
1.764  
2.7  
1.800 1.836  
V
V
V
IN2 = VEN3 = 5.0V, IOUT3 = 30mA  
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN2=VOUT3(E)+2.0V,VEN3=1.0V (*8)  
VOUT3MAX  
600  
mA  
VEN3 = VIN2, VOUT3 = 0V,  
VUVLO  
1.00  
-
1.40  
1.78  
V
UVLO Voltage  
Voltage which Lx pin holding “L” level (*1, *10)  
VIN2=VEN3=5.0V,  
VOUT3 = VOUT3(E)×1.1V  
XCM520AE  
XCM520AG  
46  
21  
0
65  
35  
IDD  
ISTB  
fOSC  
μA  
μA  
kHz  
Supply Current  
Stand-by Current  
V
IN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V  
-
1.0  
When connected to external components,  
2550  
3000  
220  
3450  
270  
Oscillation Frequency  
VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3 = 100mA  
When connected to external components,  
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA (*11)  
IPFM  
170  
mA  
PFM Switching Current  
V
EN3 = VIN2 = (C-1) VOUT3 = 1mA (*11)  
-
100  
-
200  
300  
%
%
%
PFM Duty Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
DTYLIMIT_PFM  
DMAX  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V  
When connected to external components,  
-
-
-
0
DMIN  
Efficiency (*2)  
EFFI  
RL  
-
86  
-
%
V
EN3 = VIN2 VOUT3 (E)+1.2V, VOUT3 =100mA  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*3)  
VIN2 = VEN3 = 0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*9)  
H
H
RL  
RL  
RL  
Ω
L
L
VIN2 = VEN3 = 3.6V (*4)  
Ω
ILEAKH  
ILIM  
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V  
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V (*7)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT3  
/
IOUT3 = 30mA  
-40℃ ≦ Topr 85℃  
-
±100  
-
ppm/ ℃  
(VOUT3・△topr)  
VOUT3 = 0V, Applied voltage to VEN3,  
Voltage changes Lx to “H” level (*10)  
VOUT3 = 0V, Applied voltage to VEN3,  
Voltage changes Lx to “L” level (*10)  
VIN2 = VEN3 = 5.0V, VOUT3 = 0V  
EN "H" Level Voltage  
EN "L" Level Voltage  
VEN3H  
0.65  
VSS  
-
-
6.0  
V
V
VEN3L  
0.25  
EN "H" Current  
EN "L" Current  
IEN3H  
IENL  
- 0.1  
- 0.1  
0.1  
0.1  
μA  
μA  
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V  
-
When connected to external components,  
Soft Start Time  
tSS  
-
0.32  
0.5  
ms  
ms  
V
EN3 = 0V VIN2 , VOUT3 =1mA  
VIN2 VEN3 = 5.0V, VOUT3 = 0.8  
Short Lx at 1resistance (*6)  
Sweeping VOUT3 VIN2 VEN3 = 5.0V, Short Lx at  
=
× VOUT3  
(E)  
Integral Latch Time  
tLAT  
1.0  
-
20.0  
,
=
Short Protection  
Threshold Voltage  
VSHORT  
RDCHG  
0.675  
200  
0.900  
300  
1.150  
450  
V
1resistance, VOUT3 voltage which Lx becomes “L”  
level within 1ms  
VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open  
CL Discharge  
Ω
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VIN2VIN2 - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM520AE series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.  
*The electrical characteristics above are when the voltage regulator block is in stop.  
8/43  
XCM520  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage  
1.2MHz  
SETTING VOLTAGE  
OUT3(E) 1.2V  
(mA)  
MAX.  
MIN.  
140  
130  
120  
TYP.  
180  
170  
160  
V
240  
220  
200  
1.2V VOUT3(E) 1.75V  
1.8V VOUT3(E)  
3.0MHz  
(mA)  
SETTING VOLTAGE  
MIN.  
190  
180  
170  
TYP.  
260  
240  
220  
MAX.  
350  
V
OUT3(E) 1.2V  
1.2V VOUT3(E) 1.75V  
1.8V VOUT3(E)  
300  
270  
Measuring PFM Duty Limit, VIN2 Voltage  
fOSC  
1.2MHz  
3.0MHz  
(C-1)  
VOUT3(E)+0.5V  
VOUT3(E)+1.0V  
Minimum operating voltage is 2.7V  
ex.) Although when VOUT3(E) = 1.2V, fOSC= 1.2MHz, (C-1) = 1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.  
Soft-Start Time Chart (XCM520AE/XCM520AF/XCM520AG/XCM520AH Series Only)  
PRODUCT SERIES  
fOSC  
OUTPUT VOLTAGE  
MIN.  
TYP.  
MAX.  
