TB62202AFG [TOSHIBA]

Dual-Stepping Motor Driver IC for OA Equipment Using PWM Chopper Type; 双步进电机驱动器IC,用于办公自动化设备使用PWM斩波型
TB62202AFG
型号: TB62202AFG
厂家: TOSHIBA    TOSHIBA
描述:

Dual-Stepping Motor Driver IC for OA Equipment Using PWM Chopper Type
双步进电机驱动器IC,用于办公自动化设备使用PWM斩波型

驱动器 电机
文件: 总84页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB62202AFG  
TOSHIBA BiCMOS Processor IC Silicon Monolithic  
TB62202AFG  
Dual-Stepping Motor Driver IC for OA Equipment Using PWM Chopper Type  
The TB62202AFG is a dual-stepping motor driver driven by  
chopper micro-step pseudo sine wave.  
To drive two-phase stepping motors, Two pairs of 16-bit latch and  
shift registers are built in the IC. The IC is optimal for driving  
stepping motors at high efficiency and with low-torque ripple.  
The IC supports Mixed Decay mode for switching the attenuation  
ratio at chopping. The switching time for the attenuation ratio  
can be switched in four stages according to the load.  
Features  
z Two stepping motors driven by microstep pseudo sine wave  
Weight: 0.79 g (typ.)  
are controlled by a single driver IC  
z Monolithic Bi-CMOS IC  
z Low ON-resistance of Ron = 1.2 (T = 25°C @1.0 A: Typ.)  
j
z Two pairs of built-in 16-bit shift and latch registers  
z Two pairs of built-in 4-bit DA converters for micro steps  
z Built-in ISD, TSD, V  
and V power monitor (reset) circuit for protection  
M
DD  
z Built-in charge pump circuit (two external capacitors)  
z 36-pin power flat package (HSOP36-P-450-0.65)  
z Output voltage: 40 V max  
z Output current: 1.0 A/phase max  
z Built-in Mixed Decay mode enables specification of four-stage attenuation ratio.  
(The attenuation ratio table can be overwritten externally.)  
z Chopping frequency can be set by external resistors and capacitors. High-speed chopping possible at 100 kHz or  
higher.  
Note: When using the IC, pay attention to thermal conditions.  
These devices are easy damage by high static voltage.  
In regards to this, please handle with care.  
1
2005-04-04  
TB62202AFG  
Block Diagram  
1. Overview (Power lines: A/B unit (C/D unit is the same as A/B unit))  
RESET  
Logic circuit  
Current control data logic circuit  
DATA  
Chopping  
16-bit shift register  
reference circuit  
16-bit latch  
CLK  
Chopping  
waveform  
generator  
circuit  
CR  
STROBE  
Current setting  
Waveform  
chapping  
circuit  
V
ref  
4-bit DA  
(analog control)  
Torque control  
Current feedback circuit  
R
S
V
R
RS  
S COMP  
Output control circuit  
circuit  
circuit  
V
M
ISD  
TSD  
Ccp 2  
Ccp 1  
circuit  
circuit  
Charge pump  
circuit  
Output circuit  
(H-bridge)  
V
/V  
DDR MR  
circuit  
V
V
DD  
M
Protected circuit  
Out X  
Stepping  
motor  
High voltage wiring (V )  
M
Logic DATA  
Analog DATA  
IC terminal  
2
2005-04-04  
TB62202AFG  
2. Logic unit A/B (C/D unit is the same as A/B unit)  
Function  
This circuit is used to input from the DATA pins microstep current setting data and to transfer them to the  
subsequent stage. By switching the SETUP pin, the data in the mixed decay timing table can be overwritten.  
SETUP  
Output control  
circuit  
Micro-step current setting data logic circuit  
16-bit shift register  
MIXED  
DECAY  
TIMING  
DATA  
CLK  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9 10 11 12 13 14 15  
9 10 11 12 13 14 15  
A unit side  
STROBE  
16-bit latch  
Data input  
selector  
DECAY  
CURRENT  
× 4 bits  
B unit side  
PHASE  
TORQUE  
× 2 bits  
B unit side  
× 1 bit  
B
× 2 bits  
RESET  
Current feedback circuit  
D/A circuit  
Output control circuit  
Note: The RESET and SETUP pins are pulled down in the IC by 10-kresistor.  
When not using these pins, connect them to GND. Otherwise, malfunction may occur.  
3
2005-04-04  
TB62202AFG  
3. Current feedback circuit and current setting circuit  
(A/B unit (C/D unit is the same as A/B unit)  
Function  
The current setting circuit is used to set the reference voltage of the output current using the microstep  
current setting data input from the DATA pins.  
The current feedback circuit is used to output to the output control circuit the relation between the set  
current value and output current. This is done by comparing the reference voltage output to the current  
setting circuit with the potential difference generated when current flows through the current sense resistor  
connected between RS and V .  
M
The chopping waveform generator circuit to which CR is connected is used to generate clock used as  
reference for the chopping frequency.  
LOGIC  
UNIT  
TORQUE  
0, 1  
CURRENT  
0~3  
V
ref  
15  
Chopping waveform  
generator circuit  
100%  
14  
13  
12  
11  
10  
9
CR  
85%  
70%  
50%  
Torque  
Control  
circuit  
8
7
6
Mixed decay  
timing circuit  
5
Waveform shaping circuit  
Chopping reference circuit  
Output stop signal (ALL OFF)  
4
4-bit  
D/A  
3
2
circuit  
1
0
Current setting circuit  
Use in Charge mode  
V
circuit 1  
RS  
(detects  
potential  
Output  
R
COMP  
S
control circuit  
circuit 1  
(Note 1)  
NF  
difference  
between  
(set current reached signal)  
R
S
R
S
and V )  
M
V
circuit 2  
RS  
(detects  
potential  
V
M
R
S
COMP  
circuit 2  
(Note 2)  
RNF  
difference  
between  
(set current monitor signal)  
V
M
and R )  
S
Use in Fast mode  
Current feedback circuit  
Note 1: RS COMP 1: Compares the set current with the output current and outputs a signal when the output current  
reaches the set current.  
Note 2: RS COMP 2: Compares the set current with the output current at the end of Fast mode during chopping.  
Outputs a signal when the set current is below the output current.  
4
2005-04-04  
TB62202AFG  
4. Output control circuit, current feedback circuit and current setting circuit (A/B unit  
(C/D unit is the same as A/B unit)  
Micro-step current setting  
data logic circuit  
Chopping  
reference circuit  
DECAY  
MODE  
MIXED  
DECAY  
TIMING  
circuit  
Output control circuit  
PHASE  
NF  
set current  
reached signal  
Current  
feedback  
circuit  
CR  
COUNTER  
RNF  
MIXED  
DECAY  
TIMING  
set current  
monitor signal  
CR COUNTER  
Charge start  
Current  
setting  
circuit  
Output stop  
signal  
U
U
L
1
2
1
2
Output circuit  
Output control circuit  
L
Output RESET signal  
V
DD  
V
M
Power supply  
for upper  
output MOS  
transistors  
RESET  
Output  
circuit  
ISD (current  
shutdown)  
circuit  
Charge  
pump  
halt  
V
H
Output pin  
signal  
V
Reset signal  
MR  
Ccp A  
Ccp B  
Ccp C  
Charge pump  
circuit  
V
M
circuit  
selector  
circuit  
V
DDR  
V
DD  
circuit  
Thermal  
shut down  
(TSD)  
circuit  
Charge pump  
circuit  
Protection circuit  
MICRO-STEP  
CURRENT SETUP  
LATCH CLEAR signal  
MIXED DECAY  
TIMING TABLE  
CLEAR signal  
LOGIC  
V
: V  
DDR DD  
power on Reset  
power on Reset  
V
MR  
:
V
M
ISD:  
Current shutdown circuit  
TSD: Thermal shutdown circuit  
Note: The RESET pins is pulled down in the IC by 10-kresistor.  
When not using the pin, connect it to GND. Otherwise, malfunction may occur.  
5
2005-04-04  
TB62202AFG  
5. Output equivalent circuit (A/B unit (C/D unit is the same as A/B unit)  
To V  
M
R
S A  
R
RS A  
Output driver  
circuit  
U
1
U
2
U
U
1
2
L
L
1
From output  
control circuit  
2
Output A  
Power supply  
for upper  
L
1
L
2
Output  
A
output MOS  
transistors  
(V )  
H
Phase A  
V
M B  
R
S B  
R
RS B  
Output driver  
circuit  
U
1
U
2
U
U
1
2
L
L
1
From output  
control circuit  
2
Output B  
M
Power supply  
for upper  
L
1
L
2
Output B  
output MOS  
transistors  
(V )  
H
Phase B  
PGND  
6
2005-04-04  
TB62202AFG  
6. Input equivalent circuit  
(1) Logic input circuit (CLK, DATA, STROBE)  
V
27  
IN  
DD  
To Logic IC  
150 Ω  
30/29/31  
25/26/24  
GND  
F
IN  
(2) Input circuit (  
)
RESET  
V
27  
DD  
IN  
28  
To Logic IC  
150 Ω  
GND  
F
IN  
(3) V input circuit  
ref  
V
27  
IN  
DD  
4
9/10  
To D/A circuit  
GND  
F
IN  
Note: RESET pin is pulled down. Do not use them open.  
When not using these pins, connect them to GND.  
7
2005-04-04  
TB62202AFG  
Pin Assignment  
(top view)  
V
1
2
3
4
5
6
7
8
9
36  
35 OUT  
34  
33 PGND  
V
M B  
M A  
OUT B  
A
R
R
S B  
S A  
PGND  
OUT B  
NC  
32 OUT A  
31 STROBE AB  
30 CLK AB  
29 DATA AB  
28 RESET  
Ccp A  
CR  
V
REF AB  
TB62202AFG  
V
(F  
)
V
V
(F )  
IN  
SS  
IN  
SS  
DD  
V
27  
REF CD  
NC  
10  
11  
12  
13  
14  
15  
16  
26 DATA CD  
25 CLK CD  
24 STROBE CD  
23 OUT C  
Ccp B  
Ccp C  
OUT D  
PGND  
22 PGND  
R
S D  
21  
20 OUT C  
19  
R
S C  
OUT D  
17  
18  
V
V
M C  
M D  
Note: [Important] If this IC is inserted reverse, voltages exceeding the voltages of standard may be applied to some  
pins, causing damage.  
Please confirm the pin assignment before mounting and using the IC.  
8
2005-04-04  
TB62202AFG  
Pin Description  
Pin No.  
Pin Symbol  
Description  
Voltage major for output B block  
1
2
3
4
5
6
7
8
9
V
M B  
OUT B  
Output B pin  
R
S B  
Channel B current pin  
Power GND pin  
PGND  
OUT B  
NC  
Output B pin  
Non connection  
C
cp  
A
Capacitor pin for charge pump (Ccp1)  
External C/R (osc) pin (sets chopping frequency)  
CR  
V
V
input pin AB  
ref  
REF AB  
F
IN  
V
F (V ) : Logic GND pin  
IN SS  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
V
Vref input pin CD  
REF CD  
NC  
Non connection  
C
C
B
C
Capacitor pin for charge pump (Ccp2)  
Capacitor pin for charge pump (Ccp2)  
Output D pin  
cp  
cp  
OUT D  
PGND  
Power GND pin  
R
S D  
Channel D current pin  
Output D pin  
OUT D  
V
V
Voltage major for output D block  
Voltage major for output C block  
Output C pin  
M D  
M C  
OUT C  
R
S C  
Channel C current pin  
Power GND pin  
PGND  
OUT C  
Output C pin  
STROBE CD CD STROBE (latch) signal input pin (  
: LATCH)  
CLK CD  
CD clock input pin  
DATA CD  
CD serial data signal input pin  
Power pin for logic block  
V
DD  
F
IN  
V
F (V ) : Logic GND pin  
IN SS  
SS  
28  
RESET  
DATA AB  
CLK AB  
Output reset signal input pin (L : RESET)  
AB serial data signal input pin  
AB clock input pin  
29  
30  
31  
32  
33  
34  
35  
36  
STROBE AB AB STROBE (latch) signal input pin (  
: LATCH)  
OUT A  
PGND  
Output A pin  
Power GND pin  
R
S A  
Channel A current pin  
Output A pin  
OUT A  
V
Voltage major for output A block  
M A  
Note: How to handle GND pins  
All power GND pins and FIN (V : signal GND) pins must be grounded.  
SS  
Since FIN also functions as a heat sink, take the heat dissipation into consideration when designing the board.  
9
2005-04-04  
TB62202AFG  
Signal Functions  
1. Serial input signals (for A/B. C/D is the same as A/B)  
Data No.  
Name  
TORQUE 0  
Functions  
0
LSB  
DATA No.0, 1 = HH: 100%, LH: 85%  
HL: 70%, LL: 50%  
1
TORQUE 1  
2
DECAY MODE B  
DECAY MODE B  
0
1
00: DECAY MODE 0, 01: DECAY MODE 1  
