XD9263D75DER-Q [TOREX]

18V Operation 500mA Synchronous Step-Down DC/DC Converters;
XD9263D75DER-Q
型号: XD9263D75DER-Q
厂家: Torex Semiconductor    Torex Semiconductor
描述:

18V Operation 500mA Synchronous Step-Down DC/DC Converters

文件: 总28页 (文件大小:1357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XD9263/XD9264Series  
ETR05066-001a  
18V Operation 500mA Synchronous Step-Down DC/DC Converters  
AEC-Q100 Grade2  
GENERAL DESCRIPTION  
The XD9263/XD9264 series are synchronous step-down DC/DC converter ICs. The XD9263/64 series have operating voltage  
range of 3V~18V and switching frequency is 2.2 MHz and it can support 500mA as an output current with high-efficiency. Compatible  
with Low ESR capacitors such as ceramic capacitors for the output capacitor.  
0.75V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.0V to 15.0V using  
external resistors.  
XD9263/XD9264 has a fixed internal Soft Start time which is 1.0ms (TYP.), additionally the time can be extended by using an  
external resistor and capacitor.  
UVLO and over current protection and short-circuit protection and thermal shutdown are embedded and they secure a safety  
operation. As an option, timer latch off over current protection (Integral Latch Method) can be selected.  
FEATURES  
APPLICATIONS  
Input Voltage Range  
Output Voltage Range  
FB Voltage  
:
3.0V ~ 18.0V (Absolute Max 20V)  
1.0V ~ 15.0V  
Automotive Body Control ECU  
Automotive Infotainment  
Automotive accessories  
Drive recorder  
:
:
0.75V ± 1.5% (Ta=25)  
2.2MHz  
Oscillation Frequency  
Output Current  
Car-mounted camera  
ETC  
Industrial Equipment  
500mA  
Quiescent Current  
Control Methods  
:
:
13.5μA  
PWM control (XD9263)  
PWM/PFM Auto (XD9264)  
Efficiency 85%@12V5V, 300mA  
Soft-Start External settings  
Power Good (USP-6C Package only)  
Function  
:
:
Protect Function  
Over Current Protection  
Automatic Recovery  
(XD9263D/XD9264D)  
Integral Latch Method  
(XD9263C/XD9264C)  
UVLO  
Thermal Shutdown  
Output Capacitor  
:
:
:
Ceramic Capacitor  
Operating Ambient Temperature  
Package  
-40~ 105℃  
SOT-25 (Without Power Good)  
USP-6C (With Power Good)  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
:
TYPICAL APPLICATION CIRCUIT  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
VOUT  
L
VIN  
Lx  
CIN  
RFB1  
CFB  
EN/SS  
FB  
CL  
RFB2  
RPG  
GND  
PG  
1/28  
XD9263/XD9264 Series  
BLOCK DIAGRAM  
VIN  
Current  
SENSE  
LocalReg  
Chip  
Enable  
EN/SS  
each  
circuit  
Current  
Limit PFM  
(XD9264  
Only)  
Current  
feed  
back  
Current  
Limit  
High  
Side  
Buffer  
Gate  
Under  
Lx  
CLAMP  
Voltage  
Lock Out  
Low  
Side  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
PWM  
PWM/PFM  
ControlLOGIC  
FB  
Comparator  
-
GND  
Ramp  
Wave  
OSC  
PG(USP-6C Package Only)  
+
-
Power-Good  
Comparator  
*Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.  
2/28  
XD9263/XD9264  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
(*1)  
XD9263①②③④⑤⑥-⑦  
XD9264①②③④⑤⑥-⑦  
PWM control  
(*1)  
PWM/PFM Auto  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
Refer to Selection Guide  
C
D
Type  
②③  
FB Voltage  
75  
Output voltage can be adjusted in 1V to 15V  
2.2MHz  
Oscillation Frequency  
D
MR-Q (*1)  
SOT-25 (3,000pcs/Reel)  
⑤⑥-⑦  
Packages (Order Unit)  
ER-Q (*1)  
USP-6C (3,000pcs/Reel)  
(*1) The “-Q” suffix denotes “AEC-Q100” and “Halogen and Antimony free” as well as being fully EU RoHS compliant.  
Selection Guide  
C TYPE  
D TYPE  
FUNCTION  
SOT-25  
USP-6C  
SOT-25  
USP-6C  
Chip Enable  
UVLO  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Thermal Shutdown  
Soft Start  
Power-Good  
Current Limiter  
(Automatic Recovery)  
Current Limiter  
-
-
Yes  
-
Yes  
-
Yes  
Yes  
(Latch Protection (*2)  
)
(*2) The over-current protection latch is an integral latch type.  
3/28  
XD9263/XD9264 Series  
PIN CONFIGURATION  
Lx  
FB  
5
4
1
6
5
4
VIN  
Lx  
2
3
GND  
FB  
EN/SS  
PG  
1
2
3
GND  
VIN  
EN/SS  
USP-6C  
(BOTTOM VIEW)  
SOT-25  
(TOP VIEW)  
* The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal  
masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other  
pins, it should be connected to the GND (No. 2) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-25  
USP-6C  
1
3
-
6
5
4
3
2
1
VIN  
EN/SS  
PG  
Power Input  
Enable Soft-Start  
Power-Good Output  
Output Voltage Sense  
Ground  
4
2
5
FB  
GND  
Lx  
Switching Output  
4/28  
XD9263/XD9264  