UNITS  
1200kHz  
1200kHz  
0.8VOUT3(E)<1.5  
1.5VOUT3(E)<1.8  
-
-
0.25  
0.32  
0.4  
0.5  
XCM520AF  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
3000kHz  
3000kHz  
1.8VOUT3(E)<2.5  
2.5VOUT3(E)<4.0  
0.8VOUT3(E)<2.5  
2.5VOUT3(E)<4.0  
0.8VOUT3(E)<1.8  
1.8VOUT3(E)<4.0  
-
-
-
-
-
-
0.25  
0.32  
0.25  
0.32  
0.25  
0.32  
0.4  
0.5  
0.4  
0.5  
0.4  
0.5  
ms  
XCM520AH  
XCM520AE/AG  
9/43  
XCM520 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM520 Series VR Block (VR1/VR2: EN_ Active High, without Pull-down resistors)  
Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNITS CIRCUIT  
V
OUT(T)1.5V  
OUT(T)<1.5V  
X0.98 (*3)  
-0.03 (*3)  
150  
X1.02 (*3)  
+0.03 (*3)  
(*2)  
(*4)  
VOUT(E)  
IOUT=30mA  
VOUT (T)  
V
V
IOUTMAX  
VOUT  
Vdif1  
Vdif2  
ISS  
VIN1=VOUT (T) + 1.0V  
1mAIOUT100mA  
-
-
mA  
mV  
mV  
mV  
μA  
μA  
Maximum Output Current  
Load Regulation  
-
15  
60  
IOUT=30mA  
E-1  
E-2  
25  
Dropout Voltage (*5)  
IOUT=100mA  
Supply Current  
VIN1=VEN=VOUT (T) + 1.0V, IOUT=0mA  
VIN1=VOUT (T) + 1.0V, VEN=VSS  
VOUT(T)+1.0VVIN16.0V  
VEN=VIN1, IOUT=30mA  
-
-
45  
Stand-by Current  
ISTB  
0.01  
0.10  
VOUT  
/
Input Regulation (*8)  
-
1.5  
-
0.01  
-
0.20  
6.0  
-
% / V  
V
-
(VIN1 VOUT  
)
Input Voltage  
VIN1  
VOUT  
/
IOUT=30mA  
Output Voltage  
ppm/℃  
100  
Temperature Characteristics  
(Topr VOUT  
)
-40℃≦Topr85℃  
V
IN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC  
OUT=30mA, f=1kHz  
Ripple Rejection (*9)  
PSRR  
-
70  
-
dB  
I
Limit Current  
ILIM  
ISHORT  
VENH  
VENL  
IENH  
VIN1=VOUT (T) + 1.0V, VEN=VIN1  
VIN1=VOUT (T) + 1.0V, VEN=VIN1  
-
-
300  
-
mA  
mA  
V
Short Current  
30  
-
-
EN "H" Level Voltage  
EN "L" Level Voltage  
EN "H" Level Current  
EN "L" Level Current  
1.30  
-
6
-
0.25  
0.10  
0.10  
V
VIN1=VEN=VOUT (T) + 1.0V  
-0.10  
-0.10  
-
μA  
μA  
IENL  
VIN1= VOUT (T) + 1.0V, VEN=VSS  
-
NOTE:  
*1 : Unless otherwise stated, VIN1=VOUT(T)+1.0V  
*2 : VOUT(E) : Effective output voltage  
(I.e. the output voltage when "VOUT(T)1.0V" is provided at the VIN pin while maintaining a certain IOUT value).  
*3 : Please see the Voltage Chart for each voltage of VOUT(E)  
.
If VOUT (T)1.45V, MIN VOUT (T) - 30mV, MAX VOUT (T) + 30mV  
*4 : VOUT(T) : Nominal output voltage  
(*6)  
*5 : Vdif={VINa(*7)-VOUTa  
}
*6 : VOUT1=A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT {VOUT(T)+1.0V} is input.  
*7 : VIN1=The input voltage when VOUT1 appears as input voltage is gradually decreased.  
*8 : When VOUT(T)4.5V, 5.5VVIN16.0V  
*9 : When VOUT(T)4.8V, VIN1=5.75VDC+0.5Vp-pAC  
*The electrical characteristics above are when the DC/DC block is in stop.  
10/43  
XCM520  
Series  
OUTPUT VOLTAGE CHART  
Voltage Chart 1  
E-1  
DROPOUT VOLTAGE 1 (mV)  
Vdif1  
E-2  
NOMINAL OUTPUT  
OUTPUT VOLTAGE (V)  
VOLTAGE  
DROPOUT VOLTAGE 2 (mV)  
Vdif2  
(V)  
VOUT  
VOUT(T)  
MIN.  
MAX.  
TYP.  
MAX.  
TYP.  
MAX.  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
0.770  
0.820  
0.870  
0.920  
0.970  
1.020  
1.070  
1.120  
1.170  
1.220  
1.270  
1.320  
1.370  
1.420  
1.470  
1.519  
1.568  
1.617  
1.666  
1.715  
1.764  
1.813  
1.862  
1.911  
1.960  
2.009  
2.058  
2.107  
2.156  
2.205  
2.254  
2.303  
2.352  
2.401  
2.450  
2.499  
2.548  
2.597  
2.646  
2.695  
2.744  
2.793  
2.842  
2.891  
0.830  
0.880  
0.930  
0.980  
1.030  
1.080  
1.130  
1.180  
1.230  
1.280  
1.330  
1.380  
1.430  
1.480  
1.530  
1.581  
1.632  
1.683  
1.734  
1.785  
1.836  
1.887  
1.938  
1.989  
2.040  
2.091  
2.142  
2.193  
2.244  
2.295  
2.346  
2.397  
2.448  
2.499  
2.550  
2.601  
2.652  
2.703  
2.754  
2.805  
2.856  
2.907  
2.958  
3.009  
300  
700  
400  
800  
200  
100  
80  
600  
500  
400  
300  
200  
100  
350  
270  
240  
200  
180  
165  
700  
600  
500  
400  
300  
250  
65  
60  
55  
50  
45  
75  
65  
150  
140  
200  
180  
40  
60  
120  
170  
35  
55  
110  
160  
11/43  
XCM520 Series  
DROPOUT VOLTAGE CHART (Continued)  
Voltage Chart 2  
E-1  
E-2  
NOMINAL OUTPUT  
OUTPUT VOLTAGE (V)  
DROPOUT VOLTAGE 1 (mV)  
Vdif1  
DROPOUT VOLTAGE 2 (mV)  
VOLTAGE  
(V)  
VOUT  
Vdif2  
VOUT(T)  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.65  
3.70  
3.75  
3.80  
3.85  
3.90  
3.95  
4.00  
4.05  
4.10  
4.15  
4.20  
4.25  
4.30  
4.35  
4.40  
4.45  
4.50  
4.55  
4.60  
4.65  
4.70  
4.75  
4.80  
4.85  
4.90  
4.95  
5.00  
MIN.  
2.940  
2.989  
3.038  
3.087  
3.136  
3.185  
3.234  
3.283  
3.332  
3.381  
3.430  
3.479  
3.528  
3.577  
3.626  
3.675  
3.724  
3.773  
3.822  
3.871  
3.920  
3.969  
4.018  
4.067  
4.116  
4.165  
4.214  
4.263  
4.312  
4.361  
4.410  
4.459  
4.508  
4.557  
4.606  
4.655  
4.704  
4.753  
4.802  
4.851  
4.900  
MAX.  
3.060  
3.111  
3.162  
3.213  
3.264  
3.315  
3.366  
3.417  
3.468  
3.519  
3.570  
3.621  
3.672  
3.723  
3.774  
3.825  
3.876  
3.927  
3.978  
4.029  
4.080  
4.131  
4.182  
4.233  
4.284  
4.335  
4.386  
4.437  
4.488  
4.539  
4.590  
4.641  
4.692  
4.743  
4.794  
4.845  
4.896  
4.947  
4.998  
5.049  
5.100  
TYP.  