10: DECAY MODE 2, 11: DECAY MODE 3  
3
4
Current B  
Current B  
Current B  
Current B  
0
1
2
3
Used for setting current.  
(LLLL = Output ALL OFF MODE)  
4bit current B data  
5
6
(Steps can be divided into 16 by 4bit data)  
7
(Note 1)  
8
PHASE B  
Phase information (H: OUT A: H, OUT A : L)  
9
DECAY MODE A  
DECAY MODE A  
0
1
00: DECAY MODE 0, 01: DECAY MODE 1  
10: DECAY MODE 2, 11: DECAY MODE 3  
10  
11  
Current A  
Current A  
Current A  
Current A  
0
1
2
3
Used for setting current.  
(LLLL = Output ALL OFF MODE)  
4bit current A data  
12  
13  
(Steps can be divided into 16 by 4bit data)  
14  
15 MSB  
PHASE A  
Phase information (H : OUT A : H, OUT A : L)  
Note 1: Serial data input order  
Serial data are input in the order LSB (DATA 0)  
MSB (DATA 15)  
Role of Data  
Data Name  
Number of Bits  
2
Functions  
Roughly regulates the current (four stages).  
Common to A and B units.  
TORQUE  
Selects Decay mode.  
A and B units are set separately.  
DECAY MODE  
CURRENT  
PHASE  
2 × 2 phases  
4 × 2 phases  
1 × 2 phases  
Sets a 4bit microstep electrical angle.  
A and B units are set separately.  
Determines polarity (+ or ).  
A and B units are set separately.  
10  
2005-04-04  
TB62202AFG  
2. Serial input signal functions  
Input  
Action  
VDDR  
(Note 1) or  
Operation of  
TSD/ISD  
CLK  
STROBE  
DATA  
RESET  
(Note 2)  
V
MR  
×
×
×
×
H
L
×
×
H
H
H
H
H
H
L
L
L
L
L
No change in shift register.  
H
H
H
H
H level is input to shift register.  
L level is input to shift register.  
Shift register data are latched.  
Qn  
×
×
Output off, charge pump halted  
(S/R DATA CLR)  
×
×
×
×
L
×
L
L
Output off (S/R DATA CLR)  
Charge pump halted  
×
×
×
L
Mixed decay timing table cleared (only V  
)
DDR  
Output off (S/R DATA HOLD)  
Charge pump halted  
×
×
×
H
H
H
Restored when RESET goes from Low to High  
×:  
Qn:  
Note 1: V  
Don’t Care  
Latched output level when STROBE is  
and V  
.
DDR  
MR  
H when the operable range (3 V typical) or higher and L when lower.  
When one of V or V is operating, the system resets (OR relationship).  
DDR  
MR  
Note 2: High when TSD is in operation.  
When one of TSD or ISD is operating, the system resets (OR relationship).  
Note: Function of overcurrent protection circuit  
Until the RESET signal is input after ISD is triggered, the overcurrent protection circuit remains in operation.  
During ISD, the charge pump stays halted.  
When TSD and ISD are operating, the charge pump halts.  
3. PHASE functions  
Input  
Function  
H
L
Positive polarity (A: H, Α : L)  
Negative polarity (A: L, Α : H)  
11  
2005-04-04  
TB62202AFG  
4. DECAY mode X0, X1 functions  
DECAY Mode X1  
DECAY Mode X0  
Function  
Decay Mode 0  
(Initial value: SLOW DECAY MODE)  
L
L
L
H
L
Decay Mode 1  
(Initial value: MIXED DECAY MODE: 37.5%)  
Decay Mode 2  
(Initial value: MIXED DECAY MODE: 75%)  
H
H
Decay Mode 3  
(Initial value: FAST DECAY MODE)  
H
5. TORQUE functions  
TORQUE 0  
TORQUE 1  
Comparator Reference Voltage Ratio  
H
L
H
H
L
100%  
85%  
70%  
50%  
H
L
L
6. Current AX (BX) functions  
Set Angle  
Step  
A
A
A
A
B
B
B
B
0
3
2
1
0
3
2
1
16  
15  
14  
13  
12  
11  
10  
9
90.0  
84.4  
78.8  
73.1  
67.5  
61.2  
56.3  
50.6  
45.0  
39.4  
33.8  
28.1  
22.5  
16.9  
11.3  
5.6  
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
L
H
H
L
H
L
L
L
L
L
L
H
H
L
H
L
H
L
L
L
H
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
H
L
L
L
H
H
L
L
H
L
L
H
L
8
L
L
H
H
H
H
H
H
H
H
H
7
H
H
H
H
L
H
H
L
H
L
L
L
H
L
6
L
L
H
H
L
5
L
H
L
L
H
L
4
L
L
H
H
H
H
H
3
L
H
H
L
H
L
L
H
L
2
L
L
H
H
H
1
L
L
H
L
H
H
0
0.0  
L
L
L
By inputting the above current data (A: 4-bit, B: 4-bit), 17-microstep drive is possible. For 1 step fixed to 90  
degrees, see the section on output current vector line (85 page).  
12  
2005-04-04  
TB62202AFG  
7. Serial data input setting  
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
STROBE  
Note: Data input to the DATA pin are 16-bit serial data.  
Data are transferred from DATA 0 (Torque 0) to DATA 15 (Phase A). Data are input and transferred at the  
following timings.  
At CLK falling edge: data input  
At CLK rising edge: data transfer  
After data are transferred, all data are latched on the rising edge of the STROBE signal.  
As long as STROBE is not rising, the signal can be either Low or High during data transfer.  
13  
2005-04-04  
TB62202AFG  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Logic supply voltage  
Output voltage  
V
7
V
DD  
V
40  
1.5  
V
M
Output current  
I
A/phase (Note 1)  
V
OUT  
Current detect pin voltage  
V
V
4.5  
+ 7.0  
+ 0.4  
RS  
M
M
Charge pump pin maximum voltage  
(CCP1 pin)  
V
V
V
V
H
Logic input voltage  
V
to V  
DD  
IN  
1.4  
3.2  
W
W
(Note 2)  
(Note 3)  
Power dissipation  
P
D
Operating temperature  
Storage temperature  
Junction temperature  
T
40 to 85  
50 to 150  
150  
°C  
°C  
°C  
opr  
T
stg  
T
j
Note 1: Perform thermal calculations for the maximum current value under normal conditions. Use the IC at 1.2 A or  
less per phase.  
Note 2: Input 7 V or less as V  
.
IN  
Note 3: Measured for the IC only. (Ta = 25°C)  
Note 4: Measured when mounted on the board. (Ta = 25°C)  
Ta: IC ambient temperature  
T
: IC ambient temperature when starting operation  
opr  
T : IC chip temperature during operation T (max) is controlled by TSD (thermal shut down circuit)  
j
j
Recommended Operating Conditions (Ta = 0 to 85°C)  
Characteristics  
Power supply voltage  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
4.5  
20  
5.0  
24  
5.5  
34  
V
V
DD  
Output voltage  
V
V
= 5.0 V  
DD  
M
Ta = 25°C, per phase  
I
I
0.6  
0.6  
0.9  
0.9  
A
A
OUT (1)  
OUT (2)  
(when one motor is driven)  
Output current  
Ta = 25°C, per phase  
(when two motors are driven)  
Logic input voltage  
Clock frequency  
V
GND  
1.0  
40  
6.25  
100  
3.0  
V
V
MHz  
KHz  
V
IN  
DD  
f
V
V
V
V
= 5.0 V  
= 5.0 V  
25  
CLK  
DD  
DD  
Chopping frequency  
Reference voltage  
Current detect pin voltage  
f
150  
chop  
V
= 24 V, T  
orque  
= 100%  
2.0  
0
V
ref  
M
DD  
V
= 5.0 V  
1.0  
1.5  
V
RS  
DD  
Note: Use the maximum junction temperature (T ) at 120°C or less  
j
14  
2005-04-04  
TB62202AFG  
Electrical Characteristics 1  
(Unless otherwise specified, Ta = 25°C, V = 5 V, V = 24 V)  
DD  
M
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
2.0  
Typ.  
Max  
Unit  
V
V
DD  
High  
Low  
V
V
DD  
IN (H)  
+ 0.4  
Input voltage  
1
2
CLK, RESET , STROBE, DATA pins  
GND  
0.4  
V
GND  
0.8  
IN (L)  
I
1.0  
1.0  
IN1 (H)  
Input current 1  
Input current 2  
CLK, STROBE, DATA pins  
RESET , SETUP pins  
µA  
µA  
I
IN1 (L)  
IN2 (H)  
I
700  
700  
I
IN2 (L)  
V
DD = 5 V (STROBE, RESET ,  
I
DATA = L), RESET = L,  
3.0  
4.0  
6.0  
8.0  
DD1  
Logic, output all off  
Power dissipation (V  
pin)  
2
3
mA  
DD  
Output OPEN, f  
= 6.25 MHz  
CLK  
LOGIC ACTIVE, V  
I
= 5 V,  
DD  
DD2  
Charge pump = charged  
Output OPEN (STROBE, RESET ,  
DATA = L), RESET = L,  
Logic, output all off  
I
I
5.0  
12  
6.0  
20  
M1  
M2  
Charge Pump = no operation  
Output OPEN, f  
CLK  
LOGIC ACTIVE, V  
= 6.25 MHz  
= 5 V,  
DD  
Power dissipation (V pin)  
M
mA  
V
= 24 V, Output off  
M
Charge Pump = charged  
Output OPEN, f  
LOGIC ACTIVE, 100 kHz  
= 6.25 MHz  
CLK  
I
4
5
chopping (emulation), Output OPEN,  
Charge Pump = charged Ccp1 =  
0.22 µF, Ccp2 = 0.01µf  
30  
40  
M3  
Output standby  
current  
V
= VM = 24 V, V  
= 0 V,  
out  
RS  
RESET = H, DATA = ALL L  
Upper  
Upper  
Lower  
I
400  
200  
OH  
V
= VM = 24 V, V = 24 V,  
RS  
out  
µA  
Output bias current  
I
OB  
RESET = H, DATA = ALL L  
Output leakage  
current  
V
= VM = CcpA = V = 24 V,  
RS  
RESET = L  
out  
I
1.0  
OL  
V
V
= 3.0 V,  
ref  
ref  
High  
(Reference)  
V
(Gain) = 1/5.0  
100  
RS (H)  
TORQUE = (H.H) = 100% set  
V
= 3.0 V, V (Gain) = 1/5.0  
ref  
ref  
Comparator  
reference voltage  
ratio  
Mid High  
Mid Low  
LOw  
V
83  
68  
48  
85  
70  
50  
87  
72  
52  
RS (MH)  
TORQUE = (H.L) = 85% set  
6
7
%
%
V
= 3.0 V, V (Gain) = 1/5.0  
ref  
ref  
V
RS (ML)  
TORQUE = (L.H) = 70% set  
V
= 3.0 V, V (Gain) = 1/5.0  
ref  
ref  
V
RS (L)  
TORQUE = (L.L) = 50% set  
Differences between output current  
channels  
Output current differential  
I  
out1  
5  
5
I
= 1000 mA  
out  
Output current setting differential  
RS pin current  
I  
7
8
I
= 1000 mA  
5  
5
%
out2  
out  
VRS = 24 V, V = 24 V,  
RESET = L (RESET status)  
M
IRS  
10  
µA  
15  
2005-04-04  
TB62202AFG  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
1.1  
1.1  
1.4  
1.4  
Max  
1.3  
1.3  
1.6  
1.6  
Unit  
I
= 1.0 A, V  
= 5.0 V  
DD  
out  
T = 25°C, Drain-source  
R
R
R
R
ON (D-S) 1  
ON (D-S) 1  
ON (D-S) 2  
ON (D-S) 2  
j
I
= 1.0 A, V  
= 5.0 V  
DD  
out  
T = 25°C, Source-drain  
j
Output transistor drain-source  
on-resistance  
9
I
= 1.0 A, V  
= 5 V,  
DD  
out  
T = 105°C, Drain-source  
j
I
= 1.0 A, V  
= 5 V,  
DD  
out  
j
T = 105°C, Source-drain  
16  
2005-04-04  
TB62202AFG  
Electrical Characteristics 2  
(Unless otherwise specified, Ta = 25°C, V = 5 V, V = 24 V)  
DD  
M
Test  
Circuit  
Characteristics  
input voltage  
Symbol  
Test Condition  
Min  
2.0  
Typ.  
Max  
Unit  
V
V
= 24 V, V  
= 5 V,  
DD  
M
V
V
V
10  
10  
V
DD  
ref  
ref  
ref  
RESET = H, Output on  
RESET = H, Output off  
input current  
I
V
V
= 24 V, V  
= 3.0 V  
= 5 V,  
= 5 V,  
0
100  
µA  
ref  
M
ref  
DD  
DD  
V
= 24 V, V  
M
V
attenuation ratio  
V
(GAIN)  
ref  
6
RESET = H, Output on,  
1/4.8  
1/5.0  
1/5.2  
ref  
V
= 2.0 to V  
1.0 V  
ref  
DD  
T TSD (Note  
j
TSD temperature  
11  
11  
12  
13  
14  
V
= 5 V, V = 24 V  
130  
170  
°C  
°C  
V
DD  
M
1)  
T TSD  
j
35  
TSD return temperature difference  
T TSD  
j
T TSD = 130 to 170°C  
j
V
= 24 V, RESET = H,  
M
V
V
return voltage  
V
2.0  
2.0  
4.0  
4.0  
DD  
DDR  
STROBE = H  
V
= 5 V, RESET = H,  
DD  
STROBE = H  
return voltage  
V
V
M
MR  
Over current protected circuit  
operation current  
I
V
= 5V, V = 24V,  
M
SD  
DD  
fchop = 100 kHz set  
2.6  
A
(Note 2)  
Note 1: Thermal shut down (TSD) circuit  
When the IC junction temperature reaches the specified value and the TSD circuit is activated, the internal  
reset circuit is activated switching the outputs of both motors to off.  
When the temperature is set between 130 (min) to 170°C (max), the TSD circuit operates. When the TSD  
circuit is activated, the function data latched at that time are cleared. Output is halted until the reset is  
released. While the TSD circuit is in operation, the charge pump is halted.  
Even if the TSD circuit is activated and RESET goes H L H instantaneously, the IC is not reset until  
the IC junction temperature drops 35°C (typ.) below the TSD operating temperature (hysteresis function).  
