TA1318N [TOSHIBA]

SYNC Processor, Frequency Counter IC for TV Component Signals; 同步处理器,频率计IC,适用于电视分量信号
TA1318N
型号: TA1318N
厂家: TOSHIBA    TOSHIBA
描述:

SYNC Processor, Frequency Counter IC for TV Component Signals
同步处理器,频率计IC,适用于电视分量信号

消费电路 商用集成电路 电视 光电二极管
文件: 总42页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TA1318N  
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic  
TA1318N  
SYNC Processor, Frequency Counter IC for TV Component Signals  
TA1318N is a sync processor for TV component signals.  
TA1318N provides sync and frequency counter processing for  
external input signals.  
These functions are integrated in a 24 pin dual-in-line  
shrink-type plastic package.  
2
TA1318N provides I C bus interface, so various functions and  
controls are adjustable via the bus.  
Features  
Horizontal synchronization circuit (15.75 kHz, 31.5 kHz, 33.75  
Weight: 1.22 g (typ.)  
kHz, 45 kHz)  
Vertical synchronization circuit (525I, 525P, 625I, 750P, 1125I, 1125P, PAL 100 Hz, NTSC 120 Hz)  
Horizontal and vertical frequency counter  
Horizontal PLL  
Accepts 2-level and 3-level sync  
Accepts both negative and positive HD and VD  
Clamp pulse output  
HD, VD output (polarity inverter)  
Separated sync output  
Mask for the copy guard signal  
1
2003-02-19  
TA1318N  
Block Diagram  
DAC3  
24  
VD2-OUT  
23  
VD1-OUT  
22  
SYNC1-IN  
21  
DAC1  
20  
SYNC2-IN Address SW  
SCL  
17  
SDA  
16  
HD2-OUT  
15  
Digital GND  
14  
HD1-OUT  
13  
19  
18  
2
DAC3  
SW  
INV  
SW  
INV  
SW  
SYNC  
SEPA  
DAC1  
SW  
SYNC  
SEPA  
I CBUS  
INV  
SW  
INV  
SW  
Decoder  
TEST DAC3  
DAC1  
DV2-OUT  
SW  
DV1-OUT  
SW  
HD2-OUT  
SW  
HD1-OUT  
SW  
V-Input  
SW  
V-FREQ  
SW  
V C/D  
H/V-  
FREQ  
Counter  
V-FREQ  
DET SW  
V-SYNC  
DAC2  
Clamp  
Pulse  
CP  
SW  
DAC2  
SW  
V
HD  
Polarity  
H/C-  
SYNK  
2 × f  
H
Integral  
H-FREQ  
DET SW  
H-INPUT  
SW  
H-AFC  
HVCO  
H C/D  
H-Ramp  
H-FREQ  
SW  
1
2
3
4
5
6
7
8
9
DAC2  
10  
VD3-IN  
11  
HD3-IN  
12  
CP-OUT  
HD2-IN  
VD2-IN  
HD1-IN  
VD1-IN  
Analog GND  
AFC Filter  
HVCO  
V
CC  
2
2003-02-19  
TA1318N  
Pin Functions  
Pin  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
No.  
Th: 0.7 V  
or  
Inputs horizontal sync signal.  
Accepts input of both positive  
and negative polarity.  
1 kΩ  
1
HD2-IN  
1
Input signal from this pin is not  
synchronized.  
Th: 0.7 V  
5
8
Th: 0.7 V  
or  
Inputs vertical sync signal.  
Accepts input of both positive  
and negative polarity.  
1 kΩ  
2
VD2-IN  
2
Input signal from this pin is not  
synchronized.  
Th: 0.7 V  
5
3
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
Th: 0.7 V  
or  
Inputs horizontal sync signal.  
Accepts input of both positive  
and negative polarity.  
1 kΩ  
3
HD1-IN  
3
Input signal from this pin is not  
synchronized.  
Th: 0.7 V  
5
8
Th: 0.7 V  
or  
Inputs vertical sync signal.  
Accepts input of both positive  
and negative polarity.  
1 kΩ  
4
5
VD1-IN  
4
Input signal from this pin is not  
synchronized.  
Th: 0.7 V  
5
GND pin for analog circuit  
blocks.  
Analog GND  
4
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
Input Signal/Output Signal  
8
Connects filter for horizontal  
AFC.  
6
AFC Filter  
DC  
300 Ω  
30 kΩ  
Voltage on this pin determines  
horizontal output frequency.  
6
5
8
Connects ceramic oscillator for  
horizontal oscillation.  
4 kΩ  
7
HVCO  
Use Murata  
CSBLA503KECZF30.  
7
1 kΩ  
10 kΩ  
5
VCC pin.  
8
V
CC  
Connects 9 V (typ.).  
5
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
DC  
or  
DAC2 output pin.  
In Test mode, outputs HD or  
composite sync signal to  
frequency counter.  
H/C SYNC  
To improve the driving ability, it  
is possible to connect a  
resister (minimum: 2 k)  
between this pin and GND.  
However, when the resister is  
added, the output DC voltage  
is down.  
9
DAC2 (H/C. SYNC output)  
7 V  
0 V  
200 Ω  
9
14  
8
Th: 0.7 V  
or  
Inputs vertical sync signal.  
1 kΩ  
10 VD3-IN  
10  
Accepts input of both positive  
and negative polarity.  
Th: 0.7 V  
5
8
Th: 0.7 V  
or  
Inputs horizontal sync signal.  
1 kΩ  
11 HD3-IN  
11  
Accepts input of both positive  
and negative polarity.  
Th: 0.7 V  
5
6
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
5.0 V  
0 V  
Clamp pulse (CP) output pin.  
12 CP-OUT  
Outputs CP generated by sync  
circuit.  
200 Ω  
12  
14  
8
HD output pin.  
Open collector output.  
HD1/HD2 input signal is output  
from this pin without  
200 Ω  
or  
13 HD1-OUT  
13  
synchronization.  
Polarity is switched by BUS  
write function.  
14  
14 Digital GND  
GND pin for logic blocks.  
7
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
HD output pin.  
Open collector output.  
or  
200 Ω  
HD1/HD2 input signal is output  
from this pin without  
15 HD2-OUT  
15  
synchronization.  
Polarity is switched by BUS  
