TB1227CNG [TOSHIBA]

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV; 视频,色度和同步信号处理IC,支持PAL / NTSC / SECAM制式彩色电视机
TB1227CNG
型号: TB1227CNG
厂家: TOSHIBA    TOSHIBA
描述:

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV
视频,色度和同步信号处理IC,支持PAL / NTSC / SECAM制式彩色电视机

消费电路 商用集成电路 电视 光电二极管 信息通信管理
文件: 总94页 (文件大小:1292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB1227CNG  
TOSHIBA Bi-CMOS INTEGRATED CIRCUIT  
SILICON MONOLITHIC  
TENTATIVE  
TB1227CNG  
VIDEO, CHROMAAND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC  
/ SECAM SYSTEM COLOR TV  
TB1227CNG that is a signal processing IC for the PAL / NTSC /  
SECAM color TV system integrates video, chroma and  
synchronizing signal processing circuits together in a 56-pin  
shrink DIP plastic package.  
TB1227CNG incorporates a high performance picture quality  
compensation circuit in the video section, an automatic PAL /  
NTSC / SECAM discrimination circuit in the chroma section, and  
an automatic 50 / 60Hz discrimination circuit in the  
synchronizing section. Besides a crystal oscillator that internally  
generates 4.43MHz, 3.58MHz and M / N-PAL clock signals for  
color demodulation, there is a horizontal PLL circuit built in the  
Weight: 5.55 g (typ.)  
IC.  
The PAL / SECAM demodulation circuit which is an adjustment-free circuit incorporates a 1H DL circuit inside for  
operating the base band signal processing system.  
2
Also, TB1227CNG makes it possible to set or control various functions through the built-in I C bus line.  
FEATURES  
Video section  
Built-in trap filter  
Black expansion circuit  
Variable DC regeneration rate  
Y delay line  
Sharpness control by aperture control  
γ correction  
VSM output  
Chroma section  
Built-in 1H Delay circuit  
PAL / SECAM base band demodulation system  
One crystal color demodulation circuit  
(4.43MHz, 3.58MHz, M / N-PAL)  
Automatic system discrimination, system forced mode  
1H delay line also serves as comb filter in NTSC demodulation  
Built-in band-pass filter, SECAM bell filter  
Color limiter circuit  
Fsc output  
Synchronizing deflecting section  
Built-in horizontal VCO resonator  
Adjustment-free horizontal / vertical oscillation by count-down circuit  
Double AFC circuit  
Vertical frequency automatic discrimination circuit  
Horizontal / vertical holding adjustment  
Vertical ramp output  
Vertical amplitude adjustment  
Vertical linearity / S-shaped curve adjustment  
1
2004-05-24  
TB1227CNG  
SCP (Sand Castle Pulse) output  
Text section  
Linear RGB input  
OSD RGB input  
Cut / off-drive adjustment  
RGB primary signal output  
2
2004-05-24  
TB1227CNG  
BLOCK DIAGRAM  
3
2004-05-24  
TB1227CNG  
TERMINAL FUNCTIONS  
PIN  
INPUT /  
OUTPUTSIGNAL  
PIN NAME  
No.  
FUNCTION  
INTERFACE CIRCUIT  
Output terminal of Sand Castle  
Pulse. (SCP)  
To connect drive resistor for SCP.  
1
SCP OUTPUT  
Controls pin 52 to maintain a  
uniform V-ramp output.  
2
V-AGC  
Connect a current smoothing  
capacitor to this pin.  
V
for the DEF block (deflecting  
CC  
system).  
3
4
H-V  
(9V)  
CC  
Connect 9V (Typ.) to this pin.  
Horizontal Output Horizontal output terminal.  
Corrects picture distortion in high  
voltage variation. Input AC  
Picture Distortion component of high voltage variation.  
5
4.5V at Open  
Correction  
For inactivating the picture distortion  
correction function, connect 0.01µF  
capacitor between this pin and GND.  
FBP input for generating horizontal  
AFC2 detection pulse and horizontal  
blanking pulse.  
The threshold of horizontal AFC2  
6
FBP Input  
detection is set H.V -2V  
CC f  
(V 0.75V).  
f
Confirming the power supply  
voltage, determine the high level of  
FBP.  
4
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
To connect filter for detecting  
presence of H. synchronizing signal  
or V. synchronizing signal.  
7
8
Coincident Det.  
V
terminal of the LOGIC block.  
DD  
V
DD  
(5V)  
Connect 5V (Typ.) to this pin.  
2
9
SCL  
SCL terminal of I C bus.  
2
10 SDA  
SDA terminal of I C bus.  
11 Digital GND  
Grounding terminal of LOGIC block.  
R, G, B output terminals.  
12 B Output  
13 G Output  
14 R Output  
15 TEXT GND  
Grounding terminal of TEXT block.  
External unicolor brightness control  
terminal. Sensitivity and start point  
of ABL can be set through the bus.  
16 ABCL  
6.4V at Open  
V
terminal of TEXT block.  
CC  
17 RGB-V  
(9V)  
——  
CC  
Connect 9V (Typ.) to this pin.  
5
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
Input terminals of digital R, G, B  
signals. Input DC directly to these  
pins.  
OSD  
18 Digital R Input  
19 Digital G Input  
20 Digital B Input  
⎯⎯⎯⎯ 3.0V  
TEXT  
⎯⎯⎯⎯ 2.0V  
OSD or TEXT signal can be input to  
these pins.  
⎯⎯⎯⎯ GND  
OSD  
⎯⎯⎯⎯ 3.0V  
TEXT  
Selector switch of halftone / internal  
RGB signal / digital RGB  
(pins 18, 19, 20).  
⎯⎯⎯⎯ 2.0V  
21 Digital YS / YM  
H.T.  
⎯⎯⎯⎯ 1.0V  
TV  
⎯⎯⎯⎯ GND  
Analog RGB  
⎯⎯⎯⎯ 0.5V  
TV  
Selector switch of internal RGB  
signal or analog RGB  
(pins 23, 24, 25).  
22 Analog YS  
⎯⎯⎯⎯ GND  
23 Analog R Input  
24 Analog G Input  
25 Analog B Input  
Analog R, G, B input terminals. Input  
signal through the clamping  
capacitor. Standard input level :  
0.5V (100 IRE).  
p-p  
To connect filter for detecting color  
limit.  
26 Color Limiter  
27 FSC Output  
Output terminal of FSC.  
6
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
Enable to change slave address to  
1Bit DAC Output  
Terminal  
28  
8Ah by a connecting V  
with this  
CC  
terminal.  
Power output the signal that is  
primary differentiated Y signal.  
Enable to change output amplifier  
and phase by the Bus.  
29 VSM Output Terminal  
To connect APC filter for chroma  
demodulation.  
DC  
3.2V  
30 APC Filter  
Input terminal of processed Y signal.  
Input Y signal through clamping  
capacitor. Standard input level :  
31  
Y Input  
2
0.7V  
p-p  
Grounding terminal of VCXO block.  
Insert a decoupling capacitor  
between this pin and pin 38 (Fsc  
32 Fsc GND  
V
both.  
) at the shortest distance from  
DD  
DC  
2.5V  
Input terminal of B-Y or R-Y signal.  
Input signal through a clamping  
capacitor.  
33 B-Y Input  
34 R-Y Input  
AC  
B-Y : 650mV  
R-Y : 510mV  
p-p  
p-p  
(with input of PAL-75%  
color bar signal)  
7
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
DC  
1.9V  
AC  
Output terminal of demodulated R-Y  
or B-Y signal. There is an LPF for  
removing carrier built in this pin.  
35 R-Y Output  
36 B-Y Output  
B-Y : 650mV  
R-Y : 510mV  
(with input of PAL-75%  
color bar signal)  
p-p  
p-p  
Output terminal of processed Y  
signal. Standard output level :  
37 Y Output  
0.7V  
p-p  
V
terminal of DDS block. Insert a  
DD  
decoupling capacitor between this  
pin and pin 32 (Fsc GND) at the  
shortest distance from both. If  
decouping capacitor is inserted at a  
distance from the pins, it may cause  
spurious deterioration.  
38 Fsc V  
DD  
To connect filter for controlling black  
expansion gain of the black  
expansion circuit. Black expansion  
gain is determined by voltage of this  
pin.  
DC  
1.6V  
39 Black Stretch  
To connect 16.2MHz crystal clock  
for generating sub-carrier.  
Lowest resonance frequency (f ) of  
0
DC  
4.1V  
40 16.2MHz X’tal  
the crystal oscillation can be varied  
by changing DC capacity. Adjust f  
0
of the oscillation frequency with the  
board pattern.  
8
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
(5V)  
FUNCTION  
INTERFACE CIRCUIT  
V
terminal of Y / C signal  
processing block.  
CC  
41 Y / C V  
CC  
DC  
2.4V  
Chroma signal input terminal. Input  
negative 1.0V  
sync composite  
p-p  
42 Chroma Input  
43 Y / C GND  
video signal to this pin through a  
coupling capacitor.  
AC : 300mV  
burst  
p-p  
Grounding terminal of Y / C signal  
processing block.  
To connect filter for DC regeneration  
compensation.  
Y signal after black expansion can  
be monitored by opening this pin.  
DC  
2.2V  
44 APL  
Input terminal of Y signal. Input  
negative 1.0V  
video signal to this pin through a  
clamping capacitor.  
sync composite  
p-p  
45  
Y Input  
1
To connect f adjustment filter for  
0
SECAM demodulation.  
DC  
3.2V  
46 S-Demo-Adj.  
DC Output Terminal For V Centering.  
Enable to control output DC voltage  
by the bus.  
DC  
2.7~6.3V  
47 V-Center  
9
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
To connect filter for horizontal AFC1  
detection.  
Horizontal frequency is determined  
by voltage of this pin.  
DC  
5.0V  
48 AFC1 Filter  
Output terminal of synchronizing  
signal separated by sync separator  
circuit.  
Connect a pull-up resistor to this pin  
because it is an open-collector  
output type.  
49 Sync Output  
To connect filter for vertical  
synchronizing separation.  
DC  
5.9V  
50 V-Sepa.  
Input terminal of synchronizing  
separator circuit. Input signal  
through a clamping capacitor to this  
51 Sync Input  
pin. Negative 1.0V  
sync.  
p-p  
To connect filter for generating  
V-ramp waveform.  
52 V-Ramp  
10  
2004-05-24  
TB1227CNG  
PIN  
No.  
INPUT / OUTPUT  
SIGNAL  
PIN NAME  
FUNCTION  
INTERFACE CIRCUIT  
Output terminal of vertical ramp  
signal.  
53 Vertical Output  
54 V-NF  
Input terminal of vertical NF signal.  
Grounding terminal of DEF  
(deflection) block.  
55 DEF GND  
56 V BLK Output  
Output terminal of V blanking.  
11  
2004-05-24  
TB1227CNG  
BUS CONTROL MAP  
WRITE DATA  
Slave address : 88H  
(Pin28-High : 8AH)  
MSB  
7
LSB  
0
BLOCK  
SUB ADDR  
PRESET  
6
5
4
3
2
1
00  
Uni-Color  
BRIGHT  
COLOR  
1
1
1
0
0
1
1
1
0
1
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
VIDEO / TEXT  
*
TINT  
P / N KIL  
DTrp-SW  
0
SHARPNESS  
R-Mon  
B-Mon  
Y SUB CONTRAST  
RGB-CONTRAST  
VIDEO / TEXT  
DEF  
*
*
*
*
*
*
*
*
Y γ  
WPL SW  
0
BLUE BACK MODE  
G DRIVE GAIN  
B DRIVE GAIN  
Y-DL SW  
HORIZONTAL POSITION  
AFC MODE  
H-CK SW  
WMUT SW  
R CUT OFF  
G CUT OFF  
B CUT OFF  
TEXT (P / N)  
B. S. OFF  
S-INHBT  
C-TRAP  
358 Trap  
OFST SW  
F-B / W  
C-TOF  
P / N GP  
X’tal MODE  
CLL SW  
WBLK SW  
COLOR SYSTEM  
B-Y BLACK OFFSET  
SYSTEM  
R-Y BLACK OFFSET  
P / N  
Vi / C  
CLL LEVEL  
PN CD ATT  
TOF Q  
C-TRAP Q  
DC TRAN RATE  
ABL GAIN  
V FREQ  
V-AMPLITUDE  
V CENTERING  
V S-CORRECTION  
V LINEARITY  
TOF FO  
V-MODE  
VSM PHASE  
VSM GAIN  
C-TRAP FO  
APA-CON FO / SW  
HALF TONE SW  
BLACK STRETCH POINT  
ABL POINT  
VIDEO (DEF)  
H BLK PHASE  
V OUT PHASE  
*
GEOMETRY  
COINCIDENT DET  
DRG SW  
VAGC SP  
V-CD MD  
WIDE V-BLK START PHASE  
WIDE V-BLK STOP PHASE  
WIDE P-MUTE START PHASE  
WIDE P-MUTE STOP PHASE  
S GP V-ID SW S KIL  
DRV CNT  
MUTE MODE  
BLK SW  
NOISE DET LEVEL  
N COMB  
S-field  
DEF-V  
SECAM  
SCD ATT  
DEMP FO  
BELL FO  
Note: * : Data is ignored.  
12  
2004-05-24  
TB1227CNG  
READ-IN DATA  
Slave address : 89H (Pin28-High : 8BH)  
MSB  
LSB  
7
6
5
4
3
2
V-FREQ  
H
1
V-STD  
V
0
00  
01  
PORES  
LOCK  
COLOR SYSTEM  
RGBOUT Y -IN  
X’tal  
N-DET  
UV-IN  
Y -IN  
2
V-GUARD  
1
BUS CONTROL FUNCTION  
WRITE FUNCTION  
NUMBER  
OF BITS  
ITEM  
UNI-COLOR  
DESCRIPTION  
VARIABLE RANGE  
18dB~0dB  
PRESET VALUE  
8bit  
8bit  
8bit  
7bit  
80h MAX5.0dB  
80h 0V  
BRIGHT  
COLOR  
TINT  
1V~1V  
~0dB  
80h 6dB  
40h 0°  
45°~45°  
P / N KILLER sensitivity  
control  
P / N KIL  
1bit  
6bit  
1bit  
Normal / Low  
6dB~12dB  
ON / OFF  
00h NORMAL  
20h +3dB  
SHARPNESS  
DTrp-SW  
SECAM double trap ON /  
OFF  
01h OFF  
TEXT-11 dB  
pre-amplification UV output  
R-Mon  
1bit  
Normal / Monitor  
00h Normal  
B-Mon  
(Pin 35 : Bo, Pin 36 : Ro)  
1bit  
5bit  
Normal / Monitor  
00h Normal  
10h 0dB  
Y SUB CONTRAST  
3dB~+3dB  
EXT RGB UNI-COLOR  
control  
RGB-CONTRAST  
8bit  
18dB~0dB  
80h MAX 5.0dB  
Yγ  
γ ON / OFF  
1bit  
1bit  
2bit  
OFF / 95 IRE  
00h ON  
WPL SW  
White peak limit level  
Luminance selector switch  
130 IRE / OFF  
00h 130 IRE  
00h OFF  
BLUE BACK MODE  
IRE ; OFF, 40, 50, 50  
Y-DL TIME  
(28, 33, 38, 43, 48)  
Y-DL SW  
3bit  
280~480ns after Y IN  
04h 480ns  
G DRIVE GAIN  
B DRIVE GAIN  
8bit  
8bit  
5dB~3dB  
5dB~3dB  
80h 0dB  
80h 0dB  
HORIZONTAL  
POSITION  
Horizontal position  
adjustment  
5bit  
3µs~+3µs  
10h 0µs  
13  
2004-05-24  
TB1227CNG  
NUMBER  
OF BITS  
ITEM  
AFC MODE  
DESCRIPTION  
VARIABLE RANGE  
dB ; AUTO, 0, 10, 10  
384fh-VCO, FSC-VCXO  
PRESET VALUE  
AFC1 detection sensitivity  
selector  
2bit  
1bit  
00h AUTO  
HOUT generation clock  
selector  
H-CK SW  
01h FSC-VCXO  
R CUT OFF  
G CUT OFF  
B CUT OFF  
B. S. OFF  
C-TRAP  
8bit  
8bit  
8bit  
1bit  
1bit  
0.5~0.5V  
0.5~0.5V  
0.5~0.5V  
ON / OFF  
ON / OFF  
00h 0.5V  
00h 0.5V  
00h 0.5V  
00h ON  
Black expansion ON / OFF  
Chroma Trap ON / OFF SW  
00h ON  
Black offset SECAM  
discrimination interlocking  
switch  
FST SW  
1bit  
SECAM only / All systems  
00h S only  
C-TOF  
P / N TOF ON / OFF SW  
PAL GATE position  
1bit  
1bit  
1bit  
1bit  
ON / OFF  
00h ON  
P / N GP  
CL-L SW  
WBLK SW  
Standard / 0.5µs delay  
ON / OFF  
00h Standard  
00h ON  
COLOR LIMIT ON / OFF  
WIDE V-BLK ON / OFF  
OFF / ON  
00h OFF  
WIDE Picture-MUTE ON /  
OFF  
WMUT SW  
S-INHBT  
1bit  
1bit  
OFF / ON  
Yes / No  
00h OFF  
00h Yes  
To detect or not to detect  
SECAM  
C Trap-f , force 3.58MHz  
0
3.58 Trap  
F-B / W  
1bit  
1bit  
AUTO / Forced 3.58MHz  
AUTO / Forced B / W  
00h AUTO  
00h AUTO  
switch  
Force B / W switch  
000 ; European system AUTO,  
001 ; 3N  
010 ; 4P  
011 ; 4P (N inhibited)  
100 ; S.American system AUTO  
101 ; 3N  
APC oscillation frequency  
selector switch  
European system  
AUTO  
X’tal MODE  
3bit  
00h  
110 ; MP  
111 ; NP  
COLOR SYSTEM  
Chroma system selection  
2bit  
4bit  
AUTO, PAL, NTSC, SECAM  
00h AUTO  
08h 0mV  
R-Y color difference output  
black offset adjustment  
R-Y BLACK OFFSET  
24~21mV STEP 3mV  
B-Y color difference output  
black offset adjustment  
B-Y BLACK OFFSET  
CLL LEVEL  
4bit  
2bit  
24~21mV STEP 3mV  
08h 0mV  
Color limit level adjustment  
91, 100, 108, 116%  
02h 108%  
Note: 3N; 3.58-NTSC, 4P; 4.43-PAL, MP ; M-PAL, NP; N-PAL  
European system AUTO; 4.43-PAL, 4.43-NSTC, 3.58-NTSC, SRCAM  
S. American system AUTO; 3.58-NTSC, M-PAL, N-PAL  
14  
2004-05-24  
TB1227CNG  
NUMBER  
OF BITS  
ITEM  
PN CD ATT  
DESCRIPTION  
VARIABLE RANGE  
+1~2dB STEP 1dB  
PRESET VALUE  
P / N color difference  
amplitude adjustment  
2bit  
01h 0dB  
TOF Q  
TOF F  
TOF Q adjustment  
2bit  
2bit  
2bit  
2bit  
2bit  
2bit  
1.0, 1.5, 2.0, 2.5  
02h 2.0  
TOF f adjustment  
0
kHz ; 0, 500, 600, 700  
+20ns, +20ns, 0ns, 0ns  
0dB, 0dB, 6dB, OFF  
1.0, 1.5, 2.0, 2.5  
02h 600kHz  
02h 0ns  
0
VSM PHASE  
VSM GAIN  
C-TRAP Q  
VSM output phase  
VSM output gain  
03h OFF  
02h 2.0  
Chroma trap Q control  
C-TRAP F  
Chroma trap f control  
0
kHz ; 100, 50, 0, +50  
02h 0kHz  
0
Black expansion start point  
setting  
BLACK STRETCH POI  
DC TRAN RATE  
3bit  
3bit  
2bit  
28~70% IRE×0.4  
100~130% APL  
05h 56% IRE  
00h 100%  
Direct transmission  
compensation degree  
selection  
Sharpness peak frequency  
selection  
APA-CON PEAK F  
kHz ; 2.5, 3.1, 4.2, OFF  
02h 4.2kHz  
0
ABL POINT  
ABL detection voltage  
ABL sensitivity  
3bit  
3bit  
2bit  
ABL point ; 6.5V~5.9V  
Brightness ; 0~2V  
00h 6.5V  
00h 0V  
ABL GAIN  
HALF TONE SW  
Halftone gain selection  
3dB, 6dB, OFF, OFF  
00h 3dB  
Horizontal blanking end  
position  
H BLK PHASE  
V FREQ  
3bit  
2bit  
0~3.5µs step 0.5µs  
00h 0µs  
AUTO, 60Hz,  
Forced 60, 50, 60  
Vertical frequency  
00h AUTO  
V OUT PHASE  
V-AMPLITUDE  
1bit DAC  
Vertical position adjustment  
Vertical amplitude selection  
1bit DAC output  
3bit  
7bit  
1bit  
6bit  
0~7H STEP 1H  
50~50%  
00h 0H  
40h 0%  
00h LOW  
20h 2.5V  
LOW, HIGH  
1~4V  
V CENTERING  
V Centering  
00 ; DSYNC  
Discriminator output signal  
selection  
01 ; DSYNC×AFC  
10 ; Field counting  
11 ; VP is present.  
COINCIDENT MODE  
2bit  
02h Field counting  
V S-CORRECTION  
V-MODE  
Vertical S-curve correction  
Force Sync Mode Selection  
7bit  
1bit  
Reverse S-curve, S-curve  
TELETEXT / Normal  
40h  
01h Normal  
Drive reference axis  
selection  
DRG SW  
1bit  
R / G  
00h R  
V LINEARITY  
ND SW  
Vertical linearity correction  
Noise Det SW  
5bit  
1bit  
(one side)  
00h  
Normal, Low  
00h Normal  
Vertical count-down mode  
selection  
V-CD MD  
1bit  
AUTO / Force synchronization  
00h AUTO  
15  
2004-05-24  
TB1227CNG  
NUMBER  
OF BITS  
ITEM  
DRV CNT  
DESCRIPTION  
VARIABLE RANGE  
OFF / Force centering  
Normal / High speed  
PRESET VALUE  
All drive gains forced  
centering switch  
1bit  
1bit  
2bit  
00h OFF  
Vertical ramp time constant  
selection  
VAGC SP  
01h High speed  
01h RGB  
OFF, RGB mute, Y mute,  
transverse  
MUTE MODE  
OFF, RGB, Y, Transverse  
WIDE V-BLK START  
PH  
Vertical pre-position selection  
