TAR5S36(TE85L) [TOSHIBA]

TAR5S36(TE85L);
TAR5S36(TE85L)
型号: TAR5S36(TE85L)
厂家: TOSHIBA    TOSHIBA
描述:

TAR5S36(TE85L)

光电二极管
文件: 总23页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAR5S15~TAR5S50  
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic  
TAR5S15~TAR5S50  
Point Regulators (Low-Dropout Regulator)  
The TAR5Sxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a  
control pin which can be used to turn them ON/OFF.  
Overtemperature and overcurrent protection circuits are built  
in to the devices’ output circuit.  
Features  
Low stand-by current  
Overtemperature/overcurrent protection  
Operation voltage range is wide.  
Maximum output current is high.  
Difference between input voltage and output voltage is low.  
Small package.  
Weight: 0.014 g (typ.)  
Ceramic capacitors can be used.  
Pin Assignments (top view)  
V
V
IN  
OUT  
4
5
1
2
3
CONTROL GND NOISE  
Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating  
ratings below the absolute maximum ratings.  
Do not use devices under conditions in which their absolute maximum ratings will be exceeded.  
1
2007-11-01  
TAR5S15~TAR5S50  
List of Products Number and Marking  
Marking on the Product  
Example: TAR5S30 (3.0 V output)  
Products No.  
Marking  
Products No.  
Marking  
TAR5S15  
TAR5S16  
TAR5S17  
TAR5S18  
TAR5S19  
TAR5S20  
TAR5S21  
TAR5S22  
TAR5S23  
TAR5S24  
TAR5S25  
TAR5S26  
TAR5S27  
TAR5S28  
TAR5S29  
TAR5S30  
TAR5S31  
TAR5S32  
1V5  
1V6  
1V7  
1V8  
1V9  
2V0  
2V1  
2V2  
2V3  
2V4  
2V5  
2V6  
2V7  
2V8  
2V9  
3V0  
3V1  
3V2  
TAR5S33  
TAR5S34  
TAR5S35  
TAR5S36  
TAR5S37  
TAR5S38  
TAR5S39  
TAR5S40  
TAR5S41  
TAR5S42  
TAR5S43  
TAR5S44  
TAR5S45  
TAR5S46  
TAR5S47  
TAR5S48  
TAR5S49  
TAR5S50  
3V3  
3V4  
3V5  
3V6  
3V7  
3V8  
3V9  
4V0  
4V1  
4V2  
4V3  
4V4  
4V5  
4V6  
4V7  
4V8  
4V9  
5V0  
3 V 0  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Supply voltage  
Symbol  
Rating  
Unit  
V
15  
V
IN  
Output current  
I
200  
mA  
OUT  
200 (Note 1)  
380 (Note 2)  
Power dissipation  
P
mW  
D
Operation temperature range  
Storage temperature range  
T
40 to 85  
55 to 150  
°C  
°C  
opr  
T
stg  
Note:  
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly  
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute  
maximum ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc).  
Note 1: Unit Ratintg  
2
Note 2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm  
2
2007-11-01  
TAR5S15~TAR5S50  
TAR5S15~TAR5S22  
Electrical Characteristic (unless otherwise specified, V = V  
+ 1 V, I  
= 50 mA,  
IN  
OUT  
OUT  
C
= 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
NOISE j  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Output voltage  
Line regulation  
Load regulation  
V
Please refer to the Output Voltage Accuracy table.  
OUT  
<
<
15 V,  
V
+ 1 V  
V
=
=
IN  
OUT  
Regline  
Regload  
3
15  
mV  
mV  
I
= 1 mA  
OUT  
<
<
150 mA  
1 mA  
I
25  
170  
550  
75  
=
=
OUT  
I
I
I
I
= 0 mA  
B1  
B2  
OUT  
OUT  
Quiescent current  
Stand-by current  
μA  
μA  
= 50 mA  
= 0 V  
850  
0.1  
I
V
B (OFF)  
CT  
IN  
V
10 Hz  
C
= V  
+ 1 V, I  
= 10 mA,  
OUT  
=
OUT  
<
100 kHz,  
<
Output noise voltage  
V
f
30  
μV  
rms  
=
NO  
= 0.01 μF, Ta = 25°C  
NOISE  
<
<
85°C  
Temperature coefficient  
Input voltage  
T
40°C  
T
100  
ppm/°C  
V
=
=
opr  
CVO  
V
2.4  
15  
IN  
V
C
V
= V  
NOISE  
Ripple  
+ 1 V, I  
= 10 mA,  
OUT  
IN  
OUT  
Ripple rejection  
R.R.  
= 0.01 μF, f = 1 kHz,  
70  
dB  
= 500 mV , Ta = 25°C  
p-p  