Note 2: Overcurrent protection circuit  
When current exceeding the specified value flows to the output, the internal reset circuit is activated  
switching the outputs of both shafts to off.  
When the ISD circuit is activated, the function data latched at that time are cleared.  
Until the RESET signal is input, the overcurrent protection circuit remains activated.  
During ISD, the charge pump halts.  
For failsafe operation, be sure to add a fuse to the power supply.  
17  
2005-04-04  
TB62202AFG  
Electrical Characteristics 3  
(Ta = 25°C, V = 5 V, V = 24 V, I  
= 1.0 A)  
DD  
M
out  
Test  
Circuit  
Characteristics  
SymboL  
Test Condition  
θA = 90 (θ16)  
Min  
Typ.  
Max  
Unit  
93  
91  
87  
83  
78  
72  
66  
58  
51  
42  
33  
24  
15  
5
100  
100  
98  
96  
92  
88  
83  
77  
71  
63  
56  
47  
38  
29  
20  
10  
0
97  
93  
88  
82  
76  
68  
61  
52  
43  
34  
25  
15  
θA = 84 (θ15)  
θA = 79 (θ14)  
θA = 73 (θ13  
θA = 68 (θ12)  
θA = 62 (θ11)  
θA = 56 (θ10)  
θA = 51 (θ9)  
θA = 45 (θ8)  
θA = 40 (θ7)  
θA = 34 (θ6)  
θA = 28 (θ5)  
θA = 23 (θ4)  
θA = 17 (θ3)  
θA = 11 (θ2)  
θA = 6 (θ1)  
Chopper current  
Vector  
15  
%
θA = 0 (θ0)  
18  
2005-04-04  
TB62202AFG  
AC Characteristics (Ta = 25°C, V = 24 V, V = 5 V, 6.8 mH/5.7 )  
M
DD  
Test  
Circuit  
Characteristics  
Clock frequency  
SymboL  
Test Condition  
Min  
Typ.  
Max  
Unit  
f
16  
1.0  
40  
20  
20  
40  
20  
20  
20  
20  
20  
20  
25  
400  
MHz  
CLK  
t
w (CLK)  
Minimum clock pulse width  
16  
16  
ns  
ns  
t
wp (CLK)  
t
wn (CLK)  
t
STROBE  
Minimum STROBE pulse width  
t
STROBE (H)  
t
STROBE (L)  
t
suSIN-CLK  
Data setup time  
Data hold time  
16  
16  
ns  
ns  
t
suST-CLK  
t
hSIN-CLK  
t
hCLK-ST  
t
0.1  
0.1  
15  
10  
1.2  
2.5  
300  
r
Output Load ; 6.8 mH/5.7 Ω  
t
f
t
t
pLH (ST)  
pHL (ST)  
pLH (CR)  
pHL (CR)  
Output transistor switching  
characteristic  
STROBE () to VOUT  
Output Load; 6.8 mH/5.7 Ω  
18  
µs  
t
t
CR to VOUT  
Output Load; 6.8 mH/5.7 Ω  
Noise rejection dead band time  
t
19  
20  
I
out = 1.0 A  
200  
ns  
BLNK  
CR reference signal oscillation  
frequency  
f
C
osc = 560 pF, Rosc = 3.6 kΩ  
40  
800  
100  
100  
2
150  
kHz  
CR  
f
f
f
Output active (Iout = 1.0 A)  
Step fixed, Ccp1 = 0.22 µF,  
Ccp2 = 0.01µF  
chop (min)  
chop (typ.)  
chop (max)  
Chopping frequency range  
Chopping frequency  
kHz  
kHz  
ms  
20  
21  
Output active (I = 1.0 A)  
out  
CR CLK = 800 kHz  
f
chop  
Ccp2 = 0.22µF, Ccp = 0.01 µF  
= 24 V, V = 5 V,  
Charge pump rise time  
t
V
4
ONG  
M
DD  
RESET = L H  
19  
2005-04-04  
TB62202AFG  
Test Waveforms (Timing waveforms and names)  
t
w (CLK)  
50%  
CLK  
t
t
hCLK-ST  
suST-CLK  
t
t
wp  
wn  
50%  
STROBE  
t
STROBE (H)  
STROBE (L)  
t
t
STROBE  
t
t
hSIN-CLK  
suSIN-CLK  
50%  
DATA15  
DATA0  
DATA  
50%  
CR waveform  
(reference)  
t
pHL (CR)  
t
pHL (ST)  
90%  
50%  
10%  
OUTPUT  
voltage A  
t
t
pLH (CR)  
pLH (ST)  
90%  
50%  
10%  
90%  
50%  
10%  
OUTPUT  
voltage A  
t
t
f
r
20  
2005-04-04  
TB62202AFG  
Test Waveforms (Timing waveforms and names)  
OSC-Charge Delay  
H
OSC-Fast Delay  
OSC (CR)  
L
T chop  
H
OUTPUT  
50%  
voltage A  
L
H
OUTPUT  
50%  
50%  
voltage A  
L
Set current  
OUTPUT  
current  
L
Charge  
Slow  
Fast  
21  
2005-04-04  
TB62202AFG  
Calculation of Set Current  
Determining R and V determines the set current value.  
RS  
ref  
T
(T  
=100, 85,70,50%: input serial data)  
1
orque orque  
I
out  
(Max) =  
× V (V) ×  
ref  
R
()  
V
ref  
(GAIN)  
RS  
1/5.0 is V (gain) : V attenuation ratio (typ.).  
ref  
ref  
For example,  
to input V = 3 V and Torque = 100% and to output I  
ref out  
= 0.8 A,  
R
RS  
= 0.75 (0.5 W or more) is required.  
Formulas for Calculating CR Oscillation Frequency (Chopping reference frequency)  
The CR oscillation frequency and f  
1
can be calculated by the following formulas:  
chop  
f
=
[Hz]  
CR  
KA ×(C× R× KB×C)  
KA (constant): 0.523  
KB (constant): 600  
f
CR  
8
f
=
[Hz]  
chop  
Example : When Cosc = 1,000 pF and Rosc = 2.0 kare connected, f  
= 735 kHz.  
CR  
At this time, the chopping frequency f  
is : f  
= fCR/8 = 92 kHz.  
chop  
chop  
1
Note:  
f
=
CR  
t
CR  
t
= t (Charge) + t (Dis- Charge)  
CR  
CR oscillation CR charge  
cycle time  
CR distance  
time  
At this time, t (CR-discharge) is subject to the following condition:  
600 ns > t (CR-discharge) > 400 ns.  
Be sure to set the CR value in accordance with this condition.  
22  
2005-04-04  
TB62202AFG  
CR Circuit Constants  
OSC circuit oscillation waveform  
t (CR-charge)  
t (CR-dis-charge)  
E1  
E2  
t = 0  
t = 1  
t = 2  
The OSC circuit generates the chopping reference signal by charging and discharging the external capacitor Cosc  
through current supplied from the external resistor Rosc in the OSC block.  
Voltages E1 and E2 in the diagram are set by dividing the V  
The actual current chopping time is 1/8 the CR frequency.  
by approximately 3/5 (E1) and 2/5 (E2).  
DD  
[Important: Setting the CR Circuit Constants]  
The CR oscillation waveform is converted in the IC to the CLK waveform (CR-CLK signal) and used for control.  
If the CR waveform discharge time is set outside the range shown below, the operation of the IC is not guaranteed.  
Be sure to set the CR waveform discharge time within the following range.  
600 ns > t (CR discharge) > 400 ns  
23  
2005-04-04  
TB62202AFG  
IC Power Dissipation  
IC power dissipation is classified into two: power consumed by transistors in the output block and power consumed  
by the logic block and the charge pump circuit.  
(1) Power consumed by the Power Transistor (calculated with Ron = 1.3 )  
In Charge mode, Fast Decay mode, or Slow Decay mode, power is consumed by the upper and lower  
transistors of the H bridges. The following expression expresses the power consumed by the transistors of a  
H bridge.  
P (out) = 2 (T ) × I  
(A) × V (V) = 2 × I ^2 × R ·························(1)  
DS out on  
r
out  
The average power dissipation for output under 4-bit micro step operation (phase difference between  
phases A and B is 90°) is determined by expression (1).  
Thus, power dissipation for output per unit is determined as follows (2) under the conditions below.  
R
I
= 1.3 (@1.0 A)  
(Peak : Max) = 0.6 A  
= 24 V  
on  
t
ou  
V
V
M
= 5 V  
DD  
P (out) = 2 (T ) × 0.6 (A)^2 × 1.3 () ·················································(2)  
r
= 0.936 (W)  
(2) Power consumed by the logic block and IM  
The following standard values are used as power dissipation of the logic block and IM at operation.  
I (LOGIC) = 2 mA (Typ.): /unit  
I (IM3) = 12.5 mA (Typ.): operation/unit  
I (IM1) = 6.0 mA (Typ.): stop/unit  
The logic block is connected to V  
(5 V). IM (total of current consumed by the circuits connected to V  
DD  
M
and current consumed by output switching) is connected to V (24 V). Power dissipation is calculated as  
M
follows:  
P (Logic and IM) = 5 (V) × 0.002 (A) + 24 (V) × 0.0125 (A) ....................... (3)  
= 0.31 (W)  
(3) Thus, power dissipation for 1 unit (P) is determined as follows by (2) and (3) above.  
P = P (out) + P (Logic and IM) = 1.246 (W)  
Power dissipation for 1 unit at standby is determined as follows:  
P (standby) = 24 (V) × 0.006 (A) + 5 (V) × 0.002 (A)  
= 0.154 (W)  
When one motor driving = 100 %, power dissipation is determined as follows:  
P (all) = 1.246 (W) + 0.154 (W) = 1.4 (W)  
For thermal design on the board, evaluate by mounting the IC.  
24  
2005-04-04  
TB62202AFG  
MIXED DECAY Mode Waveforms (concept of mixed decay mode)  
f
chop  
CR pin  
input  
waveform  
Set current value  
DECAY MODE 0  
Slow  
NF  
SLOW  
DECAY  
MODE  
Charge  
DECAY MODE 1  
Set current value  
Slow  
NF  
37.5%  
MIXED  
DECAY  
MODE  
Charge  
Monitoring  
set current  
value  
Fast  
MDT  
RNF  
DECAY MODE 2  
Set current value  
NF  
Charge  
75%  
Fast  
MIXED  
DECAY  
MODE  
MDT  
Monitoring  
set current  
value  
RNF  
DECAY MODE 3  
FAST  
NF  
Set current value  
Charge  
DECAY  
MODE  
Fast  
Monitoring  
set current  
value  
RNF  
100%  
87.5%  
75%  
62.5%  
50%  
37.5%  
25%  
12.5%  
0
NF is the point where the output current reaches the set current value. RNF is the timing for monitoring the set  
current.  
In Mixed Decay and Fast Decay modes, where the condition RNF (set current monitor signal) < (output current)  
applies, Charge mode is cancelled at the next chopping cycle (charge cancel circuit). Therefore, at the next chopping  
cycle, the IC enters Slow + Fast modes (Slow Fast at MDT).  
25  
2005-04-04  
TB62202AFG  
Test Circuit (A/B unit only. C/D unit conforms to A/B unit.)  
1. V  
, V  
IN (H) IN (L)  
V
9
ref AB  
8
CR  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
A
27 V  
A 32  
DD  
I
, I  
DD1 DD2  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
Vary V  
IN  
R
3
1
RS B  
R
RS B  
V
M B  
I
, I  
A
A
IN (H) IN (L)  
V
SS  
)
(F  
IN  
SGND  
Ccp 2  
28 RESET  
0 V to 5 V  
No reset at testing  
RESET = 5 [V]  
Ccp C 13  
Ccp B 12  
6
SETUP  
Ccp A 7  
P-GND  
V
DD  
SGND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Test method  
V
IN  
(H): Set RESET to High and vary the logic input voltage from 0 to 7 V.  
Monitor I  
and measure the change point (V = 24 V).  
M
DD  
(L): Set RESET to High and vary the logic input voltage from 5 to 0 V.  
VIN  
Monitor I  
and measure the change point.  
DD  
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
26  
2005-04-04  
TB62202AFG  
2. I  
, I  
, I  
, I  
(A/B unit only. C/D unit conforms to A/B unit.)  
IN (H) IN (L) DD1 DD2  
V
9
ref AB  
8
CR  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
A
27 V  
A 32  
DD  
I
, I  
DD1 DD2  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
Vary V  
IN  
R
3
1
RS B  
R
RS B  
V
M B  
I
, I  
A
A
IN (H) IN (L)  
V
SS  
)
(F  
IN  
SGND  
Ccp 2  
28 RESET  
0 V to 5 V  
Ccp C 13  
Ccp B 12  
No reset at testing  
RESET = 5 [V]  
6
SETUP  
Ccp A 7  
P-GND  
V
DD  
SGND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Test method  
I
I
I
I
: Set RESET to High, set the the logic input voltage to 5 V, and measure the input current.  
: Set RESET to High, set the the logic input voltage to 0 V, and measure the input current.  
IN (H)  
IN (H)  
:
:
Apply V , input RESET, and measure I  
.
DD1  
DD  
DD  
Input 6.25 MHz clock and measure the current when the logic is operating. Set output to OPEN.  
DD2  
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
27  
2005-04-04  
TB62202AFG  
3. IM , IM (A/B unit only. C/D unit conforms to A/B unit.)  
1
2
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
A
IM  
28 RESET  
Ccp C 13  
Ccp B 12  
At IM1 testing: RESET = L (0 V)  
