TB7102F [TOSHIBA]

Step-down DC-DC Converter IC; 降压型DC -DC转换器IC
TB7102F
型号: TB7102F
厂家: TOSHIBA    TOSHIBA
描述:

Step-down DC-DC Converter IC
降压型DC -DC转换器IC

转换器
文件: 总13页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB7102F  
Toshiba BiCD Integrated Circuit Silicon Monolithic  
TB7102F  
Step-down DC-DC Converter IC  
The TB7102F is a single-chip step-down DC-DC converter IC.  
Equipped with a built-in high-speed and low on-resistance power  
MOSFET, and utilizing a synchronous rectifier circuit, this IC can  
achieve high efficiency.  
Features  
Capable of high current drive (IOUT = maximum of 1 A),  
using only a few external components  
High efficiency (η = 95% )  
SON8-P-0303-0.65A  
Weight : 0.017 g (typ.)  
(@V = 5V, V  
= 3.3V, and I  
= 300 mA).  
OUT  
IN  
OUT  
Operating voltage (V ) range: 2.7V to 5.5 V  
IN  
High oscillation frequency of 1 MHz (typ.), making it possible to use small external components.  
Uses internal phase compensation, achieving high efficiency using only a few external components.  
A small surface mount-type ceramic capacitor can be used as an output smoothing capacitor.  
Housed in a small surface-mount package (PS-8) with low thermal resistance.  
Under voltage lock out (U.V.L.O), Heat protection, and Over Current Protection is built into.  
Pin Assignment  
Marking  
Part number  
PGND  
L
X
1
2
3
4
8
7
6
5
7102  
V
V
FB  
IN  
N.C  
N.C  
EN  
The dot () on the top surface indicates pin 1.  
SGND  
*: Lot number  
* The Lot number comprises three numerals. The first numeral represents the last digit of the year of  
manufacture, and the following two digits indicate the week of manufacture, beginning with 01 and continuing to  
either 52 or 53.  
Manufacturing week Code  
(The first week of the year is 01,continuing up to 52 or 53)  
Manufacturing year Code  
(Last digit of the year of manufacture)  
Due to its MOS structure, this product is sensitive to electrostatic discharge. Handle with care.  
1
2007-06-20  
TB7102F  
How to Order  
Product No.  
Package Type and Capacity  
TB7102F(TE85L,F)  
Emboss Taping (3000pcs / reel )  
Block Diagram  
VIN  
EN  
Under Voltage lock out  
Soft Start  
Reference Volage  
Current  
Detection  
+
-
OSCILLATOR  
DRIVER  
DRIVER  
LX  
PWM  
Control  
Logic  
comparator  
+
SLOPE  
compensation  
-
PGND  
Phase  
compensation  
Error  
amplifier  
VFB  
Heat  
Protection  
VCOMP  
-
+
0.8V(TYP.)  
SGND  
Pin Descriptions  
Pin No.  
Pin Symbol  
Pin Description  
1
2
PGN  
Power ground  
V
Input pin. This pin is placed in the standby state if VENB = low. 1 μA or lower operating current.  
IN  
Enable pin. This pin is connected to the CMOS inverter. Applying 3.5 V or higher (@ V = 5 V)  
IN  
3
EN  
to this pin starts the internal circuit switching control.  
Signal ground  
4
5
6
SGND  
N.C.  
No connection  
N.C.  
No connection  
Output voltage feedback pin. This is connected to the internal error amplifier, which is supplied  
with a reference voltage of 0.8 V (typ.).  
7
8
V
FB  
L
Switching pin. This pin is connected to high side Pch MOS FET and low side Nch MOS FET.  
X
2
2007-06-20  
TB7102F  
Timing Chart  
Normal operation  
OSC  
0
IOUT  
0
VOUT  
0
VCOMP  
0
The peak switch current is determined  
V
.
COMP  
IL  
0
VLX  
0
T
ON  
T
Overheat state operation  
OSC  
0
T
increase  
ch  
Hysteresis: 25°C (typ.)  
Tch  
VLX  
Low Voltage operation  
VIN  
Hysteresis: 0.1 V (typ)  