write function.  
14  
8
50 Ω  
20 kΩ  
SDA  
2
16  
16 SDA  
SDA pin for I C bus.  
ACK  
5
14  
8
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
Input Signal/Output Signal  
8
2
20 kΩ  
SCL  
17 SCL  
SCL pin for I C bus.  
17  
5
8
9 V  
DC/DD  
7.5 V  
7.5 V  
Slave address switch pin.  
1 kΩ  
When this pin is connected to  
DA/DB  
D8/D9  
18 Address SW  
18  
V
(GND), used for DC/DD  
H
CC  
(D8/D9 ); when left open,  
H
1.5 V  
DA/DB .  
H
1.5 V  
0 V  
5
9
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
Input Signal/Output Signal  
White 100= 1 V  
pp  
8
Inputs Y signal (Note 1) for  
sync separation circuit.  
19  
19 SYNC2-IN  
or  
Input via clamp capacitor.  
1 kΩ  
5
8
DAC1 output pin.  
DC  
or  
In Test mode, outputs VD or  
composite sync signal to  
frequency counter.  
V SYNC  
To improve the driving ability, it  
is possible to connect a  
resister (minimum: 2 k)  
between this pin and GND.  
However, when the resister is  
added, the output DC voltage  
is down.  
20 DAC1 (V SYNC output)  
7 V  
0 V  
200 Ω  
20  
14  
Note 1: The signal format for SYNC1-IN (pin 21) and SYNC2-IN (pin 19)  
NTSC (525I/60 Hz), PAL/SECAM (625I/50 Hz), NTSC Double Scan (525I/120 Hz), PAL/SECAM Double Scan (625I/100 Hz), 525P/60 Hz, 750P/60 Hz,  
1125I/60 Hz, 1125P/30 Hz  
This IC doesn’t have the sync-separation circuit for non-standard signals like weak strength signal, ghost signal and so on.  
10  
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
Input Signal/Output Signal  
White 100= 1 V  
pp  
8
Inputs Y signal (Note 1) for  
sync separation circuit.  
21  
21 SYNC1-IN  
or  
Input via clamp capacitor.  
1 kΩ  
5
8
VD output pin.  
Open collector output.  
Start phase  
or  
VD1/VD2 input signal is output  
from this pin without  
200 Ω  
22  
synchronization.  
22 VD1-OUT  
Polarity is switched by BUS  
write function.  
(Note) When HD PHASE will  
be changed, synchronized VD  
width will change. Use the start  
phase of VD.  
14  
Start phase  
Note 1: The signal format for SYNC1-IN (pin 21) and SYNC2-IN (pin 19)  
NTSC (525I/60 Hz), PAL/SECAM (625I/50 Hz), NTSC Double Scan (525I/120 Hz), PAL/SECAM Double Scan (625I/100 Hz), 525P/60 Hz, 750P/60 Hz,  
1125I/60 Hz, 1125P/30 Hz  
This IC doesn’t have the sync-separation circuit for non-standard signals like weak strength signal, ghost signal and so on.  
11  
2003-02-19  
TA1318N  
Pin  
No.  
Pin Name  
Function  
Interface Circuit  
8
Input Signal/Output Signal  
VD output pin.  
Open collector output.  
Start phase  
or  
VD1/VD2 input signal is output  
from this pin without  
200 Ω  
23  
synchronization.  
23 VD2-OUT  
Polarity is switched by BUS  
write function.  
(Note) When HD PHASE will  
be changed, synchronized VD  
width will change. Use the start  
phase of VD.  
14  
Start phase  
8
DAC3 output pin.  
DC  
500 Ω  
Open collector output.  
24 DAC3  
or  
24  
In Test mode, outputs test  
pulse for shipping.  
test pulse for shipping  
14  
12  
2003-02-19  
TA1318N  
Bus Control Map  
Write Mode  
Slave Address: D8/DA/DC  
H
Preset  
D7  
D0  
Sub-Add  
D6  
D5  
D4  
D3  
D2  
D1  
MSB  
LSB  
MSB  
1000  
1000  
1000  
1000  
LSB  
0000  
0000  
0000  
0000  
00  
01  
02  
03  
H-FREQUENCY  
DAC1  
HD1/VD1-OUT SW  
DAC2  
HD2/VD2-OUT SW  
DAC3 TEST  
FREQ DET SW  
SEPA LEVEL  
HD1-INV  
HD2-INV  
V-FREQUENCY  
CLP-PHS  
INPUT SW  
HD PHASE  
VD1-INV  
VD2-INV  
Read Mode  
Slave Address: D9/DB/DD  
H
D7  
MSB  
D0  
LSB  
D6  
D5  
D4  
D3  
D2  
D1  
0
1
POR  
V FREQUENCY DET  
H FREQUENCY DET  
HD-IN  
Bus Control Functions  
Write Mode (*: Preset)  
H-FREQUENCY (Horizontal oscillation frequency)  
Switches horizontal frequency.  
(00): 15.75 kHz  
(01): 31.5 kHz  
*(10): 33.75 kHz  
(11): 45 kHz  
HD1/VD1-OUT SW (HD1/VD1 output switch)  
Switches output from pin 13/22. When set to 00, 01, or 10, outputs HD/VD without synchronization.  
When set to 11, outputs HD/VD from the sync circuit. (Note) Synchronized VD width will change, when  
HD PHASE will be changed.  
*(00): HD1/VD1  
(01): HD2/VD2  
(10): HD3/VD3  
(11): Synchronized HD/VD  
HD2/VD2-OUT SW (HD2/VD2 output switch)  
Switches output from pin 15/23. When set to 00, 01, or 10, outputs HD/VD without synchronization.  
When set to 11, outputs HD/VD from the sync circuit.  
*(00): HD1/VD1  
(01): HD2/VD2  
(10): HD3/VD3  
(11): Synchronized HD/VD  
SEPA LEVEL (Sync separation level switch)  
Switches sync separation level of pin 19/21. Set values are the levels from sync tip. Sync separation level  
is changed according to the ratio of H-SYNC width during 1H period.  
*(00): 10IRE  
(01): 15IRE  
(10): 20IRE  
*(10): 5 V  
(10): 5 V  
(11): 25IRE (at 1125I/60)  
DAC1 (DAC1 control)  
Controls 2-bit DAC (pin 9).  
(00): 1 V  
(01): 3 V  
(11): 7 V  
DAC2 (DAC2 control)  
Controls 2-bit DAC (pin 20).  