At IM2 testing: RESET = H (5 V)  
Ccp A  
7
P-GND  
SETUP  
6
Ccp 1  
: PGND  
V
DD  
SGND  
: SGND (V  
)
SS  
Test method  
IM : Set the logic block to non-active (DATA = all 0), V  
= 5 V, V = 24 V, and output to open. Measure the  
M
1
DD  
current input from V supply. RESET = L  
M
IM : Set the logic block only to active (CLK = 6.25 MHz), V = 24 V, and output to open. Measure the  
2
M
current input from V supply. RESET = H  
M
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
28  
2005-04-04  
TB62202AFG  
4. IM (A/B unit only. C/D unit conforms to A/B unit.)  
3
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
A
IM  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND SETUP  
6
Ccp 1  
: PGND  
: SGND (V  
)
SS  
This is the IM current when all of the circuits, including the output transistors, in the IC are operating.  
The IM current includes the current dissipation in the charge pump circuit, output gate loss, and output  
predriver.  
Because the IM current (IM ) is input from the RS pin, which is also used for the output current, IM cannot be  
3
3
measured by the normal testing methods.  
Use the method shown below.  
Setup data  
The serial data PHASE signal (both A and B) switch over to high or low.  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
Test method  
Set output to open, change phase data from 1 0 1 0 and perform switching. When testing, input  
phase data at double the chopping frequency (if f = 100 kHz, fDATA = 200 kHz) and measure the current  
chop  
value of V supply.  
M
fDATA = 200 kHz means that the phase switches at 200 kHz.  
29  
2005-04-04  
TB62202AFG  
Number of switchings at phase switching  
Number of switchings at actual operation  
Mode changes three times  
in one chopping cycle.  
One phase switching  
(16-bit data input)  
To V  
To V  
M
M
Four transistors switching  
Chopping cycle  
U
1
U
2
U
1
U
2
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
ON  
ON  
Load  
Switches by phase data  
Load  
Two transistors  
switching  
OFF  
ON  
ON  
L
1
L
2
L
1
L
2
Charge  
Slow  
Two transistors  
switching  
OFF  
ON  
OFF  
ON  
OFF  
ON  
Four transistors switching  
Four transistors switching  
One phase switching  
(16-bit data input)  
PGND  
PGND  
Eight transistors switching  
in one chopping cycle  
OFF  
ON  
Four transistors are switched at one phase switching  
Fast  
Number of switchings at actual operation = 2 × number of switchings at phase switching.  
Therefore, switching the phase at 2 × chopping cycle matches the number of switchings at actual operation  
with the number of switchings at phase switching, and allows the actual current dissipation, IM , to be  
3
measured.  
30  
2005-04-04  
TB62202AFG  
5. I , I , I (A/B unit only. C/D unit conforms to A/B unit.)  
OB OH OL  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
A
A
DD  
I
OB  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
I
, I  
OH OL  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
I
Ccp C 13  
Ccp B 12  
OL  
No reset at testing  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Test method  
I
I
I
:
With V = 24 V, V  
to GND, and measure the supply current.  
= 5 V, and logic input all = 0 applied, set RESET = H, connect the output pins  
OH  
M
DD  
:
With V = 24 V, V = 5 V, and logic input all = 0 applied, set RESET = H, connect the output pins  
OB  
M
DD  
to V , and measure the supply current.  
M
:
With V = 24 V, V  
= 5 V, and logic input all = 0 applied, set RESET = L, connect the output pins  
OL  
M
DD  
to GND, and measure the supply current.  
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
31  
2005-04-04  
TB62202AFG  
6. V (H to L), V (GAIN) (when measuring phase A) after measurement  
RS  
ref  
(A/B unit only. C/D unit conforms to A/B unit.)  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
V
31 STROBE AB  
30 CLK AB  
Oscilloscope  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
Vary between  
0 and 1 V.  
V
M B  
V
SS  
(F  
IN  
)
SGND  
28 RESET  
Ccp C 13  
Ccp B 12  
Ccp 2  
Ccp 1  
No reset at testing  
V
DD  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
: PGND  
: SGND (V  
)
SS  
V
V
Input torque data = 100% (HH) and vary the voltage between V and R pins.  
M S  
RS (H to L):  
Measure the voltage (V ) when output changes from fixed Charge mode to another mode.  
RS  
Also measure V when torque data = 85% (HL), 70% (LH), or 50% (LL) as above and calculate the  
RS  
ratio using V value at 100% as reference.  
RS  
V
V
(*)  
ref  
RS  
: V  
=
((*) V : when torque data = 100%)  
RS  
ref (GAIN)  
ref (GAIN)  
Setup data  
H
L
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
L
H
L
STROBE  
32  
2005-04-04  
TB62202AFG  
7. I  
, I  
out1  
(A/B unit only. C/D unit conforms to A/B unit.)  
out2  
V
9
ref AB  
8
CR  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
Monitors  
current  
waveform.  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
With L load, perform chopping in Mixed Decay mode. Monitor the output current waveform and measure the  
various output currents at constant current operation.  
Setup data  
Set to100%  
10 11 12 13 14 15  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
L
H
L
H
L
STROBE  
MDT  
MDT  
Output current  
value (set  
current value)  
Current  
0%  
Charge  
100% 0%  
Fast  
waveform  
Slow  
Slow  
Measurement of  
peak current  
Fast  
Charge  
33  
2005-04-04  
TB62202AFG  
8. I (when measuring phase A) (A/B unit only. C/D unit conforms to A/B unit)  
RS  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
A
27 V  
A 32  
DD  
A
B
B
35  
2
31 STROBE AB  
30 CLK AB  
5
29 DATA AB  
R
3
1
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
RESET = L  
V
DD  
SGND  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
With L input to RESET , connect V and R to the power supply, and measure the current input to the R  
M
RS  
S
pin. (Either drop all the input pins to GND level or input all Low data to the DATA pin, then perform  
measurement. At that time, leave all other output pins open.)  
Setup data  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
34  
2005-04-04  
TB62202AFG  
9. R  
, R  
when measuring output A (A/B unit only. C/D unit conforms to A/B  
ON (D-S) ON (S-D)  
unit.)  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
Curve tracer  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
Curve tracer  
SGND  
V
SS  
)
(F  
IN  
28 RESET  
Ccp C 13  
Ccp B 12  
Ccp 2  
Ccp 1  
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
: PGND  
: SGND (V  
)
SS  
Input the current setting data (HHHH signal) to the DATA pin and measure the voltage between V and OUT  
M
when I  
= 1000 mA or the voltage between OUT and GND. Then, change the phase and repeat measurement.  
out  
At that time, leave the output pins which are not measured open.  
Setup data (Vary the phase data during testing.)  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
35  
2005-04-04  
TB62202AFG  
10. V , I (A/B unit only. C/D unit conforms to A/B unit.)  
ref ref  
*: When measuring I  
,
ref  
Oscilloscope  
fix V = 3 V and  
ref  
measure.  
Monitor  
A
V
9
ref AB  
8
CR AB  
Vary V  
= 2 to V  
ref  
I
(*)  
ref  
SGND  
1.0 V  
DD  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
31 STROBE AB  
30 CLK AB  
5
29 DATA AB  
R
3
1
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
V
ref  
: Vary V = 2 to V  
1 V and confirm that output is on.  
ref  
DD  
I
ref  
:
When V = 24 V and V  
= 5 V, apply the specified voltage of 3 V to the V and monitor the current  
DD ref  
M
flow value.  
36  
2005-04-04  
TB62202AFG  
11. T TSD, T TSD (Measure in an environment such as an constant temperature chamber where  
j
j
the temperature for the IC can be freely changed) (A/B unit only. C/D unit conforms to A/B  
unit.)  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
Curve tracer  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
Curve tracer  
SGND  
V
SS  
)
(F  
IN  
28 RESET  
Ccp C 13  
Ccp B 12  
Ccp 2  
Ccp 1  
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
: PGND  
: SGND (V  
)
SS  
T TSD:  
j
Increase the ambient temperature. Measure the temperature when output stops.  
T TSD: Gradually lower the temperature from the level when the TSD circuit was operating (output off). At  
j
that time, control the RESET input thus : H L H L. Output will begin at a certain  
temperature level.  
T TSD is the difference between the temperature at which output begins and the temperature at  
j
which TSD is triggered.  
Setup data  
H
L
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
L
H
L
STROBE  
37  
2005-04-04  
TB62202AFG  
12. V  
(A/B unit only. C/D unit conforms to A/B unit.)  
DDR  
Oscilloscope  
V
9
ref AB  
8
CR AB  
SGND  
V
DD  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
V
M
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
V
Ccp 1  
DD  
SGND  
: PGND  
Vary from 0 V  
: SGND (V  
)
SS  
Monitor the output pins. Increase the V  
voltage from 0. Measure the V  
value when output starts.  
DD  
DD  
Next, decrease the V  
voltage and measure the V  
value when output stops.  
DD  
DD  
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
38  
2005-04-04  
TB62202AFG  
13. V  
(A/B unit only. C/D unit conforms to A/B unit.)  
MR  
Oscilloscope  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
Vary from 0 V  
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
V
DD  
SGND  
: PGND  
: SGND (V  
)
SS  
With the CLK signal and DATA (all High) input, increase the V voltage from 0.  
M
Measure the V value when output starts.  
M
Next, decrease the V voltage and measure the V value when output stops.  
M
M
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
39  
2005-04-04  
TB62202AFG  
14. Overcurrent protector circuit (ISD) (To measure output A : )  
(A/B unit only. C/D unit conforms to A/B unit.)  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
Curve tracer  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
V
M B  
Curve tracer  
SGND  
V
SS  
)
(F  
IN  
28 RESET  
Ccp C 13  
Ccp B 12  
Ccp 2  
Ccp 1  
At measuring, non-reset  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
: PGND  
: SGND (V  
)
SS  
Test method: To monitor operating current of the overcurrent protector circuit when output A is short-circuited  
to the power supply  
Input the current setting data (HHHH signal) to the DATA pin. If short-circuited to the supply, measure the  
lower output transistors. If short-circuited to ground, measure the upper output transistors (see how to measure  
R ).  
ON  
When measuring R , increase the current flow. There is a current value at which output is switched off and  
ON  
R
ON  
cannot be measured. This value is the set current value for the overcurrent protector circuit.  