MAX.  
TYP.  
MAX.  
30  
45  
100  
150  
12/43  
XCM520  
Series  
TYPICAL APPLICATION CIRCUIT  
1
2
VOUT1  
12  
11  
10  
VOUT2  
EN2  
CL2  
CL1  
VSS  
EN1  
CIN1  
3
VIN1  
4
EN3/MODE  
AGND  
9
8
7
VIN2  
VIN  
CIN2  
PGND  
5
6
CL3  
Lx  
VOUT3  
L
DC/DC BLOCK fOSC=1.2MHz  
DC/DC BLOCK fOSC=3.0MHz  
CIN1  
CL1  
CL2  
L
:
:
:
:
:
:
1μF  
1μF  
1μF  
(Ceramic)  
(Ceramic)  
(Ceramic)  
CIN1  
CL1  
CL2  
L
:
:
:
:
:
:
1μF  
1μF  
1μF  
(Ceramic)  
(Ceramic)  
(Ceramic)  
4.7μH (NR4018 TAIIYO YUDEN)  
1.5μH (NR3015 TAIIYO YUDEN)  
CIN2  
CL2  
4.7μF  
10μF  
(Ceramic)  
(Ceramic)  
CIN2  
CL2  
4.7μF  
10μF  
(Ceramic)  
(Ceramic)  
OPERATIONAL EXPLANATION  
DC/DC BLOCK  
The DC/DC block of the XCM520 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM  
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel  
MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block  
diagram above.)  
By using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from the  
VOUT3 pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a  
signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms  
of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting  
output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to  
ensure stable output voltage.  
The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates  
the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low  
ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or  
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to  
synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the  
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed  
internally to deliver an optimized signal to the mixer.  
13/43  
XCM520 Series  
OPERATIONAL EXPLANATION (Continued)  
<Current Limit>  
The current limiter circuit of the XCM520 series monitors the current flowing through the P-channel MOS driver transistor  
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin  
at any given timing.  
When the P-channel MOS driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the P-channel MOS driver transistor is turned on. However, the P-channel MOS driver transistor is  
immediately turned off in the case of an over current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a few  
milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the  
P-channel MOS driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations  
can be resumed by either turning the IC off via the EN3 pin, or by restoring power to the VIN2 pin. The suspension mode does  
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in  
operation. The current limit of the XCM520 series can be set at 1050mA at typical. Besides, care must be taken when laying  
out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch  
time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so  
that input capacitors are placed as close to the IC as possible.  
Limit < a few milliseconds  
Limita few milliseconds  
Current Limit LEVEL  
ILx  
VOUT3  
Lx  
0mA  
VSS  
VEN3  
VIN1  
Restart  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT3 pin. In case where output  
is accidentally shorted to the ground and when the FB point voltage decreases less than half of the reference voltage (Vref)  
and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to  
latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN3 pin, or  
by restoring power supply to the VIN2 pin.  
When sharp load transient happens, a voltage drop at the VOUT3 pin is propagated to FB point through CFB, as a result, short  
circuit protection may operate in the voltage higher than 1/2 VOUT3 voltage.  
<UVLO Circuit>  
When the VIN2 pin voltage becomes 1.4V or lower, the P-channel MOS driver transistor is forced OFF to prevent false pulse  
output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching  
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation.  
The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO  
circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry  
remains in operation.  
14/43  
XCM520  
Series  
OPERATIONAL EXPLANATION (Continued)  
<PFM Switch Current>  
In the PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P- channel MOSFET on. In  
this case, on-time (tON) that the P-channel MOSFET is kept on can be given by the following formula.  
t
ON= L×IPFM (VIN2VOUT3  
)
IPFM①  
<PFM Duty Limit>  
In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty  
increases (e.g. the condition that the step-down ratio is small), it’s possible for P-channel MOS driver transistor to be turned off  
even when coil current doesn’t reach to IPFM.  
IPFM②  
PFM Duty Limit  
Ton  
fOSC  
Lx  
Lx  
IPFM  
0mA  
IPFM  
0mA  
ILx  
ILx  
IPFM  
IPFM  
< CL High Speed Discharge >  
XCM520AE/ XCM5AF/XCM520AG/XCM520AH series can quickly discharge the electric charge at the output capacitor (CL)  
when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor  
located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly  
discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL  
auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R]  
and an output capacitor value (CL) as  
τ(τ=C x R), discharge time of the output voltage after discharge via the N-channel transistor is calculated by the following  
formula.  
V =VOUT3(E)×e -t /τor t = τLn (VOUT3(E) / V)  
Where;  
V : Output voltage after discharge  
VOUT3(E) : Output voltage  
t: Discharge time  
τ: C×R  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CL=10uF  
CL=20uF  
CL=50uF  
C= Capacitance of Output capacitor (CL)  
R= CL auto-discharge resistance  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
15/43  
XCM520 Series  
OPERATIONAL EXPLANATION (Continued)  
Voltage Regulator BLOCK  
The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The  
P-channel MOSFETs, which are connected to the VOUT pin, are then driven by the subsequent output signal. The  
output voltages at the VOUT pin is controlled and stabilized by a system of negative feedback. The current limit circuit  
and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be  
shutdown via the EN pin's signal.  
< Low ESR Capacitors >  
With the XCM520 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase  
compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that output  
capacitor (CL) is connected as close as possible to the output pins (VOUT) and the VSS pin. Please use an output capacitor  
with a capacitance value of at least 1μF. Also, please connect an input capacitor (CIN1) of 1μF between the VIN1 pin and the  
VSS pin in order to ensure a stable power input.  
< Current Limiter, Short-Circuit Protection >  
The XCM520 series includes a combination of a fixed current limiter circuit and a fold-back circuit which aid the operations of  
the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit  
operates and output voltage drops. As a result of this drop in output voltage, the fold-back circuit start to operate, output  
voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows.  