Blanking ON / OFF  
6bit  
1bit  
7bit  
64~1H STEP 1H  
ON / OFF  
3Fh 1H  
00h ON  
00h 0H  
BLK SW  
Vertical post-position  
selection  
WIDE V-BLK STOP PH  
0~128H STEP 1H  
Noise detection level  
selection  
NOISE DET LEVEL  
2bit  
0.20, 0.15, 0.10, 0.05  
02h 0.1  
WIDE P-MUTE START Video mute pre-position  
6bit  
1bit  
7bit  
64~1H STEP 1H  
OFF / ADD  
3Fh 1H  
00h OFF  
00h 0H  
PH  
selection  
N COMB  
1H addition selection  
WIDE P-MUTE STOP  
PH  
Video mute post-position  
selection  
0~128H STEP 1H  
SECAM color and Q  
selection in weak electric  
field  
Weak electric field control ON /  
OFF  
S-field  
1bit  
00h ON  
SECAM color difference  
amplitude adjustment  
SCD ATT  
1bit  
1bit  
1bit  
1bit  
0 / 1dB  
00h 0dB  
SECAM deemphasis time  
constant selection  
DEMO F  
S GP  
85kHz / 100kHz  
Standard / 0.5µs delay  
OFF / ON  
00h 85kHz  
00h Standard  
00h OFF  
0
SECAM gate position  
selection  
SECAM V-ID ON / OFF  
switch  
V-ID SW  
S KIL  
SECAM KILLER sensitivity  
selection  
1bit  
2bit  
NORMAL / LOW  
00h NORMAL  
01h 0kHz  
BELL F  
Bell f adjustment  
46~92kHz STEP 46kHz  
0
0
16  
2004-05-24  
TB1227CNG  
READ-IN FUNCTION  
NUMBER  
OF BITS  
ITEM  
PONRES  
DESCRIPTION  
0 : POR cancel, 1 : POR ON  
1bit  
2bit  
00 : B / W, 01 : PAL  
10 : NTSC, 11 : SECAM  
COLOR SYSTEM  
00 : 4.433619MHz  
01 : 3.579545MHz  
10 : 3.575611MHz (M-PAL)  
11 : 3.582056MHz (N-PAL)  
X’tal  
2bit  
V-FREQ  
V-STD  
N-DET  
LOCK  
0 : 50Hz, 1 : 60Hz  
1bit  
1bit  
1bit  
1bit  
0 : NON-STD, 1 : STD  
0 : Low, 1 : High  
0 : UN-LOCK, 1 : LOCK  
RGBOUT, Y -IN  
Self-diagnosis  
0 : NG, 1 : OK  
1
1bit each  
1bit  
UV-IN, Y -IN, H, V  
2
Detection of breaking neck  
0 : Abnormal, 1 : Normal  
V-GUARD  
2
DATA TRANSFER FORMAT VIA I C BUS  
Start and stop condition  
Bit transfer  
Acknowledge  
17  
2004-05-24  
TB1227CNG  
Data transmit format 1  
Data transmit format 2  
Data receive format  
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave  
receiver becomes a slave transmitter. This acknowledge is still generated by the slave.  
The STOP condition is generated by the master.  
Optional data transmit format : Automatic increment mode  
In this transmission method, data is set on automatically incremented sub-address from the specified  
sub-address.  
2
2
Purchase of TOSHIBA I C components conveys a license under the Philips I C Patent Rights to use these  
2
2
components in an I C system, provided that the system conforms to the I C Standard Specification as  
defined by Philips.  
18  
2004-05-24  
TB1227CNG  
MAXIMUM RATINGS (Ta = 25°C)  
CHARACTERISTIC  
Supply Voltage  
SYMBOL  
RATING  
UNIT  
V
12  
V
mW  
CCMAX  
Permissible Loss  
P
DMAX  
2190 (Note)  
17.52  
Power Consumption Declining Degree  
Input Terminal Voltage  
Input Signal Voltage  
mW / °C  
V
1 / Q  
ja  
GND 0.3~V + 0.3  
V
in  
CC  
7
V
e
in  
p-p  
Operating Temperature  
Conserving Temperature  
20~65  
55~150  
°C  
°C  
T
opr  
T
stg  
Note: In the condition that IC is actually mounted. See the diagram below.  
Fig. Power consumption declining curve relative to temperature change  
19  
2004-05-24  
TB1227CNG  
OPERATING CONDITIONS  
CHARACTERISTIC  
DESCRIPTION  
MIN  
TYP.  
MAX  
UNIT  
V
Pin 3, pin 17  
8.50  
4.75  
0.9  
0.9  
0.9  
11  
9.0  
5.0  
1.0  
1.0  
1.0  
12  
9.25  
5.25  
1.1  
1.1  
2.2  
13  
Supply Voltage  
Pin 8, pin 38, pin 41  
Video Input Level  
Chroma Input Level  
Sync Input Level  
FBP Width  
100% white, negative sync  
V
p-p  
µs  
Incoming FBP Current  
H. Output Current  
(Note)  
1.5  
2.0  
2.0  
0.8  
1.3  
5.0  
1.0  
mA  
1.0  
1.0  
0.7  
1.0  
4.2  
0.5  
RGB Output Current  
Analog RGB Input Level  
V
In TEXT input  
In OSD input  
Sync-out  
0.7  
OSD RGB Input Level  
Incoming Current to Pin 49  
mA  
Note: The threshold of horizontal AFC2 detection is set H.V -2V (V 0.75V).  
CC  
f
f
Confirming the power supply voltage, determine the high level of FBP.  
ELECTRICAL CHARACTERISTIC  
(Unless otherwise specified, H, RGB V = 9V, V , Fsc V , Y / C V = 5V, Ta = 25°C)  
CC  
DD  
DD  
CC  
CURRENT CONSUMPTION  
TEST  
CIR-  
CUIT  
PIN  
CHARACTERISTIC  
No.  
SYMBOL  
MIN  
TYP.  
MAX  
UNIT  
3
8
H.V  
(9V)  
I
I
I
I
I
16.0  
8.8  
19.0  
11.0  
31.5  
8.5  
23.5  
14.0  
39.0  
11.0  
130  
CC  
CC1  
CC2  
CC3  
CC4  
CC5  
V
DD  
(5V)  
mA  
17 RGB V  
(9V)  
25.0  
6.8  
CC  
38 Fsc V  
(5V)  
CC  
41 Y / C V  
(9V)  
80  
100  
CC  
20  
2004-05-24  
TB1227CNG  
TERMINAL VOLTAGE  
TEST  
CIR-  
CUIT  
PIN  
PIN NAME  
No.  
SYMBOL  
MIN  
TYP.  
MAX  
UNIT  
16 ABCL  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
5.9  
6.4  
0
6.9  
0.3  
0.3  
0.3  
0.3  
0.3  
5.0  
5.0  
5.0  
2.3  
2.3  
2.8  
2.8  
2.3  
2.3  
2.7  
4.6  
2.8  
6.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
16  
18  
19  
20  
21  
22  
23  
24  
25  
28  
31  
33  
34  
35  
36  
37  
40  
42  
50  
18 OSD R Input  
19 OSD G Input  
20 OSD B Input  
21 Digital Ys  
0
0
0
22 Analog Ys  
23 Analog R Input  
24 Analog G Input  
25 Analog B Input  
28 DAC  
0
4.2  
4.2  
4.2  
1.7  
1.7  
2.2  
2.2  
1.5  
1.5  
1.9  
3.6  
2.0  
5.4  
4.6  
4.6  
4.6  
2.0  
2.0  
2.5  
2.5  
1.9  
1.9  
2.3  
4.1  
2.4  
5.9  
31  
Y Input  
2
33 B-Y Input  
34 R-Y Input  
35 R-Y Output  
36 B-Y Output  
37  
Y Output  
1
40 16.2MHz X’tal Oscillation  
42 Chroma Input  
50 V-Sepa.  
21  
2004-05-24  
TB1227CNG  
AC CHARACTERISTIC  
Video section  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
Y Input Pedestal Clamping Voltage  
Chroma Trap Frequency  
SYMBOL  
TEST CONDITION  
(Note Y )  
MIN  
TYP.  
MAX  
UNIT  
V
VYclp  
ftr3  
2.0  
2.2  
2.4  
1
3.429  
4.203  
3.58  
4.43  
3.679  
4.633  
(Note Y )  
MHz  
2
ftr4  
Chroma Trap Attenuation  
Gtr3a  
Gtr3f  
Gtr4  
Gtrs  
(Note Y )  
20  
26  
52  
3
(3.58MHz)  
dB  
(4.43MHz)  
(SECAM)  
(Note Y )  
20  
18  
90  
26  
26  
52  
52  
4
(Note Y )  
5
Yγ Correction Point  
Yγ Correction Curve  
γp  
(Note Y )  
95  
99  
dB  
kΩ  
6
γc  
(Note Y ) 2.6  
2.0  
20  
1.3  
25  
7
APL Terminal Output Impedance  
Zo44  
Adrmax  
Adrcnt  
(Note Y )  
15  
8
0.11  
0.44  
0.13  
0.06  
0.15  
0.08  
DC Transmission Compensation  
Amplifier Gain  
(Note Y )  
9
times  
Maximum Gain of Black Expansion  
Amplifier  
Ake  
(Note Y  
)
)
1.20  
1.5  
1.65  
10  
11  
VBS9MX  
VBS9CT  
VBS9MN  
VBS2MX  
VBS2CT  
VBS2MN  
65  
55  
48  
35  
25  
19  
77.5  
62.5  
55.5  
42.5  
31.5  
25.5  
80  
70  
63  
50  
38  
32  
Black Expansion Start Point  
(Note Y  
IRE  
Black Peak Detection Period  
TbpH  
15  
16  
17  
µs  
H
(Horizontal)  
(Vertical)  
(Note Y  
(Note Y  
(Note Y  
(Note Y  
(Note Y  
)
)
)
)
)
12  
13  
14  
15  
16  
TbpV  
fp25  
33  
1.5  
34  
2.5  
35  
3.4  
Picture Quality Control Peaking  
Frequency  
MHz  
fp31  
1.9  
3.1  
4.3  
fp42  
3.0  
4.2  
5.4  
GS25MX  
GS31MX  
GS42MX  
GS25MN  
GS31MN  
GS42MN  
GS25CT  
GS31CT  
GS42CT  
Gy  
12.0  
12.0  
10.6  
22.0  
22.0  
19.5  
6.0  
14.5  
14.5  
13.5  
19.5  
19.5  
16.5  
8.5  
17.0  
17.0  
16.4  
17.0  
17.0  
13.5  
11.0  
11.0  
10.4  
1.6  
Picture Quality Control Maximum  
Characteristic  
Picture Quality Control Minimum  
Characteristic  
dB  
Picture Quality Control Center  
Characteristic  
6.0  
8.5  
4.6  
7.5  
Y Signal Gain  
(Note Y  
(Note Y  
(Note Y  
)
)
)
1.0  
6.5  
0.9  
0
17  
18  
19  
Y Signal Frequency Characteristic  
Y Signal Maximum Input Range  
Gfy  
0
1.0  
Vyd  
1.2  
1.5  
V
22  
2004-05-24  
TB1227CNG  
Chroma section  
TEST  
CIR-  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
CUIT  
3N  
3N  
30  
68  
35  
85  
90  
105  
1.1  
eAT  
mV  
p-p  
F1T  
3N  
0.9  
18  
1.0  
ACC Characteristic  
AT  
f
f
= 3.58  
o
3N  
eAE  
3N  
F1E  
35  
times  
71  
85  
102  
1.1  
3N  
0.9  
18  
1.0  
AE  
(Note C )  
1
4N  
4N  
35  
eAT  
mV  
p-p  
71  
85  
102  
1.1  
F1T  
4N  
0.9  
18  
1.0  
AT  
= 4.43  
o
4N  
eAE  
4N  
F1E  
35  
times  
71  
85  
102  
1.1  
4N  
0.9  
3.43  
3.93  
4.03  
4.13  
4.28  
4.78  
4.88  
4.98  
1.0  
AE  
3Nfo  
3.579  
4.079  
4.179  
4.279  
4.433  
4.933  
5.033  
5.133  
3.73  
4.23  
4.33  
4.43  
4.58  
4.58  
5.18  
5.28  
0
3Nfo  
3Nfo  
3Nfo  
500  
600  
700  
Band Pass Filter Characteristic  
f
= 3.58  
= 4.43  
o
(Note C )  
2
4Nfo  
0
4Nfo  
500  
600  
700  
f
o
4Nfo  
4Nfo  
fo  
0
fo  
fo  
fo  
500  
Band Pass Filter, 3dB Band  
Characteristic  
1.64  
2.07  
1.79  
2.22  
1.94  
2.37  
f
f
= 3.58  
= 4.43  
o
o
600  
700  
(Note C )  
MHz  
3
fo  
0
fo  
500  
fo  
600  
fo  
700  
Q
3.58  
2.39  
1.79  
1.43  
4.43  
2.95  
2.22  
1.77  
1
Q
Q
Q
1.5  
2.0  
2.5  
Band Pass Filter, Q Characteristic  
Check  
f
= 3.58  
o
1.64  
1.94  
(Note C )  
4
Q
1
Q
Q
Q
1.5  
2.0  
2.5  
f
= 4.43  
o
2.07  
2.37  
23  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
fo  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
1.45  
1.70  
1.75  
1.80  
1.85  
2.00  
2.05  
2.10  
35.0  
55.0  
1.60  
1.85  
1.90  
1.95  
2.00  
2.15  
2.20  
2.25  
45.0  
45.0  
1.75  
2.00  
2.06  
2.10  
2.15  
2.30  
2.35  
2.40  
55.0  
35.0  
0
fo  
500  
fo  
600  
fo  
700  
1 / 2 f Trap Characteristic  
c
f
f
= 3.58  
= 4.43  
o
o
(Note C )  
MHz  
5
fo  
0
fo  
500  
fo  
600  
fo  
700  
3N∆θ1  
3N∆θ2  
Tint Control Range  
(f = 600kHz)  
(Note C )  
6
o
4N∆θ1  
35.0  
45.0  
90.0  
55.0  
°
4N∆θ2  
3N∆θT  
Tint Control Variable Range  
(f = 600kHz)  
(Note C ) 70.0  
7
110.0  
o
4N∆θT  
3TθTin  
39  
73  
40  
80  
40  
47  
87  
47  
bit  
Step  
bit  
3EθTin  
3NTin  
4TθTin  
Tint Control Characteristic  
(Note C )  
8
39  
4EθTin  
4NTin  
4.433PH  
4.433PL  
3.579PH  
3.579PL  
4.433HH  
4.433HL  
3.579HH  
3.579HL  
3.58β3  
73  
80  
500  
87  
Step  
350  
1500  
1500  
1700  
1700  
1100  
1100  
1100  
1100  
2.90  
350  
350  
500  
500  
APC Lead-In Range  
(Lead-In Range)  
(Variable Range)  
350  
400  
500  
500  
(Note C )  
Hz  
9
400  
400  
500  
500  
400  
1.50  
1.70  
500  
2.2  
4.43β3  
2.4  
3.10  
APC Control Sensitivity  
(Note C  
)
10  
M-PALβM  
N-PALβN  
1.50  
2.2  
2.90  
24  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
CUIT  
3N-VTK1  
3N-VTC1  
3N-VTK2  
3N-VTC2  
4N-VTK1  
4N-VTC1  
4N-VTK2  
4N-VTC2  
4P-VTK1  
4P-VTC1  
4P-VTK2  
4P-VTC2  
MP-VTK1  
MP-VTC1  
MP-VTK2  
MP-VTC2  
NP-VTK1  
NP-VTC1  
NP-VTK2  
NP-VTC2  
3NeB-Y  
1.8  
2.2  
2.5  
3.2  
1.8  
2.2  
2.5  
3.2  
1.8  
2.2  
2.5  
3.2  
1.8  
2.2  
2.5  
3.2  
1.8  
2.2  
2.5  
3.2  
320  
240  
320  
240  
360  
200  
540  
430  
0.69  
0.70  
0.49  
85  
2.5  
3.2  
3.6  
4.5  
2.5  
3.2  
3.6  
4.5  
2.5  
3.2  
3.6  
4.5  
2.5  
3.2  
3.6  
4.5  
2.5  
3.2  
3.6  
4.5  
380  
290  
380  
290  
430  
240  
650  
510  
0.77  
0.77  
0.56  
93  
3.2  
4.0  
4.5  
5.6  
3.2  
4.0  
4.5  
5.6  
3.2  
4.0  
4.5  
5.6  
3.2  
4.0  
4.5  
5.6  
3.2  
4.0  
4.5  
5.6  
460  
350  
460  
350  
520  
290  
780  
610  
0.86  
0.85  
0.64  
100  
99  
Killer Operation Input Level  
(Note C )  
11  
mV  
p-p  
3NeR-Y  
4NeB-Y  
Color Difference Output  
(Rainbow Color Bar)  
4NeR-Y  
(Note C  
)
12  
4PeB-Y  
4PeR-Y  
4Peb-y  
(75% Color Bar)  
4Per-y  
3NG  
4NG  
4PG  
R / B  
R / B  
R / B  
Demodulation Relative Amplitude  
(Note C  
(Note C  
)
)
times  
13  
3NθR-B  
4NθR-B  
4PθR-B  
3N-SCB  
3N-SCR  
4N-SCB  
4N-SCR  
Demodulation Relative Phase  
°
87  
93  
14  
85  
90  
95  
Demodulation Output Residual  
Carrier  
(Note C  
)
0
5
15  
mV  
p-p  
15  
25  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
0
TYP.  
10  
MAX  
30  
UNIT  
3N-HCB  
3N-HCR  
4N-HCB  
4N-HCR  
B-Y 1dB  
B-Y 2dB  
B-Y+1dB  
foF  
Demodulation Output Residual  
Higher Harmonic  
(Note C  
)
)
mV  
p-p  
16  
1.20  
2.30  
0.60  
2.0  
3.0  
0.9  
1.7  
0.8  
0
0.60  
1.55  
1.20  
2.0  
Color Difference Output ATT Check  
(Note C  
dB  
17  
16.2MHz Oscillation Frequency  
16.2MHz Oscillation Start Voltage  
(Note C  
(Note C  
)
)
kHz  
V
18  
VFon1  
3.2  
3.4  
19  
f
Free-Run Frequency  
sc  
3fr  
100  
50  
200  
(3.58M)  
(4.43M)  
(M-PAL)  
(N-PAL)  
4fr  
Mfr  
(Note C  
)
)
Hz  
20  
21  
125  
140  
420  
25  
10  
175  
160  
580  
Nfr  
4.43e27  
3.58e27  
3.58eV27  
0th V27  
f
f
Output Amplitude  
Output DC Voltage  
(Note C  
500  
mV  
p-p  
sc  
sc  
2.6  
1.6  
2.9  
1.9  
3.2  
2.2  
V
DEF section  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
H. Reference Frequency  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
FHVCO  
(Note DH1) 5.95  
(Note DH2) 2.3  
6.0  
2.6  
6.10  
2.9  
MHz  
V
H. Reference Oscillation Start  
Voltage  
VSHVCO  
H. Output Frequency 1  
H. Output Frequency 2  
H. Output Duty 1  
fH1  
fH2  
(Note DH3) 15.5  
15.625 15.72  
kHz  
%
(Note DH4) 15.62 15.734 15.84  
Hφ1  
Hφ2  
(Note DH5)  
(Note DH6)  
(Note DH7)  
39  
35  
41  
37  
43  
39  
H. Output Duty 2  
H. Output Duty Switching Voltage 1  
V
5-1  
1.2  
4.5  
1.5  
5.0  
1.8  
5.5  
0.5  
VHH  
VHL  
H. Output Voltage  
(Note DH8)  
V
H. Output Oscillation Start Voltage  
H. FBP Phase  
VHS  
(Note DH9)  
5.0  
6.9  
18.4  
13.1  
5.3  
φFBP  
(Note DH10)  
6.2  
7.6  
19.1  
13.8  
6.1  
H. Picture Position, Maximum  
H. Picture Position, Minimum  
H. Picture Position Control Range  
HSFTmax  
HSFTmin  
HSFT  
(Note DH11) 17.7  
(Note DH12) 12.4  
µs  
(Note DH13)  
4.5  
26  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
0.5  
TYP.  
1.0  
MAX  
1.5  
UNIT  
H. Distortion Correction Control  
Range  
HCC  
(Note DH14)  
µs / V  
H. BLK Phase  
φBLK  
BLKmin  
BLKmax  
SPGP1  
SPGP2  
PGPW1  
PGPW2  
SSGP1  
SSGP2  
SGPW1  
SGPW2  
NL1  
(Note DH15)  
(Note DH16)  
6.2  
9.8  
6.9  
10.5  
14.0  
3.68  
4.18  
1.75  
1.75  
5.4  
7.6  
11.3  
14.7  
3.90  
4.40  
1.85  
1.85  
5.6  
H. BLK Width, Minimum  
H. BLK Width, Maximum  
P / N-GP Start Phase 1  
P / N-GP Start Phase 2  
P / N-GP Gate Width 1  
P / N-GP Gate Width 2  
SECAM-GP Start Phase 1  
SECAM-GP Start Phase 2  
SECAM-GP Gate Width 1  
SECAM-GP Gate Width 2  
Noise Detection Level 1  
Noise Detection Level 2  
Noise Detection Level 3  
Noise Detection Level 4  
V. Ramp Amplitude  
(Note DH17) 13.2  
(Note DH18) 3.45  
(Note DH19) 3.95  
(Note DH20) 1.65  
(Note DH21) 1.70  
µs  
(Note DH22)  
(Note DH23)  
(Note DH24)  
(Note DH25)  
5.2  
5.7  
1.9  
1.9  
6.0  
6.2  
2.0  
2.1  
2.0  
2.1  
(Note DH26) 0.12  
(Note DH27) 0.10  
(Note DH28) 0.05  
(Note DH29) 0.025  
(Note DV1) 1.62  
0.20  
0.15  
0.10  
0.05  
2.0  
0.28  
0.20  
0.15  
0.08  
2.08  
3.8  
NL2  
V
V
p-p  
p-p  
NL3  
NL4  
Vramp  
VNFmax  
VNFmin  
GVA  
V. NF Maximum Amplitude  
V. NF Minimum Amplitude  
V. Amplification Degree  
V. Amplifier Max. Output  
V. Amplifier Min. Output  
(Note DV2)  
(Note DV3)  
(Note DV4)  
(Note DV5)  
(Note DV6)  
3.2  
0.8  
20  
5.0  
0
3.5  
1.0  
1.2  
26  
32  
dB  
Vvmax  
Vvmin  
V
1.5  
V. S-Curve Correction, Max.  
Correction Quantity  
V
(Note DV7)  
S
9
9
11  
20  
13  
31  
%
V. Reverse S-Curve Correction, Max.  
Correction Quantity  
V
(Note DV8)  
(Note DV9)  
SR  
V. Linearity Max. Correction Quantity  
V
L
27  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
CUIT  
AFC-MASK Start Phase  
AFC-MASK Stop Phase  
VNFB phase  
φAFCf  
φAFCe  
φVNFB  
Vφmax  
Vφmin  
Vφ  
(Note DV10)  
(Note DV11)  
2.6  
4.4  
3.2  
5.0  
3.8  
5.6  
1.05  
8.7  
1.5  
7.7  
0.7  
26  
(Note DV12) 0.45  
0.75  
8.0  
V. Output Maximum Phase  
V. Output Minimum Phase  
V. Output Phase Variable Range  
50 System VBLK Start Phase  
50 System VBLK Stop Phase  
60 System VBLK Start Phase  
60 System VBLK Stop Phase  
Pin 56 VBLK Max Voltage  
Pin 56 VBLK Min Voltage  
(Note DV13)  
(Note DV14)  
(Note DV15)  
(Note DV16)  
(Note DV17)  
(Note DV18)  
(Note DV19)  
7.3  
0.5  
6.3  
0.4  
20  
0.4  
15  
4.7  
0
1.0  
H
7.0  
V50BLKf  
V50BLKe  
V60BLKf  
V60BLKe  
V56H  
0.55  
23  
0.55  
18  
0.7  
21  
5.0  
5.3  
0.3  
V
V56L  
VAcaL  
VAcaH  
V60caL  
V60caH  
SWVB  
SWP  
232.5  
344.5  
232.5  
294.5  
V. Lead-In Range 1  
V. Lead-In Range 2  
(Note DV20)  
(Note DV21)  
Hz  
W-VBLK Start Phase  
(Note DV22)  
(Note DV23)  
(Note DV24)  
(Note DV25)  
(Note DV26)  
(Note DV27)  
(Note DV28)  
9
88  
W-PMUTE Start Phase  
H
V
W-VBLK Stop Phase  
STWVB  
STWP  
V51  
10  
120  
W-PMUTE Stop Phase  
V Centering Center Voltage  
V Centering Max Voltage  
V Centering Min Voltage  
Pin 28 DAC Output Voltage (High)  
Pin 28 DAC Output Voltage (Low)  
4.55  
6.30  
2.75  
4.5  
V51Max  
V51Min  
V28H  
4.0  
5.0  
0.1  
V28L  
0
28  
2004-05-24  
TB1227CNG  
1H DL section  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
0.8  
TYP.  
1.2  
MAX  
UNIT  
VNBD  
VNRD  
VPBD  
VPRD  
VSBD  
VSRD  
GHB1  
GHR1  
GHB2  
GHR2  
GBY1  
GRY1  
GBY2  
GRY2  
GBYD  
GRYD  
VBD  
1HDL Dynamic Range, Direct  
1HDL Dynamic Range, Delay  
1HDL Dynamic Range, Direct+Delay  
