TAR5S46U(TE85L) [TOSHIBA]

TAR5S46U(TE85L);
TAR5S46U(TE85L)
型号: TAR5S46U(TE85L)
厂家: TOSHIBA    TOSHIBA
描述:

TAR5S46U(TE85L)

文件: 总23页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAR5S15U~TAR5S50U  
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic  
TAR5S15U~TAR5S50U  
Point Regulators (Low-Dropout Regulators)  
The TAR5SxxU Series consists of general-purpose bipolar LDO  
regulators with an on/off control pin and features  
overtemperature and overcurrent protection circuits.  
Features  
Low standby current  
Overtemperature and overcurrent protections  
Wide operating voltage range  
SON5-P-0202-0.65  
Weight: 0.007 g (typ.)  
High maximum output current  
(UFV)  
Low input-to-output voltage differential  
Small package (UFV package similar to SOT-353)  
Allows use of ceramic capacitors as the input and output  
capacitors.  
Pin Assignment (Top View)  
V
V
IN  
OUT  
4
5
1
2
3
CONTROL GND NOISE  
The overtemperature and overcurrent protection features are not intended to guarantee correct operation below  
the absolute maximum ratings.  
Do not use the TAR5SxxU under conditions where the absolute maximum ratings may be exceeded.  
1
2009-01-21  
TAR5S15U~TAR5S50U  
List of Part Numbers and Markings  
Part Marking  
Example: TAR5S30U (3.0-V output)  
Part No.  
Marking  
Part No.  
Marking  
TAR5S15U  
TAR5S16U  
TAR5S17U  
TAR5S18U  
TAR5S19U  
TAR5S20U  
TAR5S21U  
TAR5S22U  
TAR5S23U  
TAR5S24U  
TAR5S25U  
TAR5S26U  
TAR5S27U  
TAR5S28U  
TAR5S29U  
TAR5S30U  
TAR5S31U  
TAR5S32U  
1V5  
1V6  
1V7  
1V8  
1V9  
2V0  
2V1  
2V2  
2V3  
2V4  
2V5  
2V6  
2V7  
2V8  
2V9  
3V0  
3V1  
3V2  
TAR5S33U  
TAR5S34U  
TAR5S35U  
TAR5S36U  
TAR5S37U  
TAR5S38U  
TAR5S39U  
TAR5S40U  
TAR5S41U  
TAR5S42U  
TAR5S43U  
TAR5S44U  
TAR5S45U  
TAR5S46U  
TAR5S47U  
TAR5S48U  
TAR5S49U  
TAR5S50U  
3V3  
3V4  
3V5  
3V6  
3V7  
3V8  
3V9  
4V0  
4V1  
4V2  
4V3  
4V4  
4V5  
4V6  
4V7  
4V8  
4V9  
5V0  
3 V 0  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Supply Voltage  
Symbol  
Rating  
Unit  
V
15  
V
IN  
Output Current  
I
200  
mA  
mW  
°C  
OUT  
Power Dissipation  
Operation Temp. Range  
Storage Temp. Range  
P
450 (Note 1)  
D
T
40 to 85  
55 to 150  
opr  
T
°C  
stg  
Note:  
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly  
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute  
maximum ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc).  
Note 1: Mounted on a glass epoxy circuit board of 30 mm × 30 mm; Pad dimension of 35 mm2  
2
2009-01-21  
TAR5S15U~TAR5S50U  
TAR5S15U~TAR5S22U  
Electrical Characteristic (unless otherwise specified, V = V  
+ 1 V, I  
= 50 mA,  
IN  
OUT  
OUT  
C
= 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
NOISE j  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Output voltage  
Line regulation  
Load regulation  
V
Please refer to the Output Voltage Accuracy table.  
OUT  
V
+ 1 V V 15 V,  
OUT IN  
= 1 mA  
Regline  
Regload  
3
15  
mV  
mV  
I
OUT  
1 mA I  
150 mA  
25  
170  
550  
75  
OUT  
I
I
I
I
= 0 mA  
B1  
B2  
OUT  
OUT  
Quiescent current  
Standby current  
μA  
μA  
= 50 mA  
= 0 V  
850  
0.1  
I
V
B (OFF)  
CT  
IN  
V
= V  
+ 1 V, I  
= 10 mA,  
= 10 mA,  
OUT  
OUT  
Output noise voltage  
V
10 Hz f 100 kHz,  
30  
μV  
rms  
NO  
C
= 0.01 μF, Ta = 25°C  
NOISE  
Temperature coefficient  
Input voltage  
T
40°C T  
85°C  
opr  
100  
ppm/°C  
V
CVO  
V
2.4  
15  
IN  
V
C
V
= V  
+ 1 V, I  
OUT OUT  
IN  
Ripple rejection  
R.R.  
= 0.01 μF, f = 1 kHz,  
70  
dB  
NOISE  
Ripple  
= 500 mV , Ta = 25°C  
p-p  
Control voltage (ON)  
Control voltage (OFF)  
Control current (ON)  
Control current (OFF)  
V
1.5  
3
V
V
V
CT (ON)  
IN  
V
I
0.4  
10  
CT (OFF)  
CT (ON)  
V
V
= 1.5 V  
μA  
μA  
CT  
CT  
I
= 0 V  
0
0.1  