< EN Pins >  
The IC's internal circuitry can be shutdown via the signal from the EN pin with the XCM520 series. In shutdown state, output  
at the VOUT pin will be pulled down to the VSS level via R1 and R2. The operational logic of the IC's EN pin is selectable  
(please refer to the selection guide). Note that as the standard type's regulator 1 and 2 are both ' High Active/No Pull Down',  
operations will become unstable with the EN pin open. Although the EN pin is equal to an inverter input with CMOS  
hysteresis, with either the pull-up or pull-down options, the EN pin input current will increase when the IC is in operation. We  
suggest that you use this IC with either a VIN1 voltage or a VSS voltage input at the EN pin. If this IC is used with the correct  
specifications for the EN pin, the operational logic is fixed and the IC will operate normally. However, supply current may  
increase as a result of through current in the IC's internal circuitry.  
16/43  
XCM520  
Series  
NOTES ON USE  
<DC/DC BLOCK>  
1. The XCM520 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large  
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy  
and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in  
parallel to compensate for insufficient capacitance.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple  
may increase.  
4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty  
cycle may continue in several periods.  
5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may  
continues100% duty cycle in several periods.  
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate  
the peak current according to the following formula:  
Ipk = (VIN2-VOUT3)× OnDuty /(2×L×fOSC) + IOUT  
L: Coil Inductance Value  
fOSC: Oscillation Frequency  
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver  
transistor turns off. During the time until it detects limit current and before the built-in P-channel MOS driver transistor can  
be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external  
components such as a coil.  
8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid  
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.  
9. Use of the IC at voltages below the recommended voltage range may lead to instability.  
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the  
leak current of the P-channel MOS driver transistor.  
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow.  
In case that the current limit functions while the VOUT3 pin is shorted to the GND pin, when P-channel MOS driver transistor is  
ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes  
large. By contrast, when N-channel MOS driver transistor is ON, there is almost no potential difference at both ends of the  
coil since the VOUT3 pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small.  
According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain  
current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after  
the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute  
maximum rating in order to prevent damage to the device.  
Current flows into P-channel MOS driver transistor to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to  
OFF of P-channel MOS driver transistor.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
# ms  
17/43  
XCM520 Series  
NOTE ON USE (Continued)  
13. In order to stabilize VIN2 voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected  
as close as possible to the VIN2 and VSS pins.  
14. High step-down ratio and very light load may lead an intermittent oscillation.  
15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.  
Please verify with actual design.  
VOUT3=3.3V, fOSC=1.2MHz  
VIN2=3.7V, IOUT3=100mA  
<External Components>  
L : 4.7μF(NR4018)  
CH1:Lx 5V/div  
CIN2 : 4.7μF(Ceramic)  
CL3 : 10μF(Ceramic)  
CH2:VOUT3 20mV/div  
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature,  
output voltage, oscillation frequency, and L value are not adequate.  
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even  
if using the L values listed below.  
VOUT3=3.3V, fOSC=1.2MHz  
The Range of L Value  
V
IN2=4.0V,IOUT3=180mA  
fOSC  
VOUT  
L Value  
3.0MHz  
0.8VVOUT34.0V  
1.0μH2.2μH  
3.3μH6.8μH  
4.7μH6.8μH  
CH1:Lx 2.0V/div  
<External Components>  
V
OUT32.5V  
L : 1.5μF(NR3015)  
1.2MHz  
2.5VVOUT3  
CIN2 : 4.7μF(Ceramic)  
*When  
a coil less value of 4.7 μ H is used at  
CH2:VOUT3 20mV/div  
CL3 : 10μF(Ceramic)  
fOSC=1.2MHz or when a coil less value of 1.5μH is used  
at fOSC=3.0MHz, peak coil current more easily reach the  
current limit ILMI. In this case, it may happen that the IC  
can not provide 600mA output current.  
18/43  
XCM520  
Series  
NOTE ON USE (Continued)  
Note on use of pattern layouts  
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be  
exceeded.  
2. The capacitor (CIN) should be connected as close as possible to the VIN and VSS pins.  
When wiring impedance is high, noise propagation by output current or phase discrepancy occur which results in  
unstable operating. In this case, please reinforce VIN and VSS rails. If the operation is still unstable, please increase  
input capacitance CIN.  
3. With comparison to the separate product usage, the two chips are placed in adjacent in the package so heat generation  
Is influenced each other. Please evaluate and verify in the actual design.  
Instructions of pattern layouts  
1. In order to stabilize VIN1VIN2VOUT1VOUT2VOUT3, we recommend that a by-pass capacitor (CIN1CIN2CL1CL2・  
CL3) be connected as close as possible to the VIN1VIN2VOUT1VOUT2VOUT3 and VSS pin.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4.  
VSSAGNDPGNDVSSground wiring is recommended to get large area. The IC may goes into unstable operation  
as a result of VSS voltage level fluctuation during the switching.  
