TB2924FG [TOSHIBA]

Class D, 20 W 】 2-channel (BTL) Low-Frequency Power Amplifier IC; D类, 20瓦】 2声道( BTL )低频功率放大器IC
TB2924FG
型号: TB2924FG
厂家: TOSHIBA    TOSHIBA
描述:

Class D, 20 W 】 2-channel (BTL) Low-Frequency Power Amplifier IC
D类, 20瓦】 2声道( BTL )低频功率放大器IC

消费电路 商用集成电路 音频放大器 视频放大器 功率放大器 光电二极管 信息通信管理
文件: 总16页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB2924FG  
TOSHIBA Bi-CMOS Digital Integrated Circuit Silicon Monolithic  
TB2924FG  
Class D, 20 W × 2-channel (BTL) Low-Frequency Power Amplifier IC  
The TB2924FG is an audio output IC that employs the highly  
efficient class D method, developed for TV and home audio  
applications.  
The TB2924FG eliminates the need for heatsink(Note), thus  
allowing the design of an end product with a small footprint. It  
also incorporates a range of features, such as standby and muting,  
as well as different protective circuits.  
Features  
Weight: 0.85 g (typ.)  
Output: P  
= 13 W × 2ch (typ.) BTL  
OUT  
V
CC  
= 12 V, R = 4 , THD = 10%, f = 1 kHz  
L
P
V
= 7.5 W × 2ch (typ.) BTL  
OUT  
= 12 V, R = 8 , THD = 10%, f = 1 kHz  
CC  
L
P
V
= 19.5 W × 2ch (typ.) BTL  
OUT  
= 15 V, R = 4 , THD = 10%, f = 1 kHz  
CC  
L
P
V
= 21 W × 2ch (typ.) BTL  
OUT  
= 20 V, R = 8 , THD = 10%, f = 1 kHz  
CC  
L
High efficiency: When output is 10 W  
Distortion: 0.1% (1 W output, f = 1 kHz)  
Gain: 34dB (typ.)  
η = 88% (V  
= 15 V, R = 8 )  
CC L  
Small flat package: HSOP36-P-450-0.65  
Muting/standby features  
Thermal AGC features  
Master and slave oscillation frequencies  
Oscillation frequency: f = 200 kHz (typ.)  
sw  
Operating supply voltage range: V  
(opr) = 11 V to 18V (T  
= 0°C to 75°C),  
CC  
opr  
(4 )  
V
CC  
(opr) = 11.4 V to 18 V (T  
= −20°C to 75°C)  
opr  
Operating supply voltage range: V  
(opr) = 11 V to 20V (T  
(opr) = 11.4 V to 20 V (T  
= 0°C to 75°C),  
CC  
opr  
(8 )  
Protective circuits: thermal shutdown, short-circuit protection (load)  
These protection functions are intended to avoid some output short circuits or other abnormal conditions  
V
= −20°C to 75°C)  
CC  
opr  
temporarily.  
These protect functions do not warrant to prevent the IC from being damaged.  
In case of the product would be operated with exceeded guaranteed operating ranges, these protection features  
may not operate and some output short circuits may result in the IC being damaged.  
The TB2924FG does not contain protection circuitry for shorts against VCC and ground. Extra care should be  
exercised when output pins serve as line output or adjacent pins are shorted together on the board.  
Note: Generally, the average power of the audio signal constitutes only one-fifth to one-tenth of the maximum output  
power, and in practice, will not exceed the permissible loss. However, care should be exercised so that it will  
not be really exceeded, considering the board’s thermal resistance, ambient temperature, average output  
power and so forth. Toshiba has verified that the TB2924FG works properly without a heatsink on the Toshiba  
PC board for up to 10-watt by 2-channel output typical (V  
sine-wave input.  
= 15 V, R = 8 , THD = 10%, f = 1 kHz) with a  
L
CC  