*(00): 1 V  
(01): 3 V  
(11): 7 V  
DAC3 (DAC3 control)  
Controls open collector 1-bit DAC (pin 24).  
*(0): OPEN (HIGH)  
(1): ON (LOW)  
TEST (Test mode)  
Switches DAC1, 2, and 3 outputs. Also used to test IC for shipping.  
*(0): DAC outputs are used as DAC.  
(1): DAC1 outputs V. SYNC to the frequency counter.  
DAC2 outputs H. SYNC or C. SYNC to the frequency counter.  
DAC3 outputs IC test pulse for shipping.  
13  
2003-02-19  
TA1318N  
HD1-INV (HD1 output polarity switch)  
Switches HD1 output (pin 13) polarity. When set to 0, positive HD input is output as negative HD. When  
set to 0, output from the sync circuit is output as negative HD.  
*(0): Normal  
(1): Inverse  
HD2-INV (HD2 output polarity switch)  
Switches HD1 output (pin 15) polarity. When set to 0, positive HD input is output as negative HD. When  
set to 0, output from the sync circuit is output as negative HD.  
*(0): Normal  
(1): Inverse  
V-FREQUENCY (Vertical frequency switch (pull-in range))  
Sets vertical frequency pull-in range, VD-STOP, or free-running frequency.  
Free-running frequency is controlled by H-FREQUENCY.  
Pull-in Range  
Format/H (V) Frequency  
1125P/30 Hz (33.75 kHz)  
*(000)  
48~1281 H  
48~849 H  
(001)  
750P/60 Hz (45 kHz)  
Free-running frequency is controlled by H-FREQUENCY.  
(00): 262 H (01): 525 H (10): 562 H (11): 750 H  
(010)  
FREE-RUN  
(011)  
(100)  
48~637 H  
48~613 H  
1125I/60 Hz (33.75 kHz)  
525P/60 Hz (31.5 kHz)  
PAL/SECAM/50 Hz (15.625 kHz)  
(101)  
48~363 H  
PAL/SECAM double scan/100 Hz (31.5 kHz)  
NTSC/60 Hz (15.734 kHz)  
(110)  
(111)  
48~307 H  
VP STOP  
NTSC double scan /120 Hz (31.5 kHz)  
VD output is HIGH  
CLP PHS (Clamp pulse phase switch)  
Switches clamp pulse phase.  
If no signal input, 0.9 µs pulse is output from the H-C/D circuit.  
*(0): 1 µs (3.4%) delay following HD stop phase, 0.8 µs (2.7%) pulse  
(1): 0.5 µs (1.7%) delay following HD stop phase, 0.8 µs (2.7%) pulse  
FREQ DET SW (Horizontal/vertical frequency counter switch)  
Switches input signal used for horizontal/vertical frequency counter. This switch is controlled  
independently from INPUT SW. The detection result is output as read BUS data.  
*(00): SYNC1 input (01): SYNC2 input (10)/(11): HD3/VD3 inputs  
INPUT SW (Input signal switch for synchronization)  
Switches input signal used for synchronization.  
*(00): SYNC1 input (01): SYNC2 input (10)/(11): HD3/VD3 inputs  
HD PHASE (HD phase adjustment)  
Adjusts phase of HD output from the sync circuit. The phase of the adjustment center value is the same  
as that of input H-SYNC or input HD. (Note) Synchronized VD width will change, when HD PHASE will  
be changed.  
(000000):  
*(100000):  
(111111) :  
5% (H periodically)  
0%  
5%  
VD1-INV (VD1 output polarity switch)  
Switches VD1 output (pin 22) polarity. When set to 0, negative VD input is output as negative VD. When  
set to 0, output from the sync circuit is output as negative VD.  
*(0): Normal  
(1): Inverse  
VD2-INV (VD2 output polarity switch)  
Switches VD2 output (pin 23) polarity. When set to 0, negative VD input is output as negative VD. When  
set to 0, output from the sync circuit is output as negative VD.  
*(0): Normal  
(1): Inverse  
14  
2003-02-19  
TA1318N  
Read Mode  
POR (Power on reset)  
(0): Status read (at second data read and subsequent)  
(1): Power on (at first data read)  
HD-IN (Input signal self-check result)  
Detects HD or H-SYNC input signal selected by INPUT SW.  
(0): No signal input (1): Signal input  
V FREQ DET (Vertical frequency of SYNC or VD input selected by FREQ DET SW)  
(0000000)(0001100): No-VD  
(0001101): Vicinity of 162 Hz  
(1111110) : Vicinity of 17 Hz  
How to calculate vertical frequency (X):  
Convert V-FREQ DET read data into decimal and define the resulting value as Y.  
Where H-FREQUENCY is 15.75 kHz/31.5 kHz, Z = 476.2 µs  
Where H-FREQUENCY is 33.75 kHz/45 kHz, Z = 474.1 µs  
Vertical frequency (X) = 1 ÷ (Y × Z) [Hz]  
Error of Y is +1, 0. If vertical frequency is 162 Hz or more, the frequency cannot be accurately  
measured. Time constant used to separate V.SYNC from integrated C.SYNC is 9 µs (error: ±1 µs).  
H FREQ DET (Horizontal frequency of SYNC or HD input selected by FREQ DET SW)  
(0000000): No signal input (1111110): 53 kHz or more  
How to calculate horizontal frequency (X):  
X, Y, and Z are defined same as for V FREQ.  
Horizontal frequency (X) = Y ÷ (5 × Z) [kHz]  
Error of Y is +1, 0. If horizontal frequency is 53 kHz or more, the frequency cannot be accurately  
measured. When V-SYNC or VD is not input, horizontal frequency cannot be measured, resulting in  
data = (0000000).  
Note 1:The start trigger for frequency counting is the internal reset-pulse made from ACK of 2nd byte in BUS  
read mode. The counting period is between the first V-sync (VD) and the second V-sync (VD) after the  