Frequency Characteristic, Direct  
Frequency Characteristic, Delay  
AC Gain, Direct  
(Note H )  
1
V
(Note H )  
0.8  
0.9  
1.2  
1.2  
2
(Note H )  
3
(Note H ) 3.0  
2.0  
6.5  
0.5  
0.5  
0.0  
0.5  
4.3  
2.0  
1.1  
1.0  
5
4
(Note H ) 8.2  
5
(Note H ) 2.0  
dB  
6
AC Gain, Delay  
(Note H ) 2.4  
7
Direct-Delay AC Gain Difference  
Color Difference Output DC Stepping  
1H Delay Quantity  
(Note H ) 1.0  
8
(Note H )  
5  
0.0  
mV  
µs  
9
VRD  
BDt  
(Note H  
(Note H  
)
)
63.7  
64.0  
64.4  
10  
RDt  
Color Difference Output  
DC-Offset Control  
Bus-Min Data  
Bomin  
Bomax  
Romin  
Romax  
Bo1  
22  
55  
22  
36  
36  
36  
55  
22  
55  
11  
mV  
dB  
Bus-Max Data  
55  
36  
22  
Color Difference Output DC-Offset  
Control / Min. Control Quantity  
(Note H  
(Note H  
)
)
1
4
8
12  
Ro1  
GNB  
0.90  
0
0
1.20  
1.58  
NTSC Mode Gain / NTSC-COM Gain  
13  
GNR  
0.92  
29  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
1.7  
TYP.  
2.0  
MAX  
2.3  
UNIT  
Vcp31  
Vcp33  
Vcp34  
Vc12mx  
Vc12mn  
D12c80  
Vc13mx  
Vc13mn  
D13c80  
Vc14mx  
Vc14mn  
D14c80  
Gr  
Y Color Difference Clamping Voltage  
(Note T )  
1
2.2  
2.5  
2.8  
2.50  
0.21  
0.83  
2.50  
0.21  
0.83  
2.50  
0.21  
0.83  
3.00  
0.31  
1.24  
3.00  
0.31  
1.24  
3.00  
0.31  
1.24  
3.50  
0.47  
1.86  
3.50  
0.47  
1.86  
3.50  
0.47  
1.86  
V
Contrast Control Characteristic  
(Note T )  
2
AC Gain  
(Note T )  
3
2.8  
4.0  
5.2  
times  
dB  
Gg  
Gb  
Frequency Characteristic  
Gf  
(Note T )  
1.0  
6.0  
3.0  
9.0  
4
Y Sub-Contrast Control Characteristic  
Vscnt  
Vy2d  
(Note T )  
3.0  
5
Y
2
Input Range  
(Note T )  
0.7  
6
Vn12mx  
Vn12mn  
D12n80  
Vn13mx  
Vn13mn  
D13n80  
Vn14mx  
Vn14mn  
D14n80  
V13un  
Mnr-b  
1.6  
2.3  
4.3  
0.17  
0.67  
1.6  
0.35  
1.16  
2.3  
0.42  
1.68  
4.3  
V
0.17  
0.67  
1.6  
0.35  
1.16  
2.3  
0.42  
1.68  
4.3  
Unicolor Control Characteristic  
(Note T )  
7
0.17  
0.67  
16  
0.26  
1.16  
20  
0.42  
1.68  
24  
dB  
0.70  
0.30  
87  
0.77  
0.34  
93  
0.85  
0.38  
99  
Relative Amplitude (NTSC)  
Relative Phase (NTSC)  
Relative Amplitude (PAL)  
Relative Phase (PAL)  
(Note T )  
times  
8
Mng-b  
θnr-b  
(Note T )  
°
times  
°
9
θng-b  
235  
0.50  
0.30  
86  
241.5  
0.56  
0.34  
90  
248  
0.63  
0.38  
94  
Mpr-b  
(Note T  
(Note T  
)
)
10  
11  
Mpg-b  
θpr-b  
θpg-b  
232  
237  
242  
30  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
Vcmx  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
1.50  
80  
1.80  
128  
192  
2.10  
160  
242  
V
p-p  
Color Control Characteristic  
(Note T  
)
)
e
col  
12  
step  
col  
142  
e
cr  
cg  
cb  
Color Control Characteristic, Residual  
Color  
(Note T  
0
12.5  
25  
e
e
13  
mV  
p-p  
Chroma Input Range  
Vcr  
Vbrmx  
Vbrmn  
Vbcnt  
Vbrt  
Vbct  
Vwpl  
Vcomx  
Vcomn  
Vcoct  
Dcut  
DR+  
(Note T  
(Note T  
)
)
700  
3.05  
1.05  
2.05  
6.3  
14  
3.45  
1.35  
2.30  
7.8  
3.85  
1.65  
2.55  
9.4  
Brightness Control Characteristic  
15  
V
Brightness Center Voltage  
Brightness Data Sensitivity  
RGB Output Voltage Axes Difference  
White Peak Limit Level  
(Note T  
(Note T  
(Note T  
(Note T  
)
)
)
)
16  
17  
18  
19  
mV  
150  
2.63  
2.55  
1.55  
2.05  
2.3  
0
150  
3.75  
2.95  
1.95  
2.55  
5.5  
3.25  
2.75  
1.75  
2.3  
Cutoff Control Characteristic  
(Note T  
)
V
20  
Cutoff Center Level  
(Note T  
(Note T  
)
)
21  
Cutoff Variable Range  
3.9  
mV  
dB  
22  
2.7  
3.85  
5.6  
50  
5.0  
Drive Variable Range  
(Note T  
)
23  
DR−  
6.5  
0
4.7  
100  
45  
DC Regeneration  
TDC  
(Note T  
(Note T  
)
)
mV  
dB  
24  
RGB Output S / N Ratio  
SNo  
50  
25  
Vv  
Blanking Pulse Output Level  
Blanking Pulse Delay Time  
(Note T  
(Note T  
)
)
0.7  
1.0  
1.3  
V
26  
Vh  
t
t
0.05  
0.05  
0.8  
0.25  
0.35  
1.0  
0.45  
0.85  
1.2  
don  
doff  
µs  
27  
RGB Min. Output Level  
RGB Max. Output Level  
Halftone Ys Level  
Vmn  
Vmx  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
(Note T  
)
)
)
)
)
)
)
)
)
)
)
)
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
V
6.85  
0.7  
7.15  
0.9  
7.45  
1.1  
Vthtl  
Halftone Gain 1  
G3htl3  
G6htl3  
Vttxl  
4.5  
7.5  
1.8  
3.0  
6.0  
2.0  
1.5  
4.5  
2.2  
dB  
Halftone Gain 2  
Text ON Ys Level  
Text / OSD Output, Low Level  
Text RGB Output, High Level  
OSD Ys ON Level  
Vtxl13  
Vmt13  
Vtosl  
0.45  
1.15  
2.8  
0.25  
1.4  
0.05  
1.85  
3.2  
V
3.0  
OSD RGB Output, High Level  
Text Input Threshold Level  
OSD Input Threshold Level  
Vmos13  
Vtxtg  
1.75  
0.7  
2.15  
1.0  
2.55  
1.3  
Vosdg  
1.7  
2.0  
2.3  
31  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
40  
MAX  
100  
UNIT  
ns  
τ
τ
Rosr  
OSD Mode Switching Rise-Up Time  
(Note T  
)
40  
Rosg  
Rosb  
τ
t
PRosr  
OSD Mode Switching Rise-Up  
Transfer Time  
(Note T  
(Note T  
(Note T  
)
)
)
40  
15  
30  
100  
40  
ns  
ns  
ns  
t
t
41  
42  
43  
PRosg  
PRosb  
OSD Mode Switching Rise-Up  
Transfer Time, 3 Axes Difference  
t  
PRos  
τ
τ
Fosr  
OSD Mode Switching Breaking Time  
100  
Fosg  
Fosb  
τ
t
PFosr  
OSD Mode Switching Breaking  
Transfer Time  
(Note T  
(Note T  
(Note T  
)
)
)
30  
20  
20  
100  
40  
ns  
ns  
ns  
t
t
44  
45  
46  
PFosg  
PFosb  
OSD Mode Switching Breaking  
Transfer Time, 3 Axes Difference  
t  
FRos  
τ
τ
Roshr  
OSD Hi DC Switching Rise-Up Time  
100  
Roshg  
Roshb  
PRohr  
τ
t
OSD Hi DC Switching Rise-Up  
Transfer Time  
(Note T  
(Note T  
(Note T  
)
)
)
20  
0
100  
40  
ns  
ns  
ns  
t
t
47  
48  
49  
PRohg  
PRohb  
OSD Hi DC Switching Rise-Up  
Transfer Time, 3 Axes Difference  
t  
PRoh  
Foshr  
τ
τ
OSD Hi DC Switching Breaking Time  
20  
100  
Foshg  
Foshb  
PFohr  
τ
t
OSD Hi DC Switching Breaking  
Transfer Time  
(Note T  
(Note T  
)
)
20  
0
100  
40  
ns  
ns  
t
t
50  
PFohg  
PFohb  
OSD Hi DC Switching Breaking  
Transfer Time, 3 Axes Difference  
t  
PFoh  
51  
32  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
MAX  
UNIT  
CUIT  
Vc12mx  
Vc12mn  
D12c80  
Vc13mx  
Vc13mn  
D13c80  
Vc14mx  
Vc14mn  
D14c80  
Gag  
2.10  
0.21  
0.84  
2.10  
0.21  
0.84  
2.10  
0.21  
0.84  
4.0  
2.5  
0.31  
1.25  
2.5  
2.97  
0.47  
1.87  
2.97  
0.47  
1.87  
2.97  
0.47  
1.87  
6.3  
RGB Contrast Control Characteristic  
(Note T  
)
V
0.31  
1.25  
2.5  
52  
0.31  
1.25  
5.1  
Analog RGB AC Gain  
(Note T  
(Note T  
(Note T  
)
)
)
times  
dB  
53  
54  
55  
Analog RGB Frequency  
Characteristic  
Gfg  
0.5  
1.75  
3.0  
Analog RGB Dynamic Range  
Dr24  
0.5  
3.05  
1.05  
2.05  
6.3  
Vbrmxg  
Vbrmng  
Vbcntg  
Vbrtg  
Vanath  
3.25  
1.25  
2.25  
7.8  
3.45  
1.45  
2.45  
9.4  
RGB Brightness Control  
Characteristic  
(Note T  
)
V
56  
57  
RGB Brightness Center Voltage  
RGB Brightness Data Sensitivity  
Analog RGB Mode ON Voltage  
(Note T  
(Note T  
(Note T  
)
)
)
mV  
V
58  
59  
0.8  
1.0  
1.2  
τ
Ranr  
Analog RGB Switching Rise-Up Time  
(Note T  
)
50  
100  
τ
τ
60  
Rang  
Ranb  
t
PRanr  
Analog RGB Switching Rise-Up  
Transfer Time  
(Note T  
(Note T  
(Note T  
)
)
)
20  
0
100  
40  
t
t
61  
62  
63  
PRang  
PRanb  
Analog RGB Switching Rise-Up  
Transfer Time, 3 Axes Difference  
t  
PRas  
Fanr  
ns  
τ
τ
Analog RGB Switching Breaking  
Time  
50  
100  
Fang  
Fanb  
τ
t
PFanr  
Analog RGB Switching Breaking  
Transfer Time  
(Note T  
(Note T  
)
)
30  
0
100  
40  
t
t
64  
PFang  
PFanb  
Analog RGB Switching Breaking  
Transfer Time, 3 Axes Difference  
t  
PFas  
65  
33  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
MIN  
TYP.  
50  
MAX  
100  
UNIT  
τ
Ranhr  
Analog RGB Hi Switching Rise-Up  
Time  
(Note T  
)
τ
τ
t
66  
Ranhg  
Ranhb  
PRahr  
Analog RGB Hi Switching Rise-Up  
Transfer Time  
(Note T  
(Note T  
(Note T  
)
)
)
20  
0
100  
40  
t
67  
68  
69  
PRahg  
PRahb  
t
Analog RGB Hi Switching Rise-Up  
Transfer Time, 3 Axes Difference  
t  
PRah  
ns  
t
Fanhr  
Analog RGB Hi Switching Breaking  
Time  
50  
100  
t
t
Fanhg  
Fanhb  
t
PFahr  
Analog RGB Hi Switching Breaking  
Transfer Time  
(Note T  
(Note T  
)
)
20  
100  
t
t
70  
PFahg  
PFahb  
Analog RGB Hi Switching Breaking  
Transfer Time, 3 Axes Difference  
t  
0
40  
PFah  
71  
TV-Analog RGB Crosstalk  
Analog RGB-TV Crosstalk  
Crtvag  
Crantg  
Vablpl  
Vablpc  
Vablph  
Vcal  
(Note T  
(Note T  
)
)
72  
80  
50  
40  
dB  
73  
5.5  
5.7  
5.6  
5.8  
6.0  
16  
0
5.7  
5.9  
ABL Point Characteristic  
ACL Characteristic  
(Note T  
(Note T  
(Note T  
)
)
)
V
dB  
V
74  
75  
76  
5.9  
6.1  
19  
0.3  
1.3  
2.3  
13  
0.3  
Vabll  
ABL Gain Characteristic  
Vablc  
Vablh  
1.0  
2.0  
0.7  
1.7  
34  
2004-05-24  
TB1227CNG  
TEST  
CIR-  
CUIT  
CHARACTERISTIC  
SYMBOL  
TEST CONDITION  
(Note S )  
MIN  
TYP.  
MAX  
UNIT  
mV  
Bell Monitor Output Amplitude  
embo  
foB-C  
foB-L  
foB-H  
QBEL  
VBS  
200  
23  
69  
69  
300  
0
400  
23  
1
p-p  
Bell Filter f  
(Note S )  
2
o
kHz  
46  
92  
16  
23  
115  
18  
Bell Filter f Variable Range  
o
(Note S )  
3
Bell Filter Q  
(Note S )  
14  
4
0.50  
0.39  
0.91  
0.73  
0.90  
Color Difference Output Amplitude  
Color Difference Relative Amplitude  
Color Difference Attenuation Quantity  
(Note S )  
V
5
p-p  
VRS  
R / B-S  
SATTB  
SATTR  
SNB-S  
SBR-S  
LinB  
(Note S ) 0.70  
6
(Note S ) 1.50  
0.50  
25  
7
dB  
%
Color Difference S / N Ratio  
Linearity  
(Note S )  
85  
8
75  
85  
117  
120  
(Note S )  
9
LinR  
trfB  
Rising-Fall Time  
(Standard De-Emphasis)  
(Note S  
(Note S  
(Note S  
(Note S  
(Note S  
)
)
)
)
)
1.3  
1.1  
1.5  
1.3  
10  
11  
12  
13  
14  
trfR  
µs  
trfBw  
trfRw  
eSK  
Rising-Fall Time  
(Wide-Band De-Emphasis)  
Killer Operation Input Level  
(Standard Setting)  
eSC  
0.5  
0.7  
1
2
3
eSFK  
eSFC  
eSWK  
eSWC  
Killer Operation Input Level  
(VID ON)  
mV  
p-p  
Killer Operation Input Level  
(Low Sensitivity, VID OFF)  
1.5  
35  
2004-05-24  
TB1227CNG  
TEST CONDITION  
VIDEO SECTION  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Short circuit pin 45 (Y IN) in AC coupling.  
1
Y Input Pedestal  
Clamping Voltage  
Y
Y
A
C
B
A
A
20H 04H 80H 00H BAH 03H (2) Input synchronizing signal to pin 51 (SYNC IN).  
(3) Measure DC voltage at pin 45, and express the measurement result as VYcIp.  
(1) Set the 358 TRAP mode to AUTO by setting the bus data.  
(2) Set the bus data so that chroma trap is ON and f is 0.  
1
0
(3) Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video  
amplitude is 0.5V to pin 45 (Y IN).  
1
Chroma Trap  
Frequency  
A
B
2
(4) While observing waveform at pin 37 (Y  
), find a frequency with minimum  
1out  
amplitude of the waveform. The obtained frequency shall be expressed as fIr3.  
(5) Change the frequency of the signal 1 to 4.43MHz (PAL) and perform the same  
measurement as the preceding step 4. The obtained frequency shall be expressed  
as fIr4.  
(1) Set the 358 TRAP mode to AUTO by setting bus data.  
(2) Set the bus data so that Q of chroma trap is 1.5.  
(3) Set the bus data so that f of chroma trap is 0.  
0
(4) Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video  
amplitude is 0.5V to pin 45 (Y IN).  
1
(5) While turning on and off the chroma trap by controlling the bus, measure chroma  
amplitude (VTon) at pin 37 (Y  
measure chroma amplitude (VToff) at pin 37 (Y  
turned off.  
) with the chroma trap being turned on and  
1out  
Chroma Trap  
Attenuation  
(3.58MHz)  
) with the chroma trap being  
1out  
Vari- Vari- Vari-  
able able able  
Y
3
Gtr = 20og (VToff / VTon)  
(6) Change f of the chroma trap to 100kHz, 50kHz, 0 and +50kHz, and perform the  
0
same measurement as the preceding steps 4 and 5 with the respective f settings.  
0
(7) Change Q of the chroma trap t 1, 1.5, 2 and 2.5, and perform the same  
measurement as the preceding steps 4 through 6. The maximum Gtr shall be  
expressed as Gtr3a.  
(8) Set the 358 TRAP mode to the forces 358 mode by setting bus data, and perform  
the same measurement as the preceding steps 2 through 7 (Gtr3f).  
36  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Set the 358 TRAP mode to AUTO by setting bus data.  
(2) Set the bus data so that Q of chroma trap is 1.5.  
(3) Set the bus data so that f of chroma trap is 0.  
0
Chroma Trap  
Attenuation (4.43MHz)  
Vari- Vari- Vari-  
able able able  
Y
A
C
A
B
A
20H 04H  
03H  
4
(4) Input TG7 sine wave signal whose frequency is 4.43MHz and video amplitude is  
0.5V to pin 45 (Y IN).  
1
(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y .  
3
The measurement result shall be expressed as Gtr4.  
(1) Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON.  
(2) Set the bus data so that Q of chroma trap is 1.5.  
Chroma Trap  
Attenuation (SECAM)  
(3) Set the bus data so that f of chroma trap is 0.  
0
Y
5
(4) Input SECAM signal whose amplitude in video period is 0.5V to pin 45 (Y IN).  
1
(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y  
to find the maximum attenuation (Gtrs).  
3
(1) Connect the power supply to pin 45 (Y IN).  
1
(2) Turn off Y by setting the bus data.  
γ
(3) While raising the supply voltage from the level  
measured in the preceding item Y , measure  
1
voltage change characteristic of Y output at pin  
1
37.  
Vari-  
able  
Y
Yγ Correction Point  
80H 00H BAH  
6
(4) Set the bus data to turn on Y .  
γ
(5) Perform the same measurement as the above  
step 3.  
(6) Find a gamma ( ) point from the measurement  
γ
results of the steps 3 and 5.  
γp = Vr÷0.7V  
From the measurement in the above item Y , find gain of the portion that the γ  
correction has an effect on.  
6
Y
Yγ Correction Curve  
7
37  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Short circuit pin 45 (Y IN) in AC coupling.  
1
(2) Input synchronizing signal to pin 51.  
(3) Connect power supply and an ammeter to the APL  
of pin 44 as shown in the figure, and adjust the  
power supply so that the ammeter reads 0 (zero).  
APL Terminal Output  
Impedance  
Y
A
C
B
A
A
20H 04H 80H 00H BAH 03H  
8
(4) Raise the voltage at pin 44 by 0.1V, and measure  
the current (Iin) at that time.  
Zo44 () = 0.1V÷Iin (A)  
(1) Set the bus data so that DC transmission factor correction gain is maximum.  
(2) In the condition of the Note Y , observe Y  
8
waveform at pin 37 and measure  
1out  
voltage change in the video period.  
(3) Set the bus data so that DC transmission factor correction gain is centered, and  
measure voltage in the same manner as the above step 2.  
DC Transmission  
Compensation Amplifier  
Gain  
Vari-  
able  
Y
9
Adr = (V − ∆V )÷0.1V÷Y gain  
2
1
1
(1) Set the bus data so that black expansion is on and black expansion point is  
maximum.  
(2) Input TG7 sine wave signal whose frequency is 500kHz and video amplitude is  
0.1V to pin 45 (Y IN).  
1
Maximum Gain of Black  
Expansion Amplifier  
Y
A
B
00H  
E3H  
(3) While impressing 1.0V to pin 39 (Black Peak Hold), measure amplitude (Va) of  
10  
Y
1out  
signal at pin 37.  
(4) While impressing 3.5V to pin 39 (Black Peak Hold), measure amplitude (Vb) of  
signal at pin 37.  
Y
1out  
Akc = Va÷Vb  
38  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Set the bus data so that black expansion is on and black expansion point is  
maximum.  
(2) Supply 1.0V to pin 39 (Black Peak Hold).  
(3) Supply 2.9V to the APL of pin 44.  
(4) Connect the power supply to pin 45  
(Y IN). While raising the supply  
1
voltage from the level measured in the  
preceding item Y , measure voltage  
1
Black Expansion Start  
Point  
Vari-  
20H 04H 00H 00H BAH  
able  
change at pin 37 (Y ).  
1out  
Y
A
C
A
A
A
11  
(5) Set the bus data to center the black  
expansion point, and perform the  
same measurement as the above  
steps 2 through 4.  
(6) Set the black expansion point to the minimum by setting the bus data, and perform  
the same measurement as the above steps 2 through 4.  
(7) While supplying 2.2V to the APL of pin 44, perform the same measurement as the  
above step 4 with the black expansion point set to maximum, center and minimum.  
In the condition of the Note Y , measure waveform at pin 39 (Black Peak Hold).  
1
Black Peak Detection  
Period (Horizontal)  
Y
B
E3H  
12  
Black Peak Detection  
Period (Vertical)  
39  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Set the bus data so that picture quality control frequency is 2.5MHz.  
(2) Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y IN)  
1
and pin 51 (Sync. IN).  
(3) Maximize the picture quality control data.  
Picture Quality Control  
Peaking Frequency  
Vari-  
3FH 04H 80H 00H BAH  
able  
Y
A
C
A
B
A
13  
(4) While observing Y  
of pin 37, find an SG frequency as the waveform amplitude  
1out  
is maximum (fp25).  
(5) Set the bus data so that picture quality control frequency is 3.1MHz and 4.2MHz,  
and perform the same measurement as the above steps 2 through 4 at the  
respective frequencies (fp31, fp42).  
(1) Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y IN)  
1
and pin 51 (Sync. IN).  
(2) Set the picture quality control data to maximum.  
(3) Set the picture quality control frequency is 2.5MHz by setting the bus data.  
(4) Measure amplitude (V100k) of the output of pin 37 (Y OUT) as the SG frequency  
1
is 100kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5MHz.  
GS25MX = 20og (Vp25 / V100k)  
Picture Quality Control  
Maximum  
Characteristic  
Y
14  
(5) Set the picture quality control frequency data to 3.1MHz by setting the bus data.  
(6) Measure amplitude (V100k) of the output of pin 37 (Y OUT) as the SG frequency  
1
is 100kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1MHz.  
GS31MX = 20og (Vp31 / V100k)  
(7) Set the picture quality control frequency to 4.2MHz by setting the bus data.  
(8) Measure amplitude (V100k) of the output of pin 37 (Y OUT) as the SG frequency  
1
is 100kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2MHz.  
GS42MX = 20og (Vp42 / V100k)  
40  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) In the condition of the Note Y , set the picture quality control bus data to  
14  
minimum.  
(2) Perform the same measurement as the steps 3 through 8 of the Note Y to find  
14  
Picture Quality  
Control Minimum  
Characteristic  
Vari-  
00H 04H 80H 00H BAH  
able  
respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz  
and 4.2MHz.  
Y
A
C
A
B
A
15  
GS25MN = 20og (Vp25 / V100k)  
GS31MN = 20og (Vp31 / V100k)  
GS42MN = 20og (Vp42 / V100k)  
(1) In the condition of the Note Y , set the picture quality control bus data to center.  
14  
(2) Perform the same measurement as the steps 3 through 8 of the Note Y to find  
14  
Picture Quality  
Control Center  
Characteristic  
respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz  
and4.2MHz.  
Y
Y
20H  
16  
GS25CT = 20og (Vp25 / V100k)  
GS31CT = 20og (Vp31 / V100k)  
GS42CT = 20og (Vp42 / V100k)  
(1) Set the bus data so that black expansion is off, picture quality control is off and DC  
transmission compensation is minimum.  
(2) Input TG7 sine wave signal whose frequency is 100kHz and video level is 0.5V to  
Y Signal Gain  
03H  
17  
pin 45 (Y IN) and pin 51 (Sync. IN). (Vyi100)  
1
(3) Measure amplitude of Y output at pin 37 (Vyout).  
1
Gy = 20og (Vyout / Vyi100)  
(1) Set the bus data so that black expansion is off, picture quality control is off and DC  
transmission compensation is minimum.  
(2) Input TG7 sine wave signal whose frequency is 6MHz and video level is 0.5V to pin  
45 (Y IN) and pin 51 (Sync. IN). (Vyi6M)  
1
Y Signal Frequency  
Characteristic  
Y
18  
(3) Measure amplitude of Y output at pin 37 (Vyo6M).  
1
Gy6M = 20og (Vyo6M / Vyi6M)  
(4) Find Gfy from the result of the Note Y  
.
17  
Gfy = Gy6M Gy  
41  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SUB-ADDRESS & BUS DATA  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
MEASURING METHOD  
S
S
42  
S
S
S
51  
04H 08H 0FH 10H 13H 14H  
39  
44  
45  
(1) Set the bus data so that black expansion is off, picture quality control is off and DC  
transmission compensation is minimum.  
Y Signal Maximum  
Input Range  
(2) Input TG7 sine wave signal whose frequency is 100kHz to pin 45 (Y IN) and pin  
1
Y
A
C
A
B
A
20H 04H 80H 00H BAH 03H  
19  
51 (Sync. IN).  
(3) While increasing the amplitude Vyd of the signal in the video period, measure Vyd  
just before the waveform of Y output (pin 37) is distorted.  
1
42  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
33  
S
S
39  
S
42  
S
44  
S
45  
S
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).  
(2) Set as follows : band pass filter Q = 2, f = 600kHz, crystal clock = conforming to  
o
European, Asian system.  
(3) Set the gate to the normal status.  
(4) Input 3N rainbow color bar signal to pin 42 (Chroma IN).  
(5) When input signal to pin 42 is the same in the burst and chroma levels (10mV ), burst  
p-p  
amplitude of B-Y output signal from pin 36 is expressed as eAT. When the level of input  
signal to pin 42 is 100mV  
or 300mV , burst amplitude of the B-Y output signal is  
p-p  
p-p  
expressed as F1T or F2T. The ratio between F1T and F2T is expressed as AT.  
F2T / F1T = AT  
ACC  
Characteristic  
C
ON  
A
B
B
B
A
A
A
A
B
1
(6) Perform the same measurement in the  
EXT. mode (f = 0).  
o
(eAE, F1E, AE)  
(7) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same  
measurement as the above-mentioned steps with 3N rainbow color bar signal input.  
43  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).  
(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz,  
gate = normal status.  
(3) Input 3N composite sine wave signal (1V ) to pin 42 (Chroma IN).  
p-p  
(4) Measure frequency characteristic of B-Y output of pin 36 and measure the peak  
frequency, too.  
(5) Changing f to 0, 500, 600 and 700 by the bus control and measure peak frequencies  
o
respectively with different f .  
o
(6) For measuring frequency characteristic as f is 4.43, use 4.43MHz crystal clock  
o
Band Pass Filter  
Characteristic  
Measure the following items in the same manner.  
C
ON  
A
B
B
B
A
B
A
A
B
2
44  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).  
(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz.  
(3) Set the gate to the normal status.  
(4) Input 3N composite sine wave signal (1V ) to pin 42 (Chroma IN).  
p-p  
(5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency  
in the 3dB band.  
Band Pass Filter,  
3dB Band  
Characteristic  
C
ON  
A
B
B
B
A
B
A
A
B
3
(6) Changing f to 0, 500, 600 and 700 by the bus control and measure peak frequencies in  
o
the 3dB band respectively with different f .  
o
(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).  
(2) Set as follows : TV mode (f = 600), Crystal mode = conforming to 3.579 / 4.43MHz,  
o
gate = normal status.  
(3) Input 3N composite sine wave signal (1V ) to pin 42 (Chroma IN).  
p-p  
(4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency  
in the 3dB band.  
Band Pass Filter,  
Q Characteristic  
Check  
(5) Changing f of the band pass filter to 0, 500, 600 and 700 by the bus control and  
o
C
4
measure peak frequencies in the 3dB band respectively with different f .  
o
45  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).  
(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz,  
gate = normal status.  
(3) Input 3N composite sine wave signal (1V ) to pin 42 (Chroma IN).  
p-p  
(4) Measure frequency characteristic of B-Y output of pin 36, and measure bottom  
frequency.  
1 / 2 f Trap  
o
Characteristic  
(5) Changing f to 0, 500, 600 and 700 by the bus control and measure bottom frequencies  
o
C
ON  
A
B
B
B
A
B
A
A
B
5
respectively with different f .  
o
46  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian  
system and set the gate to normal status.  
(3) Input 3N rainbow color bar signal (100mV ) to pin 42 (Chroma IN).  
p-p  
Tint Control  
Sharing Range  
(4) Measure phase shift of B-Y color difference output of pin 36.  
C
ON  
A
B
B
B
A
A
A
A
B
6
(f = 600kHz)  
o
(5) While shifting color phase (tint) from minimum to maximum by the bus control, measure  
phase change of B-Y color difference output of pin 36. On the condition that 6 bars in  
the center have the peak level (regarded as center of color phase), the side of 5 bars is  
regarded as positive direction while the side of 7 bars is regarded as negative direction  
when the 5 bars or the 7 bars are in the peak level.  
Based on this assumption,open angle toward the  
positive direction is expressed as ∆θ and that  
1
toward the negative direction is expressed as ∆θ as  
2
viewed from the phase center. ∆θ and ∆θ show  
1
2
the tint control sharing range.  
(6) Variable range is expressed by sum of ∆θ sharing  
1
Tint Control  
Variable Range  
(f = 600kHz)  
o
range and ∆θ sharing range.  
2
C
7
∆θ = ∆θ +∆θ  
2
T
1
(7) While shifting color phase from minimum to maximum with the bus control, measure  
phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level,  
value of color phase bus step is expressed as θ  
.
Tin  
(8) While shifting color phase from minimum to maximum with the bus control, measure  
values of color phase bus step corresponding to 10% and 90% of absolutely variable  
phase shift of B-Y color difference output of pin36.  
The range of color phase shifted by the bus control is  
expressed as While shifting color phase from  
minimum to maximum with the bus control, measure  
phase shift of B-Y color difference output of pin 36.  
When center 6 bars have peak level, value of color  
Tint Control  
Characteristic  
C
8
phase bus step is expressed as (conforming to  
Tin  
TV mode, f = 600kHz).  
o
(9) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same  
measurement as the 3N signal.  
47  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with X’tal clock  
o
conforming to European, Asian system.  
(2) Set the gate to normal status.  
(3) Input 3N CW signal of 100mV  
to pin 42 of the chroma input terminal.  
p-p  
(4) While changing frequency of the CW (continuous waveform) signal, measure its  
frequency when B-Y color difference signal of pin 36 is colored.  
(5) Input 4N CW (continuous waveform) 100mV  
signal to pin 42 (Chroma IN).  
p-p  
(6) While changing frequency of the CW signal, measure frequencies when B-Y color  
difference output of pin 36 is colored and discolored. Find difference between the  
OFF  
A
APC Lead-In  
Range  
measured frequency and f (4.433619MHz) and express the differences as fPH and  
C
9
A
B
B
B
A
A
A
B
c
fPL, which show the APC lead-in range.  
ON  
C
(7) Variable frequency of VCXO is used to cope with lead-in of 3.582MHz / 3.575MHz PAL  
system.  
(8) Activate the test mode (S26-ON, Sub Add 02 ; 02h).  
(9) Input nothing to pin 42 (Chroma IN).  
(10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin  
35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal.  
Express difference between the high frequency (fH) and f center as 3.582HH, and  
o
difference between the low frequency (fL) and f center as 3.582HL. Perform the same  
o
measurement for the NP system (3.575MHz PAL).  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 02h).  
(2) Connect band pass filter as same as the Note C .  
9
(3) Change the X’tal mode properly to the system.  
(4) Input nothing to pin 42 (Chroma IN).  
APC Control  
Sensitivity  
C
ON  
C
10  
(5) When V ’s APC voltage ±50mV is impressed to pin 30 (APC Filter) while its voltage is  
30  
being varied, measure frequency change of pin 35 output signal as frH or frL and  
calculate sensitivity according to the following equation.  
b = (frH frL) / 100  
48  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Connect band pass filter (Q = 2) and set to TV mode (f = 600kHz).  
o
(2) Set the crystal mode to conform to European, Asian system and set the gate to normal  
status.  
(3) Input 3N color signal having 200mV  
burst to pin 42 (Chroma IN).  
p-p  
(4) While attenuating chroma input signal, measure input burst amplitudes of the signal  
when B-Y color difference output of pin 36 is discolored and when the same signal is  
colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and  
3N-VTC1 respectively (killer operation input level).  
(5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with  
the bus control is expressed as 3N-VTK2 or 3N-VTC2.  
(6) Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP,  
NP color signals having 200mV  
MP / NP color signal, set the crystal system to conform to South American system.)  
burst to pin 42 (Chroma IN). (When measuring with  
p-p  
Killer Operation  
Input Level  
C
OFF  
A
B
B
B
A
A
A
A
B
11  
(7) Killer operation input level at that time is expressed as follows.  
Normal killer operation input level in the 4N system is expressed as 4N-VTK1,  
4N-VTC1.  
Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1.  
Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2.  
Normal killer operation input level in the MP system is expressed as MP-VTK2,  
MP-VTC2.  
Normal killer operation input level in the NP system is expressed as NP-VTK1,  
NP-VTC1.  
Killer operation input level with low killer sensitivity is expressed as NP-VTK2,  
NP-VTC2.  
[Reference] 3N system : 3.579545MHz  
4N system : 4.433619MHz  
4P system : 4.433619MHz  
MP system : 3.575611MHz  
NP system : 3.582056MHz  
NTSC  
False NTSC  
PAL  
M-PAL  
N-PAL  
49  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with 0dB attenuation.  
o
(3) Set the crystal mode to conform to European, Asian system and set the gate to normal  
status.  
(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV  
chroma input terminal one after another.  
burst to pin 42 of the  
p-p  
Color  
Difference  
Output  
C
12  
ON  
A
B
B
B
A
A
A
A
B
(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y)  
respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y  
respectively.  
(6) While inputting 4P 75% color bar signal (100mV  
burst) to pin 42 of the chroma input  
p-p  
terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35  
(R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for  
checking color level of SECAM system.)  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with 0dB attenuation.  
o
(3) Set the crystal mode to conform to European, Asian system and set the gate to normal  
status.  
Demodulation  
Relative  
Amplitude  
(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV  
chroma input terminal one after another.  
burst to pin 42 of the  
p-p  
C
13  
(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y)  
respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B  
and 4PG R / B respectively.  
(Note) Relative amplitude of G-Y color difference signal shall be checked later in the  
Text section.  
50  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with 0dB attenuation.  
o
(3) Set the crystal mode to conform to European, Asian system and set the gate to normal  
status.  
(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV  
chroma input terminal one after another.  
burst to pin 42 of the  
p-p  
Demodulation  
Relative Phase  
C
ON  
A
B
B
B
A
A
A
A
B
14  
(5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y)  
respectively, and express them as 3NθR-B, 4NθR-B and 4PθR-B respectively.  
(6) For measuring with 3N and 4N color bar signals in NTSC system, set six bars of the B-Y  
color difference waveform to the peak level with the Tint control and measure its phase  
difference from phase of R-Y color difference signal of pin 35 (R-Y OUT).  
(Note) Relative phase of G-Y color difference signal shall be checked later in the Text  
section.  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with 0dB attenuation.  
o
(3) Set the crystal mode to conform to European, Asian system.  
(4) Set the gate to normal status.  
Demodulation  
Output Residual  
Carrier  
C
15  
(5) Input 3N and 4N rainbow color bar signals having 100mVp-p burst to pin 42 of the  
chroma input terminal one after another.  
(6) Measure subcarrier leak of 3N and 4N color bar signals appearing in color difference  
signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those  
leaks as 3N-SCB / R and 4N-SCB / R.  
51  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
SW MODE  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
S
1
S
31  
S
S
S
39  
S
42  
S
44  
S
45  
S
33  
34  
51  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2), set to TV mode (f = 600kHz) with 0dB attenuation.  
o
(3) Set the crystal mode to conform to European, Asian system and set the gate to normal  
status.  
Demodulation  
Output Residual  
Higher Harmonic  
C
ON  
A
B
B
B
A
A
A
A
B
16  
(4) Input 3N and 4N rainbow color bar signals having 100mV  
chroma input terminal one after another.  
burst to pin 42 of the  
p-p  
(5) Measure higher harmonic (2f = 7.16MHz or 8.87MHz) of 3N and 4N color bar signals  
c
appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT)  
respectively, and express them as 3N-HCB / R and 4N-HCB / R.  
(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).  
(2) Connect band pass filter (Q = 2) and set bus data for the TV mode (f = 600kHz).  
o
(3) Set the X’tal clock mode to conform to European, Asian system and set the gate to  
normal status.  
Color Difference  
Output ATT  
Check  
C
17  
(4) Input 3N rainbow color bar signal whose burst is 100mV to pin 42 of the chroma input  
p-p  
terminal.  
(5) Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0dB  
attenuation set by the bus control. Set the amplitude of the color difference output of pin  
36 (B-Y OUT) to 0dB, and measure amplitude of the same signal with different  
attenuation of 2dB, 1dB and +1dB set by the bus control.  
52  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
BUS : TEST MODE  
02H 07H  
BUS : NORMAL CONTROL MODE  
10H  
NOTE  
ITEM  
MEASURING METHOD  
S
26  
OTHER CONDITION  
D
5
D
D
1
D
D
7
D
4
D
3
D
5
D
4
D
3
D
2
D
1
D
0
2
0
(1) Input nothing to pin 42.  
16.2MHz Oscillation  
Frequency  
(2) Measure frequency of CW signal of pin 35 as fr, and find  
oscillation frequency by the following equation.  
C
C
ON  
ON  
0
0
0
1
0
0
0
0
0
0
0
0
0
18  
19  
foF = (fr 0.05MHz)×4  
Impress pin 38  
individually with  
separate power supply.  
16.2MHz Oscillation  
Start Voltage  
While raising voltage of pin 38, measure voltage when  
oscillation waveform appears at pin 40.  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(1) Input nothing to pin 42.  
(2) Change setting of SUB (10H) D , D and D according to  
4
3
2
respective frequency modes, and measure frequency of  
CW signal of pin 35.  
f
Free-Run  
sc  
C
C
ON  
Variable  
20  
Frequency  
Detail of D , D and D  
2
4
3
3.58M = 1 : (001), 4.43M = 2 : (010)  
M-PAL = 6 : (110), N-PAL = 7 : (111)  
(1) Input nothing to pin 42.  
(2) Change setting of SUB (10H) D , D and D according to  
1
0
1
0
f
Output Amplitude  
sc  
OFF  
0
0
0
0
0
0
0
0
0
0
0
4
3
2
21  
respective frequency modes.Measure the amplitude of  
output signal of pin 27.  
53  
2004-05-24  
TB1227CNG  
DEF SECTION  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
(1) Supply 5V to pin 26.  
H. Reference  
Frequency  
DH1  
Sub 02H  
0
0
0
0
0
0
0
1
(2) Set bus data as indicated on the left.  
(3) Measure the frequency of sync. output of pin 49.  
H. Reference  
DH2 Oscillation Start  
Voltage  
In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5V, measure the voltage  
when oscillation of pin 49 stops.  
Sub 02H  
Sub 10H  
0
×
0
×
0
×
0
×
0
×
0
×
0
0
1
1
(1) Set bus data as indicated on the left.  
H. Output  
DH3  
Frequency 1  
(2) In the condition of the above step 1, measure frequency (TH1) at pin 4.  
(1) Set the input video signal of pin 51 to the 60 system.  
(2) Set bus data as indicated on the left.  
H. Output  
DH4  
Sub 10H  
×
×
×
×
×
×
1
0
Frequency 2  
(3) In the above-mentioned condition, measure frequency (TH2) at pin 4.  
(1) Supply 4.5V DC to pin 5 (or, make pin 5 open-circuited).  
(2) Measure duty of pin 4 output.  
DH5 H. Output Duty 1  
DH6 H. Output Duty 2  
(1) Make a short circuit between pin 5 and ground.  
(2) Measure duty of pin 4 output.  
H. Output Duty  
DH7  
Supply 2V DC to pin 5. While turning down the voltage from 2V, measure voltage when the output duty ratio  
becomes 41 to 37%.  
Switching Voltage  
Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.  
DH8 H. Output Voltage  
H. Output Oscillation  
DH9  
While raising H. V  
(pin 3) from 0V, measure voltage when pin 4 starts oscillation.  
CC  
Start Voltage  
54  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DH10 H. FBP Phase  
(1) Supply 4.5V DC to pin 5.  
(2) Input video signal to pin 51.  
(3) Set the width of pin 6 input pulse to 8µs.  
(4) Measure φFBP shown in the figure below (φFBP).  
(5) Adjust the phase of pin 6 input pulse so that the center of pin 4’s output pulse corresponds to the trailing  
edge of input sync. signal.  
DH11 H. Picture Position,  
Maximum  
(6) Set bus data as indicated on the left and measure the horizontal picture position with respective bus data  
settings (HSFTmax, HSFTmin).  
(7) Find HP difference between the conditions mentioned in the above step 6 (HSFT).  
(8) Reset bus data to the preset value.  
(9) While impressing 5V DC to pin 5, measure HP.  
DH12 H. Picture Position,  
Minimum  
(10) While impressing 4V DC to pin 5, measure HP.  
0
1
0
1
0
1
0
1
0
1
×
×
×
×
×
×
(11) Find difference between the two measurement results obtained in the preceding steps 9 and 10 (HCC).  
Sub 0BH  
DH13 H. Picture position  
Control Range  
DH14 H. Distortion  
Correction Control  
Range  
55  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DH15 H. BLK Phase  
Sub02H  
0
0
0
0
0
1
0
0
(1) In the condition of the steps 1 through 4 of the Note DH10, perform the following measurement.  
(2) Supply 5V DC to pin 26.  
DH16 H. BLK Width,  
Minimum  
(3) Set bus data as indicated on the left.  
(4) Measure phase difference between pin 51 and pin 49 as shown below.  
(5) Change the bus data as shown on the left and measure BLK width.  
0
1
0
1
0
1
×
×
×
×
×
×
×
×
×
×
Sub 16H  
DH17 H. BLK Width,  
Maximum  
DH18 P / N-GP Start  
Phase 1  
(1) Supply 5V to pin 26.  
(2) Set bus data as indicated on the left.  
DH19 P / N-GP Start  
Phase 2  
(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in  
the figure below.  
×
×
×
×
×
×
×
×
0
1
×
×
×
×
×
×
DH20 P / N-GP Gate  
Width 1  
Sub 0FH  
DH21 P / N-GP Gate  
Width 2  
DH22  
(1) Supply 5V to pin 26.  
SECAM-GP Start  
Phase 1  
(2) Set bus data as indicated on the left.  
(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in  
the figure below.  
DH23  
SECAM-GP Start  
Phase 2  
×
×
×
×
×
×
0
1
×
×
×
×
×
×
×
×
Sub 1FH  
DH24  
SECAM-GP Gate  
Width 1  
DH25 SECAM-GP Gate  
Width 2  
56  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DH26 Noise Detection  
Level 1  
(1) Input such a signal as shown by “a” of the following figure to pin 51.  
(2) Set bus data as indicated in the first line of the left table.  
(3) Measure NLX when amplitude of pin 41 changes. NL1  
(4) Set bus data as indicated in the second line of the left table.  
(5) Measure NLX when amplitude of pin 41 changes. NL2  
(6) Set bus data as indicated in the third line of the left table.  
(7) Measure NLX when amplitude of pin 41 changes. NL3  
(8) Set bus data as indicated in the fourth line of the left table.  
(9) Measure NLX when amplitude of pin 41 changes. NL4  
DH27 Noise Detection  
Level 2  
0
0
1
1
0
1
0
1
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
Sub 1DH  
DH28 Noise Detection  
Level 3  
DH29 Noise Detection  
Level 4  
DV1 V. Ramp Amplitude  
(1) Measure amplitude of V. ramp waveform of pin 52.  
(1) Set data bus as indicated on the left.  
(2) Measure amplitude of pin 54’s signal.  
(1) Set data bus as indicated on the left.  
(2) Measure amplitude of pin 54’s signal.  
V. NF Maximum  
DV2  
Sub 17H  
Sub 17H  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
×
×
Amplitude  
V. NF Minimum  
DV3  
Amplitude  
57  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DV4 V. Amplification  
Degree  
(1) Set bus data as indicated on the left.  
(2) Change 5.0V of pin 54 voltage by +0.1V and 0.1V, and measure V output voltage in both the  
53  
conditions.  
(3) Find GVA shown in the figure below.  
(4) Measure Vvmax and Vvmin shown in the figure below.  
DV5 V. Amplifier Max.  
Output  
Sub 1BH  
1
1
×
×
×
×
×
×
DV6 V. Amplifier Min.  
Output  
(1) Adjust the oscilloscope’s amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each  
other as the bus data is set to the preset value.  
(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.  
(3) Find V according to the equation that V = (X / Y)×100%.  
S
S
V. S-Curve  
DV7 Correction, Max.  
Correction Quantity  
Sub 19H  
1
1
1
1
1
1
1
×
58  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
(1) Adjust the oscilloscope’s amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each  
other as the bus data is set to the preset value.  
(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.  
(3) Find V according to the equation that V = (X / Y)×100%.  
S
S
V. Reverse S-Curve  
DV8 Correction, Max.  
Correction Quantity  
Sub 19H  
0
0
0
0
0
0
0
×
(1) Adjust the oscilloscope’s amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each  
other as the bus data is set to the preset value.  
(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.  
(3) Find V according to the equation that V = (X / 2Y)×100%.  
S
S
V. Linearity Max.  
DV9  
Sub 1AH  
1
1
1
1
1
×
×
×
Correction Quantity  
59  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DV10 AFC-MASK Start  
Phase  
(1) Supply 5V DC to pin 26.  
(2) Set bus data as indicated on the left and activate the test mode.  
(3) Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 49.  
(4) Set the Sub 16H as indicated on the left.  
DV11 AFC-MASK Stop  
Phase  
(5) Measure the VNFB start phase (Z) of pin 54.  
Sub 02H  
Sub 16H  
0
×
0
×
0
×
0
×
0
×
0
0
0
0
1
0
DV12 VNFB Phase  
DV13 V. Output Maximum  
Phase  
(1) Input video signal to pin 51.  
(2) Measure both phases (Xmax, Xmin) of pin 52 and pin 54 with the respective bus data settings shown on  
the left.  
(3) Find difference between the two phases measured in the above step 2.  
Y = Xmax Xmin  
DV14 V. Output Minimum  
Phase  
×
×
×
×
×
×
×
×
×
×
0
1
0
1
0
1
Sub 16H  
DV15 V. Output Phase  
Variable Range  
60  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DV16 50 System VBLK  
Start Phase  
(1) Input such a video signal of the 50 system as shown in the figure to pin 51.  
(2) Set bus data as indicated on the left.  
(3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.  
Sub 1BH  
Sub 1CH  
0
0
1
×
×
×
×
×
×
×
×
×
×
×
×
×
DV17 50 System VBLK Stop  
Phase  
DV18 60 System VBLK  
Start Phase  
(1) Input such a video signal of the 60 system as shown in the figure to pin 51.  
(2) Set bus data as indicated on the left.  
(3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.  
Sub 1BH  
Sub 1CH  
0
0
1
×
×
×
×
×
×
×
×
×
×
×
×
×
DV19 60 System VBLK Stop  
Phase  
(1) Set bus data as indicated on the left.  
(2) Input 262.5 H video signal to pin 51.  
(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each  
other as shown in the figure below.  
(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not  
synchronize with each other.  
(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.  
DV20 V. Lead-In Range 1  
Sub 16H  
×
×
×
0
0
0
0
0
(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not  
synchronize with each other.  
61  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
(1) Set bus data as indicated on the left.  
(2) Input 262.5 H video signal to pin 51.  
(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each  
other as shown in the figure below.  
(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not  
synchronize with each other.  
(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.  
DV21 V. Lead-In Range 2  
Sub 16H  
×
×
×
0
1
0
0
0
(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not  
synchronize with each other.  
DV22 W-VBLK Start Phase  
(1) Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X shown in the  
figure below.  
W-VBLK start phase : MAX, MIN  
×
×
×
×
×
×
×
×
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
(2) Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the  
Sub 1BH  
Sub 1DH  
figure below.  
W-PMUTE start phase : MAX, MIN  
DV23 W-PMUTE Start  
Phase  
(Note) Only the 60  
system is subject to  
evaluation.  
62  
2004-05-24  
TB1227CNG  
TEST CONDITION  
= 9V ; V , Fsc V , Y / C V = 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
Unless otherwise specified : H, RGB V  
CC  
DD  
DD  
NOTE  
ITEM  
pin 51 input video signal = 50 system  
(Note) “×” in the data column represents preset value at power ON.  
MEASURING METHOD  
SUB-ADDRESS & BUS DATA  
DV24 W-VBLK Stop Phase  
(1) Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the  
figure below.  
×
×
×
×
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
W-VBLK stop phase : MAX, MIN  
Sub 1CH  
Sub 1EH  
(2) Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the  
figure below.  
W-PMUTE stop phase : MAX, MIN  
DV25 W-PMUTE Stop  
Phase  
(Note) Only the 60  
system is subject to  
evaluation.  
DV26 V Centering Center  
Voltage  
(1) Set bus data as indicated on the left.  
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
×
×
×
×
×
×
(2) Measure the voltage of pin 47 with respective bus data settings.  
DV27 V Centering Max  
Voltage  
Sub 18H  
DV28 V Centering Min  
Voltage  
63  
2004-05-24  
TB1227CNG  
1H DL SECTION  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
DD  
DD  
CC  
pin3 = 9V ; pin8 · 38 · 41 = 5V)  
MEASURING METHOD  
(1) Input waveform 1 to pin 33 (B · Yin) , and measure VNBD,  
NOTE  
ITEM  
SUB ADDRESS &  
DATA  
SW MODE  
S26  
07H  
0FH  
11H  
that pin 36 (B · Yout) is saturated input level.  
(2) Measure VNRD of R · Y input in the same way as VNBD.  
1HDL Dynamic  
Range Direct  
H
ON  
94H  
1
(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level.  
(2) Measure VPRD of R-Y input in the same way as VPBD.  
1HDL Dynamic  
Range Delay  
H
H
8CH  
A4H  
2
3
1HDL Dynamic  
Range,  
Direct+Delay  
(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level.  
(2) Measure VNRD of R-Y input in the same way as VSBD.  
(1) In the same measuring as H , set waveform 1 to 0.3V  
and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level.  
p-p  
1
And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level.  
Frequency  
Characteristic,  
Direct  
H
H
94H  
8CH  
4
5
GHB1 = 20og (VB700 / VB100)  
(2) Measure GHR1 of R-Y out in the same way as GHB1.  
(1) In the same measuring as H , set waveform 1 to 0.3V  
and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level.  
p-p  
1
And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level.  
Frequency  
Characteristic,  
Delay  
GHB2 = 20og (VB700 / VB100)  
(2) Measure GHR2 of R-Y out in the same way as GHB2.Measure VB700, that is pin 36 (B-Yout) level.  
(1) In the same measuring as H , set waveform 1 to 0.7V . Measure VByt1, that is pin 36 (B-Yout) level.  
1
p-p  
H
H
AC Gain Direct  
AC Gain Delay  
94H  
8CH  
GBY = 20og (VByt1 / 0.7)  
6
7
1
(2) Measure GRY1 of R-Y out in the same way as GBY1.  
(1) In the same measuring as H , set waveform 1 to 0.7V . Measure VByt2, that is pin 36 (B-Yout) level.  
1
p-p  
GBY = 20og (VByt2 / 0.7)  
2
(2) Measure GRY2 of R-Y out in the same way as GBY2.  
64  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value ;  
CC  
DD  
DD  
CC  
pin3 = 9V ; pin8 · 38 · 41 = 5V)  
NOTE  
ITEM  
SUB ADDRESS &  
DATA  
SW MODE  
S26  
MEASURING METHOD  
07H  
94H  
8CH  
0FH  
11H  
Direct · Delay  
AC Gain  
Difference  
(1) GBYD = GBY1 GBY2  
(2) GRYD = GRY1 GRY2  
H
H
ON  
8
9
Color Difference  
Output DC  
(1) Measure pin 36 (B-Yout) DC stepping of the picture period.  
(2) Measure pin 35 (R-Yout) DC stepping of the picture period.  
8CH  
8CH  
Stepping  
(1) Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout).  
(2) Input waveform 2 to pin 34 (R-Yin). And measure the time  
diference RDt of pin 36 (B-Yout).  
H
1H Delay Quantity  
10  
(1) Set Sub-Address 11h ; data 88h. Measure the pin 36 DC voltage, that is BDC1.  
00H (2) Set Sub-Address 11h ; data 88h. Measure the pin 35 DC voltage, that is RDC1.  
(3) Set Sub-Address 11h ; data 00h. Measure the pin 36 DC voltage, that is BDC2.  
88H (4) Set Sub-Address 11h ; data 00h. Measure the pin 35 DC voltage, that is RDC2.  
(5) Set Sub-Address 11h ; data FFh. Measure the pin 36 DC voltage, that is BDC3.  
FFH (6) Set Sub-Address 11h ; data FFh. Measure the pin 35 DC voltage, that is RDC3.  
(7) Bomin = BDC2 BDC1, Bomax = BDC3 BDC1, Romin = RDC2 RDC1, Romax = RDC3 RDC1  
(1) Measure the pin 36 DC voltage, that is BDC4.  
Color Difference  
Output DC-Offset  
Control  
H
8CH  
20H  
11  
Color Difference  
Output DC-Offset  
Control / Min.  
H
H
A4H  
94H  
00H  
80H  
89H (2) Measure the pin 35 DC voltage, that is RDC4.  
12  
13  
Control Quantity  
(3) Bo1 = BDC4 BDC1, Ro1 = RDC4 RDC1  
(1) Input waveform 1, that is set 0.3V  
and f = 100kHz, to pin 33. Measure pin 36 output level, that is VBNC.  
p-p  
(2)  
GNB = 20og (VBNC / VB100)  
NTSC Mode Gain /  
NTSC-COM Gain  
(3) In the same way as (1) and (2), measure the pin 36 output level, that is VRNC.  
GNR = 20og (VRNC / VR100)  
65  
2004-05-24  
TB1227CNG  
TEXT SECTION  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
00H 02H  
31  
33  
51  
(1) Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in  
AC coupling.  
Y Color Difference  
Clamping Voltage  
T
1
B
B
B
B
B
A
FFH 00H  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34,  
Vcp33).  
(1) Input TG7 sine wave signal whose frequency is 100kHz and video  
amplitude is 0.7V to pin 31 (Y IN).  
(2) Input 0.3V Synchronizing Signal to pin 51 (Sync IN).  
(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that Y sub  
contrast and drive are set at  
each center value and color is  
minimum.  
(5) Varying data on contrast from  
maximum (FF) to minimum (00),  
measure maximum and  
FFH  
minimum amplitudes of  
Contrast Control  
Characteristic  
T
2
80H 00H  
00H  
respective outputs of pin 14 (R  
OUT), pin 13 (G OUT) and pin  
12 (B OUT) in video period, and  
read values of bus data at the  
same time.  
Also, measure the respective amplitudes with the bus data set to  
the center value (80).  
(Vc12mx, Vc12mn, D12c80)  
(Vc13mx, Vc13mn, D13c80)  
(Vc14mx, Vc14mn, D14c80)  
(6) Find ratio between amplitude with maximum unicolor and that with  
minimum unicolor in conversion into decibel (V13ct).  
In the test condition of Note T , find output / input gain (double) with  
2
maximum contrast.  
T
3
AC Gain  
G = Vc13mx / 0.7V  
66  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
00H 02H  
31  
33  
51  
(1) Input TG7 sine wave signal whose frequency is 6MHz and video  
amplitude is 0.7V to pin 31 (Y IN).  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that contrast is maximum, Y sub contrast and drive  
are set at each center value and color is minimum.  
Frequency  
Characteristic  
T
4
B
B
B
B
B
A
FFH 00H  
(5) Measure amplitude of pin 13 signal (G OUT) and find the output /  
input gain (double) (G6M).  
(6) From the results of the above step 5 and the Note T , find the  
3
frequency characteristic.  
Gf = 20og (G6M / G)  
67  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
00H 02H 05H 1BH 08H —  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
S
42  
31  
33  
51  
(1) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(2) Input TG7 sine wave signal whose frequency is 100kHz and video  
amplitude is 0.7V to pin 31 (Y IN).  
(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
1FH  
(4) Set bus data so that contrast is maximum, drive is set at center  
value and color is minimum.  
Y Sub-Contrast  
Control Characteristic  
T
5
B
B
B
B
B
A
FFH 00H  
00H  
(5) Set bus data on Y sub contrast at maximum (FF) and measure  
amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y  
sub contrast at minimum (00), measure the same (Vscmn).  
(6) From the results of the above step 5, find ratio between Vscmx and  
Vscmn in conversion into decibel (Vscnt).  
(1) Set bus data so that contrast is maximum, Y sub contrast and drive  
are at each center value.  
(2) Input 0.3V synchronizing signal to pin 51 while inputting TG7 sine  
wave signal whose frequency is 100kHz to pin 31 (TY IN).  
T
6
Y
Input Level  
2
BFH 44H  
(3) While increasing the amplitude of the sine wave signal, measure  
video amplitude of signal 1 just before R output of pin 14 is  
distorted. (Vy2d)  
68  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
00H 02H 05H 1BH 08H —  
MEASURING METHOD  
(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
S
21  
S
22  
S
S
S
34  
S
S
42  
31  
33  
51  
(2) Input 100kHz, 0.3V  
pin 34 (R-Y IN).  
sine wave signal to both pin 33 (B-Y IN) and  
p-p  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that drive is at center value and Y mute is on.  
(5) While changing bus data on  
unicolor from maximum (FF) to  
minimum (00), measure maximum  
and minimum amplitudes of pin 13  
(G OUT) and pin 12 (B OUT) in  
video period respectively, and read  
the bus data together with.  
FFH  
Unicolor Control  
Characteristic  
T
7
B
B
B
B
B
A
80H  
00H  
BFH  
Also, measure respective  
amplitudes as unicolor data is set  
at center value (80).  
(Vn12mx, Vn12mn, D12n80)  
(Vn13mx, Vn13mn, D13n80)  
(Vn14mx, Vn14mn, D14n80)  
(6) Find ratio between amplitude with maximum unicolor data and that  
with minimum unicolor data in conversion into decibel (V13un).  
While inputting rainbow color bar signal (3.58MHz for NTSC) to pin 42  
and 0.3V synchronizing signal to pin 51 so that video amplitude of pin  
Relative Amplitude  
(NTSC)  
T
T
A
A
A
A
FFH  
8
33 is 0.38V , find the relative amplitude  
p-p  
(Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx).  
(1) In the test condition of the Note T , adjust bus data on tint so that  
8
output of pin 12 (B OUT) has the peak level in the 6th bar.  
Relative Phase  
(NTSC)  
9
(2) Regarding the phase of pin 12 (B OUT) as a reference phase, find  
comparative phase differences of pin 14 (R OUT) and pin 13  
(G OUT) from the reference phase respectively (θnr-b, θng-b).  
69  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
S
S
S
S
34  
S
S
42  
00H 02H 1BH  
21  
22  
31  
33  
51  
While inputting rainbow color bar signal (4.43MHz for PAL) to pin 42 and  
0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is  
0.38V , find the relative amplitude.  
Relative Amplitude  
(PAL)  
T
B
B
A
A
A
A
A
FFH  
BFH  
10  
11  
p-p  
(Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx)  
(1) In the test condition of the Note T , adjust bus data on tint so that  
10  
output of pin 12 (B OUT) has the peak level in the 6th bar.  
Relative Phase  
(PAL)  
T
(2) Regarding the phase of pin 12 (B OUT) as a reference phase, find  
comparative phase differences of pin 14 (R OUT) and pin 13  
(G OUT) from the reference phase respectively (θpr-b, θpg-b).  
(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(2) Input 100kHz, 0.1V  
pin 34 (R-Y IN).  
sine wave signal to both pin 33 (B-Y IN) and  
p-p  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
Color Control  
Characteristic  
(4) Set bus data so that unicolor is maximum, drive is at center value  
and Y mute is on.  
T
12  
B
B
B
FFH  
(5) Measure amplitude of pin 12 (B OUT) as bus data on color is set  
maximum (FF). (Vcmx)  
(6) Read bus data when output level of pin 12 is 10%, 50% and 90%  
of Vcmx respectively (Dc10, Dc50, Dc90).  
(7) From results of the above step  
6, calculate number of steps  
from Dc10 to Dc90 (col) and  
that from 00 to Dc50 (ecol).  
Color Control  
Characteristic,  
Residual Color  
(8) Measure respective  
amplitudes of pin 12 (B OUT),  
pin 13 (G OUT) and pin 14  
(R OUT) with color data set at  
minimum, and regard the  
results as color residuals (ecb,  
ecg, ecr).  
T
13  
00H  
70  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
S
42  
00H 02H 1BH  
31  
33  
51  
(1) Input rainbow color bar signal (3.58MHz for NTSC or 4.43MHz for  
PAL) to pin 42 (C IN) and 0.3V synchronizing signal to pin 51 (Sync  
IN).  
(2) Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT)  
and pin 34 (R-Y IN) in AC coupling respectively.  
T
14  
Chroma Input Range  
B
B
A
A
A
A
A
FFH 88H BFH  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that unicolor is maximum, drive and color are set  
at each center value (80) and mute is on.  
(5) While increasing amplitude of chroma signal input to pin 42,  
measure amplitude just before any of pin 12 (B OUT), pin 13  
(G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).  
71  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
00H 05H  
31  
33  
51  
(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in  
AC coupling.  
FFH  
10H  
00H  
Brightness Control  
Characteristic  
T
B
B
B
B
B
A
15  
16  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Set bus data so that R, G, B cut off data are set at center value.  
(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(5) While changing bus data on brightness from maximum to  
minimum, measure video voltage of pin 13 (G OUT) to find  
maximum and minimum voltages (max : Vbrmx, min : Vbrmn).  
Brightness Center  
Voltage  
T
80H  
(6) With bus data on brightness set at center value, measure video  
voltage of pin 13 (G OUT) (Vbcnt).  
(7) On the conditon that bus data with which Vbrmx is obtained in  
measurement of the above step 5 is Dbrmx and bus data with  
which Vbrmn is obtained in measurement of the above step 5 is  
Dbrmn, calculate sensitivity of brightness data (Vbrt).  
Brightness Data  
Sensitivity  
T
T
17  
Vbrt = (Vbrmxg Vbrmng) / (Dbrmxg Dbrmng)  
(1) In the same manner as the Note T , measure video voltage of pin  
16  
RGB Output Voltage  
Axes Difference  
12 (B OUT) with bus data on brightness set at center value.  
18  
(2) Find maximum axes difference in the brightness center voltage.  
(1) Set bus data so that contrast and Y sub contrast are maximum and  
brightness is minimum.  
(2) Input TG7 sine wave signal whose  
frequency is 100kHz and amplitude  
in video period is 0.9V to pin 31  
(Y IN).  
White Peak Limit  
Level  
T
19  
00H 1FH  
(3) Connect pin 21 (Digital Ys) and pin  
22 (Analog Ys) to ground.  
(4) While turning on / off WPL with bus,  
measure video amplitude of pin 14  
(R OUT) with WPL being activated  
(Vwpl).  
72  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
09H 0AH 0CH 0DH 0EH  
31  
33  
51  
(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in  
AC coupling.  
FFH FFH FFH  
80H 80H  
Cutoff Control  
Characteristic  
T
B
B
B
B
B
A
20  
21  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data on brightness at center value.  
00H 00H 00H  
(5) While changing data on cutoff from maximum to minimum,  
measure video voltage of pin 13 (G OUT) to find maximum and  
minimum values (max : Vcomx, min : Vcomn).  
T
Cutoff Center Level  
80H 80H 80H  
(6) Set cutoff data at center value and measure video voltage of pin 13  
(G OUT) (Vcoct).  
(7) On the condition that bus data with which Vcomx is obtained in  
measurement of the above step 5 is Dcomx and bus data with  
which Vcomn is obtained in the same is Dcomn, calculate number  
of steps (Dcut).  
T
22  
Cutoff Variable Range  
——  
Dcut = Dcomx Dcomn  
(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.  
(2) Input a stepping signal whose amplitude in video period is 0.3V to  
pin 31 (Y IN).  
(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
FFH FFH  
00H 00H  
(5) Set bus data so that contrast is maximum and Y sub contrast is  
minimum.  
T
23  
Drive Variable Range  
80H 80H 80H  
(6) While changing drive data from minimum to maximum, measure  
video amplitude of pin 13 (G OUT) to find maximum and minimum  
values (max : Vdrmx, min : Vdrmn).  
(7) Set drive data at center value and measure video amplitude of pin  
13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured  
value to the maximum and minimum amplitudes measured in the  
above step 6 respectively (DR+, DR).  
73  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
— — — — — —  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
S
45  
S
S
44  
31  
33  
51  
39  
(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.  
(2) Input such the step-up signal as shown below to pin 45 (Y IN) and  
pin 51 (Sync IN).  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that contrast is maximum and DC transmission  
correction factor is minimum.  
(5) Adjust data on Y sub contrast so that video amplitude of pin 13  
(G OUT) is 2.5V.  
T
24  
DC Regeneration  
B
B
A
B
B
A
B
A
A
(6) While varying APL of the step-up signal from 10% to 90%,  
measure change in voltage at the point A.  
(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in  
AC coupling.  
(2) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data on contrast at maximum.  
RGB Output S / N  
Ratio  
T
25  
B
(5) Set bus data on Y sub contrast at center value.  
(6) Measure video noise level of pin 13 (G OUT) with oscilloscope  
(no).  
SNo = 20og (2.5 / (1 / 5) ×no)  
74  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
01H 05H 08H 0CH 0DH 0EH  
MEASURING METHOD  
S
21  
S
22  
S
S
S
34  
S
31  
33  
51  
(1) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN)  
(2) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
Blanking Pulse Output  
Level  
T
26  
B
B
B
B
B
A
80H 10H 04H 80H 80H 80H (3) Set bus data so that blanking is on.  
(4) Measure voltage of pin 13 (G OUT) in V. blanking period (Vv).  
(5) Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).  
In the setting condition of the Note T , find “t ” and “t ” (see figure  
26  
don  
doff  
below) between the signal impressed to pin 6 (BFP IN) and output  
signal of pin 13 (G OUT).  
Blanking Pulse Delay  
Time  
T
27  
(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in  
AC coupling.  
(2) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).  
(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.  
(4) Set bus data so that brightness and RGB cutoff are minimum.  
(5) Measure video voltage of pin 13 (G OUT) (Vmn).  
RGB Min. Output  
Level  
T
28  
00H  
00H 00H 00H  
(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.  
(2) Input stepping signal to pin 31 (Y IN) and synchronizing signal of  
0.3V in amplitude to pin 51 (Sync IN).  
(3) Connect pin 21 (Digital Ys) and pin  
22 (Analog Ys) to ground.  
RGB Max. Output  
Level  
T
29  
80H 1fH 44H 80H 80H 80H  
(4) Set bus data so that contrast and Y  
sub contrast are maximum.  
(5) While increasing amplitude of the  
stepping signal, measure maximum  
output level just before video signal  
of pin 13 (G OUT) is distorted (Vmn).  
75  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
CC  
DD  
DD  
CC  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
MEASURING METHOD  
S
18  
S
19  
S
S
S
22  
S
S
33  
S
S
51  
15H 1CH  
20  
21  
31  
34  
(1) Input stepping signal whose amplitude is 0.3V in video period to pin  
31 (Y IN) and pin 51 (Sync IN).  
(2) Set bus data so that blanking is off and halftone is 3dB in on  
T
30  
T
31  
T
32  
T
33  
T
34  
Halftone Ys Level  
B
B
B
A
B
B
B
B
A
00H 80H  
status.  
(3) Connect power supply to pin 21 (Digital Ys). While impressing 0V  
to it, measure amplitude and pedestal level of pin 13 (G OUT) in  
video period (Vm13, Vp13).  
(4) Raising supply voltage to pin 21 gradually from 0V, measure level  
(Vtht1) of pin 21 when amplitude of pin 13 output signal changes.  
At the same time, measure amplitude and pedestal level of pin 13  
in video period after the pin 13 output signal changed in amplitude.  
(Vm13b, Vp13b)  
Halftone Gain 1  
Halftone Gain 2  
01H  
(5) According to results of the above steps 3 and 4, calculate gain of  
3dB halftone and variation of pedestal level.  
G3ht13 = 20 log (Vm13b / Vm13)  
(6) Set bus data so that halftone is 6dB in on status, and perform the  
same measurement as the above steps 4 and 5 to find gain of  
6dB halftone and variation of pedestal level (G6th13).  
(7) Raising supply voltage to pin 21 further from Vtht1, measure level  
(Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in  
amplitude and DC level of pin 13 after the change of its output  
(Vtx13).  
Text ON Ys, Low  
Level  
(8) From results of the above steps 3 and 7, calculate low level of the  
output in the text mode.  
Vtxl13 = Vtx13 Vp13  
Text / OSD Output,  
Low Level  
(9) Raising supply voltage to pin 21 by 3V from that in the above step  
7, confirm that there is no change in output level of pin 13.  
76  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
S
S
51  
15H 1CH  
18  
19  
20  
21  
22  
31  
33  
(1) Input stepping signal whose amplitude is 0.3V in video period to pin  
31 (Y IN) and pin 51 (Sync IN).  
(2) Set bus data so that blanking and halftone are off.  
Text RGB Output,  
High Level  
T
35  
T
36  
T
37  
A
A
A
A
B
B
B
A
02H 80H  
(3) Connect power supply to pin 21 (Digital Ys). While impressing 0V  
to it, measure pedestal level of pin 13 output signal (G OUT)  
(Vpl13).  
(4) Connect power supply to pin 19 (Digital G IN) and impress it with  
2V.  
(5) Raising supply voltage to pin 21 gradually from 0V, measure video  
level of pin 21 after output signal of pin 13 changed (Vlx13).  
(6) From measurement results of the above steps 3 and 5, calculate  
high level in the text mode.  
OSD Ys ON, Low  
Level  
Vmt13 = Vtx13 Vpt13  
(7) Raising supply voltage to pin 21 further from that in the step 5,  
measure level (Vtost) of pin 21 when the level of pin 13 output  
signal changes from that in the step 5 to 6dB as halftone data is  
set to ON (the 6th step of Notes T to T ).  
30 34  
(8) In the condition of the above step 7, raise voltage impressed to pin  
19 to 3V and measure output voltage of pin 13 (Vos13).  
OSD RGB Output,  
High Level  
(9) From results of the above steps 3 and 7, calculate high level of the  
output in the OSD mode.  
Vmos13 = Vos13 Vpt13  
77  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
S
S
S
51  
18  
19  
20  
21  
22  
31  
33  
34  
(1) Connect power supply to pin 21 (Digital Ys) and impress 1.5V to it.  
(2) Connect power supply to pin 19 (Digital G IN). While raising supply  
voltage gradually from 0V, measure supply voltage when output  
signal of pin 13 (G OUT) changes (Vtxt).  
Text Input Threshold  
Level  
T
38  
A
A
A
A
B
B
B
B
A
(3) Raising the supply voltage to pin 19 furthermore to 4V, confirm that  
there is no change in the output signal of pin 13 (G OUT).  
(1) Connect power supply to pin 21 (Digital Ys) and impress 2.5V to it.  
(2) Connect power supply to pin 19 (Digital G IN). While raising supply  
voltage gradually from 0V, measure supply voltage when output  
signal of pin 13 (G OUT) changes (Vosd).  
OSD Input Threshold  
Level  
T
39  
(3) Raising the supply voltage to pin 19 furthermore to 4V, confirm that  
there is no change in the output signal of pin 13 (G OUT).  
78  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
S
S
S
51  
18  
19  
20  
21  
22  
31  
33  
34  
(1) Input a Signal Shown by (a) in the following figure to pin 21 (Digital  
Ys).  
OSD Mode Switching  
Rise-Up Time  
T
40  
T
41  
T
42  
T
43  
T
44  
T
45  
A
A
A
A
B
B
B
B
A
(2) According to (b) in the figure, measure τ  
, t and  
, τ  
for output signals of pin 14 (R OUT), pin 13 (G OUT) and pin  
Rosd PRos Fosd  
t
PFos  
12 (B OUT) respectively.  
(3) Find maximum values of t  
and t  
PFos  
respectively (t  
,
PRos  
PRos  
t  
).  
PFos  
OSD Mode Switching  
Rise-Up Transfer  
Time  
OSD Mode Switching  
Rise-Up Transfer  
Time, 3 Axes  
Difference  
OSD Mode Switching  
Breaking Time  
OSD Mode Switching  
Breaking Transfer  
Time  
OSD Mode Switching  
Breaking Transfer  
Time, 3 Axes  
Difference  
79  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
S
S
S
51  
18  
19  
20  
21  
22  
31  
33  
34  
(1) Supply pin 21 (Digital Ys) with 2.5V.  
(2) Input 5V signal shown by (a) in the figure to pin 18 (Digital R IN).  
p-p  
OSD Hi DC Switching  
Rise-Up Time  
T
46  
T
47  
T
48  
T
49  
T
50  
T
51  
A
A
A
A
B
B
B
B
A
(3) Referring to (b) of the following figure, measure τ  
, t  
,
Rosh PRoh  
for output signal of pin 14 (R OUT).  
τ
and t  
Fosh  
PFoh  
(4) Input 5V  
IN).  
signal shown by (a) in the figure to pin 19 (Digital G  
p-p  
OSD Hi DC Switching  
Rise-Up Transfer  
Time  
(5) Perform the same measurement as the above step 3 for pin 13  
output (G OUT) referring to (b) of the following figure.  
(6) Input 5Vp-p signal shown by (a) in the figure to pin 20 (Digital B  
IN).  
(7) Perform the same measurement as the above step 3 for pin 12  
output (B OUT) referring to (b) of the following figure.  
OSD Hi DC Switching  
Rise-Up Transfer  
Time, 3 Axes  
(8) Find maximum axes differences in t  
and t  
among the  
PFoh  
PRoh  
three outputs (t  
, t  
PRoh  
).  
PFoh  
Difference  
OSD Hi DC Switching  
Breaking Time  
OSD Hi DC Switching  
Breaking Transfer  
Time  
OSD Hi DC Switching  
Breaking Transfer  
Time, 3 Axes  
Difference  
80  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
CC  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
S
S
S
S
S
S
06H  
21  
22  
31  
33  
34  
51  
(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).  
(3) Set bus data on drive at center value.  
(4) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to  
pin 23 (Analog R IN).  
(5) While changing data on RGB contrast from maximum (FF) to  
minimum (00), measure maximum and minimum amplitudes of pin  
14 (R OUT) in video period. At the same time, measure video  
amplitude of pin 14 when the bus data is set at the center value  
(80). (Vc14mx, Vc14mn, D14c80)  
(6) In the same manner as the above steps 4 and 5, measure output  
signal of pin 13 with input of the same external power supply to pin  
24 (Analog G IN), and measure output signal of pin 12 with input of  
the same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12mn,  
D12c80).  
FFH  
80H  
00H  
RGB Contrast Control  
Characteristic  
T
52  
B
A
B
B
B
A
(7) Find amplitude ratio between signal with maximum unicolor data  
and signal with minimum unicolor data in conversion into decibel  
(V13ct).  
81  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
06H  
21  
22  
31  
33  
34  
51  
In the setting condition of the Note T , calculate output / input gain  
52  
(double) with contrast data being set maximum.  
T
53  
Analog RGB AC Gain  
B
A
B
B
B
A
G = Vc13mx / 0.5V  
(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).  
(3) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to  
pin 24 (Analog G IN).  
Analog RGB  
Frequency  
(4) Set bus data so that contrast is maximum and drive is set at center  
value.  
T
54  
FFH  
Characteristic  
(5) Measure video amplitude of pin 13 (G OUT) and calculate output /  
input gain (double) (G6M).  
(6) From measurement results of the above step 5 and the preceding  
Note 53, find frequency characteristic.  
Gf = 20og (G6M / G)  
82  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
01H 06H  
21  
22  
31  
33  
34  
51  
(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).  
(3) Set bus data so that contrast is minimum and drive is set at center  
value.  
Analog RGB Dynamic  
Range  
T
55  
B
A
B
B
B
A
00H  
(4) While inputting stepping signal to pin 24 (Analog G IN), increase  
video amplitude gradually from 0.  
(5) Measure video amplitude of pin 24 when video voltage of pin 13  
(G OUT) does not change.  
(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in  
AC coupling.  
FFH  
00H  
RGB Brightness  
Control Characteristic  
T
T
56  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Set bus data on RGB cutoff at center value.  
(4) Supply 5V of external supply voltage to pin 22 (Analog Ys).  
(5) While changing data brightness from maximum to minimum,  
measure maximum and minimum voltages of pin 13 (G OUT) in  
video period. (max : Vbrmx, min : Vbrmn)  
RGB Brightness  
Center Voltage  
80H  
57  
(6) Set bus data on brightness at center value and measure video  
voltage of pin 13 (G OUT) (Vbcnt).  
(7) On the condition that bus data with which Vbrmx is obtained in  
measurement of the above step 5 is Dbrmx and bus data with  
which Vbrmn is obtained in measurement of the above step 5 is  
Dbrmn, calculate sensitivity of brightness data (Vbrt).  
RGB Brightness Data  
Sensitivity  
T
58  
59  
Vbrt = (Vbrmx Vbrmn) / (Dbrmx Dbrmn)  
(1) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.3V) to  
pin 23 (Analog R IN).  
Analog RGB Mode  
ON Voltage  
(2) Supply 5V of external supply voltage to pin 22 (Analog Ys) and  
raise the voltage gradually from 0V.  
T
80H  
(3) Measure voltage at pin 22 when signal 1 is output from pin 14 (R  
OUT) (Vanath).  
83  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
CC  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
S
S
S
S
S
S
21  
22  
31  
33  
34  
51  
(1) Supply signal (2V ) shown by (a) in the following figure to pin 22  
p-p  
(Analog Ys).  
Analog RGB  
Switching Rise-Up  
Time  
T
60  
T
61  
T
62  
T
63  
T
64  
T
65  
B
A
B
B
B
A
(2) Referring to (b) of the following figure, measure τ ,  
, t  
for outputs of pin 14 (R OUT), pin 13 (G OUT) and  
Rana PRan  
τ
and t  
PFan  
Fana  
pin 12 (B OUT).  
(3) Find maximum values of t  
PRan  
and t  
respectively  
PFan  
(t  
, t  
).  
PRan  
PFan  
Analog RGB  
Switching Rise-Up  
Transfer Time  
Analog RGB  
Switching Rise-Up  
Transfer Time, 3 Axes  
Difference  
Analog RGB  
Switching Breaking  
Time  
Analog RGB  
Switching Breaking  
Transfer Time  
Analog RGB  
Switching Breaking  
Transfer Time, 3 Axes  
Difference  
84  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
21  
22  
31  
33  
34  
51  
(1) Supply 2V to pin 22 (Analog Ys).  
(2) Input 0.5V signal shown by (a) in the following figure to pin 23  
p-p  
Analog RGB Hi  
Switching Rise-Up  
Time  
(Analog R IN).  
T
66  
T
67  
T
68  
T
69  
T
70  
T
71  
B
A
B
B
B
A
(3) Referring to (b) of the following figure, measure τ ,  
, t  
Ranh PRah  
τ
and t  
for output of pin 14 (R OUT).  
Fanh  
PFah  
(4) Input 0.5V  
signal shown by (a) in the following figure to pin 24  
p-p  
(Analog G IN).  
Analog RGB Hi  
Switching Rise-Up  
Transfer Time  
(5) Referring to (b) of the following figure, perform the same  
measurement as the above step 3 for output of pin 13  
(G OUT).  
(6) Input 0.5V signal shown by (a) in the following figure to pin 25  
(Analog B IN).  
p-p  
(7) Referring to (b) of the following figure, perform the same  
measurement as the above step 3 for output of pin 12  
(B OUT).  
Analog RGB Hi  
Switching Rise-Up  
Transfer Time, 3 Axes  
Difference  
(8) Find maximum axes difference in t  
PRoh  
and t  
among the three  
PFoh  
outputs (t  
, t ).  
PRah  
PFah  
Analog RGB Hi  
Switching Breaking  
Time  
Analog RGB Hi  
Switching Breaking  
Transfer Time  
Analog RGB Hi  
Switching Breaking  
Transfer Time, 3 Axes  
Difference  
85  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
CC  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
NOTE  
ITEM  
SW MODE  
SUB-ADDRESS & BUS DATA  
S
S
S
S
S
S
— — — — — —  
21  
22  
31  
33  
34  
51  
(1) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to  
pin 31 (Y IN).  
2
(2) Short circuit pin 25 (Analog G IN) in AC coupling.  
(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(4) Set bus data so that contrast is maximum, Y sub contrast and drive  
are set at center value.  
TV-Analog RGB  
Crosstalk  
(5) Supply pin 22 (Analog Ys) with 0V of external power supply.  
(6) Measure video voltage of output signal of pin 13 (G OUT) (Vtg).  
(7) Supply pin 22 (Analog Ys) with 2V of external power supply.  
(8) Measure video voltage of output signal of pin 13 (G OUT) (Vana).  
T
72  
B
A
B
B
B
A
(9) From measurement results of the above steps 5 and 7, calculate  
crosstalk from TV to analog RGB.  
Crtva = 20og (Vana / Vtv)  
(1) Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin33 (B-Y IN) in  
2
AC coupling.  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Set bus data so that contrast is maximum and drive is set at center  
value.  
(4) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to  
pin 24 (Analog G IN).  
Analog RGB-TV  
Crosstalk  
T
73  
(5) Supply pin 22 (Analog Ys) with 0V of external power supply.  
(6) Measure video voltage of output signal of pin 13 (G OUT) (Vant).  
(7) Supply pin 22 (Analog Ys) with 2V of external power supply.  
(8) Measure video voltage of output signal of pin 13 (G OUT) (Vtan).  
(9) From measurement results of the above steps 6 and 8, calculate  
crosstalk from analog RGB to TV.  
Crant = 20og (Vant / Vtan)  
86  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C ; BUS = preset value)  
MEASURING METHOD  
CC  
SUB-ADDRESS & BUS DATA  
NOTE  
ITEM  
SW MODE  
S
S
S
S
S
S
01H 15H  
21  
22  
31  
33  
34  
51  
(1) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to  
pin 31 (Y IN).  
2
(2) Short circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and pin 26  
(Analog B IN) in AC coupling.  
10H  
FFH 90H  
F0H  
ABL Point  
(3) Set bus data so that brightness is maximum and ABL gain is at  
center value, and supply pin 16 with external supply voltage. While  
turning down voltage supplied to pin 16 gradually from 7V,  
measure voltage at pin16 when the voltage supplied to pin 12  
decreases by 0.3V in three conditions that data on ABL point is set  
at minimum, center and maximum values respectively. (Vablpl,  
Vablpc, Vablph)  
T
74  
B
B
B
B
B
A
Characteristic  
(1) Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to  
pin 31 (Y IN).  
2
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Measure video amplitude at pin 12. (Vacl1)  
(4) Measure DC voltage at pin 16 (ABCL).  
T
75  
ACL Characteristic  
(5) Supply pin 16 with a voltage that the voltage measured in the  
above step 4 minus 2V.  
(6) Measure video amplitude at pin 12 (Vacl2) and its ratio to the  
amplitude measured in the above step 3.  
Vacl = 20og (Vacl2 / Vacl1)  
(1) Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in  
2
AC coupling.  
(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).  
(3) Set bus data on brightness at maximum and measure video DC  
voltage at pin 12 (Vmax).  
(4) Measure voltage at pin 16 which is being supplied with the voltage  
measured in the step 5 of the preceding Note 75.  
00H  
ABL Gain  
T
76  
FFH 10H  
1CH  
(5) Changing setting of bus data on ABL gain at minimum, center and  
maximum values one after another, measure video DC voltage at  
pin 12. (Vabl1, Vabl2, Vabl3)  
Characteristic  
(6) Find respective differences of Vabl1, Vabl2 and Vabl3 from the  
voltage measured in the above step 3.  
Vabll = Vmax Vabl1  
Vablc = Vmax Vabl2  
Vablh = Vmax Vabl3  
87  
2004-05-24  
TB1227CNG  
SECAM SECTION  
TEST CONDITION (Unless otherwise specified : H, RGB V  
CC  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD DD  
BUS : TEST MODE  
02H 07H  
BUS : NORMAL CONTROL MODE  
10H  
S
NOTE  
ITEM  
MEASURING METHOD  
0FH  
1FH  
26  
D
4
D
3
D
2
D
7
D
5
D
4
D
4
D
7
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
(1) Input 200mV  
(R-Y ID), 75% chroma color  
p-p  
bar signal (SECAM system) to pin 42.  
Bell Monitor Output  
Amplitude  
S
S
ON  
0
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
2
(2) Measure amplitude of R-Y ID output of pin 36  
as ebmo.  
(1) While supplying 20mV  
p-p  
CW sweep signal  
from network analyzer to pin 42 and monitoring  
output signal of pin 36 with the network  
analyzer, measure frequency having maximum  
gain as foBEL of the bell frequency  
characteristic.  
Bell Filter f  
o
(2) Find difference between foBEL and 4.286MHz  
as foB-C.  
(1) The same procedure as the steps 1 and 2 of  
the Note S .  
2
Bell Filter f Variable  
o
Range  
Vari- Vari-  
able able  
(2) Measure foBEL in different condition that SUB  
S
S
3
4
(IF) D D = (00) or (11), and find difference of  
1
0
each measurement result from 4.286MHz as  
foB-L or foB-H.  
(1) The same procedure as the step 1 of the Note  
S .  
2
(2) While monitoring output signal of pin 36 with  
network analyzer, measure Q of bell frequency  
characteristic as QBEL.  
Bell Filter Q  
0
1
QBEL = (QMAX 3dB band width) / FoBEL  
(1) Input 200mV  
p-p  
(R-Y ID), 75% chroma color  
Color Difference  
Output Amplitude  
S
S
OFF  
0
5
6
bar signal (SECAM system) to pin 42.  
(2) Measure color difference levels VRS and VBS  
with signals of pin 35 and pin 36.  
Color Difference  
Relative Amplitude  
(3) Calculate relative amplitude from VRS / VBS.  
88  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
CC  
= 9V ; V , Fsc V , Y / C V  
DD DD CC  
= 5V ; Ta = 25±3°C)  
MEASURING METHOD  
BUS : TEST MODE  
BUS : NORMAL CONTROL MODE  
S
NOTE  
ITEM  
02H 07H  
0FH  
10H  
1FH  
26  
D
4
D
3
D
2
D
7
D
5
D
4
D
4
D
7
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
(1) The same procedure as the steps 1 and 2 of the  
Note S .  
5
(2) In the condition that SUB (IF) D = 1, measure  
6
amplitudes of color difference signals of pin 35  
and pin36 as VRSA and VBSA respectively, and  
find SATTR and SATTB from measurement  
results.  
Color Difference  
Attenuation Quantity  
S
OFF  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
7
SATTR = 20og (VRSA / VRS),  
SATTB = 20og (VBSA / VBS)  
(1) The same procedure as the steps 1 and 2 of the  
Note S .  
5
(2) Input non-modulated 200V  
signal to pin 42.  
(R-Y) chroma  
p-p  
(3) Measure noise amplitude nR and nB (mV  
)
p-p  
Color Difference S / N  
Ratio  
S
0
8
appearing in color difference signals of pin 35 and  
pin 36 respectively.  
(4) Find S / N ratio by the following equation.  
SNB-S = 20log(2 2 × VBS / nB×10E 3)  
SNR-S = 20log(2 2 × VRS / nR ×10E 3)  
(1) The same procedure as the step 1 of the Note S .  
5
(2) Measure and calculate amplitude of black bar  
levels in output waveforms of pin 35 and pin 36 as  
shown below.  
S
Linearity  
9
LinB = V [cyan] / V [red]  
Maximum positive /  
negative amplitudes in  
respective axes  
LinR = V [yellow] / V [blue]  
89  
2004-05-24  
TB1227CNG  
TEST CONDITION (Unless otherwise specified : H, RGB V  
= 9V ; V , Fsc V , Y / C V  
= 5V ; Ta = 25±3°C)  
CC  
DD  
DD  
CC  
BUS : TEST MODE  
02H 07H  
BUS : NORMAL CONTROL MODE  
10H  
S
NOTE  
ITEM  
MEASURING METHOD  
0FH  
1FH  
26  
D
4
D
3
D
2
D
7
D
5
D
4
D
4
D
D
5
D
4
D
3
D
2
D
1
D
D
7
D
6
D
5
D
4
D
3
D
D
1
D
0
7
0
2
(1) The same procedure as the step 1 of the Note S .  
5
(2) Measure output waveforms of pin 35 and pin 36  
to find the period between the two points shown in  
the figure in time.  
Rising-Fall Time  
(Standard  
S
OFF  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
10  
De-Emphasis)  
Rising-Fall Time  
(Wide-Band  
De-Emphasis)  
S
11  
(3) In the condition that SUB (IF) D = 1, perform the  
5
same measurement as the above step 2.  
Measurement results are expressed as t  
and  
rfBW  
t
.
rfRW  
(1) Input 200mV  
(R-Y ID) standard 75% color bar  
p-p  
Killer Operation Input  
Level (Standard  
Setting)  
signal (SECAM system) to pin 42.  
S
S
S
1
0
1
0
1
12  
13  
14  
(2) Attenuate the input signal to pin 42. Measure R-Y  
ID signal level at pin 42 that turns on / off the killer  
as eSK and eSC.  
(3) In the condition that SUB (IF) D = 1, perform the  
3
Killer Operation Input  
Level (VID ON)  
same measurement as the above step 2 and  
express the measurement results as eSFK and  
eSFC.  
(4) In the condition that SUB (IF) D = 0, D = 1,  
3
2
Killer Operation Input  
Level (Low Sensitivity,  
VID OFF)  
perform the same measurement as the above  
step 2 and express the measurement results as  
eSWK and eSWC.  
90  
2004-05-24  
TB1227CNG  
TEST CIRCUIT  
T B 1 2 2 7 C N G  
91  
2004-05-24  
TB1227CNG  
APPLICATION CIRCUIT  
T B 1 2 2 7 C N G  
92  
2004-05-24  
TB1227CNG  
PACKAGE DIMENSIONS  
Weight: 5.55g (Typ.)  
93  
2004-05-24  
TB1227CNG  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-63Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
RESTRICTIONS ON PRODUCT USE  
030619EBA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
94  
2004-05-24  

相关型号:

TB1229DN

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL/NTSC SYSTEM COLOR TV
TOSHIBA

TB1230AN

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL/NTSC SYSTEM COLOR TV
TOSHIBA

TB1231AN

PAL/NTSC 1CHIP (IF + VCD PROCESSOR) IC
TOSHIBA

TB1231CN

PAL/NTSC 1CHIP (IF+VCD PROCESSOR) IC
TOSHIBA

TB1231N

IC SPECIALTY CONSUMER CIRCUIT, PDIP56, 0.600 INCH ,1.78 MM PITCH, PLASTIC, SDIP-56, Consumer IC:Other
TOSHIBA

TB1232F

IC PLL FREQUENCY SYNTHESIZER, 1300 MHz, PDSO16, 0.225 INCH, 1.27 MM PITCH, PLASTIC, SOP-16, PLL or Frequency Synthesis Circuit
TOSHIBA

TB1232FN

IC PLL FREQUENCY SYNTHESIZER, 1300 MHz, PDSO16, 0.225 INCH, 0.65 MM PITCH, PLASTIC, SSOP-16, PLL or Frequency Synthesis Circuit
TOSHIBA

TB1235A

SAW Filter 120MHz 13.84MHz BW (SMD 13.3×6.5 mm)
TAI-SAW

TB1238BN

PAL/NTSC 1CHIP (IF + VCD PROCESSOR) IC
TOSHIBA

TB1238N

PAL/NTSC 1CHIP (IF+VCD PROCESSOR) IC
TOSHIBA

TB1239BF

Bi-CMOS Integrated Circuit Silicon Monolithic
TOSHIBA

TB1240A

SAW Filter 260MHz 60MHz BW (SMD 7.0×5.0mm)
TAI-SAW