This product are sensitive to electrostatic discharge. When handling this product, protect the environment to  
avoid electrostatic discharge.(MM:±200V OK,HBM:±1500V OK)  
Install the product correctly. Otherwise, it may result in break down, damage and/or degradation to the product  
or equipment.  
1
2006-01-25  
TB2924FG  
Pin Assignment and Block Diagram  
Pre  
FEEDFEED OSC OSC  
BOOT OUT PW OUT  
NC 2 (+) 2 (+) GND2 2 () NC NC 2 () V  
BOOT PW  
Pre OSC  
GND2 SW IN2 2 () 2 (+) OUT IN  
V
CC  
NC  
CC2  
36 35 34 33 32 31 30 29 28  
27 26 25 24 23 22 21 20 19  
AGC  
V
CC  
/2  
V
V
/2  
/2  
CC  
AGC  
AGC  
CC  
V
CC  
/2  
AGC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Pre Rip/F NC IN1 FEED FEED STBYMUTE V /2  
V
BOOT OUT NC PW OUT NC BOOT PW  
1 (+) 1 (+)  
REG  
CC  
GND1 1 ()  
1 () V  
GND1  
1 () 1 (+)  
CC1  
*: Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for  
explanatory purpose.  
2
2006-01-25  
TB2924FG  
Pin Functions  
Pin No.  
1
Symbol  
Description  
V
Reference supply voltage  
CH1 bootstrap pin (+)  
REG  
2
BOOT1 (+)  
OUT1 (+)  
NC  
3
CH1 main amplifier output pin (+)  
4
No-connection pin (not connected inside the IC)  
GND for CH1 main amplifier output stage  
CH1 main amplifier output pin ()  
No-connection pin (not connected inside the IC)  
CH1 bootstrap pin ()  
5
PW GND1  
OUT1 ()  
NC  
6
7
8
BOOT1 ()  
9
PW V  
Power supply pin for CH1 main amplifier output stage  
Signal GND  
CC1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Pre-GND1  
Rip/F  
Ripple filter pin  
NC  
No-connection pin (not connected inside the IC)  
CH1 main amplifier input pin  
IN1  
FEED1 ()  
FEED1 (+)  
STBY  
CH1 main amplifier feedback pin ()  
CH1 main amplifier feedback pin (+)  
Standby control pin  
MUTE  
Muting control pin  
V
/2  
CC  
Midpoint potential pin  
NC  
Pre V  
No-connection pin (not connected inside the IC)  
Signal power supply pin  
CC  
OSC IN  
OSC OUT  
FEED2 (+)  
FEED2 ()  
IN2  
PWM oscillation frequency input pin  
PWM oscillation frequency output pin  
CH2 main amplifier feedback pin (+)  
CH2 main amplifier feedback pin ()  
CH2 main amplifier input pin  
OSC SW  
Pre-GND2  
Oscillator on/off switch pin  
Signal GND  
PW V  
Power supply pin for CH2 main amplifier output stage  
CH2 bootstrap pin ()  
CC2  
BOOT2 ()  
NC  
No-connection pin (not connected inside the IC)  
No-connection pin (not connected inside the IC)  
CH2 main amplifier output pin ()  
GND for CH2 main amplifier output stage  
CH2 main amplifier output pin (+)  
CH2 bootstrap pin (+)  
NC  
OUT2 ()  
PW GND2  
OUT2 (+)  
BOOT2 (+)  
NC  
No-connection pin (not connected inside the IC)  
3
2006-01-25  
TB2924FG  
Supplementary Explanation (preliminary)  
<Control switches>  
1. Pin 17 (muting switch)  
Enable or disable audio muting.  
The input amplifier is switched to a dummy amplifier within the IC, so that the audio output is  
muted with the amplifier still operating (PWM switched operation with 50% duty ratio).  
Pin 17 outputs a voltage of approximately 2.4 V (approx. 4 V ) when open, while V  
switch is lower than 1.8 V. Leaving the pin open, therefore, disables muting.  
for the built-in  
TH  
F
Logic  
“H” or open: Demute  
“L” (GND): Mute on  