trigger.  
The counted data will have +1 or 0 error according to the read timing.  
To assume stable data reading;  
1. Set BUS reading interval more than 60 ms.  
2. Don’t use the first data because it is unsettled.  
are recommended.  
Note 2:Ignore data (1111111). This data may be obtained in case the trigger pulse and the V-sync (VD) are  
simultaneous.  
Data 1 and  
Start trigger 2  
Data 2 and  
Start trigger 3  
Start trigger 1  
More than 60 ms  
Read Timing  
V-SYNC or VD  
Counting period 1  
(to Data 1)  
Counting period 2  
(to Data 2)  
Decision algorithm (detection range, detection times and so on) should be determined under  
consideration of Note 1, Note 2 and the other factors such as signal strength, existence of ghost signal,  
2
H-AFC stability, I C BUS data transmission and so on via prototype TV set evaluation.  
15  
2003-02-19  
TA1318N  
2
Data Transfer Format via I C BUS  
Slave Address: D8/DA/DC  
H
A6  
1
A5  
1
A4  
A3  
1
A2  
1
A1  
A0  
W/R  
0/1  
0
0/1  
0/1  
Start and Stop Condition  
SDA  
SCL  
S
P
Start condition  
Stop condition  
Bit Transfer  
SDA  
SCL  
SDA stable  
Change of SDA allowed  
Acknowledge  
SDA by transmitter  
SDA by receiver  
Bit 9: High impedance  
Only bit 9: Low impedance  
SCL from master  
1
8
9
S
Clock pulse for acknowledgment  
16  
2003-02-19  
TA1318N  
Data Transmit Format 1  
S
Slave address  
7 bit  
0
A
Sub address  
8 bit  
A
Transmit data  
8 bit  
A
A
P
MSB  
S: Start condition  
MSB  
A: Acknowledge  
MSB  
P: Stop condition  
Data Transmit Format 2  
S
Slave address  
0
A
A
Sub address  
A
Transmit data  
・・・・・・  
・・・・・・  
Sub address  
A
Transmit data n  
A P  
Data Receive Format  
S
Slave address  
7 bit  
1
Received data 1  
8 bit  
A
Received data 2  
A P  
MSB  
MSB  
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave  
transmitter. This acknowledge is still generated by this slave.  
The Stop condition is generated by the master.  
(* important) The data read from THIS IC should always be completed in whole two words, not one word,  
otherwise the IICBUS may cause error.  
Optional Data Transmit Format: Automatic Increment Mode  
S
Slave address  
7 bit  
0
A
1
Sub address  
7 bit  
A
Transmit data 1 ・・・・ Transmit data 2  
8 bit 8 bit  
A P  
MSB  
MSB  
MSB  
MSB  
In this transmission method, data is set on automatically incremented sub-address from the specified  
sub-address.  
2
2
Purchase of TOSHIBA I C components conveys a license under the Philips I C Patent Rights to use  
2
2
these components in an I C system, provided that the system conforms to the I C Standard Specification  
as defined by Philips.  
17  
2003-02-19  
TA1318N  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
V
Supply voltage  
V
12  
9
CCmax  
Input pin signal voltage  
Power dissipation  
e
V
p-p  
inmax  
P
(*1)  
1250  
10  
mW  
mW/°C  
°C  
D
Power dissipation reduction rate  
Operating temperature  
Storage temperature  
1/Qja  
T
20~65  
55~150  
opr  
T
°C  
stg  
Note: Refer to the figure below.  
1250  
850  
10 mW/°C  
0
0
25  
65  
150  
Ambient temperature Ta (°C)  
Figure P - Ta Curve  
D
Operating Condition  
Characteristics  
Description  
Min  
Typ.  
Max  
Unit  
V
Power supply voltage (V  
)
Pin 8  
8.5  
2.0  
9.0  
5.0  
5.0  
9.5  
9.0  
CC  
HD1, HD2, HD3 Input level  
VD1, VD2, VD3 Input level  
Pin 3, 1, 11  
Pin 4, 2, 10  
V
p-p  
2.0  
9.0  
Synchronization Pin 11  
0.02  
0.20  
H
HD3 input width  
Frequency  
Pin 11  
0.45  
0.25H  
47H  
400  
1.1  
µs  
detection  
µs  
Synchronization Pin 10  
1 µs  
VD3 input width  
Frequency  
Pin 10  
1
detection  
SYNC1, SYNC2 Input level  
Pin 21, 19, white 100% with negative sync  
0.9  
1.0  
0.9  
V
p-p  
HD1, HD2, VD1, VD2-OUT  
Input current  
Pin 13, 15, 22, 23  
1.5  
mA  
DAC3 Input current  
Pin 24  
0
0.5  
0
1.0  
1.0  
9.0  
D8/D9  
H
Address switching voltage  
Pin 18  
V
DC/DD  
8.0  
9.0  
H
18  
2003-02-19  
TA1318N  
Electrical Characteristics (V = 9 V, Ta = 25°C, unless otherwise specified)  
CC  
Current Dissipation  
Test  
Pin Name  
Symbol  
Min  
32  
Typ.  
38  
Max  
44  
Unit  
mA  
Circuit  
V
I
CC  
CC  
AC Characteristics  
Horizontal Block  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
S
S
0.6  
0.6  
0.6  
61  
0.7  
0.7  
0.7  
66  
0.8  
0.8  
0.8  
71  
1PH  
2PH  
Sync1/2 input horizontal sync phase  
HD3 input horizontal sync phase  
Polarity distinction active range  
(Note HA01)  
(Note HA02)  
(Note HA03)  
µs  
µs  
%
HD  
3PH  
HD-  
HD-  
DUTY1  
DUTY2  
thS10  
thS11  
thS12  
thS13  
thS20  
thS21  
thS22  
thS23  
48  
53  
58  
V
V
V
V
V
V
V
V
0.040 0.070 0.100  
0.060 0.106 0.152  
0.081 0.142 0.203  
0.102 0.178 0.255  
0.040 0.070 0.100  
0.060 0.106 0.152  
0.081 0.142 0.203  
0.102 0.178 0.255  
Sync1 input threshold amplitude  