0
OSC  
0
VLX  
0
OSC : Internal oscillator output voltage  
IOUT : Load current  
VOUT : Output voltage  
V
COMP : Output voltage of Error amplifier  
IL  
: Inductor current  
: LX pin voltage  
VLX  
VIN  
Tch  
: Input pin voltage  
: Channel temperature  
3
2007-06-20  
TB7102F  
Absolute maximum Ratings (Ta = 25°C)  
Characteristics  
Input voltage  
Symbol  
Rating  
-0.36  
-0.36  
-0.36  
-0.36  
Unit  
V
V
IN  
LX  
FB  
V
V
V
Switch pin voltage  
V
Feedback pin voltage  
Enable pin voltage  
V
V
EN  
-V  
V
V
-V <0.3  
EN IN  
V
Input-enable pin voltage  
Power dissipation (Note 1)  
Operating temperature  
Operating junction temperature  
Channel temperature  
EN IN  
P
D
0.7  
W
oC  
oC  
oC  
oC  
Topr  
-4085  
-40125  
150  
T
jopr  
T
ch  
T
stg  
-55150  
Storage temperature  
Note 2: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may significantly reduce the reliability of this product  
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute  
maximum ratings and the operating ranges.  
Please consult the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/Derating Concept and Methods) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc) when designing the appropriate reliability while.  
Thermal Resistance Characteristic  
Characteristics  
Symbol  
Max  
Unit  
R
178.6 (Note 1)  
°C /W  
Thermal resistance, channel and ambient  
th (ch-a)  
(Note 1)  
Glass epoxy board  
Material : FR-4  
25.4 × 25.4 × 0.8  
(Unit: mm)  
4
2007-06-20  
TB7102F  
Electrical Characteristics (unless otherwise specified: Tj = 25°C and VIN = 2.7 to 5.5 V)  
Test  
circuit  
Characteristics  
Symbol  
Min  
Typ.  
Max  
Unit  
Test condition  
Operating supply voltage  
VIN(OPR)  
IIN(1)  
2.7  
5.5  
0.9  
V
VIN= 5V, VEN= 5V, VFB =5V  
0.68  
mA  
Operating current  
Standby current  
VIN= 2.7V, VEN= 2.7V,  
VFB =2.7V  
IIN(2)  
0.55  
0.7  
mA  
IIN(STBY)(1)  
IIN(STBY)(2)  
VIH(EN)(1)  
VIH(EN)(2)  
VIL(EN)(1)  
VIL(EN)(2)  
IIH(EN)(1)  
IIH(EN)(2)  
VFB(1)  
VIN= 5V, VEN= 0V  
VIN= 2.7V, VEN= 0V  
VIN= 5V  
1
1
μA  
μA  
V
3.5  
1.9  
VIN= 2.7V  
V
Enable pin threshold voltage  
VIN= 5V  
1.5  
0.8  
20  
V
VIN= 2.7V  
V
VIN= 5V, VEN= 5V  
VIN= 2.7V, VEN= 2.7V  
VIN= 5V, VEN= 5V  
VIN= 2.7V, VEN= 2.7V  
VIN= 5V, VEN= 5V  
VIN= 2.7V, VEN= 2.7V  
6
μA  
μA  
V
Enable pin input current  
Feedback pin voltage  
Feedback pin current  
3
10  
0.776  
0.776  
-1  
0.8  
0.8  
0.824  
0.824  
1
VFB(2)  
V
IFB(1)  
μA  
μA  
mV/V  
IFB(1)  
-1  
1
VIN= VEN= 2.7V5.5V  
VOUT=2.0V IOUT= 10mA  
VIN=5V, VOUT=2.0V  
Line regulation  
Load regulation  
LINE REG  
3.2  
10  
LOAD REG  
9
0.27  
0.36  
40  
mV/A  
IOUT= 10mA500mA  
R
VIN= 5V, VEN= 5V, ILX= 0.5A  
DS(ON)(H)(1)  
High-side on-state resistance  
Low-side on-state resistance  
VIN= 2.7V, VEN= 2.7V  
ILX= 0.5A  
VIN= 5V, VEN= 5V  
ILX= 0.5A  
VIN= 2.7V, VEN= 2.7V  
ILX= 0.5A  
R
DS(ON)(H)(2)  
R
0.27  
0.3  
DS(ON)(L)(1)  
R
DS(ON)(L)(2)  
ILEAK(H)  
ILEAK(L)  
fOSC(1)  
fOSC(2)  
tss(1)  
VIN= 5V, VEN= 0V, VLX= 0V  
VIN= 5V, VEN= 0V, VLX= 5V  
VIN= 5V, VEN= 5V  
1
-1  
1
μA  
μA  
High-side leakage current  
Low-side leakage current  
0.85  
0.85  
1
1.15  
1.15  
MHz  
MHz  
ms  
Oscillation frequency  
Soft start time  
VIN= 2.7V, VEN= 2.7V  
1
VIN=5V , VEN=5V, (no load)  
2
VIN=2.7V , VEN=2.7V,  
(no load)  
tss(2)  
1.3  
2.4  
ms  
VUV  
2.2  
2.5  
0.1  
2.7  
V
V
Detection  
Undervoltage  
protection  