2. Pin 16 (standby switch)  
When the voltage on pin 16 becomes 1.8 V or higher, the bias circuit activates, enabling the IC to  
operate.  
Logic  
“H”: IC active  
“L” (GND): IC standby on  
<Others>  
3. Thermal AGC Function and Thermal Shutdown Circuit  
If the chip temperature exceeds the junction temperature (150°C min.), the thermal AGC function  
attenuates the input signal to maintain the chip temperature below the junction temperature.  
If the chip temperature further increases, the thermal shutdown circuit activates. The chip recovers  
from the thermal shutdown state once the chip temperature falls below the junction temperature.  
4. Master and Slave Oscillation Frequencies (OSC IN, OSC OUT, OSC SW)  
When configuring a multichannel amplifier system with three or more channels, the oscillation  
frequency for a single IC can be used as a master and supplied to other ICs to prevent a beat due to a  
difference among switching frequencies.(Max.6ch (3ICs))  
The oscillators for slave ICs should be turned off using the OSC SW pin.  
“H”: Turn the oscillator on  
“L” (GND): Turn the oscillator off  
(Example with multiple ICs)  
Pre  
V
CC  
V
/2  
CC  
Pre  
GND  
Open  
22  
26  
22  
21  
26  
21  
OSC SW OSC OUT OSC IN  
OSC SW OSC OUT OSC IN  
Master IC  
Slave IC  
4
2006-01-25  
TB2924FG  
5. Reduction of Pop Noise Generated when Turning on and Off the Power Supply  
To reduce pop noise, it is recommended to enable muting by setting pin 17 (mute switch) to logic low  
before turning on or off the power supply or standby mode.  
When turning on or off the standby mode (When the power supply is not turned on or off)  
Mute Pin  
Standby Pin  
Turn on or off the standby mode after turning on muting.  
When the power supply is off  
Mute Pin  
Standby Pin  
Power Supply Pin  
Turn off the power supply after turning on muting.  
Don’t turn off the standby mode before turning off the power supply.  
When the power supply is on  
Mute Pin  
Standby Pin  
Turn on the power supply after turning on muting.  
Timing charts may be simplified for explanatory purpose.  
6. Board Mounting Consideration  
The switching of the TB2924FG is controlled with a rectangular-wave signal of approximately 200 kHz  
(typical). It is recommended to place the TB2924FG far from the tuner portion, etc. that might be  
affected.  
5
2006-01-25  
TB2924FG  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Power supply  
V
23  
V
A
CC  
Output current  
I
8
o(peak)  
Power dissipation  
Operating temperature  
Storage temperature  
P
14.7 (Note)  
20 to 75  
55 to 150  
W
°C  
°C  
D
T
opr  
T
stg  
Note: When the IC is used at 25°C or higher with infinite heat sink, reduce 117.6 mW per 1°C.  
The absolute maximum ratings of a semiconductor device are a set of specified parameter values, which must not  
be exceeded during operation, even for an instant.  
If any of these rating would be exceeded during operation, the device electrical characteristics may be irreparably  
altered and the reliability and lifetime of the device can no longer be guaranteed.  
Moreover, these operations with exceeded ratings may cause break down, damage and/or degradation to any  
other equipment.  
Applications using the device should be designed such that each maximum rating will never be exceeded in any  
operating conditions.  
Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set  
forth in this documents.  
6
2006-01-25  
TB2924FG  
Electrical Characteristics 1  
(unless otherwise specified, V = 15 V, f = 1 kHz, R = 600 , R = 8 , Ta = 25°C)  
CC  
g
L
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
mA  
Quiescent supply current  
I
1
1
1
Vin = 0  
THD = 10%  
= 18 V, THD = 10%  
9
55  
10.5  
15  
70  
CCQ  
P
P
(1)  
(2)  
OUT  
OUT  
V
12.5  
CC  
= 4 , V  
R
= 12 V,  
Output power  
Efficiency  
W
L
CC  
P
P
(3)  
(4)  
1
1
11.5  
18  
13  
OUT  
OUT  
THD = 10%  
R
= 4 , V  
= 15 V,  
L
CC  
19.5  
THD = 10%  
η (1)  
η (2)  
THD  
1
1
1
1
1
1
P
P
P
V
V
= 10 W  
80  
63  
88  
66  
0.1  
34  
0
OUT  
OUT  
OUT  
OUT  
OUT  
%
= 1.0 W  
= 1 W  
Total harmonics distortion  
Voltage gain  
0.3  
35.5  
1.0  
%
G
V
= 0.775 Vrms  
= 0.775 Vrms  
32.5  
1.0  
dB  
dB  
kΩ  
Channel Balance  
Input impedance  
CB  
R
30  
IN  
R
= 10 k,  
g
Crosstalk  
C.T.  
1
1
56  
65  
dB  
V
= 0.775 Vrms  
OUT  
R
g
= 10 k,  
Output noise voltage  
V
0.2  
0.3  
mVrms  
NO  
B.W. = DIN AUDIO  
Switching frequency  
f
1
1
1
1
1
1
During standby  
160  
200  
0.2  
0.3  
78  
300  
0.34  
kHz  
mA  
sw  
Standby supply current  
Power transistor ON resistance  
Mute attenuation level  
I
STB  
R
DS-ON  
ATT  
0dB = V  
= 0.775 Vrms  
OUT  
71  
1.8  
dB  
MUTE  
MUTE off  
MUTE on  
V
V
Not muted  
Muted  
V
CC  
Control voltage for pin 17 muting  
switch  
V
V
V
GND  
0.9  
Amplifier operating  
(not standby)  
V
1
1.8  
V
STB off  
CC  
Control voltage for pin 16 standby  
switch  
V
1
1
1
Amplifier stopped (standby on)  
Oscillator operating  
GND  
1.8  
1.1  
STB on  
OSC on  
OSC off  
V
V
V
CC  
Control voltage for pin 26 oscillator  
on/off switch  
Oscillator stopped  
GND  
0.5  
7
2006-01-25  
TB2924FG  
Test Circuit Diagram 1  
GND  
V
CC  
Test  
point  
2200 µF  
330 µF  
C7  
1 µF  
C8  
330 µF  
*
*
LPF  
LPF  
IN2  
C13  
OUT2  
R
L
8 Ω  
OUT2  
1 µF  
(+)  
()  
C14  
Out C  
C1  
Out C  
C2  
560 pF R1  
C3 150  
R2 560 pF  
150  
C4  
0.1 µF  
C5  
36 35 34 33 32 31 30 29 28  
NC BOOT OUT PW OUT NC NC BOOT PW  
Heat sink  
27 26 25 24 23 22 21 20 19  
Pre OSC IN2 FEED FEED OSC OSC Pre NC  
2 (+) 2 (+) GND2 2 ()  
2 () V  
GND2 SW  
2 () 2 (+) OUT IN  
V
CC  
CC2  
BOOT OUT  
PW OUT1  
BOOT PW  
Pre  
FEED FEED  
V
REG  
1 (+) 1 (+) NC GND1 ()  
NC 1 () V  
GND1 Rip/F NC IN1 1 () 1 (+) STBYMUTEV /2  
CC1  
CC  
1
2
3
4
5
6
7
8
9
Heat sink  
10 11 12 13 14 15 16 17 18  
C16  
C21  
C24  
0.1 µF  
0.1 µF  
4.7 µF  
560 pF R3 R4 560 pF  
C17 150  
150 C18  
Out C  
C19  
Out C  
C20  
OUT1  
R
L
8 Ω  
OUT1  
(+)  
()  
1 µF  
C22  
330 µF  
C23  
IN1  
*
*
LPF  
LPF  
Test  
point  
*: Output L (4 ): 10 µH (A7502BY-180M: TOKO, INC.)  
*: Output C (4 ): 1.0 µF  
*: Output L (8 ): 18 µH (A7502BY-180M: TOKO, INC.)  
*: Output C (8 ): 0.47 µF  
*: Components in the test circuits are only used to obtain and confirm the device characteristics. These components  
and circuits do not warrant to prevent the application equipment from malfunction or failure.  
*: In addition to the low-pass filters (chebyshev LPFs) shown above, a fourth low-pass filter with a cut-off frequency  
of 30 kHz is used for device characterization.  
8
2006-01-25  
TB2924FG  
Example Application Circuit  
GND  
V
CC  
1 µF  
1000 µF  
1 µF  
OUT2  
(+)  
R
8 Ω  
OUT2  
()  
L
IN2  
Ουτ  
ΟυτC  
0.1 µF  
36 35 34 33 32 31 30 29 28  
NC BOOT OUT PW OUT NC NC BOOT PW  
Heat sink  
27 26 25 24 23 22 21 20 19  
Pre OSC IN2 FEED FEED OSC OSC Pre NC  
2 (+) 2 (+) GND2 2 ()  
2 () V  
GND2 SW  
2 () 2 (+) OUT IN  
V
CC2  
CC  
BOOT OUT  
PW OUT1  
BOOT PW  
Pre  
FEED FEED  
V
REG  
1 (+) 1 (+) NC GND1 ()  
NC 1 () V  
GND1 Rip/F NC IN1 1 () 1 (+) STBYMUTEV /2  
CC1  
CC  
1
2
3
4
5
6
7
8
9
Heat sink  
10 11 12 13 14 15 16 17 18  
0.1 µF  
0.1 µF  
4.7 µF  
ΟυτC  
ΟυτC  
OUT1  
(+)  
OUT1  
()  
R
L
8 Ω  
1 µF  
IN1  
*: Output L (4 ): 10 µH (A7502BY-180M: TOKO, INC.)  
*: Output C (4 ): 1.0 µF  
*: Output L (8 ): 18 µH (A7502BY-180M: TOKO, INC.)  
*: Output C (8 ): 0.47 µF  
*: The application circuits shown in this document are provided for reference purposes only. Especially, thorough  
evaluation is required on the phase of mass production design.  
Toshiba dose not grant the use of any industrial property rights with these examples of application circuits.  
*: When no signal is present, the power supply current varies with the characteristics of the output inductance (Out L).  
*: For all capacitors that are not indicated by the electrolytic capacitor symbol, use ceramic capacitors with an  
appropriate withstand voltage.  
9
2006-01-25  
TB2924FG  
Toshiba’s PC Board Layout (Mounting side)  
(Back side)  
10  
2006-01-25  
TB2924FG  
DATAs for reference (Typ.)  
THD – P  
_f  
THD – P  
_V  
OUT CC  
OUT  
50  
30  
50  
30  
V
= 15 V  
f = 1 kHz  
= 8 Ω  
CC  
= 8 Ω  
R
L
R
L
100: to 30 k  
1 k: 400 to 30 k  
30 kHz LPF  
10  
10  
1 k: 400 to 30 k  
10k: 400 to  
30 kHz LPF  
5
3
5
3
OUT2_10 k  
OUT1_10 k  
1
1
OUT1_12 V  
0.5  
0.3  
0.5  
0.3  
OUT1_15 V  
OUT2_15 V  
OUT2_1 k  
OUT1_1 k  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
OUT2_100  
OUT1_100  
OUT2_12 V  
0.3  
0.01  
0.01 0.03  
0.01  
0.01 0.03  
0.1  
0.3  
1
3
10  
30  
100  
0.1  
1
3
10  
30  
100  
P
OUT  
(W)  
P
OUT  
(W)  
THD –f  
P
_V  
OUT CC  
50  
30  
25  
20  
15  
10  
5
f = 1 kHz  
= 8 Ω  
V
= 15 V  
CC  
R
L
R
= 8 Ω  
L
THD = 10%  
P
= 1 W  
OUT  
10  
Analyzer filter:  
400 Hz to 30 kHz  
Output: 30 k LPF  
Filtr: to 30 k (f = 20~800)  
400 to 30 k (f = 1 k to 2 k)  
400 to 80 k (f = 4 k to 6 k)  
400 to (f = 8 k to 40 k)  
5
3
OUT1  
1
0.5  
0.3  
OUT2  
OUT2  
0.1  
0.05  
0.03  
OUT1  
0
0
0.01  
10  
5
10  
15  
20  
100  
1000  
10000  
100000  
f
(Hz)  
V
CC  
(V)  
η – P  
P – P  
D OUT  
OUT  
100  
80  
5
4
3
2
1
0
V
= 15 V  
CC  
f = 1 kHz  
R
= 8 Ω  
L
60  
40  
20  
0
VCC = 15 V  
f = 1 kHz  
RL = 8 Ω  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
P
OUT  
(W)  
P
OUT  
(W)  
11  
2006-01-25  
TB2924FG  
G
V
– f  
I
– V  
CCQ CC  
40  
35  
30  
25  
20  
15  
10  
5
140  
120  
100  
80  
R
= 8 Ω  
L
OUT1  
V
= 0 V  
IN  
L = 18 µH  
OUT2  
60  
40  
V
R
V
= 15 V  
= 8 Ω  
CC  
L
20  
= 0.775 Vrms  
OUT  
Output: 30 k LPF  
0
10  
0
0
100  
1000  
10000  
100000  
5
10  
15  
20  
25  
30  
f
(Hz)  
V
CC  
(V)  
I
– V  
ATT  
– V  
MUTE MUTE  
STBY  
STB  
60  
50  
40  
30  
20  
10  
0
20  
0
V
= 15 V  
f = 1 k  
CC  
R
= 8 Ω  
R = 8 Ω  
L
L
V
= 0 V  
V
V
= 1Vrms  
IN  
OUT  
= 15 V  
CC  
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
V
STB  
(V)  
V
(V)  
MUTE  
C.T. – f  
C.T. – R  
g
0
20  
40  
60  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
f = 1 k  
V
= 15 V  
CC  
R
V
= 8 Ω  
L
= 0.775 Vrms  
= 15 V  
R
= 8 Ω  
rip  
L
V
CC  
R
= 10 kΩ  
g
V
= 0.775 Vrms  
OUT  
OUT1 OUT2  
OUT2 OUT1  
OUT1 OUT2  
OUT2 OUT1  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
f
(Hz)  
R
g
()  
12  
2006-01-25  
TB2924FG  
V
– V  
V
– R  
g
NO  
CC  
NO  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.8  
0.6  
0.4  
0.2  
0
R
R
= 8 Ω  
L
R
= 8 Ω  
L
= 10 kΩ  
g
V
= 15 V  
CC  
V
= 0 V  
IN  
Filt: DIN_AUDIO  
OUT1  
OUT2  
OUT1  
OUT2  
0
5
10  
15  
20  
10000  
150  
10  
100  
1000  
10000  
V
(V)  
R
g
()  
CC  
R.R. – f ripp  
R.R. – R  
g
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
R
R
V
V
= 620 Ω  
= 8 Ω  
g
L
R
R
V
= 620 Ω  
= 8 Ω  
g
L
= 0.775 Vrms  
rip  
= 15 V  
CC  
= 0.775 Vrms  
= 15 V  
rip  
V
CC  
OUT2  
OUT2  
OUT1  
OUT1  
10  
100  
1000  
10  
100  
1000  
10000  
100000  
f ripp (Hz)  
R
g
()  
P
Ta  
D
16  
14  
12  
10  
8
(1) Infinite heat sink  
6
(2) No heat sink  
(when mounted on  
Toshiba’s PC Board)  
4
2
0
0
25  
50  
75  
100  
125  
Ambient temperature Ta (°C)  
13  
2006-01-25  
TB2924FG  
Package Dimensions  
Weight: 0.85 g (typ.)  
14  
2006-01-25  
TB2924FG  
Strong Electrical and Magnetic Fields  
Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their plastic material, or  
within the chip, which gives rise to abnormal symptoms such as impedance changes or increased leakage current.  
Failures have been reported in LSIs mounted near malfunctioning deflection yokes in TV sets. In such cases the  
device’s installation location must be changed or the device must be shielded against the electrical or magnetic field.  
Shielding against magnetism is especially necessary for devices used in an alternating magnetic field because of the  
electromotive forces generated in this type of environment.  
15  
2006-01-25  
TB2924FG  
16  
2006-01-25  

相关型号:

TB2926HQ

IC 26 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2929HQ

45W × 4-ch BTL Audio Power IC,The TB2929HQ is a four-channel BTL power amplifier for car audio applications.
TOSHIBA

TB2932HQ

Maximum Power 49 W BTL × 4-ch Audio Power IC
TOSHIBA

TB2933HQ

4×45W四声道晶体管功放厚膜电路
TOSHIBA

TB2934HQ

IC 41 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2936HQ

IC 26 W, 2 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2946HQ

IC 26 W, 2 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2S

Silicon Bridge Rectifiers
COMCHIP

TB2S

SILICON BRIDGE RECTIFIERS
BL Galaxy Ele

TB2S

Voltage 200V ~ 1000V 1.0 Amp Silicon Bridge Rectifiers
SECOS

TB2S

MICRO SURFACE MOUNT GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER
PANJIT

TB2S

SINGLE PHASE GLASS PASSIVATED BRIDGE RECTIFIERS Ideal for printed circuit board
MDD