Sync2 input threshold amplitude  
(Note HA04)  
V
p-p  
HD3 input threshold amplitude  
(Synchronization block)  
V
(Note HA05) 0.65  
0.75  
0.85  
V
V
thHD3  
p-p  
p-p  
V
V
V
0.65  
0.75  
0.75  
0.75  
3.18  
3.18  
1.59  
1.59  
1.48  
1.48  
1.11  
1.11  
1.00  
0.80  
5.0  
0.85  
0.85  
0.85  
3.49  
3.49  
1.75  
1.75  
1.63  
1.63  
1.22  
1.22  
1.15  
0.95  
5.3  
thHD1  
thHD2  
thHD3  
HD1 input threshold voltage  
HD2 input threshold voltage  
HD3 input threshold voltage  
(SW block)  
(Note HA06)  
(Note HA07)  
0.65  
0.65  
2.86  
2.86  
1.43  
1.43  
1.33  
1.33  
1.00  
1.00  
0.85  
0.65  
4.7  
HP0−  
HP0+  
HP1−  
HP1+  
HP2−  
HP2+  
HP3−  
HP3+  
HD output phase adjustment variable  
range  
µs  
CP  
S0  
µs  
V
CP  
W0  
CP  
CP  
V0  
S1  
0.35  
0.65  
4.7  
0.50  
0.80  
5.0  
0.65  
0.95  
5.3  
µs  
V
Clamp pulse phase/width/level  
(Note HA08)  
CP  
W1  
CP  
CP  
V1  
S3  
0
1
µs  
V
CP  
0.50  
4.7  
0.90  
5.0  
1.30  
5.3  
W3  
CP  
V3  
19  
2003-02-19  
TA1318N  
Test  
Characteristics  
Symbol  
Test Condition  
(Note HA09)  
Min  
Typ.  
Max  
Unit  
Circuit  
Delayed HD pulse width  
W
1.0  
4.5  
1.2  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
385  
385  
650  
650  
4.2  
1.8  
1.8  
1.8  
1.8  
1.4  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
460  
460  
780  
780  
4.5  
2.2  
2.2  
2.2  
2.2  
µs  
d-HD  
V13TH0  
V13TL0  
V13TH1  
V13TL1  
V13TH2  
V13TL2  
V13TH3  
V13TL3  
V15TH0  
V15TL0  
V15TH1  
V15TL1  
V15TH2  
V15TL2  
V15TH3  
V15TL3  
V13IH0  
V13IL0  
V13IH1  
V13IL1  
V13IH2  
V13IL2  
V13IH3  
V13IL3  
V15IH0  
V15IL0  
V15IH1  
V15IL1  
V15IH2  
V15IL2  
V15IH3  
V15IL3  
ID1  
4.5  
HD1 output voltage  
V
V
V
V
4.5  
4.5  
4.5  
4.5  
HD2 output voltage  
4.5  
4.5  
4.5  
4.5  
HD1 output voltage (polarity inverse)  
4.5  
4.5  
4.5  
4.5  
HD2 output voltage (polarity inverse)  
4.5  
4.5  
310  
310  
520  
520  
3.9  
1.4  
1.4  
1.4  
1.4  
ID2  
AFC phase detection current  
VCO oscillation start voltage  
(Note HB01)  
(Note HB02)  
(Note HB03)  
µA  
V
ID3  
ID4  
V
VCO  
TH00  
TH01  
TH10  
TH11  
HD output pulse width  
(free-run)  
µs  
20  
2003-02-19  
TA1318N  
Test  
Characteristics  
Symbol  
Test Condition  
Min  
15.59 15.75 15.91  
31.19 31.5 31.82  
33.41 33.75 34.09  
44.55 45 45.45  
15.47 15.625 15.78  
Typ.  
Max  
Unit  
Circuit  
F00  
F01  
Horizontal free-run frequency  
(Note HB04)  
kHz  
F10  
F11  
F50  
BH00  
BH01  
BH10  
BH10  
2.4  
4.8  
4.8  
7.1  
0.5  
2.7  
4.7  
6.5  
0.5  
2.7  
4.7  
6.5  
3.0  
6.0  
6.0  
8.9  
1.0  
3.0  
5.0  
7.0  
1.0  
3.0  
5.0  
7.0  
0.5  
8.8  
3.6  
7.2  
7.2  
10.7  
1.5  
3.3  
5.3  
7.5  
1.5  
3.3  
5.3  
7.5  
0.7  
Horizontal oscillation control  
sensitivity  
(Note HB05)  
kHz/V  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
VDAC  
10  
11  
12  
13  
20  
21  
22  
23  
30  
31  
DAC1 output voltage  
V
DAC2 output voltage  
DAC3 output voltage  
V
V
8.5  
21  
2003-02-19  
TA1318N  
Vertical Block  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
V
V
0.65  
0.65  
0.65  
0.75  
0.75  
0.75  
0.85  
0.85  
0.85  
VD1 input threshold voltage  
VD2 input threshold voltage  
VD3 input threshold voltage  
(SW block)  
thVD1  
thVD2  
thVD3  
(Note VA01)  
V
p-p  
VD3 input threshold voltage  
(synchronization block)  
V
(Note VA02) 0.65  
0.75  
0.85  
V
p-p  
thVD3  
V22TH0  
V22TL0  
V22TH1  
V22TL1  
V22TH2  
V22TL2  
V22TH3  
V22TL3  
V23TH0  
V23TL0  
V23TH1  
V23TL1  
V23TH2  
V23TL2  
V23TH3  
V23TL3  
V22IH0  
V22IL0  
V22IH1  
V22IL1  
V22IH2  
V22IL2  
V22IH3  
V22IL3  
V23IH0  
V23IL0  
V23IH1  
V23IL1  
V23IH2  
V23IL2  
V23IH3  
V23IL3  
4.5  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
5.0  
0.1  
286  
143  
133  
100  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
5.5  
0.5  
321  
160  
150  
112  
4.5  
VD1 output voltage  
V
V
V
4.5  
4.5  
4.5  
4.5  
VD2 output voltage  
4.5  
4.5  
4.5  
4.5  
VD1 output voltage (polarity inverse)  
4.5  
4.5  
4.5  
4.5  
VD2 output voltage (polarity inverse)  
V
4.5  
4.5  
VP  
VP  
VP  
VP  
251  
W0  
W1  
W2  
W3  
126  
(Note VA03)  
117  
Vertical output pulse width  
µs  
88  
22  
2003-02-19  
TA1318N  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
FV0  
FV1  
26.02 26.35 26.67  
39.21 39.75 40.30  
52.20 52.98 53.77  
54.24 55.06 55.89  
91.28 92.98 94.69  
107.8 109.9 112.1  
FV3  
FV4  
FV5  
Vertical free-run frequency  
(Note VA04)  
Hz  
FV6  
FV20  
57.0  
57.0  
57.0  
57.0  
311  
624  
668  
891  
9.6  
60.0  
60.0  
60.0  
60.0  
321  
643  
689  
918  
11.8  
6.8  
63.0  
63.0  
63.0  
63.0  
332  
663  
710  
947  
14.0  
7.9  
FV21  
FV22  
FV23  
FVPL0  
FVPL1  
FVPL2  
FVPL3  
15.75 kHz  
31.50 kHz  
33.75 kHz  
45.00 kHz  
Vertical pull-in range  
(Note VA05)  
Hz  
5.7  