Hysteresis  
ΔVUV  
5
2007-06-20  
TB7102F  
Electrical Characteristics Common to All Products  
When a pulse test is carried out, Tj = 25°C is the standard condition in the measurements for each item.  
Any drift in the electrical characteristic due to a rise in the junction temperature  
of the chip may be disregarded.  
Protection function (reference data)  
160  
20  
oC  
oC  
TSD  
Detection  
Overheat  
protection  
Hysteresis  
ΔTSD  
Application Circuit Example  
VIN  
VIN  
EN  
VFB  
Lx  
TB7102F  
SGND  
L
VOUT  
CIN  
RFB1  
RFB2  
PGND  
COUT  
GND  
GND  
Figure 1: TB7102F application circuit example  
Component constants  
The following values are given only for your reference and may need tuning depending on your input/output  
conditions and board layout.  
CIN: Input smoothing capacitance of 10 μF  
(multilayer ceramic capacitor JMK212BJ106KG, manufactured by Taiyo Yuden Co., Ltd.)  
COUT: Output smoothing capacitance of 10 μF  
(multilayer ceramic capacitor JMK212BJ106KG manufactured by Taiyo Yuden Co., Ltd.)  
FB1: Output voltage setting resistance of 75 kΩ (@ VIN = 5 V, VOUT = 3.3 V)  
FB2: Output voltage setting resistance of 24 kΩ (@ VIN = 5 V, VOUT = 3.3 V)  
R
R
L: Inductor3.3 μH (@ VIN = 5 V, VOUT = 3.3 V); CDRH4D28C/LD series, manufactured by Sumida Corporation  
How to use  
Setting the Inductance  
The required inductance can be calculated by using the following equation:  
VIN VOUT VOUT  
fOSC ⋅ ΔIL VIN  
L =  
(1)  
VIN: Input voltage (V)  
fOSC: Oscillation frequency (Hz)  
VOUT: Output voltage (V)  
ΔIL: Inductor ripple current (A)  
* Generally, ΔIL should be set to 30% to 40% of the maximum output current . For the TB7102F, set ΔIL to 0.3 A, as  
its maximum current [ILX(MAX)] is 1 A (min). Therefore select an inductor whose current rating is no lower than the  
peak switch current [1.15 A (min)] of the TB7102F. If the current rating is exceeded, the inductor becomes  
saturated, leading to an unstable DC-DC converter operation.  
If VIN = 5 V and VOUT = 3.3 V, the required inductance can be calculated as below. Be sure to select an inductor  
6
2007-06-20  
TB7102F  
with an optimum constant by taking VIN variations into consideration.  
VIN VOUT VOUT  
fOSC ⋅ ΔIL VIN  
ΔIL  
L =  
I
5V 3.3V  
1MHz 300mA 5V  
= 3.7μH  
3.3V  
0
=
1
VOUT  
VIN  
T =  
f
TON = T ⋅  
OSC  
Figure 2: Inductor current waveform  
Setting the output voltage  
For the TB7102F, the output voltage is set using the voltage dividing resistors RFB1 and RFB2 according to the  
reference voltage [0.8 V (typ.)] of the error amplifier connected to the FB pin. The output voltage can be calculated by  
using equation 2 below. If the RFB1 value is extremely large, a delay can occur due to parasitic capacitance at the FB pin.  
Keep the RFB1 value at approximately 10 kΩ. Output voltage that can be set is from 0.8 V (typ.) to Input voltage -1V. It is  
recommended that a resistor with a precision of ±1% or higher be used for setting the output voltage.  
Table1 :Example of output voltage setting  
R
FB1  
FB2  
V
OUT  
= V  
REF  
(1+  
)
VOUT  
RFB1  
RFB2  
R
Lx  
Output Voltage  
1.2V  
R
R
FB2  
FB1  
R
R
FB1  
= 0.8×(1+  
)
(2)  
1.2kΩ  
2.4kΩ  
FB2  
FB  
1.5V  
2.1k  
3.0kΩ  
5.1kΩ  
7.5kΩ  
2.4kΩ  
2.4kΩ  
2.4kΩ  
2.4kΩ  
1.8V  
2.5V  
3.3V  
Figure 3: Output voltage setting resistors  
Output capacitor  
The capacitance of the output ceramic capacitor is greatly affected by temperature. Select a product whose  
