TA6038FN [TOSHIBA]

SHOCK SENSOR IC; 震动传感器IC
TA6038FN
型号: TA6038FN
厂家: TOSHIBA    TOSHIBA
描述:

SHOCK SENSOR IC
震动传感器IC

传感器
文件: 总10页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TA6038FN  
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic  
TA6038FN  
Shock Sensor IC  
TA6038FN detects an existence of external shock through the  
shock sensor and output.  
Features  
·
TA6038FN operates from 2.7 to 5.5 V DC single power supply  
voltage.  
Signal from the shock sensor is amplified according to setting  
gain, and is detected through the internal window  
comparator.  
·
·
·
TA6038FN incorporates 1-ch shock detecting circuitry.  
Input terminal of sensor signal is designed high impedance.  
Differential input impedance = 100 M(typ.)  
LPF (low pass filter) circuitry is incorporated.  
Cut-off frequency of LPF = 7 kHz  
Weight: 0.04 g (typ.)  
·
·
·
Sensitivity of shock detection can be adjusted by external devices.  
Small package  
SSOP10-P-0.65A (0.65 mm pitch)  
Block Diagram  
Pin Connection (top view)  
C
R
4
C
C
3
R
1
1
SOA  
SIA  
1
2
3
4
5
10 OUT  
2
9
8
7
6
DO  
AI  
1
9
8
7
50 MW  
OPAMP  
SIB  
-
+
OP-AMP  
-
SOB  
GND  
AO  
2
3
6
CC  
DIFF & LPF  
V
´5 7 kHz  
V
CC  
+
-
Comparator  
Comparator  
1.7 V  
REF 1.3 V  
0.9 V  
+
-
-OPAMP  
50 MW  
5
4
10  
C
2
1
2002-02-13  
                                                        
                                                        
TA6038FN  
Pin Function  
Pin No.  
Pin Name  
Function  
1
2
SOA  
SIA  
Amp (A) output terminal  
Connection terminal of shock sensor  
Connection terminal of shock sensor  
Amp (B) output terminal  
3
SIB  
4
SOB  
GND  
5
Ground terminal  
6
V
Power supply voltage  
CC  
7
AO  
AI  
Op-Amp output terminal  
8
Op-Amp input terminal  
9
DO  
OUT  
Differential-Amp output terminal  
Output terminal (output = “L” when shock is detected.)  
10  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Power supply voltage  
Power dissipation  
V
7
V
CC  
P
300  
mW  
°C  
D
Storage temperature  
T
-55 to 150  
stg  
Recommend Operating Condition  
Characteristics  
Power supply voltage  
Operating temperature  
Symbol  
Rating  
Unit  
V
T
2.7 to 5.5  
V
CC  
-25 to 85  
°C  
opr  
Note: The IC may be destroyed due to short circuit between adjacent pins, incorrect orientation of device’s mounting,  
connecting positive and negative power supply pins wrong way round, air contamination fault, or fault by  
improper grounding.  
2
2002-02-13  
                                                                                                                    
                                                                                                                    
                                                                                                                                     
                                                                                                                                     
TA6038FN  
Electrical Characteristics (unless otherwise specified, V = 3.3 V, Ta = 25°C)  
CC  
Test  
Characteristics  
Supply voltage  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
Circuit  
V
¾
¾
2.7  
¾
3.3  
1.8  
1.8  
5.5  
2.5  
2.5  
CC  
V
V
= 3.3 V  
CC  
CC  
Supply current  
I
(1)  
mA  
CC  
= 5.0 V  
¾
(DIFF-AMP)  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Input impedance  
Gain  
(Note 1)  
Zin  
¾
¾
¾
30  
100  
14  
¾
MW  
GvBuf  
(2)  
13.6  
14.4  
dB  
Connect C = 1000 pF  
between  
Output DC voltage  
VoBuf  
(3)  
0.7  
1
1.3  
V
1 pin and 2 pin,  
3 pin and 4 pin  
Low pass filter cut-off freq.  
Output source current  
Output sink current  
fc  
(4)  
(5)  
(6)  
Frequency at -3dB point  
5
7
11  
¾
¾
kHz  
mA  
IBso  
IBsi  
Voh = V  
- 1 V  
300  
75  
800  
130  
CC  
Vol = 0.3 V  
mA  
Note 1: Marked parameters are reference data.  
(OP-AMP)  
Test  
Characteristics  
Cut-off frequency  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Circuit  
(Note 1)  
(Note 1)  
fT  
¾
¾
¾
¾
¾
¾
1.5  
80  
2
¾
¾
MHz  
dB  
V
Openloop gain  
Gvo  
Vin1  
¾
90  
Input voltage 1  
Input current  
(7)  
(8)  
¾
1.235  
¾
1.3  
25  
1.365  
50  
I
nA  
mV  
mA  
mA  
in  
Offset voltage  
(Note 1)  
Voff  
IAso  
IAsi  
-5  
0
5
Output source current  
Output sink current  
(9)  
Voh = V  
- 1 V  
250  
130  
800  
200  
¾
CC  
(10) Vol = 0.3 V  
¾
Note 1: Marked parameters are reference data.  
(window-comparator)  
Test  
Characteristics  
Trip voltage 1  
Symbol  
Vtrp1  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
Circuit  
Vin1  
Vin1  
Vin1  
(Note 1)  
¾
¾
±0.38  
±0.4  
±0.42  
Output source current  
Output sink current  
IWso  
IWsi  
(11) Voh = V  
- 0.5 V  
30  
50  
¾
mA  
mA  
CC  
(12) Vol = 0.3 V  
300  
800  
¾
Note 1: Marked parameters are reference data.  
3
2002-02-13  
TA6038FN  
Application Note  
1.7 V  
C
1
C
R
4
1
4
2
2
3
50MW  
50MW  
C
3
R
1
7
Shock  
sensor  
Qs (pC/G)  
´5  
LPF  
9
8
10  
C
2
1.3 V  
0.9 V  
Figure 1 The Configuration of G-Force Sensor Amplifier  
Figure 1 shows the configuration of G-Force sensor amplifier. The shock sensor is connected between the  
pins 2 and 3.  
< How to output 0 or 1 from the pin 10 to detect whether there is a shock or not. >  
– Using a sensor with the sensitivity Qs (pC/G) to detect the shock g (G). –  
a. Setting gain: C1 = C2 (pF), R1 (kW), R2 (kW)  
Example: Detecting 5 (G)-shock using a sensor  
Qs ´ g  
R2  
R1  
´ 2´ 5´  
= 0.4 (V)  
with Qs = 0.34 (pC/G), R1 = 10 (kW), R2 = 100 (kW).  
C1  
Qs ´ g R2  
0.34 ´ 5 100  
C1 = C2 =  
´
C1 = C2 =  
´
= 425 (pF)  
0.04  
R1  
0.04  
10  
b. Setting the frequency (Hz) of HPF: Setting C3 (mF), R1 (kW)  
1
Example: Setting the frequency to 20 Hz with  
R1 = 10 (kW).  
3
fc (Hz) =  
´
10  
2´ p ´ R1´ C3  
1
3
= 0.8 (mF)  
10  
C3 =  
´
2´ p ´10 ´ 20  
c. Setting the frequency (kHz) of LPF: Setting C4 (pF), R2 (kW)  
Example: Setting the frequency to 5 kHz with  
R2 = 100 (kW).  
1
6
fc (kHz) =  
´
10  
2´ p ´ R2´ C4  
1
6
= 318 (pF)  
10  
C4 =  
´
2´ p ´100 ´ 5  
< How to output the voltage according to the shock through the pin 7. >  
– Using a sensor with the sensitivity Qs (pC/G), and assuming the shock sensitivity of the system is  
Vsystem (mV/G). –  
a. Setting gain: C1 = C2 (pF), R1 (kW), R2 (kW)  
Example: Designing the system with 200 (mV/G)  
Qs  
C1  
R2  
R1  
by using a sensor that Qs = 0.34 (pC/G),  
R1 = 10 (kW), R2 = 100 (kW).  
3
(mV/G)  
´ 2´ 5´  
= Vsystem ´  
10  
Qs  
R2  
0.34 100  
4
4
C1 = C2 =  
´
´
(pF)  
C1 = C2 =  
´
´
=170 (pF)  
10  
10  
Vsystem R1  
200 10  
4
2002-02-13  
TA6038FN  
Equivalent Circuit  
9
7
8
7
VREF  
10 kW  
AMP  
10  
5
2002-02-13  
TA6038FN  
Test Circuit  
(1) Supply current I  
CC  
M
10  
9
2
8
3
7
4
6
5
1
(2) DIFF-AMP  
Gain GvBuf  
Step 1  
Step 2  
M1  
M
M2  
M
10  
1
9
2
8
3
7
4
6
5
10  
9
2
8
3
7
4
6
5
1
Μ2-Μ1  
0.68 -0.52  
Gain =  
(3) DIFF-AMP  
(4) DIFF-AMP  
Output DC voltage VoBuf  
Low pass filter cut-off freq. fc  
M
M
10  
1
9
2
8
3
7
4
6
5
10  
1
9
2
8
3
7
4
6
5
100 pF  
6
2002-02-13  
TA6038FN  
(5) DIFF-AMP  
Output source current IBso  
(6) DIFF-AMP  
Output sink current IBsi  
M
M
10  
9
2
8
3
7
4
6
5
10  
9
2
8
3
7
4
6
5
1
1
(7) OP-AMP  
Input voltage 1 Vin1  
M
10  
9
2
8
3
7
4
6
5
1
(8) OP-AMP  
Input current Iin  
M
10  
1
9
2
8
3
7
4
6
5
Μ
2
(9) OP-AMP  
(10) OP-AMP  
Output source current IAso  
Output sink current IAsi  
M
M
10  
1
9
2
8
3
7
4
6
5
10  
1
9
2
8
3
7
4
6
5
7
2002-02-13  
TA6038FN  
(11) Window comparator  
(12) Window comparator  
Output sink current IWsi  
Output source current IWso  
10  
1
9
2
8
3
7
4
6
5
10  
1
9
2
8
3
7
4
6
5
M
M
Test Circuit (for reference)  
(a) DIFF-AMP  
CMRR  
(b) DIFF-AMP  
PSRR  
M
M
10  
9
2
8
3
7
6
5
10  
1
9
2
8
3
7
4
6
5
1
4
150 pF  
150 pF  
150 pF 300 pF  
8
2002-02-13  
TA6038FN  
Package Dimensions  
Weight: 0.04 g (typ.)  
9
2002-02-13  
TA6038FN  
RESTRICTIONS ON PRODUCT USE  
000707EAA  
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
· The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
· The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other  
rights of the third parties which may result from its use. No license is granted by implication or otherwise under  
any intellectual property or other rights of TOSHIBA CORPORATION or others.  
· The information contained herein is subject to change without notice.  
10  
2002-02-13  

相关型号:

TA6038FNG

Shock Sensor IC
TOSHIBA

TA6038FN_03

Shock Sensor IC
TOSHIBA

TA6039FN

Shock Sensor IC
TOSHIBA

TA6042FNG

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TOSHIBA

TA605

Power Chip Resistors Thick Film on Alumina Substrate
ETC

TA61

HCMOS/TTL (VC) TCXO Oscillator
CALIBER

TA6115A

HCMOS/TTL (VC) TCXO Oscillator
CALIBER

TA6115AV

HCMOS/TTL (VC) TCXO Oscillator
CALIBER

TA6115B

HCMOS/TTL (VC) TCXO Oscillator
CALIBER

TA6115B35.000MHZ

Oscillator,
CALIBER

TA6115BV

HCMOS/TTL (VC) TCXO Oscillator
CALIBER

TA6115C

HCMOS/TTL (VC) TCXO Oscillator
CALIBER