Series  
FUNCTION CHART  
PIN NAME  
SIGNAL  
STATUS  
Stand-by  
L
H
EN/SS  
Active  
OPEN  
Undefined State(*1)  
(*1) Please do not leave the EN/SS pin open. Each should have a certain voltage.  
PIN NAME CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO  
PG  
Undefined State  
(VIN < VUVLO1  
)
Stand-by  
L (Low impedance)  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
EN/SS Pin Voltage  
FB Pin Voltage  
PG Pin Voltage (*1)  
PG Pin Current (*1)  
Lx Pin Voltage  
SYMBOL  
VIN  
RATINGS  
UNITS  
-0.3 ~ 20  
-0.3 ~ 20  
V
V
VEN/SS  
VFB  
-0.3 ~ 6.2  
V
VPG  
-0.3 ~ 6.2  
V
IPG  
8
mA  
V
VLx  
-0.3 ~ VIN + 0.3 or 20 (*2)  
1800  
Lx Pin Current  
ILx  
mA  
SOT-25  
USP-6C  
760 (JESD51-7 Board) (*3)  
1250 (JESD51-7 Board) (*3)  
-40 ~ 105  
Power Dissipation  
(Ta=25)  
Pd  
mW  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-55 ~ 125  
* All voltages are described based on the GND pin.  
(*1) For the USP-6C Package only.  
(*2) The maximum value should be either VIN+0.3V or 20V in the lowest.  
(*3) The power dissipation figure shown is PCB mounted and is for reference only.  
The mounting condition is please refer to PACKAGING INFORMATION.  
5/28  
XD9263/XD9264 Series  
ELECTRICAL CHARACTERISTICS  
XD9263/XD9264 Series  
Ta=25℃  
PARAMETER  
SYMBOL  
VFB  
CONDITIONS  
VFB=0.731V → 0.769V  
MIN.  
TYP.  
MAX. UNIT CIRCUIT  
0.739 0.750 0.761  
0.731 0.750 0.769  
FB Voltage  
VFB Voltage when Lx pin voltage  
changes from "H" level to "L" level  
V
-40℃≦Ta  
-40℃≦Ta  
105  
105  
Output Voltage Setting  
Range(*1)  
VOUTSET  
VIN  
-
-
1.0  
3.0  
-
-
15.0  
18.0  
V
V
-
-
Operating Voltage  
Range  
-40℃≦Ta  
105  
VIN=2.87V→2.53V, VFB=0.675V,  
VIN Voltage when Lx pin voltage  
changes from "H" level to "L" level  
VIN=2.63V→2.97V, VFB=0.675V  
VIN Voltage when Lx pin voltage  
changes from "L" level to "H" level  
2.60  
2.53  
2.70  
2.63  
2.70  
2.80  
2.87  
2.90  
2.97  
UVLO Detect Voltage  
UVLO Release Voltage  
VUVLO1  
V
V
-40℃≦Ta  
-40℃≦Ta  
105  
105  
-
2.80  
-
VUVLO2  
-
-
-
-
-
-
145  
238  
257  
XD9263  
VFB=0.825V  
-40℃≦Ta  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
105  
-
13.5  
-
Quiescent Current  
Iq  
μA  
18.5  
20.0  
2.50  
2.80  
XD9264  
1.65  
-
Stand-by Current  
ISTB  
VEN/SS=0V  
μA  
Connected to external  
components  
2013  
2200  
2387  
Oscillation Frequency  
fOSC  
kHz  
-40℃≦Ta  
105  
1813  
-
-
-
2531  
0
IOUT=100mA  
Minimum Duty Cycle  
Maximum Duty Cycle  
DMIN  
VFB=0.825V  
VFB=0.675V  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
%
%
DMAX  
100  
-
-
1.10  
1.14  
-
USP-6C  
SOT-25  
USP-6C  
SOT-25  
-
-
-
-
0.95  
Lx SW "H" On  
Resistance  
RLxH  
VFB=0.675V, ILX=200mA  
Ω
0.99  
0.69(*2)  
0.73(*2)  
Lx SW "L" On  
Resistance  
RLxL  
IPFM  
ILIMH  
tLAT  
VFB=0.825V, ILX=200mA  
XD9264 only  
Ω
-
PFM Switch Current  
-
370  
1100  
1.0  
-
mA  
mA  
ms  
ms  
Connected to external components, IOUT=1mA  
Highside Current  
Limit(*3)  
VFB=0.675V  
920  
0.5  
0.5  
-
Type C only  
Latch Time  
1.7  
1.7  
Connected to external components, VFB=0V  
VEN/SS=0V→12V, VFB=0.675V  
Time until Lx pin oscillates  
VEN/SS=0V→12V, VFB=0.675V  
RSS=430kΩ, CSS=0.47μF  
Internal Soft-Start Time  
tSS1  
1.0  
External Soft-Start Time  
tSS2  
17  
26  
35  
ms  
Time until Lx pin oscillates  
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V.  
The ambient temperature range (-40℃≦Ta105) is design Value.  
(*1) Please use within the range of VOUT/VIN0.17.  
(*2) Design reference value. This parameter is provided only for reference.  
(*3) Current limit denotes the level of detection at peak of coil current.  
6/28  
XD9263/XD9264  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XD9263/XD9264 Series  
Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
VFB=0.720V→0.630V,  
MIN.  
TYP.  
MAX.  
UNIT CIRCUIT  
0.638 0.675 0.712  
V
RPG:100kΩ pull-up to 5V  
VFB Voltage when PG pin voltage  
changes from "H" level to "L" level  
VFB=0.6V, IPG=1mA  
Connected to external components  
VOUTSET=5V, IOUT=300mA  
VIN=VEN/SS=18V,  
PG Detect Voltage(*4)  
VPGDET  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
0.630  
-
-
0.720  
0.3  
-
PG Output Voltage(*4)  
Efficiency  
VPG  
-
-
V
EFFI (*5)  
85(*2)  
%
FB "H" Current  
FB "L" Current  
IFBH  
IFBL  
IEN/SSH  
IEN/SSL  
-40℃≦Ta  
-40℃≦Ta  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
105  
105  
-0.1  
-0.1  
-
0.0  
0.0  
0.1  