5. Heat is generated because of the output current (IOUT) and ON resistance of driver transistors.  
Reference Pattern Layout  
L
XC  
5
M 20  
EX  
TO  
VOUT  
3
V
. 1  
er . O  
USP 12B  
ND  
AG  
L x  
CL 3  
1
ODE  
M
EN3  
IC  
C
L 2  
GND  
EN1  
VOUT 1  
VOUT2  
EN2  
95  
#
Back  
Front  
Ceramic Capacitor  
Inductor  
19/43  
XCM520 Series  
TEST CIRCUITS  
<Circuit No.1 >  
<Circuit No.2 >  
VIN2  
EN3  
Lx  
A
VOUT3  
1μF  
AGND  
PGND  
* External Componen
L
:
1.5μH (N3015) 3.0MHz  
4.7μH (NR4018) 1.2MHz  
: 4.7μF (ceramic)  
EN1  
VIN1  
EN2  
VSS  
CIN2  
CL3  
VOUT1  
VOUT2  
:
10μF (ceramic)  
<Circuit No.3 >  
<Circuit No.4 >  
Wave Form Measure Point  
VIN2  
Lx  
VIN2  
EN3  
Lx  
EN3  
VOUT3  
VOUT3  
Rpulldown  
200Ω  
1μF  
100mA  
1μF  
V
AGND  
PGND  
AGND  
PGND  
EN1  
VIN1  
EN2  
EN1  
VIN1  
EN2  
VSS  
VSS  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
<Circuit No.6 >  
<Circuit No.5 >  
ILEAKH  
Wave Form Measure Point  
VIN2  
EN3  
Lx  
VIN2  
EN3  
Lx  
A
IENH  
ILEAKL  
VOUT3  
VOUT3  
PGND  
A
IENL  
1μF  
ILIM  
V
1μF  
AGND  
PGND  
AGND  
EN1  
VIN1  
EN2  
EN1  
VIN1  
EN2  
VSS  
VSS  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
<Circuit No.8 >  
<Circuit No.7 >  
ILx  
Wave Form Measure Point  
ILAT  
VIN2  
EN3  
Lx  
VIN2  
EN3  
Lx  
A
VOUT3  
VOUT3  
1μF  
1μF  
Rpulldown  
1Ω  
AGND  
PGND  
AGND  
PGND  
EN1  
VIN1  
EN2  
EN1  
VIN1  
EN2  
VSS  
VSS  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
<Circuit No.9 >  
20/43  
XCM520  
Series  
TEST CIRCUITS (Continued)  
<Circuit No11 >  
EN1/EN2  
<Circuit No10 >  
EN1/EN2  
Active HighEN = VIN1  
Active LowEN = VSS  
Active HighEN = VSS  
Active LowEN = VIN1  
VIN2  
EN3  
Lx  
VOUT3  
PGND  
AGND  
VOUT1  
VIN1  
EN1  
EN2  
A
VOUT2  
VSS  
CIN1, CL1, CL2 : 1μF (ceramic)  
<Circuit No12 >  
<Circuit No13 >  
VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC  
VIN2  
EN3  
Lx  
VOUT3  
VIN2  
EN3  
Lx  
VOUT3  
PGND  
AGND  
PGND  
AGND  
IOUT=30mA  
VOUT1  
VOUT1  
A
IOUT1  
VIN1  
EN1  
EN2  
VIN1  
EN1  
EN2  
A
V
CL1  
VOUT2  
VOUT2  
A
IOUT=30mA  
VSS  
V
VSS  
IOUT2  
V
CL2  
CL1, CL2 : 1μF (ceramic)  
EN1/EN2  
EN1/EN2  
VR1 PSRR  
Active High (pull-down, without resistance)  
VR1 Supply Current, EN1=ON, EN2=OFF  
VR2 Supply Current, EN1= OFF, EN2=ON  
Active High: ON=VIN1, OFF=VSS  
EN1=ON, EN2=OFF  
VR2 PSRR  
EN1=OFF, EN2=ON  
Active High: ON=VIN1, OFF=VSS  
Active Low: ON=VSS, OFF=VIN1  
Active Low: ON=VSS, OFF=VIN1  
<Circuit No14 >  
CIN1 : 1μF (ceramic)  
EN1/EN2  
EN1”H” Level Current  
EN1=VIN1 Level  
EN2”H” Level Current  
EN2=VIN1 Level  
EN1”L” Level Current  
EN1= VSS  
EN2”L” Level Current  
EN2=VSS  
* The EN which is not measured is in operation sop mode.  
Active High: VSS  
Active Low: measuring VIN1 Level  
21/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
DC/DC Block  
(1) Efficiency vs. Output Current  
VOUT3=1.8V, fOSC=1.2MHz  
VOUT3=1.8V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM/PFM Automatic Switching Control  
PWM/PFM A utomatic Sw itc hing  
VIN2= 4.2V  
3.6V  
PWM Control  
VIN2= 4.2V  
VIN2= 4.2V  
3.6V  
PWM Control  
VIN2= 4.2V  
3.6V  
3.6V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT3(mA)  
Output Current:IOUT3(mA)  
(2) Output Voltage vs. Output Current  
VOUT3=1.8V, fOSC=1.2MHz  
VOUT3=1.8V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
2.1  
2
2.1  
2
PWM/PFM Automatic Switching Control  
1.9  
1.8  
1.7  
1.6  
1.5  
1.9  
1.8  
1.7  
1.6  
1.5  
PWM/PFM Automatic Switching Control  
VIN2 4.2V,3.6V  
VIN2 4.2V,3.6V  
PWM Control  
PWM Control  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT3(mA)  
Output Current:IOUT3(mA)  
(3) Ripple Voltage vs. Output Current  
VOUT3=1.8V, fOSC=1.2MHz  
VOUT3=1.8V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PWM/PFM Automatic  
Switching Control  
PWM Control  
PWM Control  
PWM/PFM Automatic  
VIN2 4.2V,3.6V  
VIN2 4.2V,3.6V  
Switching Control  
VIN2 4.2V  
3.6V  
VIN2 4.2V  
3.6V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT3(mA)  
Output Current:IOUT 3(mA)  
22/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
VOUT3=1.8V, fOSC=1.2MHz  
VOUT3=1.8V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
1.5  
1.4  
1.3  
1.2  
1.1  
1
3.5  
3.4  
3.3  
3.2  
3.1  
3
VIN=3.6V  
VIN2=3.6V  
2.9  
2.8  
2.7  
2.6  
2.5  
0.9  
0.8  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
Ambient Temperature : Ta (  
)
Ambient Temperature : Ta (  
)
(5) Supply Current vs. Ambient Temperature  
VOUT3=1.8V, fOSC=1.2MHz  
VOUT3=1.8V, fOSC=3.0MHz  
40  
35  
30  
40  
35  
30  
25  
20  
15  
10  
5
VIN2=6.0V  
VIN2=4.0V  
VIN 2=6.0V  
VIN 2=4.0V  
25  
20  
15  
10  
5
0
0
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta (  
)
Ambient Temperature : Ta (  
)
(6) Output Voltage vs. Ambient Temperature  
VOUT3=1.8V, fOSC=3.0MHz  
(7) UVLO Voltage vs. Ambient Temperature  
VOUT3=1.8V, fOSC=3.0MHz  
2.1  
1.8  
VIN 2=3.6V  
EN3=VIN2  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2
1.9  
1.8  
1.7  
1.6  
1.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
Ambient Temperature : Ta (  
)
Ambient Temperature : Ta (  
)
23/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(8) EN "H" Voltage vs. Ambient Temperature  
VOUT3=1.8V, fOSC=3.0MHz  
(9) EN" L" Voltage vs. Ambient Temperature  
VOUT3=1.8V, fOSC=3.0MHz  
1.0  
0.9  
0.8  
1.0  
0.9  
0.8  
VIN2=5.0V  
0.7  
VIN2=5.0V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
0.4  
