TA7289FG [TOSHIBA]

PWM STEPPING MOTOR DRIVER; PWM步进电机驱动器
TA7289FG
型号: TA7289FG
厂家: TOSHIBA    TOSHIBA
描述:

PWM STEPPING MOTOR DRIVER
PWM步进电机驱动器

驱动器 运动控制电子器件 信号电路 光电二极管 电动机控制 电机
文件: 总19页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TA7289P/F/FG  
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC  
TA7289P,TA7289F/FG  
PWM STEPPING MOTOR DRIVER  
The TA7289P, TA7289F/FG are PWM solenoid driver designed  
especially for use high efficiency stepping motor control.  
It consist of 1.5A peak current drive capable output full bridge  
driver, oscillation circuit for PWM switching, 4bit DA for output  
current control and TTL compatible input circuit.  
FEATURES  
z Wide Range of Operating Voltage  
: V  
Min. = 6~27 V  
CC (opr.)  
z High Current Capability: I Max = 1.5 A (PEAK)  
O
z LSTTL Compatible Control Inputs (IN A, IN B)  
z Few External Components Required.  
z Buildin 4bit DAC.  
TA7289F/FG  
The TA7289FG is a Pb-free product.  
The TA7289P is Sn plated product including Pb.  
The following conditions apply to solderability:  
*Solderability  
1. Use of Sn-37Pb solder bath  
*solder bath temperature = 230°C  
*dipping time = 5 seconds  
Weight  
HDIP14P5002.54A : 3.00g (Typ.)  
HSOP20P4501.00 : 0.79g (Typ.)  
*number of times = once  
*use of R-type flux  
2. Use of Sn-3.0Ag-0.5Cu solder bath  
*solder bath temperature = 245°C  
*dipping time = 5 seconds  
*the number of times = once  
*use of R-type flux  
1
2006-3-2  
TA7289P/F/FG  
BLOCK DIAGRAM  
TA7289P / TA7289F/FG  
Note: Pin (1), (4), (6), (8), (11), (13) of TA7289F/FG are all NC (Nonconnection)  
2
2006-3-2  
TA7289P/F/FG  
PIN FUNCTION  
PIN No.  
PIN  
SYMBOL  
FUNCTIONAL DESCRIPTION  
NF voltage supply input terminal  
P
1
F/FG  
20  
V
ref  
2
3
2
3
IN B  
IN A  
Signal input terminal  
Signal input terminal  
Function  
4
5
C
Internal oscillation frequency input terminal  
Output current detection terminal  
Output B terminal  
OSC  
5
7
NF  
6
9
OUT B  
7
10  
12  
14  
15  
16  
17  
18  
19  
FIN  
V
Comparator input terminal  
Output A terminal  
I
8
OUT A  
GND  
9
GND terminal  
10  
11  
12  
13  
14  
FIN  
V
Power voltage supply terminal  
D / A input terminal  
CC  
0
2
1
2
3
2
D / A input terminal  
2
2
D / A input terminal  
D / A input terminal  
GND  
GND terminal  
Note: Pin (1), (4), (6), (8), (11), (13) of TA7289F/FG are all NC (Nonconnection)  
FUNCTION  
IN A  
IN B  
OUT A  
OUT B  
MODE  
L
H
L
L
L
OFF  
H
OFF  
L
STOP  
CW / CCW  
CCW / CW  
STOP  
H
H
L
H
H
OFF  
OFF  
INPUT CIRCUIT (IN A, IN B)  
Input circuit is shown in Fig.1 IN A and IN B are TTL compatible “Low Active” type and have a hysteresis of 0.8  
V Typ at T = 25°C.  
j
TA7289P / TA7289F/FG  
Fig. 1  
3
2006-3-2  
TA7289P/F/FG  
D / A AND Vref CIRCUIT  
TA7289P / TA7289F/FG  
Fig. 2  
I
DO  
of current mode DAC output is proportional to multipled voltage of V (PIN (1) (or (20))) and DAC inputs.  
ref  
DAC inputs are all “low active” type and required input current of 300 µA MIN for each input terminal.  
OSC AND COMPARATOR  
TA7289P / TA7289F/FG  
Fig. 3  
4
2006-3-2  
TA7289P/F/FG  
Sawtooth OSC circuit consists of Q through Q and R through R .  
1
4
1
3
R and R are voltage divider of 5 V buildin regulator.  
1
2
Q is turned “off” when V is less than the voltage of 2.5 V + VBE Q + V  
Q approximately equal to 3.8 V. V  
3
1
4
4
BE  
4
is increased by C charging of I . Q and Q are turned “ON” when V becomes V H level.  
1
4
1
2
4
4
Lower level of V (V L) is equal to V  
Q + V  
Q + V  
Q approximately equal to 1.5 V.  
SAT 1  
4
4
BE  
4
BE  
3
V is calculated by following equation.  
4
1
C ·R  
1
V = 5·(1 e −  
4
·t) .................................................(1)  
3
Assuming that V = 1.5 V (t = t ) and=3.8 V (t = t ).  
4
1
2
C is external capacitance connected to Pin (4) (or (5)) and R is onchip 20 kresistor.  
1
3
Therefore, OSC frequency is calculated as follows.  
1.5  
5
t = C ·R ·1n (1 −  
) ................................................(2)  
1
1
3
3.8  
5
t = C ·R ·1n (1 −  
)................................................(3)  
1
2
1
3
1
f
=
=
OSC  
1.5  
3.8  
t t  
1
2
C ·(R ·1n (1 −  
1
)R ·1n (1−  
))  
3
3
5
5
1
=
(kHz)(Unit of C is µF)  
1
21.4 C  
1
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)  
CHARACTERISTIC  
SYMBOL  
RATING  
UNIT  
V
V
30  
30  
CC  
Supply Voltage  
V
ref  
V
7
IN  
Reference Voltage  
Output Current  
V
2
I
TA7289P  
1.5  
I
O (MAX.)  
TA7289F/FG  
TA7289P  
0.8  
A
0.7  
I
O (AVE.)  
TA7289F/FG  
TA7289P  
0.3  
2.3  
Power Dissipation  
PD (Note)  
W
TA7289F/FG  
1.0  
Operating Temperature  
Storage Temperature  
T
30~85  
55~150  
°C  
°C  
opr  
T
stg  
Note: NO HEAT SINK  
5
2006-3-2  
TA7289P/F/FG  
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V = 24 V, Ta = 25°C)  
CC  
TEST  
CIR−  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
CW / CCW  
MIN  
TYP.  
MAX  
UNIT  
I
I
12  
12  
20  
20  
30  
30  
CC1  
CC2  
STOP  
Output  
: Open  
CW / CCW mode,  
Quiescent Current  
1
mA  
I
I
12  
13  
20  
23  
30  
32  
0
3
CC3  
CC4  
2 ~2 : H  
CW / CCW mode,  
0
3
2 ~2 : L  
V
2.0  
0.4  
7.0  
0.8  
IN (H)  
Output Voltage  
2
2
IN A IN B, Source type.  
V
V
V
IN (L)  
Input Hysteresis Width  
V  
0.8  
IN  
IN A, IN B  
Source type  
V
3
= 0 V  
IN  
I
I
25  
35  
IN1  
Input Current  
2
µA  
0
1
2
2 , 2 , 2 , 2  
Source type  
V
= 0 V  
IN  
90  
160  
200  
IN2  
V
1.1  
0.8  
1.2  
0.9  
1.8  
1.2  
1.5  
1.1  
1.7  
1.3  
2.6  
1.9  
2.0  
35  
SAT U1  
I
I
I
= 0.2 A  
OUT  
OUT  
OUT  
V
SAT L1  
V
SAT U2  
Output Saturation Voltage  
3
= 0.7 A  
= 1.5 A  
V
V
SAT L2  
V
SAT U3  
V
SAT L3  
Control Supply Voltage  
Control Supply Current  
V
GND  
V
ref  
ref  
I
2
V
= 0~2.0 V  
25  
µA  
ref  
V
2.6  
0.8  
3.3  
1.1  
50  
FU  
Diode Forward Voltage  
4
I
= 1.5 A  
V
F
V
FL  
I
V = 30 V  
LU  
L
Output Leakage Current  
NF Terminal Current  
5
6
µA  
µA  
I
V = 30 V  
L
50  
LL  
Source type  
T = 0~125°C  
j
V
= 0~2.0 V  
NF  
I
180  
300  
490  
NF  
Internal Supply Output Voltage  
Resistor for Oscillation (R3)  
V
6
6
5
V
CC2  
R
T = 0~125°C  
j
13  
20  
32  
kΩ  
OSC  
6
2006-3-2  
TA7289P/F/FG  
TEST CIRCUIT 1  
I
CC1, 2, 3, 4  
TA7289P/F/FG  
TA7289P / TA7289F/FG  
TEST CIRCUIT 2  
, V , I  
V
, I  
(
IN H), (L) IN1, 2  
IN ref  
TA7289P/F/FG  
TA7289P / TA7289F/FG  
7
2006-3-2  
TA7289P/F/FG  
TEST CIRCUIT 3  
V
SAT U1, L1, U2, L2, U3, L3  
TA7289P/F/FG  
TA7289 / TA7289F/FG  
Note: Calibrate I  
to 0.2A / 0.7A / 1.5A by R  
OUT  
L
TEST CIRCUIT 4  
V , V  
FU FL  
TA7289P/F/FG  
TA7289 / TA7289F/FG  
8
2006-3-2  
TA7289P/F/FG  
TEST CIRCUIT 5  
I
, I  
LU LL  
TA7289P/F/FG  
TA7289P / TA7289F/FG  
TEST CIRCUIT 6  
I
, V  
, R  
NF CC2 OSC  
TA7289P/F/FG  
TA7289P / TA7289F/FG  
V
(V)  
(A)  
CC2  
Note:  
R
OSC  
=
()  
I
OSC  
9
2006-3-2  
TA7289P/F/FG  
TEST CIRCUIT 7  
I
OUT V CHARACTERISTIC, IOUT D / A CHARACTERISTIC  
ref  
TA7289P/F/FG  
TA7289P / TA7289F/FG  
TEST CIRCUIT 8  
CC FREQUENCY CHARACTERISTIC  
I
TA7289P/F/FG  
TA7289P / TA7289F/FG  
10  
2006-3-2  
TA7289P/F/FG  
TA7289F/FG  
11  
2006-3-2  
TA7289P/F/FG  
12  
2006-3-2  
TA7289P/F/FG  
APPLICATION CIRCUIT 1  
TA7289P / TA7289F/FG  
Note 1: Connect if required.  
Note 2: Recommended R value is approximately 200 .  
F
And C value is concerned with the OSC frequency.  
F
We recommend to select optimum value of C under the experimental consideration of noise cutting and  
F
time delay characteristics.  
Note 3:  
Utmost care is necessary in the design of the output, V , V , and GND lines since the IC may be destroyed  
CC M  