0.0  
0.1  
0.1  
0.3  
0.1  
μA  
μA  
μA  
μA  
VFB=3.0V  
VIN=VEN/SS=18V,  
VFB=0V  
VIN=VEN/SS=18V,  
EN/SS "H" Current  
EN/SS "L" Current  
VFB=0.825V  
VIN=18V, VEN/SS=0V,  
VFB=0.825V  
-0.1  
VEN/SS=0.3V→2.5V, VFB=0.71V  
EN/SS "H" Voltage  
EN/SS "L" Voltage  
VEN/SSH  
VEN/SS Voltage when Lx pin voltage -40℃≦Ta  
changes from "L" level to "H" level  
105  
105  
2.5  
-
-
18.0  
0.3  
V
V
VEN/SS=2.5V→0.3V, VFB=0.71V  
VEN/SSL  
VEN/SS Voltage when Lx pin voltage -40℃≦Ta  
changes from "H" level to "L" level  
GND  
Thermal Shutdown  
Temperature  
TTSD  
THYS  
Junction Temperature  
Junction Temperature  
-
-
150  
25  
-
-
-
-
Hysteresis Width  
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V.  
The ambient temperature range (-40℃≦Ta105) is design Value.  
(*1) Please use within the range of VOUT/VIN0.17/  
(*2) Design reference value. This parameter is provided only for reference.  
(*3) Current limit denotes the level of detection at peak of coil current.  
(*4) For the USP-6C Package only.  
(*5) EFFI = {(output voltage) x (output current)} / {(input voltage) x (input current)} x 100  
7/28  
XD9263/XD9264 Series  
TEST CIRCUITS  
CIRCUIT①  
V
IN  
A
Probe  
EN/SS  
2.2μ H  
V
2.2μ F  
Lx  
V
47pF  
PG  
680kΩ  
120kΩ  
A
10μ F 10μ F  
FB  
V
GND  
CIRCUIT②  
Probe  
V
IN  
V
Probe  
EN/SS  
PG  
2.2μ  
F
Lx  
100kΩ  
V
FB  
V
A
A
V
GND  
1.2kΩ  
V
Probe  
CIRCUIT③  
Probe  
V
IN  
430kΩ  
Probe  
EN/SS  
Lx  
2.2μ F  
V
V
PG  
0.47μ F  
FB  
V
GND  
1.2kΩ  
V
* PG Pin is USP-6C Package only.  
8/28  
XD9263/XD9264  
Series  
TEST CIRCUITS (Continued)  
CIRCUIT④  
V
IN  
A
EN/SS  
PG  
A
Lx  
V
V
FB  
A
GND  
V
CIRCUIT⑤  
V
IN  
A
EN/SS  
PG  
Lx  
V
FB  
V
GND  
CIRCUIT⑥  
V
IN  
Probe  
EN/SS  
2.2μ  
H
V
2.2μ  
F
Lx  
V
47pF  
PG  
680kΩ  
120kΩ  
10μ  
F
10μ F  
FB  
V
GND  
* PG Pin is USP-6C Package only.  
9/28  
XD9263/XD9264 Series  
TYPICAL APPLICATION CIRCUIT / PARTS SELECTION METHOD  
L
VOUT  
VIN  
Lx  
CIN  
RFB1  
CFB  
EN/SS  
FB  
CL  
RFB2  
RPG  
GND  
PG  
Typical Examples】  
MANUFACTURER  
PRODUCT NUMBER  
CLF6045NIT-2R2N-D  
VALUE  
2.2μH  
L
TDK  
TDK  
(*1)  
CIN  
CGA4J3X7R1E225K125AB  
GRT21BR71A106KE13  
CGA5L1X7R1C106K160AC  
GRT32DC81E106KE01  
2.2μF/25V  
Murata  
TDK  
10μF/10V 2parallel  
10μF/16V 2parallel  
10μF/25V 2parallel  
(*2)  
CL  
Murata  
Select parts considering the DC bias characteristics and rated voltage of ceramic capacitors.  
(*1) For CIN, use a capacitor with the same or higher effective capacity value as the recommended components.  
(*2) For CL, use a capacitor with the same or higher effective capacity value as the recommended components.  
If a capacitor with a low effective capacity value is used, the output voltage may become unstable.  
However, if large capacity capacitors, such as electrolytic capacitors, are connected in parallel,  
the inrush current during startup could increase or the output could become unstable.  
10/28  
XD9263/XD9264  
Series  
TYPICAL APPLICATION CIRCUIT / PARTS SELECTION METHOD  
<Output voltage setting Value VOUTSET Setting >  
The output voltage can be set by adding an external dividing resistor.  
The output voltage is determined by the equation below based on the values of RFB1 and RFB2  
.
VOUT=VFB×(RFB1+RFB2)/RFB2  
With RFB1+RFB21MΩ  
<CFB setting>  
Adjust the value of the phase compensation speed-up capacitor CFB using the equation below.  
1
CFB  
2fzfbRFB1  
* A target value for fzfb of about 5kHz is optimum.  
Output voltage Setting Example】  
To set output voltage to 5V.  
When RFB1=680kΩ, RFB2=120kΩ, VOUTSET=0.75V×(680kΩ+120kΩ) / 120kΩ=5.0V,  
and fzfb is set to a target of 5kHz using the above equation,  
CFB=1/(2×π×5kHz×680kΩ)=46.8pF.  
* The setting range for the output voltage is 1.0V to 15.0V.  
The condition VOUT/VIN 0.17 must be satisfied.  
Setting Example】  
CFB[pF]  
VOUTSET  
RFB1[kΩ]  
RFB2[kΩ]  
1.2  
3.3  
5.0  
12  
91  
150  
150  
120  
24  
360  
62  
510  
680  
360  
47  
91  
11/28  
XD9263/XD9264 Series  
OPERATIONAL EXPLANATION  
The XD9263/XD9264 series consist internally of a reference voltage supply with Soft Start function, a ramp wave circuit, an error  
amp, a PWM comparator, a High side driver FET, a Low side driver FET, a High side buffer circuit, a Low side buffer circuit, a  
current sense circuit, a phase compensation (Current feedback) circuit, a current limiting circuit, an under voltage lockout (UVLO)  
