SSM6P54TU [TOSHIBA]

High-Speed Switching Applications; 高速开关应用
SSM6P54TU
型号: SSM6P54TU
厂家: TOSHIBA    TOSHIBA
描述:

High-Speed Switching Applications
高速开关应用

开关
文件: 总6页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SSM6P54TU  
TOSHIBA Field Effect Transistor Silicon P Channel MOS Type  
SSM6P54TU  
High-Speed Switching Applications  
Unit : mm  
Power Management Switch Applications  
2.1±0.1  
1.7±0.1  
1.5 V drive  
Suitable for high-density mounting due to compact package  
Low on-resistance : R = 228 m(max) (@ V  
= -2.5 V)  
= -1.8 V)  
= -1.5 V)  
on  
GS  
: R = 350 m(max) (@ V  
on  
GS  
1
2
6
5
: R = 555 m(max) (@ V  
on  
GS  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Drain-Source voltage  
Symbol  
Rating  
-20  
Unit  
V
4
3
V
DS  
Gate-Source voltage  
V
± 8  
V
GSS  
DC  
I
-1.2  
D
Drain current  
A
Pulse  
I
-2.4  
DP  
Drain power dissipation  
Channel temperature  
P (Note 1)  
500  
mW  
°C  
D
1.Sorce1  
2.Gate1  
3.Drain2  
4.Source 2  
5.Gate2  
6.Drain1  
T
ch  
150  
Storage temperature range  
T
stg  
55 ~ 150  
°C  
Note: Using continuously under heavy loads (e.g. the application of  
high temperature/current/voltage and the significant change in  
temperature, etc.) may cause this product to decrease in the  
reliability significantly even if the operating conditions (i.e.  
operating temperature/current/voltage, etc.) are within the  
absolute maximum ratings.  
UF6  
JEDEC  
JEITA  
Please design the appropriate reliability upon reviewing the  
Toshiba Semiconductor Reliability Handbook (“Handling  
Precautions”/“Derating Concept and Methods”) and individual  
reliability data (i.e. reliability test report and estimated failure  
rate, etc).  
TOSHIBA  
2-2T1B  
Weight: 7.0 mg (typ.)  
Note 1: Mounted on an FR4 board.  
2
(25.4 mm × 25.4 mm × 1.6 t, Cu Pad: 645 mm )  
Electrical Characteristics (Ta = 25°C)  
Characteristics  
Symbol  
Test Condition  
Min  
20  
12  
Typ.  
Max  
Unit  
V
V
V
I
I
= −1 mA, V  
= −1 mA, V  
= 0  
(BR) DSS  
(BR) DSX  
D
D
GS  
GS  
Drain-Source breakdown voltage  
= +8 V  
Drain cut-off current  
I
V
V
V
V
= 20 V, V  
= 0  
10  
± 1  
1.0  
μA  
μA  
V
DSS  
DS  
GS  
DS  
DS  
GS  
DS  
Gate leakage current  
Gate threshold voltage  
Forward transfer admittance  
I
= ± 8 V, V  
= 0  
GSS  
V
= −3 V, I = −1 mA  
0.3  
1.7  
th  
D
|Y |  
fs  
= -3 V, I = -0.6 A  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
3.4  
162  
212  
249  
331  
48  
S
D
I
I
I
= -0.6 A, V  
= -0.6 A, V  
= -0.1 A, V  
= -2.5 V  
= -1.8 V  
= -1.5 V  
228  
350  
555  
D
D
D
GS  
GS  
GS  
Drain-Source on-resistance  
R
mΩ  
DS (ON)  
Input capacitance  
C
iss  
V
= −10 V, V  
= 0  
GS  
DS  
pF  
ns  
Output capacitance  
C
oss  
f = 1 MHz  
Reverse transfer capacitance  
C
39  
rss  
on  
Turn-on time  