0.3  
VIN2=3.6V  
VIN2=3.6V  
0.2  
0.1  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(10) Soft Start Time vs. Ambient Temperature  
VOUT3=1.8V, fOSC=3.0MHz  
VOUT3=1.8V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
5
4
3
2
1
0
5
4
3
2
1
0
VIN2=3.6V  
VIN2=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
)
100  
Ambient Temperature : Ta (  
)
Ambient Temperature : Ta (  
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
OUT3=1.8V, fOSC=3.0MHz  
V
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
Pch on Resistance  
0
1
2
3
4
5
6
Input Voltage: VIN2 (V)  
24/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(12) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Rise Wave Form  
VOUT3=1.2V, fOSC=1.2MHz  
VOUT3=3.3V, fOSC=3.0MHz  
L=1.5μH (NR3015), CIN2=4.7μF, CL3=10μF  
L=4.7μH (NR4018), CIN2=4.7μF, CL3=10μF  
VIN2=5.0V  
VIN2=5.0V  
IOUT3=1.0mA  
IOUT3=1.0mA  
V
OUT30.5V/div  
V
OUT31.0V/div  
EN30.0V1.0V  
100μs/div  
EN30.0V1.0V  
100μs/div  
(13) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Soft-Start Time vs. Ambient Temperature  
VOUT3=1.2V, fOSC=1.2MHz  
VOUT3=3.3V, fOSC=3.0MHz  
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF  
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
VIN2=5.0V  
IOUT 3=1.0mA  
VIN2=5.0V  
IOUT 3=1.0mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(14) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, CL Discharge Resistance vs. Ambient Temperature  
VOUT3=3.3V, fOSC=3.0MHz  
600  
500  
400  
300  
200  
100  
VIN2=6.0V  
VIN2=4.0V  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
25/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(15) Load Transient Response  
V
OUT3=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control)  
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃  
IN2=3.6V, EN3=VIN2  
V
IOUT3 =1mA 100mA  
IOUT3=1mA 300mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
50μs/div  
50μs/div  
IOUT3 =100mA 1mA  
IOUT3 =300mA 1mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
200μs/div  
200μs/div  
26/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(15) Load Transient Response (Continued)  
VOUT3=1.2V, fOSC=1.2MHz(PWM Control)  
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃  
VIN2=3.6V, EN3=VIN2  
IOUT3=1mA 100mA  
IOUT3=1mA 300mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT 3: 50mV/div  
VOUT3: 50mV/div  
50μs/div  
50μs/div  
IOUT3=100mA 1mA  
IOUT3=300mA 1mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
200μs/div  
200μs/div  
27/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(15) Load Transient Response (Continued)  
V
OUT3=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control)  
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic),Topr=25℃  
IN2=3.6V, EN=VIN2  
V
IOUT3=1mA 100mA  
IOUT3=1mA 300mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
50μs/div  
50μs/div  
IOUT3=100mA 1mA  
IOUT3=300mA 1mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
200μs/div  
200μs/div  
28/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
DCDC Block (Continued)  
(15) Load Transient Response (Continued)  
V
OUT3=1.8V, fOSC=3.0MHz(PWM Control)  
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃  
IN2=3.6V, EN1=VIN2  
V
IOUT3=1mA 100mA  
IOUT3=1mA 300mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
50μs/div  
50μs/div  
IOUT3=100mA 1mA  
IOUT3=300mA 1mA  
1ch: IOUT3  
1ch: IOUT3  
2ch  
2ch  
VOUT3: 50mV/div  
VOUT3: 50mV/div  
200μs/div  
200μs/div  
29/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block  
(1) Output Voltage vs. Output Current  
VOUT=0.8V  
VOUT=0.8V  
VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN1= 6.0V  
= 3.8V  
ꢀꢀꢀ = 1.8V  
= 1.5V  
Topr= 85℃  
= 25℃  
ꢀꢀꢀ =-40℃  
0
50  
100 150 200 250 300 350  
0
50  
100 150 200 250 300 350  
Output Current: IOT(mA)  
U
Output Current: IOUT (mA)  
VOUT=2.85V  
VOUT=2.85V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
VIN1=3.85V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN1 = 6.0V  
= 4.0V  
=3.15V  
Topr= 85℃  
= 25℃  
ꢀꢀꢀ =-40℃  
0
50  
100 150 200 250 300 350  
0
50  
100 150 200 250 300 350  
Output Current: I  
(mA)  
OUT
Output Current: IOT(mA)  
U
VOUT=3.0V  
VOUT=3.0V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN1= 6.0V  
= 4.0V  
ꢀꢀꢀ = 3.3V  
Topr= 85℃  
= 25℃  
ꢀꢀꢀ =-40℃  
0
50  
100 150 200 250 300 350  
Output Current: IOUT (mA)  
0
50  
100 150 200 250 300 350  
Output Current: I (mA)  
OUT  
30/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(1) Output Voltage vs. Output Current (Continued)  
VOUT=5.0V  
VOUT=5.0V  
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VIN1= 6.0V  
= 5.3V  
Topr= 85℃  
= 25℃  
ꢀꢀꢀ =-40℃  
0
50  
100 150 200 250 300 350  
0
50  
100 150 200 250 300 350  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
(2) Output Voltage vs. Input Voltage  
VOUT=0.8V  
VOUT=0.8V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
1.2  
1.1  
1.0  
0.9  
0.8  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
IOUT  
=
0mA  
IOUT  
=
0mA  
0.7  
0.6  
0.5  
= 30mA  
=100mA  
= 30mA  
=100mA  
0.5  
1.0  
1.5  
2.0  
2.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage: VIN1 (V)  
Input Voltage: V (V)  
IN1  
VOUT=2.85V  
VOUT=2.85V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
3.05  
2.85  
2.65  
2.45  
2.25  
2.05  
IOUT  
=
0mA  
IOUT  
=
0mA  
= 30mA  
=100mA  
= 30mA  
=100mA  
2.35  
2.85  
3.35  
3.0  
3.5  
4.0  
In  
4.5  
ta  
5.0  
VIN1(V
)
5.5  
6.0  
Input Voltage: VIN1 (V)  
p
u
t
V
o
l
g
e
:
31/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(2) Output Voltage vs. Input Voltage (Continued)  
VOUT=3.0V  
VOUT=3.0V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
IOUT  
=
0mA  
IOUT  
=
0mA  
= 30mA  
=100mA  
= 30mA  
=100mA  
2.5  
3.0  
ta  
3.5  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
In  
p
u
t
V
o
l
g
e
:VIN1 (V)  
Input Voltage: VIN1 (V)  
VOUT=5.0V  
VOUT=5.0V  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
Ta=25, CIN1=1μF(ceramic), CL=1μF(ceramic)  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
IOUT  
=
0mA  
IOUT  
=
0mA  
= 30mA  
=100mA  
= 30mA  
=100mA  
4.5  
5.0  
Input Voltage: VIN1 (V)  
5.5  
5.5  
6.0  
Input Voltage: VIN1 (V)  
(3) Dropout Voltage vs. Output Current  
VOUT=0.8V  
VOUT=2.85V  
CIN1=1μF(ceramic), CL=1μF(ceramic)  
CIN1=1μF(ceramic), CL=1μF(ceramic)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Topr = 85℃  
ꢀꢀꢀ = 25℃  
ꢀꢀꢀ = -40℃  
Topr = 85℃  
ꢀꢀꢀ = 25℃  
ꢀꢀꢀ = -40℃  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
32/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(3) Dropout Voltage vs. Output Current (Continued)  
VOUT=5.0V  
VOUT=3.0V  
CIN1=1μF(ceramic), CL=1μF(ceramic)  
CIN1=1μF(ceramic), CL=1μF(ceramic)  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Topr=-40℃  
ꢀꢀꢀ =25℃  
ꢀꢀꢀ =85℃  
Topr=-40℃  
ꢀꢀꢀ =25℃  
ꢀꢀꢀ =85℃  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Output Current: IOUT (mA)  
Output Current: IUT(mA)  
(4) Supply Current vs. Input Voltage  
VOUT=0.8V  
VOUT=2.85V  
100  
80  
100  
80  
60  
40  
20  
0
Topr= 85℃  
ꢀꢀꢀ ꢀꢀ = 25℃  
ꢀꢀꢀ =-40℃  
Topr= 85℃  
ꢀꢀꢀ ꢀꢀ = 25℃  
ꢀꢀꢀ =-40℃  
60  
40  
20  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN1 (V)  
Input Voltage: VIN1 (V)  
VOUT=5.0V  
VOUT=3.0V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Topr= 85℃  
ꢀꢀꢀ ꢀꢀ = 25℃  
ꢀꢀꢀ =-40℃  
Topr= 85℃  
ꢀꢀꢀ ꢀꢀ = 25℃  
ꢀꢀꢀ =-40℃  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN1 (V)  
Input Voltage: VIN1 (V)  
33/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(5) Output Voltage vs. Ambient Temperature  
VOUT=0.8V  
VOUT=2.85V  
VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
2.95  
0.84  
0.82  
0.80  
0.78  
0.76  
2.90  
2.85  
2.80  
2.75  
OUT  
I
=
0mA  
OUT  
I
=
0mA  
= 10mA  
= 30mA  
=100mA  
= 10mA  
= 30mA  
=100mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
VOUT=5.0V  
VOUT=3.0V  
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
VIN1=6.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)  
5.20  
3.10  
3.05  
3.00  
2.95  
2.90  
5.10  
5.00  
4.90  
4.80  
OUT  
I
=
0mA  
OUT  
I
=
0mA  
= 10mA  
= 30mA  
=100mA  
= 10mA  
= 30mA  
=100mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(6) Supply Current vs. Ambient Temperature  
VOUT=0.8V  
VOUT=2.85V  
VIN1=3.85V  
VIN1=1.8V  
30  
28  
26  
24  
22  
20  
30  
28  
26  
24  
22  
20  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
34/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(6) Supply Current vs. Ambient Temperature (Continued)  
VOUT=5.0V  
VOUT=3.0V  
VIN1=6.0V  
VIN1=4.0V  
30  
28  
26  
24  
22  
20  
30  
28  
26  
24  
22  
20  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(7) Input Transient Response  
VOUT=0.8V  
VOUT=0.8V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
4
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
4
3
3
Input Voltage  
Input Voltage  
2
2
1
1
0
0
Output Voltage  
Output Voltage  
-1  
-2  
-1  
-2  
Time (200μs/div)  
Time (40μs/div)  
VOUT=0.8V  
VOUT=2.85V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
4
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
6
5
4
3
2
1
0
3
Input Voltage  
Input Voltage  
2
1
0
Ou  
tp  
u
t
V
o
lt  
ag  
e
Output Voltage  
-1  
-2  
Time(4  
0
μ
s
/div)  
Time (200μs/div)  
35/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(7) Input Transient Response (Continued)  
VOUT=2.85V  
VOUT=2.85V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
6
5
4
3
2
1
0
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
6
5
4
3
2
1
0
Input Voltage  
Input Voltage  
Output Voltage  
Output Voltage
Time (40μs/div)  
Time (40μs/div)  
VOUT=3.0V  
VOUT=3.0V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
6
5
4
3
2
1
0
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
6
5
4
3
2
1
0
Inp  
u
t
V
o
lta  
g
e
Input Voltage  
Output Voltage  
Output Voltage  
Time (200μs/div)  
s/div)  
Time (40μ  
VOUT=3.0V  
VOUT=5.0V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
6
5
4
3
2
1
0
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
8
7
6
5
4
3
2
Input Voltage  
InputVoltage
Output Voltage  
Output Voltage  
Time (40μs/div)  
Time(200μs/div)  
36/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(7) Input Transient Response (Continued)  
VOUT=5.0V  
VOUT=5.0V  
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA  
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
8
7
6
5
4
3
2
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
8
7
6
5
4
3
2
Input Voltage  
Input Voltage  
Output Voltage  
Out  
p
u
t
V
o
lta  
g
e
Time (40μs/div)  
Time (40μs/div)  
(8) Load Transient Response  
VOUT=0.8V  
VOUT=0.8V  
VIN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
V
IN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
250  
200  
150  
100  
50  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
250  
200  
150  
100  
50  
Output Voltage  
Output Voltage  
100mA  
Output Current  
Output Current  
50mA  
10mA  
10mA  
0
0
Time (40μs/div)  
Time (40μs/div)  
VOUT=2.85V  
VOUT=2.85V  
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
2.95  
2.85  
2.75  
2.65  
2.55  
2.45  
250  
200  
150  
100  
50  
2.95  
2.85  
2.75  
2.65  
2.55  
2.45  
250  
200  
150  
100  
50  
Output Voltage  
Output Voltage  
100mA  
10mA  
Output Current  
Output Current  
50mA  
10mA  
0
0
Time (40μs/div)  
Time (40μs/div)  
37/43  
XCM520 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(8) Load Transient Response (Continued)  
VOUT=3.0V  
VOUT=3.0V  
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
250  
200  
150  
100  
50  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
250  
200  
150  
100  
50  
Output Voltage  
Output Voltage  
100mA  
10mA  
Output Current  
Output Current  
50mA  
10mA  
0
0
Time (40μs/div)  
Time (40μs/div)  
VOUT=5.0V  
VOUT=5.0V  
VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
250  
200  
150  
100  
50  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
250  
200  
150  
100  
50  
Output Voltage  
Output Voltage  
100mA  
10mA  
Output Current  
Output Current  
50mA  
10mA  
0
0
Time (40μs/div)  
Time (40μs/div)  
(9) Ripple Rejection Rate  
VOUT=2.85V  
VOUT=0.8V  
VIN1=1.8VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)  
VIN1=3.85VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)  
80  
80  
60  
40  
20  
0
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Ripple Frequency: f(kHz)  
Ripple Frequency: f(kHz)  
38/43  
XCM520  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Regulator Block (Continued)  
(9) Ripple Rejection Rate (Continued)  
VOUT=3.0V  
VOUT=5.0V  
VIN1=5.75VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)  
VIN1=4.0VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Ripple Frequency: f(kHz)  
Ripple Frequency: f(kHz)  
(10) Cross Talk  
VOUT13.0V & VOUT22.85V  
VIN1=4.0V, CIN1=CL1=CL2=1μF(ceramic)  
3.1  
500  
400  
300  
200  
100  
0
VR1 Output Voltage (3.0V)  
3.0  
2.9  
2.8  
2.7  
2.6  
VR2 Output Voltage (2.85V)  
100mA  
10mA  
VR1  
Output Current  
Time (40μs/div)  
39/43  
XCM520 Series  
PACKAGING INFORMATION  
USP-12B01  
2.8±0.08  
(0.4) (0.4) (0.4) (0.4) (0.4)  
(0.15) (0.25)  
0.25± 0.2± 0.2± 0.2± 0.2± 0.2±  
0.05 0.05 0.05 0.05 0.05  
0.05  
1
2
3
4
5
6
12 11 10 9  
8
7
1.2±0.1  
1.2±0.1  
UNIT: mm  
0.7±0.05 0.7±0.05  
USP-12B0Reference Pattern Layout  
USP-12B01 Reference Metal Mask Design  
1.35  
0.90  
0.65  
0.250.25  
1.35  
0.90  
0.65  
1.30  
0.95  
0.55  
0.25 0.25  
1.30  
0.95  
0.55  
0.45  
0.45  
0.35  
0.35  
0.20  
0.50  
0.20  
0.15  
0.40  
0.15  
40/43  
XCM520  
Series  
PACKAGING INFORMATION (Continued)  
USP-12B01 Power Dissipation  
Power dissipation data for the USP-12B01 is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as one of reference data taken in the described condition.  
1. Measurement Condition (Reference data)  
Condition:  
Ambient:  
Soldering:  
Board:  
Mount on a board  
Natural convection  
Lead (Pb) free  
Dimensions 40 x 40 mm (1600 mm2 in one side)  
1st Layer: Land and a wiring pattern  
2
3
4
nd Layer: Connecting to approximate 50% of the 1st heat sink  
rd Layer: Connecting to approximate 50% of the 2nd heat sink  
th Layer: Noting  
Material:  
Glass Epoxy (FR-4)  
1.6 mm  
Thickness:  
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)  
Evaluation Board (Unit: mm)  
2. Power Dissipation vs. Operating temperature  
Only 1ch heating, Board Mount (Tj max = 125)  
Ambient Temperature(℃)  
Power Dissipation PdmW)  
Thermal Resistance (/W)  
125.00  
25  
85  
800  
320  
Pd vs. Ta  
1000  
800  
600  
400  
200  
0
25  
45  
65 85  
Ambient Temperature: Ta ()  
105  
125  
Both 2ch heating same time, Board Mount (Tj max = 125)  
Ambient Temperature(℃)  
Power Dissipation PdmW)  
Thermal Resistance (/W)  
25  
85  
600  
240  
166.67  
Pd vs. Ta  
1000  
800  
600  
400  
200  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature: Ta ()  
41/43  
XCM520 Series  
MARKING RULE  
USP-12B01  
represents product series  
MARK  
1
PRODUCT SERIES  
XCM520 Series  
②③ represents combination of IC  
12  
11  
10  
1
2
3
4
5
6
MARK  
PRODUCT SERIES  
A
A
A
A
A
A
A
A
A
B
C
D
E
F
XC6401FF**XC9235A**D  
XC6401FF**XC9235A**C  
XC6401FF**XC9236A**D  
XC6401FF**XC9236A**C  
XC6401FF**XC9235B**D  
XC6401FF**XC9235B**C  
XC6401FF**XC9236B**D  
XC6401FF**XC9236B**C  
9
8
7
USP-12B01  
G
H
represents combination of voltage for each IC (Sequence No.)  
MARK  
PRODUCT SERIES  
XCM520**01**  
XCM520**02**  
XCM520**03**  
XCM520**04**  
1
2
3
4
,represents production lot number  
01090A0Z11・・・9Z、  
A1A9AA・・・Z9ZAZZ repeated  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
42/43  
XCM520  
Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
43/43  

相关型号:

XCM520AE04DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AE05DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AE06DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF01DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF02DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF03DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF04DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF05DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AF06DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AG01DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AG02DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX

XCM520AG03DR-G

600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
TOREX