circuit, an internal power supply (Local Reg) circuit, a gate clamp (CLAMP) circuit and other elements.  
The control method is the current mode control method for handling low ESR ceramic capacitors.  
VIN  
Current  
SENSE  
LocalReg  
Chip  
Enable  
EN/SS  
each  
circuit  
Current  
Limit PFM  
(XD9264  
Only)  
Current  
feed  
back  
Current  
Limit  
High  
Side  
Buffer  
Gate  
CLAMP  
Under  
Voltage  
Lx  
Low  
Side  
Lock Out  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
PWM  
PWM/PFM  
ControlLOGIC  
FB  
Comparator  
-
GND  
Ramp  
Wave  
OSC  
PG(USP-6C Package Only)  
+
-
Power-Good  
Comparator  
*Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
12/28  
XD9263/XD9264  
Series  
OPERATIONAL EXPLANATION(Continued)  
< Normal Operation >  
The standard voltage Vref and FB pin voltage are compared using an error amplifier and then the control signal to which phase  
compensation has been added to the error amplifier output is input to the PWM comparator. The PWM comparator compares the  
above control signal and lamp wave to control the duty width during PWM control. Continuously conducting these controls  
stabilizes the output voltage.  
In addition, the current detecting circuit monitors the driver FET current for each switching and modulates the error amplifier  
output signal into a multiple feedback signal (current feedback circuit). This achieves stable feedback control even when low ESR  
capacitors, such as ceramic capacitors, are used to stabilize the output voltage.  
XD9263 Series  
The XD9263 Series (PWM control) performs switching at a set switching frequency fOSC regardless of the output current. At light  
loads the on time is short and the circuit operates in discontinuous mode, and as the output current increases, the on time becomes  
longer and the circuit operates in continuous mode.  
fOSC  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XD9263 Series: Example of light load operation  
XD9263 Series: Example of heavy load operation  
XD9264 Series  
The XD9264 Series (PWM/PFM automatic switching control) lowers the switching frequency during light loads by turning on the  
High side driver FET when the coil current reaches the PFM current (IPFM). This operation reduces the loss during light loads and  
achieves high efficiency from light to heavy loads. As the output current increases, the switching frequency increases proportional  
to the output current, and when the switching frequency increases fOSC, the circuit switches from PFM control to PWM control and  
the switching frequency becomes fixed.  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IPFM  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XD9264 Series: Example of light load operation  
< 100% Duty Cycle Mode >  
XD9264 Series: Example of heavy load operation  
When the dropout voltage is low or there is a transient response, the circuit might change to the 100% Duty cycle mode where  
the High side driver FET is continuously on.  
The 100% Duty cycle mode operation makes it possible to maintain the output current even when the dropout voltage is low  
such as when the input voltage declines due to cranking, etc.  
13/28  
XD9263/XD9264 Series  
OPERATIONAL EXPLANATION(Continued)  
< CE Function >  
When an “H” voltage (VEN/SSH) is input to the EN/SS pin, normal operation is performed after the output voltage is started up by  
the Soft Start function, normal operation is performed. When the “L” voltage (VEN/SSL) is input to the EN/SS pin, the circuit enters  
the standby state, the supply current is suppressed to the standby current ISTB (TYP. 1.65μA), and the High side driver FET and  
Low side driver FET are turned off.  
< Soft Start Function >  
This function gradually starts up the output voltage to suppress the inrush current.  
The Soft Start time is the time until the output voltage from VEN/SSH reaches 90% of the output voltage set value, and when the  
output voltage increases further, the Soft Start function is cancelled to switch to normal operation.  
Internal Soft Start Time  
The internal Soft Start time (tSS1) is configured so that after the “H” voltage (VEN/SSH) is input to the EN/SS pin, the standard  
voltage connected to the error amplifier increases linearly during the Soft Start period. This causes the output voltage to increase  
proportionally to the standard voltage increase. This operation suppresses the inrush current and smoothly increases the output  
voltage.  