by short-circuiting between outputs, air contamination faults, or faults due to improper grounding, or by  
short-circuiting between contiguous pins.  
13  
2006-3-2  
TA7289P/F/FG  
APPLICATION CIRCUIT 2 (PWM chopper stepping motor driver)  
TA7289P / TA7289F/FG  
14  
2006-3-2  
TA7289P/F/FG  
PACKAGE DIMENSIONS  
HDIP14P5002.54A  
Unit: mm  
Weight: 3.00 g (Typ.)  
15  
2006-3-2  
TA7289P/F/FG  
PACKAGE DIMENSIONS  
HSOP20P4501.00  
Unit: mm  
Weight: 0.79 g (Typ.)  
16  
2006-3-2  
TA7289P/F/FG  
Notes on Contents  
1. Block Diagrams  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified  
for explanatory purposes.  
2. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for  
explanatory purposes.  
3. Timing Charts  
Timing charts may be simplified for explanatory purposes.  
4. Application Circuits  
The application circuits shown in this document are provided for reference purposes only. Thorough  
evaluation is required, especially at the mass production design stage.  
Toshiba does not grant any license to any industrial property rights by providing these examples of  
application circuits.  
5. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on handling of ICs  
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in  
case of over current and/or IC failure. The IC will fully break down when used under conditions that  
exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal  
pulse noise occurs from the wiring or load, causing a large current to continuously flow and the  
breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case  
of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location,  
are required.  
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into  
the design to prevent device malfunction or breakdown caused by the current resulting from the  
inrush current at power ON or the negative current resulting from the back electromotive force at  
power OFF. IC breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is  
unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause  
injury, smoke or ignition.  
[4] Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation  
or incorrectly even just one time.  
17  
2006-3-2  
TA7289P/F/FG  
Points to remember on handling of ICs  
(1) Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the  
device so that heat is appropriately radiated, not to exceed the specified junction temperature (TJ)  
at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat  
radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown.  
In addition, please design the device taking into considerate the effect of IC heat radiation with  
peripheral components.  
(2) Back-EMF  
When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor’s  
power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the  
device’s motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid  
this problem, take the effect of back-EMF into consideration in system design.  
18  
2006-3-2  
TA7289P/F/FG  
19  
2006-3-2  

相关型号:

TA7289P

PWM STEPPING MOTOR DRIVER
TOSHIBA

TA7289P(LB)

IC STEPPER MOTOR CONTROLLER, 1.5 A, PDSO14, PLASTIC, HSOP-14, Motion Control Electronics
TOSHIBA

TA7289P_06

PWM STEPPING MOTOR DRIVER
TOSHIBA

TA7291AF

Full-Bridge Driver for DC Motors (driver for controlling the forward and reverse rotations)
TOSHIBA

TA7291AP

Full-Bridge Driver for DC Motors (driver for controlling the forward and reverse rotations)
TOSHIBA

TA7291AS

Full-Bridge Driver for DC Motors (driver for controlling the forward and reverse rotations)
TOSHIBA

TA7291ASG(J)

IC,MOTOR CONTROLLER,BIPOLAR,SIP,9PIN
TOSHIBA

TA7291ASJ

Full-Bridge Driver for DC Motors (driver for controlling the forward and reverse rotations)
TOSHIBA

TA7291F

BRIDGE DRIVER
TOSHIBA

TA7291F/FG

BRIDGE DRIVER
TOSHIBA

TA7291FG

BRIDGE DRIVER
TOSHIBA

TA7291P

BRIDGE DRIVER
TOSHIBA