temperature characteristics (such as B-characteristic) are excellent. The capacity value should be adjusted to about  
10μF(@Output Voltage 2.0V~4.5V), or about 22μF(@Output Voltage 1.2V~2.0V),and the capacitance set to an optimum  
value that meets the set's ripple requirement. Ceramic capacitors can be used to achieve low output ripple. It is more  
difficult to achieve phase compensation with ceramic capacitors because the equivalent series resistance (ESR) of the  
former is lower. For this reason, perform a careful evaluation when using ceramic capacitors.  
Precautions  
Please select parts after confirming the actual operation in the customer set and considering the input voltage the  
output voltage, the output current, the temperature, the characteristics or the kind of capacitor, the inductor and  
resistance .  
If the voltage between the input and output is low, the influence of the on-state voltage of the switch power  
MOSFET is greater, causing the voltage across the inductor to decrease. For this reason, it may become  
impossible for the required inductor current to flow, resulting in lower performance or unstable operation of the  
DC-DC converter. As a rough standard, keep the input-output voltage potential difference at or above 1 V, taking  
the on-state voltage of the power MOSFET into consideration.  
The lowest output voltage that can be set is 0.8 V (typ.).  
There is an antistatic diode between the ENB and VIN pins. The voltage between the ENB and VIN pins should  
satisfy the rating VENB - VIN < 0.3 V  
If the operation becomes unstable due to the switching noise under a heavy load, please mount a by-pass capacitor  
Ccc between the SGND pin and the VIN pin.  
7
2007-06-20  
TB7102F  
Characteristic data  
I
IN  
– V  
IN  
I
IN  
– T  
a
800  
600  
800  
700  
600  
500  
400  
200  
0
400  
300  
V
V
V
= 2.7V  
IN  
V
= V  
= V  
EN FB  
IN  
= 2.7V  
FB  
EN  
T = 25oC  
a
= V  
IN  
0
2
4
6
-80  
-40  
0
40  
80  
120  
160  
Input voltage  
V
a
(V )  
Ambient temperature  
T
(°C )  
IN  
a
I
IN  
– T  
V ,V – T  
IH IL  
a
900  
800  
700  
3
2
1
V
IH  
V
IL  
600  
500  
400  
V
V
V
= 5.5V  
IN  
= 5.5V  
FB  
EN  
V
V
= 2.7V  
IN  
= V  
IN  
= 1.5V  
OUT  
0
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
Ambient temperature  
T
a
(°C )  
Ambient temperature  
T
a
(°C )  
V
,V – T  
I – V  
IH IN  
IH IL  
a
3.5  
20  
10  
0
3
2.5  
2
V
V
IH  
IL  
V
V
= 5V  
V
= V  
EN  
IN  
IN  
= 3.3V  
Ta = 25°C  
OUT  
1.5  
0
2
4
6
8
-80  
-40  
0
40  
80  
120  
160  
Ambient temperature  
T
a
(°C )  
Input voltage  
V
IN  
(V )  
8
2007-06-20  
TB7102F  
V
– T  
I – T  
IH  
UV  
a
a
2.6  
20  
16  
12  
8
Return  
2.55  
2.5  
Detection  
2.45  
2.4  
4
0
V
V
V
= 5V  
IN  
= 5V  
EN  
= 3.3V  
OUT  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
Ambient temperature  
T
a
(°C )  
Ambient temperature  
T
a
(°C )  
V
OUT  
– V  
IN  
V
FB  
– V  
IN  
0.85  
4
2
0.8  
0
VIN = VEN  
VIN = VEN  
4
4
VOUT = 3.3V  
Ta = 25°C  
VOUT = 1.5V  
Ta = 25°C  
0.75  
2.5  
3
3.5  
2
2
3
4
5
6
Input voltage  
V
IN  
(V )  
Input voltage  
V
IN  
(V )  
V
– T  
a
V
– T  
a
FB  
FB  
0.85  
0.85  
0.8  
0.8  
VIN = 2.7V  
VEN = 2.7V  
VOUT = 1.5V  
VIN = 5V  
VEN = 5V  
VOUT = 3.3V  
0.75  
0.75  
-80  
-80  
-40  
0
40  
80  
100  
160  
-40  
0
40  
80  
120  
140  
Ambient temperature  
T
a
(°C )  
Ambient temperature  
T
a
(°C )  
9
2007-06-20  
TB7102F  
f
– V  
IN  
f
– T  
OSC  
OSC  
a
1200  
1200  
1100  
1000  
1100  
1000  
900  
800  
900  
800  
V
V
= V  
V
V
V
= 5V  
IN  
EN  
= 1.5V  
IN  
= 5V  
OUT  
EN  
Ta = 25°C  
= 3.3V  
OUT  
2
3
4
5
6
-80  
-40  
0
40  
80  
120  
160  
Input voltage  
V
IN  
(V )  
Ambient temperature  
T
a
(°C )  
V
OUT  
– I  
OUT  
V
OUT  
– I  
OUT  
1.26  
1.24  
1.22  
1.26  
1.24  
1.22  
1.2  
VIN=3.3 V  
VIN= 5.0V  
1.18  
1.16  
1.14  
1.18  
1.16  
1.14  
V
= 1.2V  
OUT  
L = 3.3 μH  
= 22μF  
V
= 1.2V  
OUT  
L = 3.3 μH  
= 22μF  
C
OUT  
C
OUT  
Ta = 25°C  
Ta = 25°C  
1
0.01  
0.1  
1
0.01  
0.1  
Load Current  
I
(A)  
Load Current  
I
(A)  
OUT  
OUT  
OUT  
V
OUT  
– I  
V
– V  
OUT IN  
3.465  
1.26  
1.24  
1.22  
3.410  
3.355  
VIN=5.0 V  
IOUT = 0.2A  
1.2  
3.3  
1.18  
1.16  
3.245  
V
= 3.3V  
V
= 1.2V  
OUT  
OUT  
L = 3.3 μH  
= 10μF  
L = 3.3 μH  
3.190  
3.135  
C
C
= 22μF  
OUT  
OUT  
Ta = 25°C  
Ta =25°C  
1.14  
2
3
4
5
6
1
0.01  
0.1  
Input Voltage  
V
IN  
(V)  
Load Current  
I
(A)  
OUT  
10  
2007-06-20  
TB7102F  
V
– V  
IN  
η – I  
OUT  
OUT  
3.465  
100  
80  
60  
40  
20  
0
3.410  
3.355  
VIN = 5.0V  
IOUT = 0.2A  
3.3  
3.245  
V
= 1.2V  
OUT  
L = 3.3 μH  
= 22μF  
V
= 3.3V  
OUT  
L = 3.3 μH  
= 10μF  
C
3.190  
3.135  
OUT  
C
OUT  
Ta = 25°C  
Ta = 25°C  
0
0.2  
0.4  
0.6  
0.8  
1
2
3
4
5
6
Load Current  
I
(A)  
OUT  
Input Voltage  
V
IN  
(V)  
η – I  
OUT  
η – I  
OUT  
100  
80  
100  
80  
VIN = 5.0V  
VIN = 3.3V  
60  
40  
20  
0
60  
40  
V
= 3.3V  
OUT  
L = 3.3 μH  
= 10μF  
V
= 1.2V  
OUT  
L = 3.3 μH  
= 22μF  
20  
0
C
OUT  
C
OUT  
Ta = 25°C  
Ta = 25°C  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
Load Current  
I
(A)  
Load Current  
I
(A)  
OUT  
OUT  
11  
2007-06-20  
TB7102F  
Package dimensions  
SON8-P-0303-0.65A  
Unit: mm  
8
5
0.1 max  
1
4
0.17  
± 0.02  
B
0.33  
± 0.05  
0.05 M  
A
0.05 M  
B
0.475  
0.65  
2.9  
± 0.1  
A
S
0.025  
S
Weight: 0.017 g (Typ.)  
12  
2007-06-20  
TB7102F  
RESTRICTIONS ON PRODUCT USE  
20070701-EN  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
Please contact your sales representative for product-by-product details in this document regarding RoHS  
compatibility. Please use these products in this document in compliance with all applicable laws and regulations  
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses  
occurring as a result of noncompliance with applicable laws and regulations.  
13  
2007-06-20  

相关型号:

TB7106F

Buck DC-DC Converter IC
TOSHIBA

TB7106F(TE12L,Q)

IC SWITCHING REGULATOR, 460 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB7107FN

Buck DC-DC Converter IC
TOSHIBA

TB7107FN(TE85L,F)

IC SWITCHING REGULATOR, 460 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.65 MM PITCH, PLASTIC, SON-8, Switching Regulator or Controller
TOSHIBA

TB7109F

Power supply IC for LNB
TOSHIBA

TB7109F(TE12L,Q)

IC SWITCHING REGULATOR, 480 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB7110F

Buck DC-DC Converter IC갋Series Regulator IC
TOSHIBA

TB7110F(TE12L,Q)

IC SWITCHING REGULATOR, 600 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB712-019.20M

LVCMOS Output Clock Oscillator
CONNOR-WINFIE

TB712-019.2M

LVCMOS Output Clock Oscillator
CONNOR-WINFIE

TB712-038.880M

LVCMOS Output Clock Oscillator
CONNOR-WINFIE

TB712-038.88M

LVCMOS Output Clock Oscillator
CONNOR-WINFIE