tss1  
V1  
EN/SS  
V1  
90% of setting voltage  
VOUT  
< Overview of internal Soft Start >  
< Internal Soft Start EN/SS circuit >  
External Setting Soft Start Time  
The external setting Soft Start time (tSS2) can adjust the increase speed of the standard voltage in the IC by adjusting the EN/SS  
pin voltage inclination during startup using externally connected component RSS and CSS. This makes it possible to externally  
adjust the Soft Start time.  
Soft Start time (tSS2) is approximated by the equation below according to values of V1, RSS, and CSS.  
When tss2 is shorter than tss1, the output voltage rises at the internal Soft Start time.  
tSS2=CSS×RSS× ln (V1 / (V1-1.45V))  
Setting Example】  
CSS = 0.47μF, RSS = 430kΩ, V1 = 12V  
tSS2 = 0.47μF x 430kΩ x (ln (12V/(12V-1.45V)) = 26ms  
tss2  
V1  
RSS  
EN/SS  
CSS  
V1  
1.45V  
EN/SS  
VOUT  
90% of setting voltage  
< External Soft Start EN/SS circuit >  
< Overview of external Soft Start >  
14/28  
XD9263/XD9264  
Series  
OPERATIONAL EXPLANATION (Continued)  
< Power Good >  
The output state can be monitored using the power good function. The PG pin is an Nch open drain output, therefore a pull-up  
resistor (approx. 100kΩ) must be connected to the PG pin.  
The pull-up voltage should be 5.5V or less. When not using the power good function, connect the PG terminal to GND or leave  
it open.  
CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
Undefined State  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO (VIN < VUVLOD  
Stand-by  
)
L (Low impedance)  
< UVLO Function >  
When the VIN pin voltage falls below VUVLOD (TYP. 2.7V), the high side driver FET and low side driver FET are forcibly turned off  
to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above VUVLOR (TYP.  
2.8V), the UVLO function is released, the Soft Start function activates, and output start operation begins. Stopping by UVLO is  
not shutdown; only pulse output is stopped and the internal circuits continue to operate.  
< Thermal Shutdown Function >  
Athermal shutdown (TSD) function is built in for protection from overheating. When the junction temperature reaches the thermal  
shutdown detection temperature TTSD, the High side driver FET and Low side driver FET are compulsorily turned off.  
If the driver FET continues in the off state, the junction temperature declines, and when the junction temperature falls to the  
thermal shutdown cancel temperature, the thermal shutdown function is cancelled and the Soft Start function operates to start up  
the output voltage.  
15/28  
XD9263/XD9264 Series  
OPERATIONAL EXPLANATION (Continued)  
<Current limiting>  
The current limiting circuit of the XD9263/XD9264 series monitor the current that flows through the High side driver transistor  
and Low side driver transistor, and when over-current is detected, the current limiting function activates.  
High side driver Tr. current limiting  
The current in the High side driver Tr. is detected to equivalently monitor the peak value of the coil current. The High side driver  
Tr. current limiting function forcibly turns off the High side driver Tr. when the peak value of the coil current reaches the High side  
driver current limit value ILIMH  
.
High side driver Tr. current limit value ILIMH=1.1A (TYP.)  
Low side driver Tr. current limiting  
The current in the Low side driver Tr. is detected to equivalently monitor the bottom value of the coil current. The Low side  
driver Tr. current limiting function operates when the High side driver Tr. current limiting value reaches ILIMH. The Low side driver  
Tr. current limiting function prohibits the High side driver Tr. from turning on in an over current state where the bottom value of  
the coil current is higher than the Low side driver Tr. current limit value ILIML  
.
Low side driver Tr. current limit value ILIML=0.9A (TYP.)  
When the output current increases and reaches the current limit value, the current foldback circuit operates and lowers the  
output voltage and FB voltage. The ILIMH and ILIML decline accompanying the FB voltage decrease to restrict the output current.  
When the overcurrent state is removed, the foldback circuit operation increases the ILIMH and ILIML together with output voltage  
to return the output to the output voltage set value.  
Over current latch (Type C)  
Type C turns off the High side and Low side driver Tr. when state or continues for tLAT (TYP. 1.0ms). The LX pin is latch  