Switching time  
t
t
19  
18  
V
V
= −10 V, I = −0.6 A  
D
DD  
GS  
= 0 ~ 2.5 V, R = 4.7 Ω  
G
Turn-off time  
off  
Total gate charge  
Q
g
7.7  
4.9  
2.8  
V
V
= −16 V, I  
= − 4 V  
= -1.2 A,  
DS  
DS  
GS  
nC  
V
Gate-Source charge  
Gate-Drain charge  
Q
Q
gs  
gd  
Drain-Source forward voltage  
V
I
= 1.2 A, V = 0  
GS  
(Note 2)  
0.8  
1.2  
DSF  
D
Note 2:  
Pulse test  
1
2007-11-01  
SSM6P54TU  
Switching Time Test Circuit  
(a) Test Circuit  
(b) V  
IN  
0 V  
10%  
OUT  
0
IN  
90%  
2.5 V  
2.5V  
R
L
V
DS (ON)  
90%  
10%  
10 μs  
V
(c) V  
DD  
OUT  
V
= -10 V  
DD  
V
DD  
R
G
= 4.7 Ω  
t
t
f
r
<
D.U. 1%  
=
V
: t , t < 5 ns  
IN  
r
f
t
t
off  
on  
Common Source  
Ta = 25 °C  
Marking  
Equivalent Circuit (top view)  
6
5
4
6
5
4
Q1  
PJ  
Q2  
1
2
3
1
2
3
Precaution  
V
th  
can be expressed as the voltage between the gate and source when the low operating current value is I = -1mA  
D
for this product. For normal switching operation, V  
requires a higher voltage than V and V  
requires a  
GS (on)  
th  
GS (off)  
lower voltage than V . (The relationship can be established as follows: V  
th  
< V < V  
)
GS (off)  
th  
GS (on).  
Be sure to take this into consideration when using the device.  
Handling Precaution  
When handling individual devices (which are not yet mounted on a circuit board), ensure that the environment is  
protected against static electricity. Operators should wear anti-static clothing, and containers and other objects that come  
into direct contact with devices should be made of anti-static materials.  
2
2007-11-01  
SSM6P54TU  
I
– V  
DS  
D
I
– V  
GS  
D
-2.5  
-10000  
-1000  
-100  
-10  
-4 V  
Common Source  
= -3 V  
-1.8 V  
-2.5 V  
V
DS  
-2  
-1.5  
-1  
-1.5 V  
Ta = 85 °C  
25 °C  
-1  
VGS = -1.2 V  
-0.5  
25 °C  
-0.1  
Common Source  
Ta = 25 °C  
0
-0.01  
0
-0.5  
-1  
-1.5  
-2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2 -1.4  
-1.6  
Drain - Source voltage  
V
(V)  
DS  
Gate - Source voltage  
V
(V)  
GS  
R
– V  
GS  
R
– V  
GS  
DS (ON)  
DS (ON)  
450  
450  
I
= -0.1 A  
I
= -0.6 A  
D
D
400  
350  
400  
350  
Common Source  
Common Source  
300  
250  
200  
150  
300  
250  
200  
150  
100  
50  
25 °C  
25 °C  
Ta = 85 °C  
Ta = 85 °C  
100  
25 °C  
25 °C  
50  
0
0
0
-2  
-4  
-6  
-8  
0
-2  
-4  
-6  
-8  
Gate - Source voltage  
V
(V)  
Gate - Source voltage  
V
(V)  
GS  
GS  
R
– I  
D
DS (ON)  
R
Ta  
DS (ON)  
450  
400  
350  
500  
400  
300  
Common Source  
Common Source  
-0.6 A / -1.8 V  
I
= -0.1 A / V = -1.5 V  
GS  
Ta = 25 °C  
D
300  
250  
VGS = -1.5 V  
200  
-1.8 V  
-2.5 V  
200  
100  
150  
100  
50  
-0.6 A / -2.5 V  
0
0
50  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
50  
100  
150  
Drain current  
I
(A)  
D
Ambient temperature Ta (°C)  
3
2007-11-01  
SSM6P54TU  
V
Ta  
|Y | – I  
fs  
th  
D
-0.8  
-0.7  
30  
10  
Common Source  
Common Source  
= -3 V  
V
I
= -3 V  
DS  
V
DS  
= -1 mA  
Ta = 25 °C  
D
-0.6  
-0.5  
-0.4  
-0.3  
-0.2  
3
1
0.3  
0.1  
-0.1  
0
0.03  
0.01  
-10  
-100  
25  
0
25  
50  
75  
100  
125  
150  
1
-1000  
-10000  
Drain current  
I
(mA)  
D
Ambient temperature Ta (°C)  
C – V  
Dynamic Input Characteristic  
DS  
5000  
3000  
-10  
-8  
-6  
1000  
500  
300  
V
= -16 V  
DD  
C
iss  
-4  
-2  
100  
50  
30  
Common Source  
Ta = 25 °C  
C
oss  
Common Source  
= -1.2 A  
Ta = 25 °C  
C
rss  
f = 1 MHz  
I
D
V
= 0 V  
GS  
10  
-0.1  
0
-1  
-10  
-100  
0
5
10  
15  
20  
Total gate charge  
Q
g
(nC)  
Drain – Source voltage  
V
(V)  
DS  
t – I  
D
1000  
I
– V  
DS  
DR  
Common Source  
-2  
V
V
= -10 V  
DD  
GS  
Common Source  
= 0 V  
= 0 -2.5 V  
V
GS  
Ta = 25 °C  
= 4.7 Ω  
D
t
off  
Ta = 25 °C  
R
G
-1.5  
100  
I
DR  
G
t
f
S
-1  
-0.5  
0
t
on  
t
r
10  
1
0.01  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0.1  
1
10  
Drain-Source voltage  
V
(V)  
Drain current  
I
(A)  
DS  
D
4
2007-11-01  
SSM6P54TU  
r
th  
– t  
w
1000  
100  
10  
Single Pulse  
Mounted on FR4 board  
2
(25.4 mm × 25.4 mm × 1.6 t, Cu Pad: 645 mm )  
1
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse width  
t
(s)  
w
P
Ta  
D
1.2  
1
Mounted on FR4 board  
(25.4 mm × 25.4 mm × 1.6 t,  
2
Cu Pad: 645 mm )  
t = 10s  
* Total Rating  
0.8  
0.6  
DC  
0.4  
0.2  
0
0
50  
100  
150  
Ambient temperature Ta (°C)  
5
2007-11-01  
SSM6P54TU  
RESTRICTIONS ON PRODUCT USE  
20070701-EN GENERAL  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties.  
Please contact your sales representative for product-by-product details in this document regarding RoHS  
compatibility. Please use these products in this document in compliance with all applicable laws and regulations  
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses  
occurring as a result of noncompliance with applicable laws and regulations.  
6
2007-11-01  

相关型号:

SSM6P54TU(TE85L,F)

TRANSISTOR,MOSFET,MATCHED PAIR,P-CHANNEL,20V V(BR)DSS,1.2A I(D),SOT-363VAR
TOSHIBA

SSM6P54TU,LF

Small Signal Field-Effect Transistor
TOSHIBA

SSM6P56FE

Small Signal Field-Effect Transistor
TOSHIBA

SSM7002DGU

Dual N-channel Enhancement-mode Power MOSFETs
SSC

SSM7002EGU

N-channel Enhancement-mode Power MOSFET
SSC

SSM7002KGEN

N-channel Enhancement-mode Power MOSFET
SSC

SSM70T03GH

N-channel Enhancement-mode Power MOSFET
SSC

SSM70T03GJ

N-channel Enhancement-mode Power MOSFET
SSC

SSM70T03H

N-CHANNEL ENHANCEMENT-MODE POWER MOSFET
ETC

SSM70T03J

N-CHANNEL ENHANCEMENT-MODE POWER MOSFET
ETC

SSM72T02GH

N-CHANNEL ENHANCEMENT MODE POWER MOSFET
SSC

SSM75T10GP

N-channel Enhancement-mode Power MOSFET
SSC