Make sure to leave open the output pins not being measured.  
Note that if the temperature changes, the value may fluctuate. Try to avoid applying power to the IC by  
one-shot measuring.  
Setup data (Example : The phase signal must be changed depending on the pin.)  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
40  
2005-04-04  
TB62202AFG  
15. Current vector (A/B unit only. C/D unit conforms to A/B unit.)  
V
9
ref AB  
8
CR  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
Monitor  
current  
waveform  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
At measuring, non-reset  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Perform chopping in Mixed Decay mode with load L. Monitor the output current waveform and measure the output  
current at constant current operation. At this time, vary the 4-bit data for current setting and measure the  
current values. Using the set output current as 100%, calculate the output current ratio.  
100%  
Output current  
(example)  
71%  
100%  
0%  
41  
2005-04-04  
TB62202AFG  
16. f  
t
, t  
, t  
, t  
, t  
, t  
, tSTROBE (H), t  
(A/B unit only. C/D unit conforms to A/B unit.)  
,
CLK w (CLK) wp (CLK) wn (CLK) STROBE  
STOBE (L)  
, t  
, t  
suSIN-CLK suST-CLK hSIN-CLK hCLK-ST  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
V
Ccp 1  
DD  
SGND  
: PGND  
: SGND (V  
)
SS  
Input any data at f  
(max), perform chopping, and monitor the output waveform.  
CLK  
For the measuring points, see the timing chart below.  
Setup data  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
Measuring points  
t
w (CLK)  
CLK  
50%  
t
t
hCLK-ST  
suST-CLK  
50%  
t
t
wn (CLK) wp (CLK)  
STROBE  
t
STROBE (H)  
STROBE (L)  
t
t
STROBE  
t
hSIN-CLK  
t
suSIN-CLK  
DATA15  
DATA  
50%  
50%  
DATA0  
42  
2005-04-04  
TB62202AFG  
17. OSC-fast delay, OSC-charge delay (A/B unit only. C/D unit conforms to A/B unit.)  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
V
DD  
SGND  
RESET = 5 [V]  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Fix the output current value in Mixed Decay mode and turn the output on. Measure the time until the output  
switches from the CR pin waveform and the output voltage waveform.  
Setup data  
H
DATA  
CLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
L
H
L
H
L
STROBE  
Top  
CR  
Bottom  
Osc-fast delay  
Osc-charge delay  
50%  
50%  
50%  
50%  
V
V
out A  
out A  
50%  
50%  
(Mode)  
Charge  
Slow  
Fast  
Charge  
43  
2005-04-04  
TB62202AFG  
18. t  
, t  
, t , t (A/B unit only. C/D unit conforms to A/B unit.)  
pHL (ST) pLH (ST)  
r
f
Monitor  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
R
L
= 5.7 Ω  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
V
DD  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
Switch PHASE every 130 µs and measure the output pin voltage and the STROBE signal.  
[Oscilloscope waveform (example)]  
130 µs  
50%  
50%  
STROBE  
t
pHL (ST)  
OUTPUT  
50%  
Voltage A  
t
pLH (ST)  
OUTPUT  
Voltage A  
90%  
50%  
90%  
10%  
10%  
t
t
f
r
44  
2005-04-04  
TB62202AFG  
19. t  
(A/B unit only. C/D unit conforms to A/B unit.)  
BRANK  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
No reset at testing  
RESET = 5 [V]  
Ccp A  
7
P-GND  
SGND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
t
is the dead time band for avoiding malfunction caused by noise. Apply sufficient differential voltage  
BRANK  
(when V = 3 V, 0.6 V or higher) to V -R and apply duty. When the pulse width reaches a certain value,  
ref  
M
S
triggering feedback and changing the output. Check the value.  
Measure the pulse width  
where output changes.  
V
M
R
S
pin voltage  
H
Apply pulse to the R pin so that the  
S
R
S
pin = V voltage 1.0 V.  
M
Output operation  
L
Setup data  
H
DATA  
L
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
H
CLK  
L
H
STROBE  
L
45  
2005-04-04  
TB62202AFG  
20. f  
(f  
(min), f  
(max)) (A/B unit only. C/D unit conforms to A/B unit.)  
chop  
chop chop  
Oscilloscope  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
31 STROBE AB  
30 CLK AB  
5
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
V
DD  
Ccp A  
7
P-GND  
SGND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Change the R  
and C  
values and measure the frequency on the CR pin using the oscilloscope.  
osc  
osc  
At this time, 1/8 of the frequency of the measured CR waveform is f  
.
chop  
Oscilloscope waveform (example)  
1/8 f  
(SYNC) = f  
CR  
chop  
t = 0  
t = 1  
46  
2005-04-04  
TB62202AFG  
21. t  
(A/B unit only. C/D unit conforms to A/B unit.)  
ONG  
V
9
ref AB  
8
CR AB  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
At measuring, change  
from reset to non-reset.  
V
DD  
SGND  
Ccp A  
7
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
Apply V and V  
and change RESET from L to H.  
M
DD  
Measure the time until the CcpA pin becomes V + V  
× 90%.  
M
DD  
V
+ V  
M
DD  
V
+ (V  
× 90%)  
DD  
M
V
M
5 V  
0 V  
RESET  
50%  
t
ONG  
47  
2005-04-04  
TB62202AFG  
22. Mixed decay timing (A/B unit only. C/D unit conforms to A/B unit.)  
V
9
ref AB  
8
CR  
SGND  
V
36  
34  
M A  
SGND  
R
RS A  
R
RS A  
27 V  
A 32  
DD  
A
B
B
35  
2
5 V  
0 V  
31 STROBE AB  
30 CLK AB  
5 V  
0 V  
5
5 V  
0 V  
29 DATA AB  
R
3
1
RS B  
R
RS B  
V
M B  
V
SS  
(F  
)
IN  
SGND  
Ccp 2  
28 RESET  
Ccp C 13  
Ccp B 12  
At measuring, non-reset  
RESET = 5 [V]  
V
DD  
SGND  
6
SETUP  
Ccp A 7  
P-GND  
Ccp 1  
: PGND  
: SGND (V  
)
SS  
With V = 24 V, V  
= 5 V, RESET = H, change the SETUP pin from L to H and overwrite the MIXED DECAY  
M
DD  
TIMING TABLE.  
Then change the SETUP pin from H to L. With load L, perform chopping and monitor the output current  
waveform at that time. Confirm that the switching timing from Slow Decay Mode to Fast Decay Mode within an  
fchop cycle is the specified MIXED DECAY TIMING.  
(Depending on the load L value and the test environment, chopping may be performed every two cycles or there  
may be no Slow Decay Mode. If so, conditions, for example, load condition, may need to be changed.  
MDT  
MDT  
Output current value  
(set current value)  
0%  
MDT  
100% 0%  
MDT  
Slow  
Fast  
Slow  
Fast  
Charge  
Charge  
Current waveform  
48  
2005-04-04  
TB62202AFG  
Waveforms in Various Current Modes (Ideal Waveform)  
Normal MIXED DECAY MODE Waveform  
NF is the point at which the output current  
reaches the set current value.  
f
f
chop  
chop  
CR CLK  
signal  
I
out  
NF  
Set current value  
NF  
Set current  
value  
12.5% MIXED  
DECAY MODE  
RNF  
MDT (MIXED DECAY TIMING) point  
When NF is after MIXED DECAY Timing  
Fast Decay mode after Charge mode.  
I
out  
Set current value  
MDT (MIXED DECAY TIMING) point  
NF  
NF  
Set current  
value  
RNF  
RNF  
37.5% MIXED  
DECAY MODE  
STROBE signal input  
49  
2005-04-04  
TB62202AFG  
In MIXED DECAY MODE, when the output current > the set current value  
f
f
f
f
chop  
chop  
chop  
chop  
Set  
NF  
current  
value  
CHARGE MODE for one f  
chop  
cycle after STROBE signal input  
Because the set current value > the  
output current, no CHARGE MODE in  
the next cycle.  
RNF  
NF  
I
out  
12.5%  
MIXED  
DECAY  
MODE  
RNF  
NF  
Set current value  
RNF  
MDT (MIXED DECAY TIMING) point  
STROBE signal input  
FAST DECAY MODE Waveform  
NF is the point at which the output  
current reaches the set current value.  
f
chop  
Set current  
value  
I
out  
FAST DECAY  
MODE  
Because the set current value > the output current,  
FAST DECAY MODE in the next cycle, too  
(0% MIXED  
DECAY MODE)  
Set current value  
NF  
RNF  
RNF  
Because the set current value > the output current, CHARGE  
MODE NF FAST DECAY MODE in the next cycle, too  
RNF  
STROBE signal input  
Response delay time  
50  
2005-04-04  
TB62202AFG  
STROBE Signal, Internal CR CLK, and output Current Waveform  
(When STROBE Signal is input in SLOW DECAY MODE)  
f
f
chop  
chop  
f
chop  
37.5% MIXED DECAY MODE  
Set current  
value  
MDT  
I
out  
NF  
Set current  
value  
MDT  
RNF  
RNF  
Momentarily enters  
CHARGE MODE  
STROBE signal input  
Reset CR-CLK  
counter here  
When STROBE signal is input, the chopping counter (CR-CLK counter) is forced to reset at the next CR-CLK  
timing.  
Because of this, compared with a method in which the counter is not reset, response to the input data is faster.  
(The delay time, the theoretical value in the logic portion, is expected to be a one-cycle CR waveform: 1.25 µS  
@100 kHz CHOPPING.)  
When the CR-CLK counter is reset due to STROBE signal input, CHARGE MODE is entered momentarily due to  
current comparison.  
Note: In FAST DECAY MODE, too, CHARGE MODE is entered momentarily due to current comparison.  
51  
2005-04-04  
TB62202AFG  
STROBE Signal, Internal CR CLK, and output Current Waveform  
(When STROBE signal is input in CHARGE MODE)  
f
f
chop  
chop  
f
chop  
Set current  
value  
MDT  
37.5% MIXED DECAY MODE  
I
out  
NF  
Set current  
value  
MDT  
RNF  
RNF  
Momentarily enters  
CHARGE MODE  
STROBE signal input  
52  
2005-04-04  
TB62202AFG  
(When STROBE Signal is input in FAST DECAY MODE)  
f
f
chop  
chop  
f
chop  
37.5% MIXED DECAY MODE  
NF  
Set  
current  
value  
MDT  
MDT  
I
out  
NF  
Set current value  
MDT  
RNF  
RNF  
Momentarily enters  
CHARGE MODE  
STROBE signal input  
53  
2005-04-04  
TB62202AFG  
(When PHASE Signal is input)  
37.5% MIXED DECAY MODE  
f
f
chop  
chop  
f
chop  
Set current  
value  
I
out  
0
RNF  
RNF  
MDT  
Set current  
value  
NF  
NF  
STROBE signal input  
54  
2005-04-04  
TB62202AFG  
(When current point 0 control is included)  
37.5% MIXED DECAY MODE  
f
f
chop  
chop  
f
chop  
Set current  
value  
I
out  
(1)  
(2)  
(1)  
0
(2)  
(1)  
(1)  
Set current  
value  
STROBE signal input  
Reset CR-CLK  
counter here  
Reset CR-CLK  
counter here  
55  
2005-04-04  
TB62202AFG  
(When FAST DECAY MODE is included during the sequence)  
f
f
f
f
f
chop  
chop  
chop  
chop  
chop  
Set current  
value  
37.5% MIXED DECAY MODE  
FAST DECAY MODE  
Set current  
value  
56  
2005-04-04  
TB62202AFG  
(When SLOW DECAY MODE is included during the sequence)  
f
f
f
f
f
f
chop  
chop  
chop  
chop  
chop  
chop  
Set current  
value  
SLOW DECAY MODE  
37.5% MIXED DECAY MODE  
f
chop  
Set current  
value  
In SLOW DECAY MODE, depending on the load,  
the set current cannot be accurately traced.  
Therefore, do not use SLOW DECAY MODE.  
37.5% MIXED DECAY MODE  
STROBE  
57  
2005-04-04  
TB62202AFG  
Current Modes  
+
(MIXED (= SLOW FAST) Decay Mode Effect)  
z Sine wave in increasing (Slow Decay Mode (Charge + Slow + Fast) normally used)  
Slow  
Slow  
Fast  
Set current  
value  
Charge  
Fast  
Charge  
Slow  
Slow  
Set current  
value  
Fast  
Charge  
Fast  
Charge  