stopped at the GND level (0V).  
The latch stopped state only stops the pulse output from the Lx pin; the internal circuitry of the IC continues to operate. To restart  
after latch stopping, L level and then H level must be input into the EN/SS pin, or VIN pin re-input must be performed (after lowering  
the voltage below the UVLO detection voltage) to resume operation by Soft-Start.  
The over current latch function may occasionally be released from the current limit detection state by the effects of ambient noise,  
and it may also happen that the latch time becomes longer or latching does not take place due to board conditions. For this reason,  
place the input capacitor as close as possible to the IC.  
Type D is an automatic recovery type that performs the operation of or until the over current state is released.  
t
LAT (TYP. 1ms)  
Latch Protection (Type C)  
ILIMH (TYP. 1.1A)  
ILIML (TYP. 0.9A)  
ILX  
VLX  
VOUT  
VEN/SS  
Current limiting timing chart  
16/28  
XD9263/XD9264  
Series  
NOTES ON USE  
1) In the case of a temporary and transient voltage drop or voltage rise.  
If the absolute maximum ratings are exceeded, the IC may be deteriorate or destroyed.  
If a voltage exceeding the absolute maximum voltage is applied to the IC due to chattering caused by a mechanical switch  
or an external surge voltage, please use a protection element such as a TVS and a protection circuit as a countermeasure.  
Please see the countermeasures from (a) to (d) shown below.  
(a) When voltage exceeding the absolute maximum ratings comes into the VIN pin due to the transient change on the  
power line, there is a possibility that the IC breaks down in the end.  
To prevent such a failure, please add a TVS between VIN and GND as a countermeasure.  
(b) When the input voltage decreases below the output voltage, there is a possibility that an overcurrent will flow in the IC’s  
Internal parasitic diode and exceed the absolute maximum rating of the Lx pin.  
If the current is pulled into the input side by the low impedance between VIN and GND, then countermeasures, such as  
adding an SBD between VOUT and VIN, should be taken.  
(c) When a negative voltage is applied to the input voltage by a reverse connection or chattering, an overcurrent could flow  
in the IC’s parasitic diode and damage the IC. Take countermeasures, such as adding a reverse touching protection diode.  
(d) When a sudden surge of electrical current travels along the VOUT pin and GND due to a short-circuit, electrical resonance  
of a circuit involving parasitic inductor of cable related to short circuit and an output capacitor (CL) and impedance such as  
VOUT line generates a negative voltage exceeding the breakdown voltage and may damage the device.  
Take countermeasures, such as connecting a schottky diode between the VOUT and GND.  
(b)SBD  
(c)Reverse-Touching  
Protection Diode  
L
VIN  
Lx  
RFB1  
CFB  
CIN  
CIN1  
(a)TVS  
EN/SS  
FB  
(d)SBD  
CL2  
RFB2  
CL1  
RPG  
GND  
PG  
17/28  
XD9263/XD9264 Series  
NOTES ON USE(Continued)  
2) Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.  
3)  
The DC/DC converter characteristics depend greatly on the externally connected components as well as on the  
characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully  
considering which components to select.  
Be especially careful of the capacitor characteristics and use X7R or X5R (EIA standards) ceramic capacitors.  
The capacitance decrease caused by the bias voltage may become large depending on the external size of the capacitor.  
4)  
The current limit value is the coil current peak value when switching is not conducted.  
The coil current peak value when the actual current limit function begins to operate may exceed the current limit of the  
electrical characteristics due to the effect of the propagation delay inside the circuit.  
5)  
6)  
7)  
When the On time is less than the Minimum On Time (tONMIN) and the dropout voltage is large or the load is low, the PWM  
control operates intermittently and the VOUT ripple voltage may become large or the output voltage may become unstable.  
The VOUT ripple voltage could be increased when switching from discontinuous conduction mode to continuous conduction  
mode and when switching to 100% Duty cycle.  
The PWM/PFM auto series may cause superimposed VOUT ripple voltage by continuous pulses if used in high temperature  
and no load conditions. It is necessary to set an idle current of higher than 100μA from VOUT if used at no load.  
It can have the same effect as when RFB2 is lower than 7.5kΩ. Please refer to the  
< Output Voltage Setting Value VOUTSET Setting > section under TYPICAL APPLICATION CIRCUIT.  
8)  
9)  
If the voltage at the EN/SS Pin does not start from 0V but it is at the midpoint potential when the power is switched on, the  
Soft Start function may not work properly and it may cause larger inrush current and bigger VOUT ripple voltages.  
The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the  
latch time may lengthen or latch operation may not take place. Please evaluate IC well on customer’s PCB.  
10) Torex places an importance on improving our products and their reliability. We request that users incorporate fail safe  
designs and post aging protection treatment when using Torex products in their systems.  
18/28  
XD9263/XD9264  
Series  
NOTES ON USE(Continued)  
11) Instructions of pattern layouts.  
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high,  
please place the input capacitor(CIN) and the output capacitor (CL) as close to the IC as possible.  
(1)  
In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN1) be connected as close as  
possible to the VIN and GND pins.  
(b)SBD  
(c)Reverse-Touching  
Protection Diode  
L
VIN  
Lx  
RFB1  
CFB  
(1)CIN1  
CIN  
(a)TVS  
EN/SS  
FB  
(d)SBD  
CL2  
RFB2  
CL1  
RPG  
GND  
PG  
(2)  
Please mount each external component as close to the IC as possible.  
Please place the external parts on the same side of the PCB as the IC, not on the reverse side of the PCB and  
elsewhere.  
(3)  
(4)  
(5)  
Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
This product has a built in driver FET, which causes heat generation from the on resistance, so take measures to  
dissipate the heat when necessary.  
19/28  
XD9263/XD9264 Series  
NOTE ON USE (Continued)  
<Reference Pattern Layout>  
USP-6C  
Layer 1  
Layer 2  
Layer 3  
Layer 4  
SOT-25  
Layer 1  
Layer 2  
Layer 3  
Layer 4  
20/28  
XD9263/XD9264  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output current  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
L=2.2μ H(CLF6045NIT-2R2), CIN=2.2μ F(GRT31CC81H225KE01),  
CL=10μ F×2 (GRT32DC81E106KE01)  
L=2.2μH(CLF6045NIT-2R2), CIN=2.2μF(GRT31CC81H225KE01),  
CL=10μF×2 (GRT32DC81E106KE01)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XD9263x75D  
XD9264x75D  
XD9263x75D  
XD9264x75D  
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(2) Output Voltage vs. Output Current  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
L=2.2μ H(CLF6045NIT-2R2), CIN=2.2μ F(GRT31CC81H225KE01),  
CL=10μ F×2 (GRT32DC81E106KE01)  
L=2.2μ H(CLF6045NIT-2R2), CIN=2.2μ F(GRT31CC81H225KE01),  
CL=10μ F×2 (GRT32DC81E106KE01)  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
4.70  
XD9263x75D  
XD9264x75D  
XD9263x75D  
XD9264x75D  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current :IOUT[mA]  
(3) Ripple Voltage vs. Output Current  
XD9263x75D/XD9264x75D  
Output Current :IOUT[mA]  
(4) FB Voltage vs. Ambient Temperature  
(VIN=12V, VOUT=5V)  
XD9263/XD9264  
VIN=12V  
0.760  
L=2.2μ H(CLF6045NIT-2R2), CIN=2.2μ F(GRT31CC81H225KE01),  
CL=10μ F×2 (GRT32DC81E106KE01)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XD9263x75D  
XD9264x75D  
0.755  
0.750  
0.745  
0.740  
-50  
-25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
100  
Ambient Temperature :Ta[℃]  
Output Current :IOUT[mA]  
21/28  
XD9263/XD9264 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(5) UVLO Voltage vs. Ambient Temperature  
(6) Oscillation Frequency vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
VIN=12V  
3.0  
2650  
2500  
2350  
2200  
2050  
1900  
1750  
2.9  
VUVLO2 (Release Voltage)  
2.8  
2.7  
VUVLO1 (Detect Voltage)  
2.6  
2.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(7) Stand-by Current vs. Ambient Temperature  
(8) Lx SW ON Resistance vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
VIN=12V  
VIN=12V  
2.0  
1.5  
1.0  
0.5  
0.0  
4
3
2
1
0
RLXH  
RLXL  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(9) Quiescent Current vs. Ambient Temperature  
(10) Internal Soft-Start Time vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
VIN=12V  
200  
VIN=12V  
1.6  
XD9263x75D  
XD9264x75D  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
150  
100  
50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
22/28  
XD9263/XD9264  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(11) External Soft-Start Time vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
(12) PFM Switch Current vs. Ambient Temperature  
XD9264x75D  
(VIN=12V, VOUT=5V)  
VIN=12V, RSS=430kΩ, CSS=0.47μF  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
35  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
500  
30  
25  
20  
15  
450  
400  
350  
300  
250  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(13) PG Detect Voltage vs. Ambient Temperature  
(14) PG Output Voltage vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
XD9263x75D/XD9264x75D  
VIN=12V  
VIN=12V, IPG=1mA  
0.75  
0.4  
0.3  
0.2  
0.1  
0.0  
0.70  
0.65  
0.60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(15) EN/SS Voltage vs. Ambient Temperature  
XD9263x75D/XD9264x75D  
VIN=12V  
2.5  
EN/SS "H"  
EN/SS "L"  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[]  
23/28  
XD9263/XD9264 Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(16) V -VOUT Operation Area  
IN  
XD9263/XD9264  
20  
18  
16  
14  
Operation  
12  
10  
8
Area  
6
4
2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
Output Voltage:VOUT[V]  
(17) Output Current Operation Area  
XD9263/XD9264 (VOUT=3.3V)  
XD9263/XD9264 (VOUT=5V)  
θja=80/W  
VIN=12V  
VIN=12V  
θja=80/W  
θja=131/W  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
θja=131/W  
Operation  
Area  
Operation  
Area  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
24/28  
XD9263/XD9264  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS(Continued)  
(18) Load Transient Response  
XD9263x75D  
XD9264x75D  
VIN=12V, VOUT=5.0V, IOUT=1mA300mA  
VIN=12V, VOUT=5.0V, IOUT=1mA300mA  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
Tr=10us  
Tr=10us  
200us/div  
200us/div  
Tf=10us  
IOUT=1mA300mA  
IOUT=1mA300mA  
Tf=10us  
VOUT: 100mV/div  
VOUT: 100mV/div  
(19) Input Transient Response  
XD9263x75D  
XD9264x75D  
VIN=12V18V, VOUT=5V, IOUT=300mA  
VIN=12V18V, VOUT=5V, IOUT=300mA  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
Tr=10us  
Tr=10us  
100us/div  
100us/div  
Tf=10us  
VIN=12V18V  
VOUT: 100mV/div  
VN=12V18V  
Tf=10us  
VOUT: 100mV/div  
(20) EN/SS Rising Response  
XD9263x75D  
XD9264x75D  
VIN=12V, VEN/SS=0V12V, VOUT=5V, IOUT=300mA  
VIN=12V, VEN/SS=0V12V, VOUT=5V, IOUT=300mA  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
L=2.2μH(CLF6045NIT-2R2N-D), CIN=2.2μF(CGA4J3X7R1E225K125AB),  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
200μs/div  
200μs/div  
VEN/SS=0V→12V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
25/28  
XD9263/XD9264 Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages/  
PACKAGE  
SOT-25  
OUTLIN / LAND PATTERN  
SOT-25 PKG  
THERMAL CHARACTERISTICS  
SOT-25 Power Dissipation  
USP-6C Power Dissipation  
JESD51-7 Board  
JESD51-7 Board  
USP-6C  
USP-6C PKG  
26/28  
XD9263/XD9264  
Series  
MARKING RULE  
SOT-25 / USP-6C  
(*) SOT-25 has a dot mark, which is printed under MARK (refer to drawings below).  
SOT-25(Under dot)
USP-6C  
Enlarge  
5
4
1
2
3
6
5
4
1
2
3
①②③represents products series, products type, Oscillation Frequency  
MARK  
OSCILLATION  
FREQUENCY  
SERIES  
TYPE  
PRODUCT SERIES  
L
4
1
XD9263C75D**-Q  
XD9263D75D**-Q  
XD9264C75D**-Q  
XD9264D75D**-Q  
XD9263  
XD9263  
XD9264  
XD9264  
C
D
C
D
D
D
D
D
L
4
2
L
4
3
L
4
4
,represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
27/28  
XD9263/XD9264 Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions, excluding when specified for in-vehicle use or other uses.  
Do not use the product for in-vehicle use or other uses unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
28/28  

相关型号:

XD9263D75DMR-Q

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XD9264

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XD9264C75DER-Q

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XD9264C75DMR-Q

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XD9264D75DER-Q

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XD9264D75DMR-Q

18V Operation 500mA Synchronous Step-Down DC/DC Converters
TOREX

XDAC34SH84IZAY

Quad-Channel, 16-Bit, 1.5 GSPS Digital-to-Analog Converter (DAC)
TI

XDASM

CROSS DISASSEMBLER
ETC

XDC-14527-103

Resolver-to-Digital Converter
ETC

XDC-14527-104

Resolver-to-Digital Converter
ETC

XDC-14527-105

Resolver-to-Digital Converter
ETC

XDC-14527-113

Resolver-to-Digital Converter
ETC