CT (OFF)  
TAR5S23U~TAR5S50U  
Electrical Characteristic (unless otherwise specified, V = V  
+ 1 V, I = 50 mA,  
OUT  
IN  
OUT  
C
= 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
NOISE j  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Output voltage  
Line regulation  
Load regulation  
V
Please refer to the Output Voltage Accuracy table.  
OUT  
V
+ 1 V V 15 V,  
OUT IN  
= 1 mA  
Regline  
Regload  
3
15  
mV  
mV  
I
OUT  
1 mA I  
150 mA  
25  
170  
550  
75  
OUT  
= 0 mA  
I
I
I
I
B1  
B2  
OUT  
OUT  
Quiescent current  
Standby current  
μA  
μA  
= 50 mA  
= 0 V  
850  
0.1  
I
V
B (OFF)  
CT  
IN  
V
= V  
+ 1 V, I  
= 10 mA,  
OUT  
OUT  
Output noise voltage  
V
10 Hz f 100 kHz,  
= 0.01 μF, Ta = 25°C  
30  
μV  
NO  
rms  
C
NOISE  
Dropout volatge  
V
V  
I
= 50 mA  
130  
100  
200  
mV  
IN  
OUT  
CVO  
OUT  
Temperature coefficient  
T
40°C T  
85°C  
ppm/°C  
V
opr  
V
OUT  
+ 0.2 V  
Input voltage  
V
15  
IN  
V
= V  
NOISE  
Ripple  
+ 1 V, I  
= 10 mA,  
OUT  
IN  
OUT  
Ripple rejection  
R.R.  
C
= 0.01 μF, f = 1 kHz,  
70  
dB  
V
= 500 mV , Ta = 25°C  
p-p  
Control voltage (ON)  
Control voltage (OFF)  
Control current (ON)  
Control current (OFF)  
V
1.5  
3
V
V
V
CT (ON)  
IN  
V
I
0.4  
10  
CT (OFF)  
CT (ON)  
V
V
= 1.5 V  
μA  
μA  
CT  
CT  
I
= 0 V  
0
0.1  
CT (OFF)  
3
2009-01-21  
TAR5S15U~TAR5S50U  
Output Voltage Accuracy  
(V = V  
+ 1 V, I  
= 50 mA, C = 1 μF, C  
= 10 μF, C  
= 0.01 μF, T = 25°C)  
IN  
OUT  
OUT  
IN  
OUT  
NOISE  
j
Part No.  
Symbol  
Min  
Typ.  
Max  
Unit  
TAR5S15U  
TAR5S16U  
TAR5S17U  
TAR5S18U  
TAR5S19U  
TAR5S20U  
TAR5S21U  
TAR5S22U  
TAR5S23U  
TAR5S24U  
TAR5S25U  
TAR5S26U  
TAR5S27U  
TAR5S28U  
TAR5S29U  
TAR5S30U  
TAR5S31U  
TAR5S32U  
TAR5S33U  
TAR5S34U  
TAR5S35U  
TAR5S36U  
TAR5S37U  
TAR5S38U  
TAR5S39U  
TAR5S40U  
TAR5S41U  
TAR5S42U  
TAR5S43U  
TAR5S44U  
TAR5S45U  
TAR5S46U  
TAR5S47U  
TAR5S48U  
TAR5S49U  
TAR5S50U  
1.44  
1.54  
1.64  
1.74  
1.84  
1.94  
2.04  
2.14  
2.24  
2.34  
2.43  
2.53  
2.63  
2.73  
2.83  
2.92  
3.02  
3.12  
3.21  
3.31  
3.41  
3.51  
3.6  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
1.56  
1.66  
1.76  
1.86  
1.96  
2.06  
2.16  
2.26  
2.36  
2.46  
2.57  
2.67  
2.77  
2.87  
2.97  
3.08  
3.18  
3.28  
3.39  
3.49  
3.59  
3.69  
3.8  
V
V
OUT  
3.7  
3.9  
3.8  
4.0  
3.9  
4.1  
3.99  
4.09  
4.19  
4.29  
4.38  
4.48  
4.58  
4.68  
4.77  
4.87  
4.21  
4.31  
4.41  
4.51  
4.62  
4.72  
4.82  
4.92  
5.03  
5.13  
4
2009-01-21  
TAR5S15U~TAR5S50U  
Application Notes  
1. Recommended Application Circuit  
V
V
OUT  
4
IN  
5
CONTROL  
Operation  
HIGH  
LOW  
ON  
OFF  
1
2
3
A noise-damping capacitor should be connected between the NOISE pin and GND  
for stable operation. The recommended value is higher than 0.0047 μF.  
CONTROL  
GND NOISE  
The above figure shows the recommended application circuit for the TAR5SxxU. Capacitors should be  
connected to V and V  
for input/output stabilization.  
IN  
OUT  
If on/off control is not required, it is recommended to connect the CONTROL pin (pin 1) to V  
.
CC  
2. Power Dissipation  
The power dissipation rating (450 mW) is measured on a board shown below. More power can be safely  
dissipated by reducing the input voltage, output current and/or ambient temperature. It is recommended to  
use the TAR5SxxU at 70% to 80% of the absolute maximum power dissipation.  
Thermal Resistance Evaluation Board  
V
V
OUT  
IN  
C
IN  
C
C
OUT  
NOISE  
Material: Glass epoxy  
Dimensions: 30 mm × 30 mm  
Copper pad area: 35 mm2, t = 0.8 mm  
CONTROL GND  
NOISE  
5
2009-01-21  
TAR5S15U~TAR5S50U  
3. Ripple Rejection  
The TAR5SxxU feature a good power supply ripple rejection and input transient response, making them an  