z Sine wave in decreasing (When using MIXED DECAY Mode with large attenuation ratio (MDT%) at attenuation)  
Slow  
Slow  
Because current attenuates so quickly, the current  
immediately follows the set current value.  
Set current  
value  
Charge  
Fast  
Charge  
Fast  
Slow  
Slow  
Set current  
value  
Fast  
Fast  
Charge  
z Sine wave in decreasing (When using MIXED DECAY Mode with small attenuation ratio (MDT%) at attenuation)  
Because current attenuates slowly, it takes a  
long time for the current to follow the set current  
value (or the current does not follow).  
Slow  
Slow  
Set current  
value  
Fast  
Fast  
Charge  
Charge  
Charge  
Charge  
Fast  
Fast  
Set current  
value  
Note: The above charts are schematics. The actual current transient responses are curves.  
58  
2005-04-04  
TB62202AFG  
Output Transistor Operating Mode  
To V  
To V  
To V  
M
M
M
R
R
R
RS  
RS  
RS  
R
S
pin  
R
pin  
R pin  
S
S
U
1
U
2
U
1
U
2
U
1
U
2
(Note)  
(Note)  
(Note)  
Load  
Load  
Load  
L
1
L
2
L
1
L
2
L
1
L
2
PGND  
PGND  
PGND  
Charge mode  
(Charges coil power)  
Slow mode  
(Slightly attenuates coil power)  
Fast mode  
(Drastically attenuates coil power)  
Output Transistor Operation Functions  
CLK  
U
1
U
2
L
1
L
2
CHARGE  
SLOW  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
ON  
ON  
FAST  
ON  
OFF  
Note: The above table is an example where current flows in the direction of the arrows in the above figures.  
When the current flows in the opposite direction of the arrows, see the table below.  
CLK  
U
1
U
2
L
1
L
2
CHARGE  
SLOW  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
FAST  
OFF  
ON  
59  
2005-04-04  
TB62202AFG  
Output Transistor Operating Mode 2  
(Sequence of MIXED DECAY MODE)  
To V  
To V  
To V  
M
M
M
R
R
RS  
R
RS  
RS  
U
1
U
2
U
1
U
2
U
1
U
2
OUT A  
OUT A  
OUT A  
OUT A OUT A  
OUT A  
L
1
L
2
L
1
L
2
L
1
L
2
PGND  
PGND  
PGND  
H
OUTPUT  
voltage A  
50%  
L
H
OUTPUT  
voltage A  
50%  
50%  
L
Set current  
OUPUT  
current  
L
Charge Mode  
Slow Mode  
Fast Mode  
The constant current is controlled by changing mode from Charge Slow Fast.  
60  
2005-04-04  
TB62202AFG  
Current Discharge Path when Current Data = 0000 are input during operation  
In Slow Decay Mode, when all output transistors are forced to switch off, coil energy is discharged in the following  
MODES :  
Note: Parasitic diodes are located on dotted lines. In normal MIXED DECAY MODE, the current does not flow to the  
parasitic diodes. However, when signal 0000 is input during operation, the current flows to them.  
To V  
To V  
To V power supply  
M
M
M
R
RS  
R
RS  
R
RS  
R
S
pin  
R
S
pin  
R pin  
S
U
1
U
2
U
1
U
2
U
1
U
2
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
(Note)  
(Note)  
(Note)  
Input Current DATA  
= 0000  
Load  
Load  
Load  
L
1
L
2
L
1
L
2
L
1
L
2
OFF  
ON  
ON  
ON  
OFF  
OFF  
PGND  
Charge mode  
PGND  
Slow Decay mode  
PGND  
Forced OFF mode  
As shown in the figure at right, an output transistor has parasitic diodes.  
To discharge energy from the coil, each transistor is switched on allowing current to flow in the reverse direction to  
that in normal operation. As a result, the parasitic diodes are not used. If all the output transistors are forced to  
switch off, the energy of the coil is discharged via the parasitic diodes.  
61  
2005-04-04  
TB62202AFG  
PD-Ta (Package Power Dissipation)  
P
Ta  
D
3.5  
(2)  
(1) R  
th (j-a)  
IC only (96°C/W)  
(2) When mounted on the board  
(38°C/W)  
Board size(100 × 200 × 1.6 mm)  
3.0  
2.5  
2.0  
* R : 8.5°C/W  
th (j-c)  
1.5  
(1)  
1.0  
0.5  
0
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta (°C)  
62  
2005-04-04  
TB62202AFG  
Power Supply Sequence (Recommended)  
V
V
V
DD (max)  
DD (min)  
DDR  
V
DD  
GND  
V
M
V
V
M (min)  
MR  
V
M
GND  
NON-RESET  
Internal reset  
RESET  
RESET  
H
L
RESET  
input  
・・・・*  
Takes up to t  
ONG  
until operable.  
t
Non-operable area  
Note 1: If the V  
drops to the level of the V or below while the specified voltage is input to the V pin, the IC is  
DDR M  
DD  
internally reset. This is a protective measure against malfunction. Likewise, if the V drops to the level of the  
M
V
MR  
or below while regulation voltage is input to the V , the IC is internally reset as a protective measure  
DD  
against malfunction. To avoid malfunction, when turning on V or V , we recommend you input the  
M
DD  
RESET signal at the above timing.  
It takes time for the output control charge pump circuit to stabilize. Wait up to t  
before driving the motors.  
time after power on  
ONG  
Note 2: When the V value is between 3.3 to 5.5 V, the internal reset is released, thus output may be on. In such a  
M
case, the charge pump cannot drive stably because of insufficient voltage. We recommend the RESET state  
be maintained until V reaches 20 V or more.  
M
Note 3: Since VDD = 0 V and V = voltage within the rating are applied, output is turned off by internal reset. At that  
M
time, a current of several mA flows due to the Pass between V and V  
M
.
DD  
63  
2005-04-04  
TB62202AFG  
Relationship between V and V  
M
H
V
H
is the voltage of the CcpA pin. It is the highest voltage in this IC (power supply for driving the upper gate of the  
H bridge).  
V
– V (& Vcharge up)  
H
M
50  
40  
30  
20  
10  
0
V
V
voltage  
voltage  
H
M
V
= 5 V  
DD  
Charge up voltage  
Ccp1 = 0.22 µF  
Ccp2 = 0.02 µF  
V
= V  
+ V (CcpA)  
DD M  
H
Input RESET.  
( RESET = 0 V)  
Maximum  
VMR  
Usable area  
Recommended operation area  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply voltage  
V
M
(V)  
z V charge Up is the voltage to boost V to V . Usually equivalent to V .  
DD  
M
H
64  
2005-04-04  
TB62202AFG  
Operation of Charge Pump Circuit  
V
= 24 V  
M
R
RS  
V
M
V
= 5 V  
R
S
DD  
27  
3/16/21/34  
1/18/19/36  
V
Ccp A  
Ccp B  
H
7
i2  
i1  
Di2  
Di1  
(2)  
12  
T
r2  
Output  
(1)  
(2)  
Comparator  
&
Controller  
V
Z
Output  
H switch  
13  
Ccp C  
Di3  
R
1
T
r1  
V
H
= V + V  
= charge pump voltage  
M
DD  
i1 = charge pump current  
i2 = gate block power dissipation  
z Initial charging  
(1) When RESET is released, T is turned ON and T turned OFF. Ccp2 is charged from Ccp2 via Di1  
r1  
r2  
(This is the same as when TSD and ISD are operating and the IC is restored from Reset state.)  
(2) T is turned OFF, T is turned ON, and Ccp1 is charged from Ccp2 via Di2.  
r1  
r2  
(3) When the voltage difference between V and V (CcpA pin voltage = charge pump voltage) reaches V or  
DD  
M
H
higher, operation halts (Steady state : Because the capacitor is naturally discharged, the IC is continually  
charging to the capacitor).  
z Actual operation  
(4) Ccp1 charge is used at fchop switching and the V potential drops.  
H
(5) Charges up by (1) and (2) above.  
Output switching  
Initial charging  
Normal state  
V
H
V
M
(1)  
(4)  
(4)  
(2)  
(3)  
t
(5)  
(5)  
65  
2005-04-04  
TB62202AFG  
External Capacitors for Charge Pumps  
When V  
= 5V, fchop = 100 kHz, and L = 10 mH is driven with V = 24 V, I = 1100 mA, the theoretical values  
out  
DD  
M
for Ccp1 and Ccp2 are as shown below:  
Ccp 1 – Ccp 2  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
Usable area  
‹ Ccp 1 = (NG)  
„ Ccp 2 = (OK)  
Recommended area  
Recommended value  
„
„
‹
‹
„
‹
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Ccp 1 capacitance (µF)  
Combine Ccp1 and Ccp2 as shown in the shaded area in the above graph.  
Select values 10: 1 or more for Ccp1: Ccp2.  
When making a setting, evaluate properly and set values with a margin.  
66  
2005-04-04  
TB62202AFG  
Charge Pump Rise Time  
V
+ V  
M
DD  
V
+ (V  
× 90%)  
M
DD  
V
M
5 V  
0 V  
50%  
RESET  
t
ONG  
t
: Time taken for capacitor Ccp2 (charging capacitor) to fill up Ccp1 (capacitor used to save charge) to V  
+
ONG  
M
V
DD  
after a reset is released.  
The internal IC cannot drive the gates correctly until the voltage of Ccp1 reaches V + V . Be sure to  
M
DD  
wait for t  
or longer before driving the motors.  
ONG  
Basically, the larger the Ccp1 capacitance, the longer the initial charge-up time but the smaller the  
voltage fluctuation.  
The smaller the Ccp1 capacitance, the shorter the initial charge-up time but the larger the voltage  
fluctuation.  
Depending on the combination of capacitors (especially with small capacitance), voltage may not be  
sufficiently boosted. Thus, use the capacitors under the capacitor combination conditions (Ccp1 = 0.22 µF,  
Ccp2 = 0.01 µF) recommended by Toshiba.  
67  
2005-04-04  
TB62202AFG  
Operating Time for Overcurrent Protector Circuit  
(ISD non-sensitivity time and ISD operating time)  
Output halts (Reset status)  
CR oscillation  
(basic chopping waveform)  
MIN  
MAX  
MIN  
MAX  
(Non-sensitivity time)  
ISD BLANK time  
ISD operating time  
Point where overcurrent flows to output transistors (overcurrent status start)  
A non-sensitivity time is set for the overcurrent protector circuit to avoid misdetection of overcurrent due to spike  
current at irr or switching.  
The non-sensitivity time synchronizes with the frequency of the CR for setting the chopping frequency. The  
non-sensitivity time is set as follows :  
Non-sensitivity time = 4 × CR cycle  
The time required for the ISD to actually operate after the non-sensitivity time is as follows :  
Minimum: 5 × CR cycle  
Maximum: 8 × CR cycle  
Therefore, from the time overcurrent flows to the output transistors to the time output halts is as follows.  
Note that ideally, the operating time is the operating time when overcurrent flows. Depending on the output control  
mode timing, the overcurrent protector circuit may not be triggered.  
Therefore, to ensure safe operation, add a fuse to the V power supply for protection.  
M
The fuse capacity would vary according to the use conditions. However, select a fuse whose capacity avoids any  
operating problems and does not exceed the power dissipation for the IC.  
68  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 2-Phase Excitation Mode)  
TORQUE TORQUE DECAY DECAY  
DECAY  
A
0
PHASE BDECAY A  
PHASE A  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
1
B
B
0
1
Bit  
1
0
1
2
3
4
5
6
7
8
1
0
0
1
9
1
1
1
1
10  
0
11 12 13 14  
15  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
0
1
3
0
0
4
0
0
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 9, Functions.  
We recommend Mixed Decay mode (37.5%) as Decay mode. Set torque to 100%.  
Output current waveform of 2-phase excitation sine wave  
(%)  
100  
Phase B  
0
Phase A  
100  
Note: We recommended 2-phase excitation drive in 37.5% Mixed Decay mode.  
Please refer to the caution of 2-phase excitation mode on next page.  