Control voltage (ON)  
Control voltage (OFF)  
Control current (ON)  
Control current (OFF)  
V
1.5  
3
V
V
V
CT (ON)  
IN  
V
I
0.4  
10  
CT (OFF)  
CT (ON)  
V
V
= 1.5 V  
μA  
μA  
CT  
CT  
I
= 0 V  
0
0.1  
CT (OFF)  
TAR5S23~TAR5S50  
Electrical Characteristic (unless otherwise specified, V = V  
+ 1 V, I = 50 mA,  
OUT  
IN  
OUT  
C
= 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
NOISE j  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Output voltage  
Line regulation  
Load regulation  
V
Please refer to the Output Voltage Accuracy table.  
OUT  
<
<
15 V,  
V
+ 1 V  
V
=
=
IN  
OUT  
Regline  
Regload  
3
15  
mV  
mV  
I
= 1 mA  
OUT  
<
<
150 mA  
1 mA  
I
25  
170  
550  
75  
=
=
OUT  
I
I
I
I
= 0 mA  
B1  
B2  
OUT  
OUT  
Quiescent current  
Stand-by current  
μA  
μA  
= 50 mA  
= 0 V  
850  
0.1  
I
V
B (OFF)  
CT  
IN  
V
10 Hz  
C
= V  
+ 1 V, I  
= 10 mA,  
OUT  
=
OUT  
<
100 kHz,  
<
Output noise voltage  
V
f
30  
μV  
=
NO  
rms  
= 0.01 μF, Ta = 25°C  
NOISE  
Dropout volatge  
V
V  
I = 50 mA  
OUT  
130  
100  
200  
mV  
IN  
OUT  
<
<
85°C  
Temperature coefficient  
T
40°C  
T
opr  
ppm/°C  
=
=
CVO  
V
OUT  
Input voltage  
V
15  
V
IN  
+ 0.2 V  
V
= V  
NOISE  
Ripple  
+ 1 V, I  
= 10 mA,  
OUT  
IN  
OUT  
Ripple rejection  
R.R.  
C
= 0.01 μF, f = 1 kHz,  
70  
dB  
V
= 500 mV , Ta = 25°C  
p-p  
Control voltage (ON)  
Control voltage (OFF)  
Control current (ON)  
Control current (OFF)  
V
1.5  
3
V
V
V
CT (ON)  
IN  
V
I
0.4  
10  
CT (OFF)  
CT (ON)  
V
V
= 1.5 V  
μA  
μA  
CT  
CT  
I
= 0 V  
0
0.1  
CT (OFF)  
3
2007-11-01  
TAR5S15~TAR5S50  
Output Voltage Accuracy  
(V = V  
+ 1 V, I  
= 50 mA, C = 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
OUT  
IN  
OUT  
NOISE  
j
Product No.  
Symbol  
Min  
Typ.  
Max  
Unit  
TAR5S15  
TAR5S16  
TAR5S17  
TAR5S18  
TAR5S19  
TAR5S20  
TAR5S21  
TAR5S22  
TAR5S23  
TAR5S24  
TAR5S25  
TAR5S26  
TAR5S27  
TAR5S28  
TAR5S29  
TAR5S30  
TAR5S31  
TAR5S32  
TAR5S33  
TAR5S34  
TAR5S35  
TAR5S36  
TAR5S37  
TAR5S38  
TAR5S39  
TAR5S40  
TAR5S41  
TAR5S42  
TAR5S43  
TAR5S44  
TAR5S45  
TAR5S46  
TAR5S47  
TAR5S48  
TAR5S49  
TAR5S50  
1.44  
1.54  
1.64  
1.74  
1.84  
1.94  
2.04  
2.14  
2.24  
2.34  
2.43  
2.53  
2.63  
2.73  
2.83  
2.92  
3.02  
3.12  
3.21  
3.31  
3.41  
3.51  
3.6  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
1.56  
1.66  
1.76  
1.86  
1.96  
2.06  
2.16  
2.26  
2.36  
2.46  
2.57  
2.67  
2.77  
2.87  
2.97  
3.08  
3.18  
3.28  
3.39  
3.49  
3.59  
3.69  
3.8  
V
V
OUT  
3.7  
3.9  
3.8  
4.0  
3.9  
4.1  
3.99  
4.09  
4.19  
4.29  
4.38  
4.48  
4.58  
4.68  
4.77  
4.87  
4.21  
4.31  
4.41  
4.51  
4.62  
4.72  
4.82  
4.92  
5.03  
5.13  
4
2007-11-01  
TAR5S15~TAR5S50  
Application Note  
1. Recommended Application Circuit  
V
V
IN  
OUT  
5
4
Control Level  
Operation  
HIGH  
LOW  
ON  
OFF  
1
2
3
CONTROL  
NOISE  
GND  
The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for  
stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin  
(pin 1) be connected to the V  
pin.  
CC  
2. Power Dissipation  
The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a  
board whose size and pattern are as shown below. When incorporating a device belonging to this series into  
your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input  
voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be  
derated to 70%~80% of their absolute maximum power dissipation value.  
Thermal Resistance Evaluation Board  
V
V
OUT  
IN  
C
IN  
C
C
OUT  
NOISE  
Circuit board material: glass epoxy,  
Circuit board dimension:30 mm × 30 mm,  
2
CONTROL GND  
NOISE  
Copper foil pad area: 50 mm (t = 0.8 mm)  
5
2007-11-01  
TAR5S15~TAR5S50  
3. Ripple Rejection  
The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because  
the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the  
circuit is ideal for use in the RF blocks incorporated in all mobile telephones.  
Ripple Rejection f  
TAR5S28 Input Transient Response  
80  
70  
60  
50  
40  
30  
20  
10  
0
10 μF  
Input voltage  
3.4 V  
2.2 μF  
3.1 V  
2.8 V  
1 μF  
Output voltage  
V
= 4.0 V, C  
= 0.01 μF,  
= 500 mV ,  
p p  
IN  
NOISE  
Ta = 25°C, C = 1 μF,  
IN  
C
IN  
= 1 μF, V  
ripple  
C
out  
= 10 μF, C  
= 0.01 μF,  
NOISE  
I
= 10 mA, Ta = 25°C  
out  
V
: 3.4 V 3.1 V, I  
IN  
= 50 mA  
out  
10  
100  
1 k  
10 k  
100 k 300 k  
0
1
2
3
4
5
t
6
7
8
9
10  
Frequency  
f
(Hz)  
Time  
(ms)  
4. NOISE Pin  
TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor  
between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of  
0.0047 μF or more between the NOISE pin and GND.  
The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE  
pin.  
C
NOISE  
V  
Turn On Waveform  
N
60  
50  
40  
30  
20  
10  
2
1
0
3
2
1
Control voltage waveform  
C
= 1 μF, C = 10 μF,  
out  
IN  
I
= 10 mA, Ta = 25°C  
out  
C
= 0.01 μF  
1 μF  
Output voltage waveform  
NOISE  
TAR5S50  
0.33 μF  
TAR5S30  
TAR5S15  
0.1 μF  
C
= 1 μF, C  
= 10 μF,  
= 50 mA, Ta = 25°C  
IN  
out  
I
out  
0
0
10  
0.001 μ  
0.01 μ  
0.1 μ  
1.0 μ  
0
10  
20  
30  
40  
t
50  
60  
70  
80  
90  
NOISE capacitance  
C
(F)  
Time  
(ms)  
NOISE  
6
2007-11-01  
TAR5S15~TAR5S50  
5. Example of Characteristics when Ceramic Capacitor is Used  
Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a  
Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current  
determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the  
output capacitor.  
If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple  
rejection differs from that when a tantalum capacitor is used. This is shown below.  
Toshiba recommend that users check that devices operate stably under the intended conditions of use.  
Examples of safe operating area characteristics  
(TAR5S15) Stable Operating Area  
(TAR5S50) Stable Operating Area  
100  
10  
1
100  
10  
1
Stable Operating Area  
Stable Operating Area  
@V = 2.5 V, C  
= 0.01 μF,  
= 1 μF~10 μF,  
@V = 6.0 V, C  
= 0.01 μF,  
= 1 μF~10 μF,  
IN NOISE  
IN NOISE  
0.1  
0.1  
C
IN  
= 1 μF, C  
C = 1 μF, C  
IN out  
out  
Ta = 25°C  
Ta = 25°C  
0.02  
0.02  
0
20  
40  
60  
80  
100  
120  
140150  
0
20  
40  
60  
80  
100  
120  
140150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S28) Stable Operating Area  
100  
10  
1
Evaluation Circuit for Stable Operating Area  
CONTROL  
C
= 0.01 μF  
NOISE  
TAR5S**  
C
OUT  
Ceramic  
Stable Operating Area  
GND  
ESR  
R
OUT  
V
= V  
OUT  
+ 1 V  
C
IN  
IN  
Ceramic  
@V = 3.8 V, C  
= 0.01 μF,  
= 1 μF~10 μF,  
IN NOISE  
0.1  
C
IN  
= 1 μF, C  
out  
Capacitors used for evaluation  
Ta = 25°C  
Made by Murata  
C : GRM40B105K  
IN  
C
0.02  
: GRM40B105K/GRM40B106K  
OUT  
0
20  
40  
60  
80  
100  
120  
140150  
Output current  
I
(mA)  
OUT  
Ripple Rejection Characteristic (f = 10 kHz~300 kHz)  
(TAR5S30) Ripple Rejection – f  
70  
Ceramic 10 μF  
Tantalum10 μF  
60  
Ceramic  
2.2 μF  
50  
40  
30  
20  
10  
0
Ceramic  
1 μF  
Tantalum 2.2 μF  
Tantalum 1 μF  
@V = 4.0 V, C  
IN NOISE  
= 0.01 μF,  
C
IN  
= 1 μF, V = 500 mV  
,
p-p  
ripple  
I
= 10 mA, Ta = 25°C  
out  
10 k  
100 k  
300 k  
1000 k  
Frequency  
f
(Hz)  
7
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S15)  
I
– V  
(TAR5S18)  
I
– V  
OUT OUT  
OUT  
OUT  
1.6  
1.5  
1.4  
1.9  
1.8  
1.7  
V
= 2.5 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 2.8 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S20)  
I
– V  
(TAR5S21)  
I
– V  
OUT OUT  
OUT  
OUT  
2.1  
2.0  
1.9  
2.2  
2.1  
2.0  
V
= 3.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.1 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S22)  
I
– V  
(TAR5S23)  
I
– V  
OUT OUT  
OUT  
OUT  
2.3  
2.2  
2.1  
V
= 3.2 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
2.3  
25  
25  
40  
40  
2.2  
0
0
50  
100  
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
8
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S25)  
I
– V  
(TAR5S27)  
I
– V  
OUT OUT  
OUT  
OUT  
2.6  
2.5  
2.4  
2.8  
2.7  
2.6  
V
= 2.6 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.7 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN IN OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S28)  
I
– V  
(TAR5S29)  
I
– V  
OUT OUT  
OUT  
OUT  
2.9  
2.8  
2.7  
3
2.9  
2.8  
V
= 3.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
V
= 3.9 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S30)  
I
– V  
(TAR5S31)  
I
– V  
OUT OUT  
OUT  
OUT  
3.1  
3.0  
2.9  
3.2  
3.1  
3.0  
V
= 4.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
V
= 4.1 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
9
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S32)  
I
– V  
(TAR5S33)  
I
– V  
OUT OUT  
OUT  
OUT  
3.3  
3.2  
3.1  
3.4  
3.3  
3.2  
V
= 4.2 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 4.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN IN OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S35)  
I
– V  
(TAR5S45)  
I
– V  
OUT OUT  
OUT  
OUT  
3.6  
3.5  
3.4  
4.6  
4.5  
4.4  
V
= 4.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
V
= 5.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S48)  
I
– V  
(TAR5S50)  
I
– V  
OUT OUT  
OUT  
OUT  
4.9  
4.8  
4.7  
5.1  
5.0  
4.9  
V
= 5.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
V
= 6.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
10  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S15)  
I
– V  
(TAR5S18)  
I – V  
B IN  
B
IN  
10  
10  
C
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
= 1 μF, C  
= 10 μF, C  
NOISE  
= 0.01 μF  
IN  
NOISE  
NOISE  
NOISE  
IN OUT  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
5
OUT  
100  
100  
1
1
50  
10  
50  
10  
0
0
0
0
15  
5
15  
Input voltage  
V
(V)  
Input voltage  
V
IN  
(V)  
IN  
(TAR5S20)  
I
– V  
(TAR5S21)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
= 1 μF, C  
= 10 μF, C  
NOISE  
= 0.01 μF  
IN OUT  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
10  
50  
10  
1
1
0
0
0
0
5
15  
5
15  
Input voltage  
V
(V)  
Input voltage  
V
IN  
(V)  
IN  
(TAR5S22)  
I
– V  
(TAR5S23)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
= 1 μF, C  
= 10 μF, C  
NOISE  
= 0.01 μF  
IN OUT  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
10  
50  
1
1
0
0
0
0
5
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
11  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S25)  
I
– V  
(TAR5S27)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C = 1 μF, C  
IN OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
1
1
50  
50  
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S28)  
I
– V  
(TAR5S29)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C = 1 μF, C  
IN OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
50  
1
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S30)  
I
– V  
(TAR5S31)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
100  
100  
50  
50  
1
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
12  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S32)  
I
– V  
(TAR5S33)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
100  
100  
1
50  
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S35)  
I
– V  
(TAR5S45)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
1
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S48)  
I
– V  
(TAR5S50)  
I – V  
B IN  
B
IN  
10  
10  
C
C
= 1 μF, C  
OUT  
= 10 μF,  
C
C
= 1 μF, C = 10 μF,  
OUT  
IN  
IN  
= 0.01 μF  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
1
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
13  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S15)  
V
– V  
(TAR5S18)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S20)  
V
– V  
(TAR5S21)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S22)  
V
– V  
(TAR5S23)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
14  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S25)  
V
– V  
(TAR5S27)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S28)  
V
– V  
(TAR5S29)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S30)  
V
– V  
(TAR5S31)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
15  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S32)  
V
– V  
(TAR5S33)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S35)  
V
– V  
(TAR5S45)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S48)  
V
– V  
(TAR5S50)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
16  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S15)  
V
Ta  
(TAR5S18)  
V
Ta  
OUT  
OUT  
1.6  
1.55  
1.5  
1.9  
1.85  
1.8  
V
= 2.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 2.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
100  
100  
150  
150  
1.45  
1.4  
1.75  
1.7  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S20)  
V
Ta  
(TAR5S21)  
V
Ta  
OUT  
OUT  
2.1  
2.05  
2.0  
2.2  
2.15  
2.1  
V
= 3.0 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.1 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
150  
100  
150  
100  
1.95  
1.9  
2.05  
2.0  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S22)  
V
Ta  
(TAR5S23)  
V
Ta  
OUT  
OUT  
2.3  
2.25  
2.2  
2.4  
2.35  
2.3  
V
= 3.2 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.3 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
150  
150  
100  
100  
2.15  
2.1  
2.25  
2.2  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
17  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S25)  
V
Ta  
(TAR5S27)  
V
Ta  
OUT  
OUT  
2.6  
2.55  
2.5  
2.8  
2.75  
2.7  
V
= 3.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.7 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
150  
100  
2.45  
2.4  
2.65  
2.6  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S28)  
V
Ta  
(TAR5S29)  
V
Ta  
OUT  
OUT  
2.9  
2.85  
2.8  
3.0  
2.95  
2.9  
V
= 3.8 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.9 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
100  
150  
2.75  
2.7  
2.85  
2.8  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S30)  
V
Ta  
(TAR5S31)  
V
Ta  
OUT  
OUT  
3.1  
3.05  
3.0  
3.2  
3.15  
3.1  
V
= 4 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 4.1 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
150  
2.95  
2.9  
3.05  
3.0  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
18  
2007-11-01  
TAR5S15~TAR5S50  
(TAR5S32)  
V
Ta  
(TAR5S33)  
V
Ta  
OUT  
OUT  
3.3  
3.25  
3.2  
3.4  
3.35  
3.3  
V
= 4.2 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 4.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
3.15  
3.1  
3.25  
3.2  
150  
100  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S35)  
V
Ta  
(TAR5S45)  
V
Ta  
OUT  
OUT  
3.6  
3.55  
3.5  
4.6  
4.55  
4.5  
V
= 4.5 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 5.5 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
3.45  
3.4  
4.45  
4.4  
150  
150  
100  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S48)  
V
Ta  
(TAR5S50)  
V
Ta  
OUT  
OUT  
4.9  
4.85  
4.8  
5.1  
5.05  
5
V
= 5.8 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 6 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF Pulse width = 1 ms  
C
= 0.01 μF Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
4.75  
4.7  
4.95  
4.9  
150  
150  
100  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
19  
2007-11-01  
TAR5S15~TAR5S50  
I
Ta  
(TAR5S23~TAR5S50)  
V
- V  
Ta  
OUT  
B
IN  
3
2.5  
2
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= V  
+ 1 V, C = 1 μF,  
IN  
C
C
= 1 μF, C = 10 μF,  
OUT  
IN  
OUT  
IN  
C
= 10 μF, C  
= 0.01 μF  
= 0.01 μF  
NOISE  
OUT  
NOISE  
I
= 150 mA  
OUT  
Pulse width = 1 ms  
Pulse width = 1 ms  
I
= 150 mA  
OUT  
1.5  
1
100  
100  
50  
50  
10  
0.5  
0
10  
1
1
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S23~TAR5S50)  
V
- V  
– I  
I – I  
B OUT  
IN  
OUT  
OUT  
0.5  
0.4  
2.5  
2.0  
C
C
= 1 μF, C = 10 μF,  
OUT  
V
= V  
+ 1 V,  
IN  
IN  
OUT  
= 0.01μF  
NOISE  
C
= 1 μF, C  
= 10 μF,  
IN  
OUT  
= 0.01 μF  
Pulse width = 1 ms  
C
40  
NOISE  
85  
Pulse width = 1 ms  
Ta = 25°C  
Ta = 25°C  
0.3  
0.2  
1.5  
1.0  
40  
85  
0.1  
0
0.5  
0
0
50  
100  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
Turn On Waveform  
Turn Off Waveform  
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
V
V
= V  
+ 1 V,  
IN  
CT (ON)  
= 10 μF, C  
OUT  
= 1.5 0 V, C = 1 μF,  
IN  
Control voltage waveform  
C
=
NOISE  
0.01 μF  
OUT  
Control voltage waveform  
Output voltage waveform  
40  
Ta = 25°C  
85  
Output voltage waveform  
V
= V  
+ 1 V,  
IN  
OUT  
V
= 0 1.5 V, C = 1 μF,  
CT (ON)  
IN  
C
OUT  
= 10 μF, C  
=
0.01 μF  
NOISE  
0
1
0
1
Time  
t
(ms)  
Time t (ms)  
20  
2007-11-01  
TAR5S15~TAR5S50  
Ripple Rejection – f  
V
– f  
N
10  
1
80  
70  
60  
50  
40  
30  
20  
10  
0
TAR5S25 (2.5 V) TAR5S30 (3.0 V)  
TAR5S15 (1.5 V)  
V
= V  
+ 1 V, I  
= 10 mA, C = 1 μF,  
IN  
OUT  
OUT  
IN  
C
= 10 μF, C  
= 0.01 μF,  
OUT  
NOISE  
10 Hz < f < 100 kHz, Ta = 25°C  
TAR5S45 (4.5 V)  
TAR5S50 (5.0 V)  
TAR5S35 (3.5 V)  
0.1  
V
= V  
+ 1 V, I  
= 10 mA, C = 1 μF,  
IN  
OUT  
OUT  
IN  
0.01  
C
= 10 μF, C  
= 0.01 μF,  
OUT  
NOISE  
V
= 500 mV , Ta = 25°C  
p-p  
Ripple  
10  
100  
1 k  
10 k  
100 k  
1000 k  
0.001  
Frequency  
f
(Hz)  
10  
100  
1 k  
10 k  
100 k  
Frequency  
f
(Hz)  
P
Ta  
D
400  
300  
200  
100  
0
Circuit board material: glass epoxy,  
Circuit board dimention:  
30 mm × 30 mm,  
pad area: 50 mm2 (t = 0.8 mm)  
Unit  
40  
0
40  
80  
120  
Ambient temperature Ta (°C)  
21  
2007-11-01  
TAR5S15~TAR5S50  
Package Dimensions  
Weight: 0.014 g (typ.)  
22  
2007-11-01  
TAR5S15~TAR5S50  
RESTRICTIONS ON PRODUCT USE  
Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information  
in this document, and related hardware, software and systems (collectively “Product”) without notice.  
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with  
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.  
Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are  
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and  
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily  
injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must  
also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document,  
the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA  
Semiconductor Reliability Handbook” and (b) the instructions for the application that Product will be used with or for. Customers are  
solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the  
appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any  
information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other  
referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO  
LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.  
Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring  
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.  
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or  
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious  
public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used  
in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling  
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric  
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this  
document.  
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.  
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any  
applicable laws or regulations.  
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any  
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to  
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.  
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE  
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY  
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR  
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND  
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO  
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS  
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.  
Do not use or otherwise make available Product or related software or technology for any military purposes, including without  
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile  
technology products (mass destruction weapons). Product and related software and technology may be controlled under the  
Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product  
or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.  
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.  
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,  
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of  
noncompliance with applicable laws and regulations.  
23  
2007-11-01  

相关型号:

TAR5S36(TE85L,F)

TAR5S36(TE85L,F)
TOSHIBA

TAR5S36U

Point Regulators (Low-Dropout Regulator)
TOSHIBA

TAR5S36U(TE85L)

暂无描述
TOSHIBA

TAR5S36U(TE85L,F)

TAR5S36U(TE85L,F)
TOSHIBA

TAR5S37

Point Regulators (Low-Dropout Regulator)
TOSHIBA

TAR5S37U

Point Regulators (Low-Dropout Regulator)
TOSHIBA

TAR5S37U(TE85L)

TAR5S37U(TE85L)
TOSHIBA

TAR5S37U(TE85L,F)

TAR5S37U(TE85L,F)
TOSHIBA

TAR5S38

Point Regulators (Low-Dropout Regulator)
TOSHIBA

TAR5S38(TE85L)

TAR5S38(TE85L)
TOSHIBA

TAR5S38(TE85L,F)

TAR5S38(TE85L,F)
TOSHIBA

TAR5S38U

Point Regulators (Low-Dropout Regulator)
TOSHIBA