ideal solution for the RF block of cell phones.  
Ripple Rejection f  
TAR5S28U Input Transient Response  
80  
70  
60  
50  
40  
30  
20  
10  
0
10 μF  
Input voltage  
3.4 V  
2.2 μF  
3.1 V  
2.8 V  
1 μF  
Output voltage  
V
= 4.0 V, C = 0.01 μF,  
NOISE  
IN  
Ta = 25°C, C = 1 μF,  
IN  
C
IN  
= 1 μF, V  
= 500 mV ,  
p p  
Ripple  
C
OUT  
= 10 μF, C  
= 0.01 μF,  
NOISE  
I
= 10 mA, Ta = 25°C  
OUT  
V
: 3.4 V 3.1 V, I  
IN  
= 50 mA  
OUT  
8
10  
100  
1 k  
10 k  
100 k 300 k  
0
1
2
3
4
5
t
6
7
9
10  
Time  
(ms)  
Frequency  
f
(Hz)  
4. NOISE Pin  
The TAR5SxxU have a pin named NOISE. To reduce the output noise and ensure stable operation, a  
capacitor should be inserted between the NOISE pin and GND. The capacitance value should be at least  
0.0047 μF.  
The output voltage rise time varies with the value of the capacitor connected to the NOISE pin.  
C
NOISE  
V  
Turn On Waveform  
N
60  
50  
40  
30  
20  
10  
2
1
0
3
2
1
C
= 1 μF, C = 10 μF,  
OUT  
IN  
Control voltage waveform  
I
= 10 mA, Ta = 25°C  
OUT  
C
= 0.01 μF  
1 μF  
Output voltage waveform  
NOISE  
TAR5S50  
0.33 μF  
TAR5S30  
TAR5S15  
0.1 μF  
C
= 1 μF, C  
= 10 μF,  
= 50 mA, Ta = 25°C  
IN  
OUT  
I
OUT  
0
0
10  
0.001 μ  
0.01 μ  
0.1 μ  
1.0 μ  
0
10  
20  
30  
40  
t
50  
60  
70  
80  
90  
Time  
(ms)  
NOISE capacitance  
C
(F)  
NOISE  
6
2009-01-21  
TAR5S15U~TAR5S50U  
5. Examples of Performance Curves When Ceramic Capacitors Are Used  
The stable operating area (SOA) is an area where the output voltage does not go into oscillation. The  
following figures represent the SOA obtained using an evaluation circuit shown below. The SOA is determined  
by the equivalent series resistance (ESR) of the output capacitor and the output current. The TAR5SxxU  
provide stable operation even when a ceramic capacitor is used as the output capacitor.  
If the ripple frequency is 30 kHz or greater, the ripple rejection characteristics differ, depending on the type  
of the output capacitor (ceramic or tantalum) as shown by the bottom figure on this page.  
It is recommended to verify that TAR5SxxU operate properly under the intended conditions of use.  
Examples of Safe Operating Area Characteristics  
(TAR5S15U) Stable Operating Area  
(TAR5S50U) Stable Operating Area  
100  
10  
1
100  
10  
1
Stable Operating Area  
Stable Operating Area  
@V = 2.5 V, C  
= 0.01 μF,  
= 1 μF to 10 μF,  
@V = 6.0 V, C  
= 0.01 μF,  
= 1 μF to 10 μF,  
IN NOISE  
IN NOISE  
0.1  
0.1  
C
IN  
= 1 μF, C  
C
= 1 μF, C  
OUT  
IN  
OUT  
100  
Ta = 25°C  
Ta = 25°C  
0.02  
0.02  
0
20  
40  
60  
80  
100  
120  
140150  
0
20  
40  
60  
80  
120  
140150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S28U) Stable Operating Area  
100  
10  
1
Circuit for Stable Operating Area Evaluation  
CONTROL  
C
= 0.01 μF  
NOISE  
TAR5S**U  
C
OUT  
Ceramic  
Stable Operating Area  
GND  
R
OUT  
V
= V  
OUT  
+ 1 V  
C
IN  
IN  
Ceramic  
ESR  
@V = 3.8 V, C  
= 0.01 μF,  
= 1 μF to 10 μF,  
IN NOISE  
0.1  
C
IN  
= 1 μF, C  
OUT  
Capacitors used for evaluation  
Ta = 25°C  
C
C
: Murata GRM40B105K  
IN  
0.02  
: Murata GRM40B105K / GRM40B106K  
OUT  
0
20  
40  
60  
80  
100  
120  
140150  
Output current  
I
(mA)  
OUT  
Ripple Rejection Characteristic (f = 10 kHz to 300 kHz)  
(TAR5S30U) Ripple Rejection – f  
70  
Ceramic 10 μF  
Tantalum10 μF  
60  
Ceramic  
2.2 μF  
50  
40  
30  
20  
10  
0
Ceramic  
1 μF  
Tantalum 2.2 μF  
Tantalum 1 μF  
@V = 4.0 V, C  
IN NOISE  
= 0.01 μF,  
C
IN  
= 1 μF, V = 500 mV  
p-p  
,
Ripple  
I
= 10 mA, Ta = 25°C  
OUT  
10 k  
100 k  
300 k  
1000 k  
Frequency  
f
(Hz)  
7
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S15U)  
I
– V  
(TAR5S18U)  
I
– V  
OUT OUT  
OUT  
OUT  
1.6  
1.5  
1.4  
1.9  
1.8  
1.7  
V
= 2.5 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 2.8 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S20U)  
I
– V  
(TAR5S21U)  
I
– V  
OUT OUT  
OUT  
OUT  
2.1  
2.0  
1.9  
2.2  
2.1  
2.0  
V
= 3.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.1 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S22U)  
I
– V  
(TAR5S23U)  
I
– V  
OUT OUT  
OUT  
OUT  
2.3  
2.2  
2.1  
2.4  
2.3  
2.2  
V
= 3.2 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
8
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S25U)  
I
– V  
(TAR5S27U)  
I
– V  
OUT OUT  
OUT  
OUT  
2.6  
2.5  
2.4  
2.8  
2.7  
2.6  
V
= 2.6 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.7 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN IN OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S28U)  
I
– V  
(TAR5S29U)  
I
– V  
OUT OUT  
OUT  
OUT  
2.9  
2.8  
2.7  
3
2.9  
2.8  
V
= 3.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.9 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S30U)  
I
– V  
(TAR5S31U)  
I
– V  
OUT OUT  
OUT  
OUT  
3.1  
3.0  
2.9  
3.2  
3.1  
3.0  
V
= 4.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 4.1 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
9
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S32U)  
I
– V  
(TAR5S33U)  
I
– V  
OUT OUT  
OUT  
OUT  
3.3  
3.2  
3.1  
3.4  
3.3  
3.2  
V
= 4.2 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 4.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN IN OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
150  
150  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S35U)  
I
– V  
(TAR5S45U)  
I
– V  
OUT OUT  
OUT  
OUT  
3.6  
3.5  
3.4  
4.6  
4.5  
4.4  
V
= 4.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 5.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
(TAR5S48U)  
I
– V  
(TAR5S50U)  
I
– V  
OUT OUT  
OUT  
OUT  
4.9  
4.8  
4.7  
5.1  
5.0  
4.9  
V
= 5.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 6.0 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
Ta = 85°C  
Ta = 85°C  
25  
25  
40  
40  
0
50  
100  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
10  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S15U)  
I
– V  
(TAR5S18U)  
I – V  
B IN  
B
IN  
10  
10  
C
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
= 1 μF, C  
OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
IN  
NOISE  
NOISE  
NOISE  
IN  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
5
OUT  
100  
100  
1
1
50  
10  
50  
10  
0
0
0
0
15  
5
15  
Input voltage  
V
(V)  
Input voltage  
V
IN  
(V)  
IN  
(TAR5S20U)  
I
– V  
(TAR5S21U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
10  
50  
10  
1
1
0
0
0
0
5
15  
5
15  
Input voltage  
V
(V)  
Input voltage  
V
IN  
(V)  
IN  
(TAR5S22U)  
I
– V  
(TAR5S23U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
10  
50  
1
1
0
0
0
0
5
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
11  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S25U)  
I
– V  
(TAR5S27U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
1
1
50  
50  
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S28U)  
I
– V  
(TAR5S29U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
NOISE  
= 0.01 μF  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
50  
1
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S30U)  
I
– V  
(TAR5S31U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
100  
100  
50  
50  
1
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
12  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S32U)  
I
– V  
(TAR5S33U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
100  
100  
1
50  
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S35U)  
I
– V  
(TAR5S45U)  
I – V  
B IN  
B
IN  
10  
10  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
C
IN  
= 1 μF, C  
OUT  
= 10 μF, C  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
1
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S48U)  
I
– V  
(TAR5S50U)  
I – V  
B IN  
B
IN  
10  
10  
C
C
= 1 μF, C  
OUT  
= 10 μF,  
C
C
= 1 μF, C = 10 μF,  
OUT  
IN  
IN  
= 0.01 μF  
= 0.01 μF  
NOISE  
NOISE  
Pulse width = 1 ms  
Pulse width = 1 ms  
5
5
I
= 150 mA  
I
= 150 mA  
OUT  
OUT  
100  
100  
50  
1
50  
1
0
0
0
0
5
10  
15  
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
13  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S15U)  
V
– V  
(TAR5S18U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S20U)  
V
– V  
(TAR5S21U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S22U)  
V
– V  
(TAR5S23U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
14  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S25U)  
V
– V  
(TAR5S27U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S28U)  
V
– V  
(TAR5S29U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S30U)  
V
– V  
(TAR5S31U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
15  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S32U)  
V
– V  
(TAR5S33U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
15  
15  
15  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S35U)  
V
– V  
(TAR5S45U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
(TAR5S48U)  
V
– V  
(TAR5S50U)  
V
– V  
OUT IN  
OUT  
IN  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
I
= 1 mA, C = 1 μF, C  
IN OUT  
= 10 μF,  
I
= 1 mA, C = 1 μF, C = 10 μF,  
IN OUT  
OUT  
OUT  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
0
5
10  
0
5
10  
15  
Input voltage  
V
IN  
(V)  
Input voltage  
V
IN  
(V)  
16  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S15U)  
V
Ta  
(TAR5S18U)  
V
Ta  
OUT  
OUT  
1.6  
1.55  
1.5  
1.9  
1.85  
1.8  
V
= 2.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 2.8 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
100  
100  
150  
150  
1.45  
1.4  
1.75  
1.7  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S20U)  
V
Ta  
(TAR5S21U)  
V
Ta  
OUT  
OUT  
2.1  
2.05  
2.0  
2.2  
2.15  
2.1  
V
= 3.0 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.1 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
150  
100  
150  
100  
1.95  
1.9  
2.05  
2.0  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S22U)  
V
Ta  
(TAR5S23U)  
V
Ta  
OUT  
OUT  
2.3  
2.25  
2.2  
2.4  
2.35  
2.3  
V
= 3.2 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.3 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
150  
150  
100  
100  
2.15  
2.1  
2.25  
2.2  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
17  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S25U)  
V
Ta  
(TAR5S27U)  
V
Ta  
OUT  
OUT  
2.6  
2.55  
2.5  
2.8  
2.75  
2.7  
V
= 3.5 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 3.7 V, C = 1 μF, C = 10 μF,  
IN OUT  
IN  
IN OUT  
IN  
C
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
150  
100  
2.45  
2.4  
2.65  
2.6  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S28U)  
V
Ta  
(TAR5S29U)  
V
Ta  
OUT  
OUT  
2.9  
2.85  
2.8  
3.0  
2.95  
2.9  
V
= 3.8 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 3.9 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
100  
150  
2.75  
2.7  
2.85  
2.8  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S30U)  
V
Ta  
(TAR5S31U)  
V
Ta  
OUT  
OUT  
3.1  
3.05  
3.0  
3.2  
3.15  
3.1  
V
= 4 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 4.1 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
150  
2.95  
2.9  
3.05  
3.0  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
18  
2009-01-21  
TAR5S15U~TAR5S50U  
(TAR5S32U)  
V
Ta  
(TAR5S33U)  
V
Ta  
OUT  
OUT  
3.3  
3.25  
3.2  
3.4  
3.35  
3.3  
V
= 4.2 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
V
= 4.3 V, C = 1 μF, C  
= 10 μF,  
= 0.01 μF, Pulse width = 1 ms  
IN  
IN OUT  
IN IN OUT  
C
C
NOISE  
NOISE  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
150  
100  
3.15  
3.1  
3.25  
3.2  
150  
100  
50  
25  
0
25  
50  
75  
100  
100  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S35U)  
V
Ta  
(TAR5S45U)  
V
Ta  
OUT  
OUT  
3.6  
3.55  
3.5  
4.6  
4.55  
4.5  
V
= 4.5 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 5.5 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
3.45  
3.4  
4.45  
4.4  
150  
150  
100  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S48U)  
V
Ta  
(TAR5S50U)  
V
Ta  
OUT  
OUT  
4.9  
4.85  
4.8  
5.1  
5.05  
5
V
= 5.8 V, C = 1 μF, C  
IN OUT  
= 10 μF,  
V
= 6 V, C = 1 μF, C  
IN IN OUT  
= 10 μF,  
IN  
C
= 0.01 μF, Pulse width = 1 ms  
C
= 0.01 μF, Pulse width = 1 ms  
NOISE  
NOISE  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
4.75  
4.7  
4.95  
4.9  
150  
150  
100  
100  
50  
25  
0
25  
50  
75  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
19  
2009-01-21  
TAR5S15U~TAR5S50U  
I
Ta  
(TAR5S23U~TAR5S50U)  
V
- V  
Ta  
OUT  
B
IN  
3
2.5  
2
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= V  
+ 1 V, C = 1 μF,  
IN  
C
C
= 1 μF, C = 10 μF,  
OUT  
IN  
OUT  
IN  
C
= 10 μF, C  
= 0.01 μF  
= 0.01 μF  
NOISE  
OUT  
NOISE  
I
= 150 mA  
OUT  
Pulse width = 1 ms  
Pulse width = 1 ms  
I
= 150 mA  
OUT  
1.5  
1
100  
100  
50  
50  
10  
0.5  
0
10  
1
1
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(TAR5S23U~TAR5S50U)V - V  
IN  
– I  
I – I  
B OUT  
OUT  
OUT  
0.5  
0.4  
2.5  
2.0  
C
C
= 1 μF, C = 10 μF,  
OUT  
V
= V  
+ 1 V,  
IN  
IN  
OUT  
= 0.01μF  
NOISE  
C
= 1 μF, C  
= 10 μF,  
IN  
OUT  
= 0.01 μF  
Pulse width = 1 ms  
C
40  
NOISE  
85  
Pulse width = 1 ms  
Ta = 25°C  
Ta = 25°C  
0.3  
0.2  
1.5  
1.0  
40  
85  
0.1  
0
0.5  
0
0
50  
100  
150  
0
50  
100  
150  
Output current  
I
(mA)  
Output current  
I
(mA)  
OUT  
OUT  
Turn On Waveform  
Turn Off Waveform  
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
V
V
= V  
+ 1 V,  
IN  
CT (ON)  
= 10 μF, C  
OUT  
= 1.5 0 V, C = 1 μF,  
IN  
Control voltage waveform  
C
=
NOISE  
0.01 μF  
OUT  
Control voltage waveform  
Output voltage waveform  
40  
Ta = 25°C  
85  
Output voltage waveform  
V
= V  
+ 1 V,  
OUT  
IN  
V
= 0 1.5 V, C = 1 μF,  
CT (ON)  
IN  
= 0.01 μF  
NOISE  
C
OUT  
= 10 μF, C  
0
1
0
1
Time  
t
(ms)  
Time t (ms)  
20  
2009-01-21  
TAR5S15U~TAR5S50U  
Ripple Rejection – f  
V
– f  
N
80  
70  
60  
50  
40  
30  
20  
10  
1
TAR5S25U (2.5 V) TAR5S30U (3.0 V)  
TAR5S15U (1.5 V)  
V
= V  
+ 1 V, I  
= 10 mA, C = 1 μF,  
IN  
OUT  
OUT  
IN  
C
= 10 μF, C  
= 0.01 μF,  
OUT  
NOISE  
10 Hz < f < 100 kHz, Ta = 25°C  
TAR5S45U (4.5 V)  
TAR5S50U (5.0 V)  
0.1  
TAR5S35U (3.5 V)  
0.01  
V
= V  
+ 1 V, I  
= 10 mA, C = 1 μF,  
IN  
OUT  
OUT  
IN  
C
= 10 μF, C  
= 0.01 μF,  
10 OUT  
NOISE  
V
= 500 mV , Ta = 25°C  
p-p  
Ripple  
0
10  
0.001  
100  
1 k  
10 k  
100 k  
1000 k  
10  
100  
1 k  
10 k  
100 k  
Frequency  
f
(Hz)  
Frequency  
f
(Hz)  
P
Ta  
D
500  
400  
300  
200  
100  
Circuit board material: glass epoxy, Circuit  
board dimention:  
30 mm × 30 mm,  
pad area: 35 mm2 (t = 0.8 mm)  
40  
0
40  
80  
120  
Ambient temperature Ta (°C)  
21  
2009-01-21  
TAR5S15U~TAR5S50U  
Package Dimensions  
SON5-P-0202-0.65  
Weight: 0.007 g (typ.)  
22  
2009-01-21  
TAR5S15U~TAR5S50U  
RESTRICTIONS ON PRODUCT USE  
Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information  
in this document, and related hardware, software and systems (collectively “Product”) without notice.  
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with  
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.  
Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are  
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and  
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily  
injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must  
also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document,  
the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA  
Semiconductor Reliability Handbook” and (b) the instructions for the application that Product will be used with or for. Customers are  
solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the  
appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any  
information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other  
referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO  
LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.  
Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring  
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.  
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or  
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious  
public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used  
in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling  
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric  
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this  
document.  
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.  
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any  
applicable laws or regulations.  
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any  
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to  
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.  
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE  
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY  
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR  
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND  
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO  
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS  
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.  
Do not use or otherwise make available Product or related software or technology for any military purposes, including without  
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile  
technology products (mass destruction weapons). Product and related software and technology may be controlled under the  
Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product  
or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.  
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.  
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,  
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of  
noncompliance with applicable laws and regulations.  
23  
2009-01-21  

相关型号:

TAR5S46U(TE85L,F)

TAR5S46U(TE85L,F)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S47

Point Regulators (Low-Dropout Regulator)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S47(TE85L)

TAR5S47(TE85L)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S47U

Point Regulators (Low-Dropout Regulator)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S47U(TE85L)

TAR5S47U(TE85L)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S47U(TE85L,F)

TAR5S47U(TE85L,F)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S48

Point Regulators (Low-Dropout Regulator)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S48(TE85L)

TAR5S48(TE85L)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S48(TE85L,F)

TAR5S48(TE85L,F)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA

TAR5S48U

Point Regulators (Low-Dropout Regulator)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
TOSHIBA