69  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 1-2 Phase Excitation Mode Typ.A)  
TORQUE TORQUE DECAY DECAY  
DECAY DECAY  
PHASE B  
PHASE A  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
1
B
B
A
A
1
0
1
0
Bit  
1
0
1
2
3
4
5
6
7
8
1
1
1
0
0
0
0
1
9
10  
0
11 12 13 14  
15  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
2
0
1
3
0
1
4
0
0
5
0
0
6
0
0
7
0
0
8
0
1
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 10, Functions.  
We recommend Mixed Decay Mode (37.5%) as Decay Mode.  
Set torque to 100%.  
When using this excitation mode, high efficiency can be achieved by setting the phase data to 10% (10%). Set  
current values in the order +100% → −10% → −100% → +10%.  
Output Current Waveform of 1-2 Phase Excitation Sine Wave (Typ. A)  
(%)  
100  
Phase A  
10  
0
10  
100  
(%)  
100  
Phase B  
10  
0
10  
100  
70  
2005-04-04  
TB62202AFG  
Points for Control that Includes Current of 0%  
In modes other than 2-Phase Excitation mode (from 1-2 Phase Excitation mode to 4W1-2 Phase Excitation mode),  
when the current is controlled to 0%, the TB62201F’s output transistors are all turned off.  
At the time, the coil's energy returns to the power supply through the parasitic diodes. If the same current is  
applied several times and is within the rated current, then : the power consumed by the on-resistance when current  
flows to the output MOS will be less than the power consumed when current is applied to the parasitic diodes.  
Therefore, when controlling the current, rather than setting 0%, set the current to the next step beyond 0% (the  
minimum step in the reverse direction) for better power dissipation results.  
However, if the 0% (actually 10%) current cycle is long, the power dissipation may be greater than in Off mode  
because of the need for constant-current control.  
Therefore, Toshiba recommend setting the current according to the actual operating pattern. (1-2 Phase Excitation  
mode is the most effective.)  
Flyback diode mode  
Charge  
To V power supply  
M
[%]  
100  
R
RS  
The coil’s energy returns through  
the parasitic diodes.  
Constant-  
current  
control  
R pin  
S
Because V < V , the power  
DS  
dissipation is large.  
F
U
2
U
1
Output off  
period  
OFF  
OFF  
10  
0
10  
Load  
L
1
L
2
OFF  
OFF  
Constant-  
current  
control  
Forced Off mode  
100  
Diode parasite  
PGND  
Non-flyback diode mode  
The coil’s energy returns through  
the MOS, which is turned on.  
Then the coil is charged to a level  
of 10%.  
Charge  
[%]  
To V  
M
R
RS  
100  
Constant-  
current  
control  
R
S
pin  
The power dissipation is smaller  
than when the energy is returned  
via the parasitic diode.  
U
U
2
1
OFF  
ON  
10  
0
10  
(However, the longer the 10%  
rated current control time, the  
longer the period of current  
dissipation.)  
Constant-  
current  
control  
Load  
ON  
OFF  
L
1
L
2
Constant-  
current  
control  
Charge mode  
PGND  
100  
Charge  
Specifies a level of 10%,  
either side of 0.  
71  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 1-2 Phase Excitation mode Typ.B)  
TORQUE TORQUE  
DECAY  
B
PHASE  
B
DECAY  
A
PHASE  
A
MDMB  
B
B
B
B
MDM A  
A
A
A
A
3
0
1
2
3
0
1
2
0
1
Bit  
1
0
1
2
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
4
5
6
7
8
1
1
1
0
0
0
0
9
1
1
1
1
1
1
1
10  
0
11 12 13 14  
15  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
1
1
0
1
1
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
2
0
1
3
0
1
4
0
1
5
0
0
6
0
0
7
0
0
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 10, Functions.  
We recommend Mixed Decay Mode (37.5%) as Decay Mode.  
Set torque to 100%. Same as 1-2 phase excitation (typ. A) in the previous section, power dissipation can be reduced  
by changing 0% level to 10% or 10%.  
Output Current Waveform of 1-2 Phase Excitation Sine Wave (Typ. B)  
(%)  
100  
71  
Phase A  
0
Phase B  
71  
100  
72  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 4-bit micro steps)  
(4-bit micro steps = W1-2 phase excitation drive)  
TORQUE TORQUE DECAY DECAY  
PHASE DECAY DECAY  
PHASE  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
1
B
B
B
A
A
1
A
0
1
0
Bit  
1
0
1
2
3
4
5
6
7
8
9
10  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
11 12 13 14  
15  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
1
0
1
1
1
1
0
1
0
0
1
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
1
1
1
0
1
0
0
1
0
1
1
1
1
0
1
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 9, Functions.  
We recommend Slow Decay Mode in the ascending direction of the sine wave ; Mixed Decay Mode (37.5%) in the  
descending direction. Set torque to 100%.  
73  
2005-04-04  
TB62202AFG  
Output Current Waveform of Pseudo Sine Wave (4-bit micro steps)  
(%)  
100  
92  
71  
Phase A  
38  
0
Phase B  
38  
71  
92  
100  
STEP  
5 micro-step from 0 to 90° drive is possible by combining Current DATA (AB & CD) and phase data.  
For input Current DATA at that time, see section on Current X in the list of the Functions.  
Depending on the load, the optimum condition changes for selecting MIXED DECAY MODE when the sine wave  
rises and falls. Select the appropriate MIXED DECAY TIMING according to the load.  
74  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 3-bit micro steps)  
(3-bit micro steps = 2W1-2 phase excitation drive)  
TORQUE TORQUE DECAY DECAY  
PHASE DECAY DECAY  
PHASE  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
0
1
1
1
1
B
B
B
8
1
A
A
1
A
15  
1
0
1
0
Bit  
1
2
3
4
5
6
7
9
10  
0
0
0
0
0
0
0
0
0
11 12 13 14  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
1
1
0
1
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 10, Functions.  
We recommend Slow Decay Mode in the ascending direction of the sine wave; Mixed Decay Mode (37.5%) in the  
descending direction. Set torque to 100%.  
75  
2005-04-04  
TB62202AFG  
Output Current Waveform of Pseudo Sine Wave (3-bit micro steps)  
[%]  
100  
98  
92  
83  
71  
Phase A  
56  
38  
20  
0
20  
Phase B  
38  
56  
71  
83  
92  
98  
100  
STEP  
9 micro-step from 0 to 90° drive is possible by combining Current DATA (AB & CD) and phase data.  
For input Current DATA at that time, see section on Current X in the list of the Functions.  
Depending on the load, the optimum condition changes for selecting MIXED DECAY MODE when the sine wave  
rises and falls. Select the appropriate MIXED DECAY TIMING according to the load.  
76  
2005-04-04  
TB62202AFG  
Application Operation Input Data (Example: 4-bit micro steps)  
TORQUE TORQUE DECAY DECAY  
PHASE DECAY DECAY  
PHASE  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
0
1
1
1
1
B
B
B
8
1
A
A
1
A
15  
1
0
1
0
Bit  
1
2
3
4
5
6
7
9
10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11 12 13 14  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
77  
2005-04-04  
TB62202AFG  
TORQUE TORQUE DECAY DECAY  
PHASE DECAY DECAY  
PHASE  
B
B
B
B
A
A
A
A
3
0
1
2
3
0
1
2
0
0
1
1
1
1
B
B
B
8
0
A
A
1
A
15  
0
0
1
0
Bit  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
2
3
4
5
6
7
9
10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11 12 13 14  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Data are input on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal.  
For the input conditions, see page 10, Functions. In the above input data example, Decay mode has a Mixed Decay  
mode (37.5%) setting for both the rising and falling directions of the sine wave, and a torque setting of 100%.  
78  
2005-04-04  
TB62202AFG  
4W1-2 Output Current Waveform of Pseudo Sine Wave (4-bit micro steps)  
[%]  
100  
98  
96  
92  
88  
83  
77  
71  
63  
Phase A  
56  
47  
38  
29  
20  
10  
0
10  
Phase B  
20  
29  
38  
47  
56  
63  
71  
77  
83  
88  
92  
96  
98  
100  
STEP  
17 micro-step from 0 to 90° drive is possible by combining Current DATA (AB & CD) and phase data.  
For input Current DATA at that time, see section on Current X in the list of the Functions.  
Depending on the load, the optimum condition changes for selecting MIXED DECAY MODE when the sine wave  
rises and falls. Select the appropriate MIXED DECAY TIMING according to the load.  
79  
2005-04-04  
TB62202AFG  
Output Current Vector Line  
4W-1-2 phase excitation (4-bit micro steps)  
X = 16  
X = 15  
100  
98  
X = 14  
X = 13  
96  
X = 12  
92  
88  
X = 11  
X = 10  
83  
77  
X = 9  
71  
63  
X = 8  
X = 7  
X = 6  
56  
47  
X = 5  
X = 4  
38  
X = 3  
29  
20  
X = 2  
θ
X
X = 1  
10  
θ
X
X = 0  
98 100  
0
10  
20  
29  
38  
47  
56  
63  
71  
77  
83  
88  
92  
96  
I
(%)  
B
For data to be input, see the function of Current AX (BX) in the list of Functions (10 page).  
80  
2005-04-04  
TB62202AFG  
Output Current Vector Line 2 (Each mode: except 4W1-2 phase)  
1-2 phase excitation (Typ. A)  
1-2 phase excitation (Typ. B)  
100  
100  
0
100  
0
71  
100  
I
(%)  
I
(%)  
B
B
W 1-2 phase excitation  
2W 1-2 phase excitation  
100  
92  
100  
98  
92  
83  
71  
38  
71  
56  
38  
20  
0
38  
71  
92 100  
0
20  
38  
56  
71  
83  
92 100  
98  
I
(%)  
I
(%)  
B
B
81  
2005-04-04  
TB62202AFG  
Recommended Application Circuit  
The values for the devices are all recommended values. For values under each input condition, see the  
above-mentioned recommended operating conditions.  
(Example : fchop = 96 kHz, CR : Iout = 0.6 (A), LF : Iout = 0.6 (A) )  
R
osc  
= 2.0 kΩ  
V
ref AB  
CR  
V
2.63 V  
SGND  
ref AB  
C
osc  
= 1000 pF  
1 µF  
SGND  
V
M A  
V
DD  
R
RS A  
5 V  
0 V  
R
RS A  
0.75 Ω  
STEPUP  
A
5 V  
0 V  
CLK AB  
A
B
B
5 V  
0 V  
STEPPING  
MOTOR 1  
DATA AB  
M
(CR: 6.8 mH/5.7 )  
5 V  
0 V  
STROBE AB  
R
RS B  
R
RS B  
0.75 Ω  
V
M B  
P-GND  
V
SS  
(F  
IN  
)
5 V  
0 V  
SGND  
CLK CD  
V
M C  
5 V  
0 V  
DATA CD  
STROBE CD  
RESET  
R
RS C  
C
R
RS C  
0.75 Ω  
5 V  
0 V  
C
D
5 V  
0 V  
STEPPING  
MOTOR 2  
M
D
(LF: 6.8 mH/5.7 )  
R
RS D  
R
RS D  
0.75 Ω  
V
M D  
V
ref CD  
Ccp A Ccp B  
Ccp C  
5 V  
SGND  
100 µF  
4.13 V  
1 µF  
100 µF  
24 V  
SGND  
Ccp 2  
0.015 µF  
Cop 1  
0.22 µF  
SGND  
Note: We recommend the user add bypass capacitors as required.  
Make sure as much as possible that GND wiring has only one contact point.  
Also, make sure that the VM pins are connected.  
For the data to be input, see the section on the recommended input data.  
Because there may be shorts between outputs, shorts to supply, or shorts to ground, be careful when designing  
output lines, V (V ) lines, and GND lines.  
DD  
M
82  
2005-04-04  
TB62202AFG  
Package Dimensions  
HSOP36-P-450-0.65  
Unit: mm  
Weight: 0.79 g (typ.)  
83  
2005-04-04  
TB62202AFG  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-63Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
RESTRICTIONS ON PRODUCT USE  
030619EBA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
84  
2005-04-04  