Sync input-VD output phase  
difference  
µs  
5.3  
6.4  
7.5  
4.4  
5.2  
6.0  
23  
2003-02-19  
TA1318N  
Test Conditions and Measuring Method  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA01  
Sync1/2 input horizontal sync phase  
b
a
b
a
(1) Set sub-address (02) 60.  
(2) SW19-a and SW21-b.  
b
(3) Input Signal a (horizontal 33.75 kHz ) to pin 21 (SYNC1-IN).  
(4) Set sub-address (02) 61.  
(5) Measure the phase difference S  
(6) SW19-b and SW21-a.  
between pin 21 and pin 6 (AFC filter) wave form.  
1PH  
(7) Input Signal a (33.75 kHz ) to pin 19 (SYNC2-IN).  
(8) Set sub-address (02) 01.  
(9) Measure the phase difference S  
between pin 19 and pin 6 (AFC filter) wave form.  
2PH  
29.63 µs  
0.593 µs  
Signal a  
0.285 V  
S
S  
1PH 2PH  
Pin 6 wave form  
24  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
(1) Set sub-address (00) 40 and (02) 82.  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA02  
HD3 input horizontal sync phase  
b
(2) Input signal b (horizontal 31.5 kHz ) to pin 11 (HD3-IN).  
(3) Measure the phase difference HD  
between pin 11 and pin 6 (AFC filter) wave form.  
3PH  
31.75 µs  
2.35 µs  
Signal b  
1.5 V  
HD  
3PH  
Pin 6 wave form  
HA03  
Polarity distinction active range  
c
b
(1) Set sub-address (00) 70 and (02) 82.  
(2) Input signal b ((horizontal 31.5 kHz ) to pin 11 (HD3-IN).  
(3) Decreasing the duty of signal b to 0% (get negative period shorter), measure the duty of Signal b  
(HD-DUTY1) when the phase between pin 11 and pin 13 (HD1-OUT) change.  
(4) Increasing the duty of Signal b to 100% (get negative period longer), measure the duty of Signal b  
(HD-DUTY2) when the phase between pin 11 and pin 13 (HD1OUT) change.  
31.75 µs  
2.35 µs  
Signal b  
1.5 V  
A
B
* duty = A/(A + B) × 100 (%)  
25  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
(1) Set sub-address (00) 0B and (02) 60.  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA04  
Sync1 input threshold amplitude  
Sync2 input threshold amplitude  
b
a
b
a
(2) Input Signal a (33.75 kHz) to pin 21 (SYNC1-IN)  
b
(3) Measure the sync. tip DC voltage of signal a on pin 21 (SYNC1-IN). (V  
)
sync11  
(4) Supply external voltage via 100 kto pin 21 and increase the voltage.  
(5) Measure the sync. tip DC voltage (V  
) when HD-OUT desynchronizes with signal a calculate V  
.
sync12  
thS10  
V
= V  
V  
sync12 sync11  
thS10  
(6) Set sub-address (00) B1, B2 and B3 and calculate V  
, V  
and V  
as well.  
thS13  
thS11 thS12  
(7) Calculate V  
, V  
, V  
and V  
against pin 19 (SYNC2-IN) in the same way as 4 to 6.  
thS23  
thS20 thS21 thS22  
29.63 µs  
0.593 µs  
Signal a  
0.285 V  
HA05  
HD3 input threshold amplitude  
(synchronization block)  
c
b
(1) Set sub-address (00) 70 and (02) 62.  
(2) Input Signal b (31.5 kHz) to pin 11 (HD3-IN).  
(3) Increasing the voltage of Signal b from 0 V, measure the voltage of Signal b V  
when HD1-OUT lock.  
thHD3  
31.75 µs  
2.35 µs  
Signal b  
V
thHD1  
26  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA06  
HD1 input threshold voltage  
HD2 input threshold voltage  
HD3 input threshold voltage  
(SW block)  
b
(1) Set sub-address (00) 40.  
(2) Input Signal b (31.5 kHz) to pin 3 (HD1-IN).  
(3) Increasing the voltage of Signal b from 0 V, measure the voltage of Signal b V  
when HD1-OUT lock.  
thHD1  
(4) Measure the voltage of pin 1 V  
. Measure the voltage of pin 11 V  
thHD2  
as well.  
thHD3  
31.75 µs  
2.35 µs  
Signal b  
V
thHD1  
27  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA07  
HD output phase adjustment variable  
range  
b
(1) Set sub-address (00) 30.  
(2) Input Signal b (horizontal period T = 63.5 µs) to pin 11 (HD3-IN).  
(3) Set sub-address (02) 02.  
(4) Change form 00 to 7C sub-address (03), then measure the phase change quantity (HP0) of pin 13  
(HD1-OUT) wave form.  
(5) Change form 80 to FC sub-address (03), then measure the phase change quantity (HP0+) of pin 13  
(HD1-OUT) wave form.  
(6) When horizontal period of Signal b is T = 31.75 µs measure HP1and HP1+ as well.  
(7) When horizontal period of Signal b is T = 29.63 µs measure HP2and HP2+ as well.  
(8) When horizontal period of Signal b is T = 22.22 µs measure HP3and HP3+ as well.  
T µs  
2.35 µs  
Signal b  
1.5 V  
Pin 15 wave form  
data (00)  
HP*−  
Pin wave form  
data (7C) (80)  
HP*+  
Pin wave form  
data (FC)  
28  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA08  
Clamp pulse phase/width/level  
b
(1) Set sub-address (00) B0.  
(2) Input Signal a (horizontal 33.75 kHz) to pin 11 (HD3-IN).  
(3) Set sub-address (02) 02.  
(4) Measure the clamp pulse phase (CP ), width (CP ), output level (CP ) of pin 12 (CLP-OUT) against  
S0  
W0  
V0  
Signal a.  
(5) Set sub-address (02) 12.  
(6) Measure the clamp pulse phase (CP ), width (CP ), output level (CP ) of pin 12 (SCP-OUT) against  
S1  
W1  
V1  
Signal a.  
(7) Input no-signal to pin 11.  
(8) Measure the clamp pulse phase (CP ), width (CP ), output level (CP ) of pin 12 (SCP-OUT) against pin  
S2  
W2  
V2  
13 (HD-OUT).  
29.63 µs  
2.35 µs  
Signal a  
1.5 V  
CP CP  
S0  
S1  
Pin 12 wave form  
Pin 13 wave form  
Pin 12 wave form  
CP CP  
V0 V1  
CP CP  
W0  
W1  
CP  
S3  
CP  
V3  
CP  
W3  
29  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HA09  
Delayed HD pulse width  
b
(1) Set sub-address (00) 70.  
(2) Input Signal b (horizontal 31.5 kHz) to pin 11 (HD3-IN).  
(3) Set sub-address (02) 62.  
(4) Measure the pulse width (WdHD) of pin 6 (AFC filter) wave form.  
31.75 µs  
2.35 µs  
Signal b  
1.5 V  
Wd-HD  
Pin 6 wave form  
30  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
S21  
b
HB01  
AFC phase detection current  
OPEN  
b
a
(1) BUS control data preset.  
(2) Horizontal oscillation frequency is 15.75 kHz (00).  
(3) SW6 open. Measure the Voltage of pin 6 V6 (no external supply).  
(4) Connect external supply with pin 6, and supply the voltage (V6).  
(5) Input signal (below figure) to pin 21 (SYNC1-IN). When INPUT SW is SYNC1-IN , measure V1 and V2 of pin  
6 wave form.  
(6) Supply V6 0.1 V and V6 + 0.1 V to pin 6, then measure V3 and V4.  
(7) Calculate by following equations.  
ID1 [µA] = (V1 [V] ÷ 1 [k]) × 1000  
ID2 [µA] = (V2 [V] ÷ 1 [k]) × 1000  
ID3 [µA] = (V3 [V] ÷ 1 [k]) × 1000  
ID4 [µA] = (V4 [V] ÷ 1 [k]) × 1000  
63.5 µs  
Pin 21 wave form  
0.25 V  
V1, V3  
Pin 6 wave form  
V2, V4  
HB02  
VCO oscillation start voltage  
(1) Increasing the voltage of pin 8 V  
wave form.  
form 2.5V, measure the voltage V  
when pin 7 appear oscillation  
VCO  
CC  
31  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
HB03  
HD output pulse width  
(free-run)  
b
(1) BUS control data preset.  
(2) When horizontal oscillation frequency is 15.75 kHz (00), measure the output pulse width TH00 of pin 13  
(HD1-OUT) wave form.  
(3) When horizontal oscillation frequency is 31.5 kHz (01), 33.75 kHz (10), 45 kHz (11), measure the output  
pulse width TH01, TH02, TH03 as well.  
Pin 13 (HD1OUT)  
wave form  
TH  
HB04  
HB05  
Horizontal free-run frequency  
OPEN  
b
b
(1) BUS control data preset.  
(2) SW6 open. When horizontal oscillation frequency is 15.75 kHz (00), measure the oscillation frequency F00 of  
pin 13 (HD1-OUT) wave form.  
(3) When horizontal oscillation frequency is 31.5 kHz (01), 33.75 kHz (10), 45 kHz (11), measure the oscillation  
frequency F01, F10, F11 as well.  
(4) When horizontal oscillation frequency is 15.75 kHz (00) and vertical free-run frequency is (101), measure the  
oscillation frequency F50 of pin 15 wave form.  
Horizontal oscillation control sensitivity OPEN  
(1) BUS control data preset.  
(2) SW6 open.  
(3) Connect external voltage with pin 6 . Horizontal oscillation frequency is 15.75 kHz (00). Supply V6 (about 6.3  
V) + 0.05 V or V6 0.05 V to pin 6, then measure the frequency FA, FB of pin 13 (HD1-OUT) wave form.  
Calculate frequency changing ratio (BH00). BH00 = (FB FA)/0.1  
(4) When horizontal oscillation frequency is 31.5 kHz (01), 33.75 kHz (10), 45 kHz (11), calculate BH01, BH10,  
BH11 as wall.  
32  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
VA01  
VD1 input threshold voltage  
VD2 input threshold voltage  
VD3 input threshold voltage  
(SW block)  
b
(1) Set sub-address (00) 80.  
(2) Input Signal a (vertical 60 Hz) to pin 4 (VD1-IN).  
(3) Set sub-address (02) 00.  
(4) Increasing the voltage of Signal a from 0 V. measure the voltage of Signal b V  
when VD1-OUT lock.  
thVD1  
(5) Measure V  
and V  
against pin 2 and pin 10 as wall.  
thVD3  
thVD2  
16.67 ms  
0.12 ms  
Signal a  
V
thVD1  
VA02  
VD3 input threshold voltage  
(synchronization block)  
c
b
(1) Set sub-address (00) 70.  
(2) Input Signal b (vertical 60 Hz) to pin 10 (VD3-IN).  
(3) Set sub-address (02) 03.  
(4) Increasing the voltage of Signal b from 0 V, measure the voltage of Signal a V  
when VD1-OUT lock.  
thVD3  
16.67 ms  
0.12 ms  
Signal a  
33  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
VA03  
Vertical output pulse width  
b
(1) Input Signal a (horizontal 33.75 kHz) to pin 11 (HD3-IN).  
(2) Set sub-address (02) 02.  
(3) When sub-addrss (00) is B0, measure the pulse width VPW2 of pin 22 (VD1-OUT) wave form.  
(4) When sub-addrss (00) is 30, 70, F0, measure the pulse width VPW0, VPW1, VPW3 of pin 22 (VD1-OUT)  
wave form as well.  
29.63 µs  
0.593 µs  
Signal a  
V period  
Pin 22 wave form  
VPW*  
34  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
VA04  
Vertical free-run frequency  
b
(1) Input Signal a (horizontal 33.75 kHz) to pin 11 (HD3-IN).  
(2) Set sub-address (00) B0.  
(3) When sub-address (02) is 02, 22, 62, 82, A2 or C2, measure the frequency FV0, FV1, FV3, FV4, FV5 or FV6  
of pin 22 (VD1-OUT) wave form.  
(4) Input no-signal to pin 3 (HD1-IN).  
(5) Set sub-address (02) 42.  
(6) When sub-address (00) is 30, 70, B0 or F0, measure the frequency FV20, FV21, FV22 or FV23 of pin 22  
(VD1-OUT) wave form.  
29.63 µs  
0.593 µs  
Signal a  
0.285 V  
V period  
Pin 22 wave form  
VPW*  
35  
2003-02-19  
TA1318N  
SW Mode  
S18 S19  
Note  
Item  
Test Conditions and Measuring Method (V  
= 9 V, Ta = 25 ± 3°C, unless otherwise specified)  
CC  
S06  
c
S21  
VA05  
Vertical pull-in range  
b
(1) Input Signal a (horizontal period T = 63.5 µs) to pin 11 (HD3-IN).  
(2) Set sub-address (02) 02.  
(3) Set sub-address (00) 30.  
(4) Input Signal C (vertical period initial T = 1ms) to pin 10 (VD3-IN). Increasing vertical period of Signal C,  
measure the frequency FVPL0 when pin 22 (VD1-OUT) wave form synchronize with Signal C.  
(5) Input Signal a (horizontal period T = 31.75 µs) to pin 11 (HD3-IN).  
(6) Set sub-address (00) 70.  
(7) Measure FVPL1 as well.  
(8) Input Signal a (horizontal period T = 29.63 µs) to pin 11 (HD3-IN).  
(9) Set sub-address (00) B0.  
(10) Measure FVPL2 as well.  
(11) Input Signal a (horizontal period T = 22.22 µs) to pin 11 (HD3-IN).  
(12) Set sub-address (00) F0.  
(13) Measure FVPL3 as well.  
horizontal period Tµs  
0.593 µs  
Signal a  
1.5 V  
V period (initial T = 1 ms)  
0.25 ms  
Signal c  
1.5 V  
measuring period  
Pin 22 wave form  
36  
2003-02-19  
TA1318N  
Test Circuit  
TP 1-in  
S
0.01 µF  
REG.  
10 µF  
9 V  
9 V 5 V  
a
b
c
SW18  
Pin 20  
SYNC1  
a
SYNC2  
a
SCL  
#17  
SDA  
#16  
b
b
SW21  
SW19  
#19  
#24  
#23  
#22  
#21  
#20  
#18  
#15  
#13  
TP 2-in  
S
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
10 µF  
TA1318N  
1
2
3
4
5
6
7
8
9
10  
11  
12  
#1  
#2  
#3  
#4  
#6  
#7  
#9  
#10  
#11  
#12  
SW6  
a
1 kΩ  
c
b
Pin 7  
Pin 6  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 9  
Pin 10  
Pin 11  
Pin 12  
M
Mylar capacitor  
37  
2003-02-19  
TA1318N  
Application Circuit 1 (Typical values)  
9 V  
VD2-  
OUT  
VD1- SYNC1-  
SYNC2-  
IN  
HD2-  
OUT  
HD1-  
OUT  
DAC3  
DAC1  
20  
SCL  
17  
SDA  
16  
OUT  
IN  
24  
23  
22  
21  
19  
18  
15  
14  
13  
TA1318N  
1
2
3
4
5
6
7
8
9
10  
11  
12  
0.01 µF  
360 Ω  
100 µF  
CSBLA503  
KECZF30  
HD2-IN  
VD2-IN  
HD1-IN  
VD1-IN  
DAC2  
VD3-IN  
HD3-IN CP-OUT  
M
Mylar capacitor  
38  
2003-02-19  
TA1318N  
Application Circuit 2 (How to measure H/V frequency)  
To measure H/V frequency of signal 2 (fH2: unknown) correctly, use two separated input terminals as the  
following figure. One is for frequency measuring (SYNC2-in) and the other is for the AFC (SYNC1-IN). And  
measure H/V frequency of signal 2 (fH2: unknown) on condition that AFC is stable (AFC locks in signal 1 (fH1:  
known).) or that AFC is free-run when SYNC1-IN is no-signal.  
Signal 1  
(fH1: known)  
Signal 1  
AFC  
SYNC1-IN  
for H-AFC  
Signal 2  
(fH2: unknown)  
BUS READ  
Internal pulse (A)  
Signal 2  
H/V FREQ  
COUNTER  
SYNC2-IN  
for  
H/V freq. counter  
TA1318N  
This IC’s H/V frequency counting is done by internal pulse (A) which is made in AFC circuit. So, if AFC circuit  
doesn’t lock in the regular frequency, the frequency of pulse (A) will not be correct and the H/V frequency data will  
not be showed correct data.  
Decision algorithm of H/V frequency detection (detection range, detection times and so on) should be determined  
2
under consideration the factors such as signal strength, existence of ghost signal, H-AFC stability, I C BUS data  
transmission and so on via prototype TV set evaluation.  
39  
2003-02-19  
TA1318N  
Package Dimensions  
Weight: 1.22 g (typ.)  
40  
2003-02-19  
TA1318N  
RESTRICTIONS ON PRODUCT USE  
000707EBA  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other  
rights of the third parties which may result from its use. No license is granted by implication or otherwise under  
any intellectual property or other rights of TOSHIBA CORPORATION or others.  
The information contained herein is subject to change without notice.  
41  
2003-02-19  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

TA1318NG

SYNC Processor, Frequency Counter IC for TV Component Signals
TOSHIBA

TA1319A

SAW Filter 219.5 MHz
TAI-SAW

TA132121BBJ0G

Barrier Strip Terminal Block
AMPHENOL

TA132142BBJ0G

Barrier Strip Terminal Block
AMPHENOL

TA132152BBJ0G

Barrier Strip Terminal Block
AMPHENOL

TA132162BBJ0G

Barrier Strip Terminal Block
AMPHENOL

TA1321A

SAW Filter 425 MHz
TAI-SAW

TA1321C2BBJ0G

Barrier Strip Terminal Block
AMPHENOL

TA1322FN

DOWB-CONVERTER IC WITH PLL FOR SATELLITE TUNER
TOSHIBA

TA1324AFN

IC VIDEO TUNER, PDSO30, 0.300 INCH, 0.65 MM PITCH, PLASTIC, SSOP-30, Tuner IC
TOSHIBA

TA1325A

SAW Filter 2100MHz
TAI-SAW

TA1326FNG

UHF BAND RF MODULATOR IC FOR VTRS
TOSHIBA