相关型号:

TB62205F

IC STEPPER MOTOR CONTROLLER, 0.96 A, PDSO36, 0.450 INCH, 0.65 MM PITCH, PLASTIC, HSOP-36, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62206F

IC STEPPER MOTOR CONTROLLER, 1.8 A, PDSO22, 0.450 INCH, 1 MM PITCH, PLASTIC, HSOP-20/22, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62206FG

BiCD PWM 2−Phase Bipolar Stepping Motor Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62208FG

IC STEPPER MOTOR CONTROLLER, 1.8 A, PDSO28, 0.450 INCH, 0.8 MM HEIGHT, PLASTIC, HSOP-28, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62209F

Stepping Motor Driver IC Using PWM Chopper Type

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62209FG

Stepping Motor Driver IC Using PWM Chopper Type

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62210FNG

Stepping Motor Driver ICs, TB62210FNG

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62212FTAG

IC STEPPER MOTOR CONTROLLER, PQCC48, 7 X 7 MM, 0.50 MM PITCH, PLASTIC, QFN-48, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62213AFTG

Stepping Motor Driver ICs, TB62213AFTG

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62213AFTG,8,EL

TB62213AFTG,8,EL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62213AHQ

Stepping Motor Driver ICs, TB62213AHQ

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TB62215AFG

Stepping Motor Driver ICs, TB62215AFG

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA