TC59SM708ASL-75 [TOSHIBA]

IC 16M X 8 SYNCHRONOUS DRAM, 5.4 ns, PDSO54, 0.400 INCH, 0.40 MM PITCH. PLASTIC, TSOP2-54, Dynamic RAM;
TC59SM708ASL-75
型号: TC59SM708ASL-75
厂家: TOSHIBA    TOSHIBA
描述:

IC 16M X 8 SYNCHRONOUS DRAM, 5.4 ns, PDSO54, 0.400 INCH, 0.40 MM PITCH. PLASTIC, TSOP2-54, Dynamic RAM

动态存储器 光电二极管 内存集成电路
文件: 总49页 (文件大小:2425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59SM716/08/04AS/ASL-70,-75,-80  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
2,097,152-WORDS × 4 BANKS × 16-BITS SYNCHRONOUS DYNAMIC RAM  
4,194,304-WORDS × 4 BANKS × 8-BITS SYNCHRONOUS DYNAMIC RAM  
8,388,608-WORDS × 4 BANKS × 4-BITS SYNCHRONOUS DYNAMIC RAM  
DESCRIPTION  
TC59SM716AS/ASL is a CMOS synchronous dynamic random access memory organized as 2,097,152-words × 4  
banks × 16 bits and TC59SM708AS/ASL is organized as 4,194,304 words × 4 banks × 8 bits and  
TC59SM704AS/ASL is organized as 8,388,608 words × 4 banks × 4 bits. Fully synchronous operations are  
referenced to the positive edges of clock input and can transfer data up to 143M words per second. These devices  
are controlled by commands setting. Each bank are kept active so that DRAM core sense amplifiers can be used as  
a cache. The refresh functions, either Auto Refresh or Self Refresh are easy to use. By having a programmable  
Mode Register, the system can choose the most suitable modes which will maximize its performance. These devices  
are ideal for main memory in applications such as work-stations.  
FEATURES  
TC59SM716/M708/M704  
PARAMETER  
-70  
-75  
-80  
8 ns  
t
t
t
t
I
I
I
Clock Cycle Time (min)  
7 ns  
7.5 ns  
45 ns  
5.4 ns  
65 ns  
75 mA  
95 mA  
2 mA  
CK  
Active to Precharge Command Period (min)  
Access Time from CLK (max)  
40 ns  
5.4 ns  
56 ns  
80 mA  
100 mA  
2 mA  
48 ns  
6 ns  
RAS  
AC  
Ref/Active to Ref/Active Command Period (min)  
Operation Current (max) (Single bank)  
Burst Operation Current (max)  
68 ns  
70 mA  
90 mA  
2 mA  
RC  
CC1  
CC4  
CC6  
Self-Refresh Current (max)  
Single power supply of 3.3 V 0.3 V  
Up to 143 MHz clock frequency  
Synchronous operations: All signals referenced to the positive edges of clock  
Architecture:  
Pipeline  
Organization  
TC59SM716AS/ASL:  
TC59SM708AS/ASL:  
TC59SM704AS/ASL:  
2,097,152 words × 4 banks × 16 bits  
4,194,304 words × 4 banks × 8 bits  
8,388,608 words × 4 banks × 4 bits  
Programmable Mode register  
Auto Refresh and Self Refresh  
Burst Length:  
1, 2, 4, 8, Full page  
2, 3  
CAS Latency:  
Single Write Mode  
Burst Stop Function  
Byte Data Controlled by L-DQM, U-DQM (TC59SM716)  
4K Refresh cycles/64 ms  
Interface:  
LVTTL  
Package  
TC59SM716AS/ASL:  
TC59SM708AS/ASL:  
TC59SM704AS/ASL:  
TSOPII54-P-400-0.4F  
TSOPII54-P-400-0.4F  
TSOPII54-P-400-0.4F  
000707EBA2  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general  
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the  
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and  
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or  
damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the  
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling  
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal  
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are  
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or  
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy  
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control  
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document  
shall be made at the customer’s own risk.  
2001-06-11 1/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
A0~A11  
Address  
TC59SM716AS/ASL  
TC59SM708AS/ASL  
TC59SM704AS/ASL  
BS0, BS1  
Bank Select  
DQ0~DQ3  
(TC59SM704)  
VCC  
DQ0  
VCCQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VCCQ  
DQ5  
DQ6  
VSSQ  
DQ7  
VCC  
VCC  
DQ0  
VCCQ  
NC  
VCC  
NC  
1
2
3
4
5
6
7
8
9
54 VSS  
53 NC  
52 VSSQ  
51 NC  
VSS  
VSS  
DQ7 DQ15  
DQ0~DQ7  
(TC59SM708)  
VCCQ  
NC  
VSSQ  
NC  
VSSQ  
DQ14  
Data Input/Output  
DQ1  
VSSQ  
NC  
DQ0  
VSSQ  
NC  
50 DQ3 DQ6 DQ13  
49 VCCQ  
48 NC  
47 NC  
46 VSSQ  
45 NC  
VCCQ  
NC  
VCCQ  
DQ12  
DQ0~DQ15  
(TC59SM716)  
DQ2  
VCCQ  
NC  
NC  
DQ5 DQ11  
VCCQ  
VSSQ  
NC  
VSSQ  
DQ10  
CS  
Chip Select  
NC 10  
DQ1 11  
VSSQ 12  
NC 13  
VCC 14  
NC 15  
DQ3  
VSSQ  
NC  
44 DQ2 DQ4 DQ9  
RAS  
CAS  
WE  
Row Address Strobe  
Column Address Strobe  
Write Enable  
43 VCCQ  
42 NC  
41 VSS  
40 NC  
VCCQ  
NC  
VSS  
NC  
VCCQ  
DQ8  
VSS  
VCC  
NC  
LDQM  
NC  
16  
17  
18  
19  
39 DQM DQM UDQM  
38 CLK CLK CLK  
37 CKE CKE CKE  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
DQM  
(TC59SM708/M704)  
36 NC  
35 A11  
34 A9  
33 A8  
32 A7  
31 A6  
30 A5  
29 A4  
28 VSS  
NC  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
NC  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
BS0  
BS1  
BS0  
BS1  
BS0 20  
BS1 21  
Output Disable/Write Mask  
A10/AP A10/AP A10/AP 22  
UDQM/LDQM  
(TC59SM716)  
A0  
A1  
A0  
A1  
A0 23  
A1 24  
A2 25  
A3 26  
VCC 27  
A2  
A2  
CLK  
CKE  
Clock inputs  
Clock enable  
Power (+3.3 V)  
Ground  
A3  
A3  
VCC  
VCC  
V
V
CC  
SS  
Power (+3.3 V)  
(for DQ buffer)  
V
V
CCQ  
SSQ  
Ground  
(for DQ buffer)  
NC  
No Connection  
000707EBA2  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by  
TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its  
use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or  
others.  
The information contained herein is subject to change without notice.  
2001-06-11 2/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
BLOCK DIAGRAM  
CLK  
CKE  
CLOCK  
BUFFER  
CONTROL  
SIGNAL  
GENERATOR  
CS  
RAS  
CAS  
WE  
COMMAND  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
A10  
MODE  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
REGISTER  
ADDRESS  
BUFFER  
A0~A9  
A11  
BS0  
DATA CONTROL  
CIRCUIT  
BS1  
DQ0~DQn  
DQM  
DQ BUFFER  
REFRESH  
COUNTER  
COLUMN  
COUNTER  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE: The TC59SM704AS/ASL configuration is 4096 × 2048 × 4 of cell array with the DQ pins numbered DQ0~DQ3.  
The TC59SM708AS/ASL configuration is 4096 × 1024 × 8 of cell array with the DQ pins numbered DQ0~DQ7.  
The TC59SM716AS/ASL configuration is 4096 × 512 × 16 of cell array with the DQ pins numbered DQ0~DQ15.  
2001-06-11 3/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
, V  
PARAMETER  
Input, Output Voltage  
RATING  
UNIT  
NOTES  
V
V
0.3~V  
+ 0.3  
V
V
1
1
1
1
1
1
1
IN OUT  
CC  
, V  
CC CCQ  
Power Supply Voltage  
Operating Temperature  
Storage Temperature  
0.3~4.6  
T
T
T
0~70  
55~150  
260  
°C  
°C  
°C  
W
opr  
stg  
Soldering Temperature (10s)  
Power Dissipation  
solder  
P
1
D
I
Short-Circuit Output Current  
50  
mA  
OUT  
RECOMMENDED DC OPERATING CONDITIONS (Ta = 0°~70°C)  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
MAX  
UNIT  
NOTES  
V
V
V
V
3
3
3.3  
3.3  
3.6  
3.6  
V
V
V
V
2
2
2
2
CC  
Power Supply Voltage (for DQ Buffer)  
LVTTL Input High Voltage  
CCQ  
IH  
2
V
+ 0.3  
CC  
LVTTL Input Low Voltage  
0.3  
0.8  
IL  
Note: V (max) = V /V  
+ 1.2 V for pulse width 5 ns  
1.2 V for pulse width 5 ns  
IH  
CC CCQ  
VIL (min) = V /V  
SS SSQ  
V
must be less than or equal to V  
.
CCQ  
CC  
CAPACITANCE (V = 3.3 V, f = 1 MHz, Ta = 25°C)  
CC  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
pF  
Input Capacitance  
4
(A0~A11, BS0, BS1, CS , RAS , CAS , WE , DQM*, CKE)  
C
C
I
Input Capacitance (CLK)  
5
pF  
pF  
Input/Output Capacitance  
6.5  
O
Note: These parameters are periodically sampled and not 100% tested.  
LDQM, UDQM (TC59SM716)  
*
2001-06-11 4/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
DC CHARACTERISTICS (V = 3.3 V 0.3 V, Ta = 0°~70°C)  
CC  
-70  
-75  
-80  
PARAMETER  
SYMBOL  
UNITS NOTES  
MIN MAX MIN MAX MIN MAX  
OPERATING CURRENT  
= min, t = min  
Active Precharge command cycling  
without burst operation  
t
CK  
RC  
1 bank operation  
I
80  
75  
70  
3
CC1  
STANDBY CURRENT  
CKE = V  
CKE = V  
I
I
I
I
I
I
40  
1
35  
1
30  
1
3
3
IH  
IL  
CC2  
t
= min, CS = V ,  
CK  
IH  
V
= V (min) / V (max),  
IH IL  
IH/L  
CC2P  
CC2S  
CC2PS  
CC3  
Bank: Inactive state  
(Power Down mode)  
STANDBY CURRENT  
CLK = V , CS = V  
CKE = V  
CKE = V  
10  
1
10  
1
10  
1
IH  
,
IH  
IL  
V
= V (min) / V (max),  
IH/L  
IH IL  
IL  
Bank: Inactive state  
(Power Down mode)  
mA  
CKE = V  
CKE = V  
60  
10  
55  
10  
50  
10  
IH  
NO OPERATING CURRENT  
= min, CS = V (min),  
t
CK  
IH  
Bank: Active state (4 banks)  
IL  
CC3P  
(Power Down mode)  
BURST OPERATING CURRENT  
t
= min  
I
I
100  
170  
95  
90  
3, 4  
3
CK  
CC4  
CC5  
Read/Write command cycling  
AUTO REFRESH CURRENT  
t
= min, t  
= min  
RC  
160  
150  
CK  
Auto Refresh command cycling  
Standard Products  
(AFT)  
2
2
2
SELF REFRESH CURRENT  
Self Refresh mode  
CKE = 0.2 V  
I
CC6  
Low Power Version  
(AFTL)  
800  
800  
800  
µA  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
INPUT LEAKAGE CURRENT  
(0 V V V , all other pins not under test = 0 V)  
I (L)  
5  
5  
5
5
µA  
µA  
I
IN  
CC  
OUTPUT LEAKAGE CURRENT  
(Output disable, 0 V V V  
I (L)  
O
)
CCQ  
OUT  
LVTTL OUTPUT H LEVEL VOLTAGE (I  
= −2 mA)  
= 2 mA)  
V
2.4  
V
V
OUT  
OH  
LVTTL OUTPUT L LEVEL VOLTAGE (I  
V
0.4  
OUT  
OL  
2001-06-11 5/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
AC CHARACTERISTICS AND OPERATING CONDITIONS  
(V = 3.3 V 0.3 V, Ta = 0°~70°C) (Notes: 5, 6, 7)  
CC  
-70  
-75  
-80  
SYMBOL  
PARAMETER  
UNITS NOTES  
MIN  
56  
40  
15  
1
MAX  
MIN  
65  
45  
20  
1
MAX  
MIN  
68  
48  
20  
1
MAX  
t
t
t
t
t
t
Ref/Active to Ref/Active Command Period  
Active to Precharge Command Period  
Active to Read/Write Command Delay Time  
Read/Write(a) to Read/Write(b) Command Period  
Precharge to Active Command Period  
Active(a) to Active(b) Command Period  
RC  
ns  
100000  
100000  
100000  
RAS  
RCD  
CCD  
RP  
8
Cycle  
15  
15  
7.5  
7
20  
15  
10  
7.5  
10  
7.5  
2.5  
2.5  
20  
20  
10  
8
RRD  
CL* = 2  
Write-Recovery Time  
t
WR  
CK  
CL* = 3  
CL* = 2  
7.5  
7
1000  
1000  
1000  
1000  
10  
8
1000  
1000  
t
CLK Cycle Time  
CL* = 3  
t
t
CLK High-Level Width  
CLK Low-Level Width  
2.5  
2.5  
3
CH  
CL  
3
CL* = 2  
Access Time from CLK  
5.4  
5.4  
6
3
6
t
AC  
CL* = 3  
5.4  
6
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output Data Hold Time  
Output Data High-Impedance Time  
Output Data Low-Impedance Time  
Power-Down Mode Entry Time  
Transition Time of CLK (rise and fall)  
Data-In Set-up Time  
3
3
OH  
HZ  
ns  
3
7
3
7.5  
3
8
7
0
0
0
LZ  
0
7
0
7.5  
10  
0
8
SB  
0.5  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
10  
0.5  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
0.5  
2
10  
t
DS  
Data-In Hold Time  
1
DH  
Address Set-up Time  
2
AS  
Address Hold Time  
1
AH  
CKE Set-up Time  
2
CKS  
CKH  
CMS  
CMH  
REF  
RSC  
CKE Hold Time  
1
Command Set-up Time  
Command Hold Time  
2
1
Refresh Time  
64  
64  
16  
64  
ms  
ns  
Mode Register Set Cycle Time  
14  
15  
8
*
CL means CAS latency.  
2001-06-11 6/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
NOTES:  
(1)  
Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent  
damage to the device.  
(2)  
(3)  
All voltages are referenced to V  
.
SS  
These parameters depend on the cycle rate and these values are measured at a cycle rate with the  
minimum values of t and t . Input signals are changed one time during t  
.
CK RC CK  
(4)  
(5)  
(6)  
These parameters depend on the output loading. Specified values are obtained with the output open.  
Power-up sequence is described in Note 9.  
AC TEST CONDITIONS  
Output Reference Level  
Output Load  
1.4 V, 1.4 V  
See diagram B below  
2.4 V, 0.4 V  
2 ns  
Input Signal Levels  
Transition Time (rise and fall) of Input Signals  
Input Reference Level  
1.4 V  
3.3 V  
1.4 V  
1.2 kΩ  
50 Ω  
Z = 50 Ω  
Output  
Output  
50 pF  
870 Ω  
50 pF  
AC test load (A)  
AC test load (B)  
(7)  
t
HZ  
defines the time at which the outputs achieve the open circuit condition and is not referenced to  
output voltage levels.  
2001-06-11 7/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
(8)  
(9)  
These parameters account for the number of clock cycles and depend on the operating frequency of the  
clock, as follows:  
the number of clock cycles = specified value of timing / clock period  
(count fractions as a whole number)  
Power-up Sequence  
Power-up must be performed in the following sequence.  
1)  
Power must be applied to V  
and V (simultaneously) while all input signals are held in the  
CCQ  
CC  
“NOP” state. The CLK signals must be started at the same time.  
2)  
After power-up a pause of at least 200 µs is required. It is required that DQM and CKE signals  
must be held “High” (V  
CC  
levels) to ensure that the DQ output is in High-impedance state.  
3)  
4)  
5)  
All banks must be precharged.  
The Mode Register Set command must be asserted to initialize the Mode Register.  
A minimum of eight Auto Refresh dummy cycles is required to stabilize the internal circuitry of  
the device.  
The Mode Register Set command can be invoked either before or after the Auto Refresh dummy cycles.  
AC Latency Characteristics  
(10)  
CKE to clock disable (CKE Latency)  
1
DQM to output in High-Z (Read DQM Latency)  
DQM to input data delay (Write DQM Latency)  
Write command to input data (Write Data Latency)  
CS to Command input ( CS Latency)  
2
0
0
0
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
2
Precharge to DQ Hi-Z Lead time  
Cycle  
3
1
2
Precharge to Last Valid data out  
2
Burst Stop Command to DQ Hi-Z Lead time  
Burst Stop Command to Last Valid data out  
Read with Autoprecharge Command to Active/Ref Command  
Write with Autoprecharge Command to Active/Ref Command  
3
1
2
BL + t  
BL + t  
BL + t  
BL + t  
RP  
RP  
RP  
RP  
Cycle + ns  
2001-06-11 8/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
TIMING DIAGRAMS  
Command Input Timing  
t
t
t
CK  
CL  
CH  
t
V
IH  
CLK  
V
IL  
t
t
t
t
t
t
t
t
t
t
CMS  
CMS CMH  
CMH  
CS  
t
CMS CMH  
RAS  
CAS  
t
CMS CMH  
t
CMS CMH  
WE  
t
t
AH  
AS  
A0~A11  
BS0, BS1  
t
t
t
t
t
t
CKH  
CKS  
CKH  
CKS CKH  
CKS  
CKE  
2001-06-11 9/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Read Timing  
Read CAS latency  
CLK  
CS  
RAS  
CAS  
WE  
A0~A11  
BS0, BS1  
t
t
t
HZ  
AC  
AC  
t
t
t
OH  
LZ  
OH  
Output  
data valid  
Output  
data valid  
DQ  
Read command  
Burst length  
2001-06-11 10/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Control Timing of Input Data (TC59SM708/M704)  
(Word Mask)  
CLK  
t
t
t
t
CMS  
CMH  
CMS  
CMH  
DQM  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DQ0~DQ7  
(DQ0~DQ3)*  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
(Clock Mask)  
CLK  
t
t
t
t
CKS  
CKH  
CKS  
CKH  
CKE  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DQ0~DQ7  
(DQ0~DQ3)*  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Control Timing of Output Data (TC59SM708/M704)  
(Output Enable)  
CLK  
t
t
t
t
CMS  
CMH  
CMS  
CMH  
DQM  
t
t
t
t
t
AC  
AC  
HZ  
AC  
AC  
t
t
t
t
t
OH  
OH  
OH  
LZ  
OH  
DQ0~DQ7  
(DQ0~DQ3)*  
Output  
data valid  
Output  
data valid  
Output  
data valid  
Open  
(Clock Mask)  
CLK  
t
t
t
t
CKS  
CKH  
CKS  
CKH  
CKE  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
t
t
OH  
OH  
OH  
OH  
DQ0~DQ7  
(DQ0~DQ3)*  
Output  
data valid  
Output  
data valid  
Output data valid  
*: TC59SM704  
2001-06-11 11/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Control Timing of Input Data (TC59SM716)  
(Word Mask)  
CLK  
t
t
t
t
CMS  
CMH  
CMS  
CMH  
LDQM  
UDQM  
t
t
t
t
CMS  
CMH  
CMS  
CMH  
t
t
t
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
DQ0~DQ7  
DQ8~DQ15  
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
(Clock Mask)  
CLK  
t
t
t
t
CKS  
CKH  
CKS  
CKH  
CKE  
DQ0~DQ7  
DQ8~DQ15  
t
t
t
t
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
Input  
data valid  
Input  
data valid  
Input  
data valid  
Input  
data valid  
2001-06-11 12/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Control Timing of Output Data (TC59SM716)  
(Output Enable)  
CLK  
t
t
t
t
t
t
CMH  
CMS  
CMH  
CMH  
CMS  
LDQM  
UDQM  
t
t
CMS  
CMS  
CMH  
t
t
t
t
t
AC  
AC  
HZ  
AC  
AC  
t
t
t
t
t
t
OH  
OH  
OH  
LZ  
OH  
Output  
data valid  
Output  
data valid  
Output  
data valid  
DQ0~DQ7  
DQ8~DQ15  
Open  
t
t
t
t
t
AC  
AC  
AC  
HZ  
AC  
t
t
t
t
LZ  
OH  
OH  
OH  
OH  
Output  
data valid  
Output  
data valid  
Output  
data valid  
Open  
(Clock Mask)  
CLK  
t
t
t
t
CKH  
CKS  
CKH  
CKS  
CKE  
DQ0~DQ7  
DQ8~DQ15  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
t
t
t
t
OH  
OH  
OH  
OH  
Output  
data valid  
Output  
data valid  
Output data valid  
Output data valid  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
OH  
OH  
OH  
OH  
Output  
data valid  
Output  
data valid  
2001-06-11 13/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Mode Register Set Cycle  
t
RSC  
CLK  
t
t
t
t
t
CMS CMH  
CS  
RAS  
CAS  
WE  
t
CMS CMH  
t
CMS CMH  
t
CMS CMH  
t
t
AH  
AS  
A0~A11  
BS0, BS1  
Set Register  
data  
Next command  
Burst Length  
A0  
A2  
0
A1  
0
A0  
0
Sequential  
Interleaved  
Burst Length  
1
2
4
8
1
2
4
8
A1  
A2  
0
0
1
0
1
0
0
1
1
A3 Addressing Mode  
A4  
1
0
0
Reserved  
Full Page  
1
0
1
Reserved  
1
1
0
CAS Latency  
A5  
A6  
1
1
1
A3  
Addressing Mode  
0
1
Sequential  
Interleaved  
A7  
0
(Test Mode)  
Reserved  
A8  
0
A6  
A5  
A4  
CAS Latency  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Reserved  
A9  
Write Mode  
Reserved  
2
3
A10  
A11  
BS0  
BS1  
0
0
0
0
Reserved  
Reserved  
A9  
Single Write Mode  
0
1
Burst read and Burst write  
Burst read and Single write  
2001-06-11 14/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
OPERATING TIMING EXAMPLE  
Figure 1. Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
t
t
RC  
RC  
RAS  
t
t
t
t
RP  
RAS  
RP  
RAS  
t
t
t
RAS  
RAS  
RP  
CAS  
WE  
BS0  
BS1  
t
t
t
t
RCD  
RCD  
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
RBd  
RAe  
RAe  
A0~A9, A11  
DQM  
CAw  
CBx  
CAy  
RBd  
CBz  
CKE  
t
t
t
t
AC  
AC  
AC  
AC  
DQ  
aw0 aw1 aw2 aw3  
bx0 bx1 bx2 bx3  
cy0 cy1 cy2 cy3  
t
t
t
t
RRD  
RRD  
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
Precharge  
Read  
Active  
Read  
Precharge  
Precharge  
Read  
Active  
Active  
Active  
Idle  
2001-06-11 15/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 2. Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
t
t
RC  
RC  
RAS  
t
t
t
t
RP  
RAS  
RP  
RAS  
t
t
t
RAS  
RAS  
RP  
CAS  
WE  
BS0  
BS1  
t
t
t
t
RCD  
RCD  
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
RAc  
RBd  
RAe  
A0~A9, A11  
DQM  
CAw RBb  
CBx  
RAc  
CAy  
RBd  
CBz  
RAe  
CKE  
t
t
t
AC  
t
AC  
AC  
AC  
DQ  
aw0 aw1 aw2 aw3  
bx0 bx1 bx2 bx3  
cy0 cy1 cy2 cy3  
dz0  
t
t
t
t
RRD  
RRD  
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
AP*  
Active  
AP*  
Active  
Active  
Read  
AP* Read  
Active  
Read  
Idle  
*: AP shows internal precharge start timing.  
2001-06-11 16/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 3. Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
t
RC  
RAS  
t
t
t
RAS  
RAS  
t
RP  
t
t
RP  
RP  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
t
RCD  
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A0~A9, A11  
DQM  
CAx  
CBy  
CAz  
CKE  
t
AC  
t
t
AC  
AC  
DQ  
ax0 ax1 ax2 ax3 ax4 ax5 ax6 by0 by1  
by4 by5 by6 by7  
cz0  
t
t
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
Precharge  
Precharge  
Active  
Read  
Active  
Read  
Precharge  
Idle  
2001-06-11 17/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 4. Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
RAS  
t
t
t
RAS  
RAS  
RP  
t
t
RP  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
t
RCD  
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A0~A9, A11  
DQM  
CAx  
CBy  
CAz  
CKE  
t
t
t
AC  
AC  
AC  
DQ  
ax0 ax1 ax2 ax3 ax4 ax5 ax6 ax7 by0 by1  
by4 by5 by6  
cz0  
t
t
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
AP*  
Active  
Read  
Active  
Read  
AP*  
Idle  
*: AP shows the internal precharge start timing.  
2001-06-11 18/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 5. Interleaved Bank Write (Burst Length = 8)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
RAS  
t
t
RP  
RAS  
t
t
RP  
RAS  
CAS  
WE  
t
t
t
RCD  
RCD  
RCD  
BS0  
BS1  
A10  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A0~A9, A11  
DQM  
CAx  
CBy  
CAz  
CKE  
DQ  
ax0 ax1  
ax4 ax5 ax6 ax7 by0 by1 by2 by3  
by4 by5 by6 by7 cz0 cz1  
cz2  
t
t
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Write  
Precharge  
Write  
Active  
Write  
Precharge  
Active  
Idle  
2001-06-11 19/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 6. Interleaved Bank Write (Burst Length = 8, Auto Precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
RAS  
t
t
t
RAS  
RAS  
RP  
t
t
RP  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
t
RCD  
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
RBb  
RAb  
RAc  
A0~A9, A11  
DQM  
CAx  
CBy  
CAz  
CKE  
DQ  
ax0 ax1  
ax4 ax5 ax6 ax7 by0 by1 by2 by3  
by4 by5 by6 by7 cz0 cz1  
cz2  
t
t
RRD  
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Write  
AP*  
Active  
Write  
Active  
Write  
AP*  
Idle  
*: AP shows the internal precharge start timing.  
2001-06-11 20/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 7. Page Mode Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
t
t
CCD  
CCD  
CCD  
t
t
RP  
RAS  
t
t
RP  
RAS  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
RCD  
RCD  
A10  
RAa  
RAa  
RBb  
A0~A9, A11  
DQM  
CKE  
CAl RBb  
CBx  
CAy  
CAm  
CBz  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
DQ  
al0 al1 al2 al3 bx0 bx1 Ay0 Ay1 Ay2 am0 am1 am2 bz0 bz1 bz2 bz3  
t
RRD  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
Read  
Read  
Precharge  
Active  
Read  
Read  
AP*  
Idle  
*: AP shows the internal precharge start timing.  
2001-06-11 21/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 8. Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
t
RP  
RAS  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
A10  
RAa  
RAa  
A0~A9, A11  
DQM  
CKE  
CAx  
CAy  
t
AC  
t
WR  
DQ  
ax0 ax1 ax2 ax3 ax4 ax5  
ay0 ay1 ay2 ay3 ay4  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
Write  
Precharge  
Idle  
Note): See Figure 17, 20  
2001-06-11 22/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 9. Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
RAS  
t
t
t
t
RP  
RAS  
RP  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
RCD  
RCD  
A10  
RAa  
RAa  
RAb  
RAb  
A0~A9, A11  
DQM  
CKE  
CAw  
CAx  
t
t
AC  
AC  
DQ  
aw0 aw1 aw2 aw3  
bx0  
bx1  
bx2 bx3  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
AP*  
Active  
Read  
AP*  
Idle  
*:  
AP shows the internal precharge start timing.  
Note): See Figure 15  
2001-06-11 23/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 10. Auto Precharge Write (Burst Length = 4)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
t
RC  
RAS  
t
t
t
t
RP  
RAS  
RP  
RAS  
CAS  
WE  
BS0  
BS1  
t
t
RCD  
RCD  
A10  
RAa  
RAa  
RAb  
RAb  
RAc  
RAc  
A0~A9, A11  
DQM  
CKE  
CAw  
CAx  
DQ  
aw0 aw1 aw2 aw3  
bx0  
bx1 bx2 bx3  
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Write  
AP*  
Active  
Write  
AP*  
Active  
Idle  
*:  
AP shows the internal precharge start timing.  
Note): See Figure 16  
2001-06-11 24/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 11. Auto Refresh Cycle  
0
1
2
3
4
5
6
7
t
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
t
RC  
RP  
RC  
RAS  
CAS  
WE  
BS0, BS1  
A10  
A0~A9, A11  
DQM  
CKE  
DQ  
All Banks Precharge Auto Refresh  
Auto Refresh (Arbitrary Cycle)  
2001-06-11 25/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 12. Self Refresh Cycle  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RP  
RAS  
CAS  
WE  
BS0, BS1  
A10  
A0~A9, A11  
DQM  
t
t
t
CKS  
SB  
CKS  
CKE  
t
CKS  
DQ  
t
RC  
No Operation Cycle  
All Banks Precharge  
Self Refresh Entry  
Self Refresh Exit  
Arbitrary Cycle  
2001-06-11 26/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 13. Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
A10  
RAa  
RAa  
RAa  
A0~A9, A11  
DQM  
CKE  
CAa  
RAa  
CAx  
t
t
SB  
SB  
t
t
t
t
CKS  
CKS  
CKS  
CKS  
DQ  
ax0 ax1  
ax2  
ax3  
Active  
NOP  
NOP Active  
Precharge  
&
Power Down Mode Entry Power Down Mode Exit  
Power Down Mode Exit  
Power Down Mode  
Entry  
Note): The Power Down mode is invoked by asserting CKE “low”.  
All Input/Output buffers (except the CKE buffer) are turned off in Power Down mode.  
When CKE goes high, the No-operation command input must be at next CLK rising edge and CKE should be set high at least  
1CLK + t at Power Down Mode Exit.  
CKS  
2001-06-11 27/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 14. Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
t
RCD  
WE  
BS0  
BS1  
A10  
RBa  
RBa  
A0~A9, A11  
DQM  
CKE  
CBv  
CBw  
CBx CBy CBz  
t
t
AC  
AC  
DQ  
av0 av1 av2 av3  
aw0  
ax0 ay0  
az0 az1 az2 az3  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Bank#0  
Bank#1  
Bank#2  
Bank#3  
Active  
Read  
Single Write Read  
Idle  
2001-06-11 28/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
PIN FUNCTIONS  
CLOCK INPUT: CLK  
The CLK input is used as the reference for SDRAM operations. Operations are synchronized to the positive  
edges of CLK.  
CLOCK ENABLE: CKE  
The CKE input is used to suspend the internal CLK. When the CKE signal is asserted “low”, the internal  
CLK is suspended and output data is held intact while CKE is asserted “low”. When the device is not running a  
Burst cycle, the CKE input controls the entry to the Power Down and Self Refresh modes. When the Self  
Refresh command is issued, the device must be in the idle state.  
BANK SELECT: BS0, BS1  
The TC59SM716AS/ASL, TC59SM708AS/ASL and the TC59SM704AS/ASL are organized as four-bank  
memory cell arrays. The BS0, BS1 inputs are latched at the time of assertion of the operation commands and  
selects the bank to be used for the operation.  
BS0  
BS1  
0
1
0
1
0
0
1
1
Bank#0  
Bank#1  
Bank#2  
Bank#3  
ADDRESS INPUTS: A0~A11  
The A0~A11 inputs are address to access the memory cell array, as following table.  
Row Address  
Column Address  
TC59SM716AS/ASL  
TC59SM708AS/ASL  
TC59SM704AS/ASL  
A0~A11  
A0~A11  
A0~A11  
A0~A8  
A0~A9  
A0~A9, A11  
The row address bits are latched at the Bank Activate command and column address bits are latched on the  
Read or Write command. Also, the A0~A11 inputs are used to set the data in the Mode register in a Mode  
Register Set cycle.  
2001-06-11 29/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
CS  
CHIP SELECT:  
The CS input controls the latching of the commands on the positive edges of CLK when CS is asserted  
“low”. No commands are latched as long as CS is held “high”.  
RAS  
ROW ADDRESS STROBE:  
The RAS input defines the operation commands in conjunction with the CAS and WE inputs, and is  
latched at the positive edges of CLK. When RAS and CS are asserted “low” and CAS is asserted “high”,  
either the Bank Activate command or the Precharge command is selected by the WE signal. When WE is  
asserted “high”, the Bank Activate command is selected and the bank designated by BS0, BS1 are turned on so  
that it is in the active state. When WE is asserted “low”, the Precharge command is selected and the bank  
designated by BS0, BS1 are switched to the idle state after Precharge operation.  
CAS  
COLUMN ADDRESS STROBE:  
The CAS input defines the operation commands in conjunction with the RAS and WE inputs, and is  
latched at the positive edges of CLK. When RAS is held “high” and CS is asserted “low”, column access is  
started by asserting CAS “low”. Then, the Read or Write command is selected by asserting WE “low” or  
“high”.  
WRITE ENABLE:  
WE  
The WE input defines the operation commands in conjunction with the RAS and CAS inputs, and is  
latched at the positive edges of CLK. The WE input is used to select the Bank Activate or Precharge command  
and Read or Write command.  
DATA INPUT/OUTPUT MASK: DQM or L-DQM and U-DQM  
The DQM input enables output in a Read cycle and functions as the input data mask in a Write cycle. When  
DQM is asserted “high” at the positive edges of CLK, output data is disabled after two clock cycles during a  
Read cycle, and input data is masked at the same clock cycle during a Write cycle.  
In the case of the TC59SM716AS/ASL, the LDQM and UDQM inputs function as byte data control. The  
LDQM input can control DQ0~DQ7 in a Read or Write cycle and the UDQM can control DQ8~DQ15 in a Read  
or Write cycle.  
DATA INPUT/OUTPUT: DQ0~DQ15  
The DQ0~DQ15 input and output data are synchronized with the positive edges of CLK. In the case of  
TC59SM708AS/ASL and TC59SM704AS/ASL, these pins are DQ0~DQ7 and DQ0~DQ3 respectively.  
2001-06-11 30/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Operation Mode  
Table 1 shows the truth table for the operation commands.  
Table 1. Truth Table (Note (1) and (2) )  
BS0,  
BS1  
A11,  
A9~A0  
(5)  
Command  
Bank Activate  
Device State CKE  
(3)  
CKE DQM  
A10  
CS  
RAS  
CAS  
WE  
n-1  
n
Idle  
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
V
X
X
X
X
X
V
L
V
X
X
V
V
V
V
V
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
X
H
L
X
H
L
X
X
L
L
H
H
H
L
H
L
Bank Precharge  
Precharge All  
Any  
Any  
Active  
Active  
Active  
Active  
Idle  
H
L
L
L
(3)  
(3)  
(3)  
(3)  
Write  
H
H
H
H
L
L
Write with Auto Precharge  
Read  
H
L
L
L
L
H
H
L
Read with Auto Precharge  
Mode Register Set  
No-Operation  
H
V
X
X
X
X
X
L
L
Any  
H
H
X
L
H
H
X
L
H
L
(4)  
Burst stop  
Active  
Any  
Device Deselect  
Auto-Refresh  
X
H
H
X
X
X
X
X
X
X
X
X
X
Idle  
Self-Refresh Entry  
Idle  
L
L
X
H
X
X
H
X
X
H
X
X
X
H
X
X
H
X
X
H
X
X
Idle  
(Self Refresh)  
Self-Refresh Exit  
L
H
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Clock Suspend Mode Entry  
Power Down Mode Entry  
Clock Suspend Mode Exit  
Power Down Mode Exit  
Active  
(6)  
Idle/Active  
L
Active  
H
H
Any  
(Power Down)  
L
Data Write/Output Enable  
Data Write/Output Disable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
H
Note 1. V = Valid, X = Don’t Care, L = Low level, H = High level  
2. CKE signal is input level when commands are issued.  
n
CKE  
signal is input level one clock cycle before the commands are issued.  
n-1  
3. These are state designated by the BS0, BS1 signals.  
4. Device state is Full Page Burst operation.  
5. LDQM, UDQM (TC59SM716AS/ASL)  
6. Power Down Mode can not entry in the burst cycle.  
When this command assert in the burst cycle, device state is clock suspend mode.  
2001-06-11 31/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
1. Command Function  
1-1  
Bank Activate command  
( RAS = L, CAS = H, WE = H, BS = Bank, A0~A11 = Row Address)  
The Bank Activate command activates the bank designated by the BS (Bank Select) signal.  
Row addresses are latched on A0~A11 when this command is issued and the cell data is read out to the  
sense amplifiers. The maximum time that each bank can be held in the active state is specified as t  
(max).  
RAS  
1-2  
1-3  
1-4  
Bank Precharge command  
( RAS = L, CAS = H, WE = L, BS = Bank, A10 = L, A0~A9, A11 = Don’t care)  
The Bank Precharge command precharges the bank designated by BS. The precharged bank is  
switched from the active state to the idle state.  
Precharge All command  
( RAS = L, CAS = H, WE = L, BS = Don’t care, A10 = H, A0~A9, A11 = Don’t care)  
The Precharge All command precharges all banks simultaneously. All banks are then switched to the  
idle state.  
Write command  
( RAS = H, CAS = L, WE = L, BS = Bank, A10 = L, A0~A9, A11 = Column Address)  
The Write command performs a Write operation to the bank designated by BS. The write data is  
latched at the positive edges of CLK. The length of the write data (Burst Length) and column access  
sequence (Addressing Mode) must be programmed in the Mode Resister at power-up prior to the Write  
operation.  
The A11 input is “Don’t care” on the TC59SM708AS/ASL and the A9 and A11 inputs are “Don’t care” on  
the TC59SM716AS/ASL.  
1-5  
1-6  
Write with Auto Precharge command  
( RAS = H, CAS = L, WE = L, BS = Bank, A10 = H, A0~A9, A11 = Column Address)  
The Write with Auto Precharge command performs the Precharge operation automatically after the  
Write operation. The internal precharge starts in the cycles immediately following the cycle in which the  
last data is written independent of CAS Latency (Figure 16). This command must not be interrupted by  
any other commands.  
The A11 input is “Don’t care” at the TC59SM708AS/ASL and the A9 and A11 inputs are “Don’t care” on  
the TC59SM716AS/ASL.  
Read command  
( RAS = H, CAS = L, WE = H, BS = Bank, A10 = L, A0~A9, A11 = Column Address)  
The Read command performs a Read operation to the bank designated by BS. The read data is issued  
sequentially synchronized to the positive edges of CLK. The length of read data (Burst Length),  
Addressing Mode and CAS Latency (access time from CAS command in a clock cycle) must be  
programmed in the Mode Register at power-up prior to the Write operation.  
The A11 input is “Don’t care” on the TC59SM708AS/ASL and the A9 and A11 inputs are “Don’t care” on  
the TC59SM716AS/ASL.  
2001-06-11 32/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
1-7  
Read with Auto Precharge command  
( RAS = H, CAS = L, WE = H, BS = Bank, A10 = H, A0~A9, A11 = Column Address)  
The Read with Auto Precharge command automatically performs the Precharge operation after the  
Read operation. When the CAS Latency = 3, the internal precharge starts two cycles before the last  
data is output. When the CAS Latency = 2, the internal precharge starts one cycle before the last data  
is output (Figure 15). This command must not be interrupted by any other command.  
The A11 input is “Don’t care” on the TC59SM708AS/ASL and the A9 and A11 inputs are “Don’t care” on  
the TC59SM716AS/ASL.  
1-8  
1-9  
Mode Register Set command  
( RAS = L, CAS = L, WE = L, BS, A0~A11 = Register Data)  
The Mode Register Set command programs the values of CAS latency, Addressing Mode and Burst  
Length in the Mode Register. The default values in the Mode Register after power-up are undefined,  
therefore this command must be issued during the power-up sequence. Also, this command can be issued  
while all banks are in the idle state.  
No-Operation command  
( RAS = H, CAS = H, WE = H)  
The No-Operation command simply performs no operation.  
1-10 Burst stop command  
( RAS = H, CAS = H, WE = L)  
The Burst stop command is used to stop the burst operation. This command is valid during a Full Page  
Burst operation. During other types of Burst operation, the command is illegal.  
1-11 Device Deselect command  
(CS = H)  
The Device Deselect command disables the command decoder so that the RAS , CAS , WE and  
Address inputs are ignored. This command is similar to the No-Operation command.  
1-12 Auto Refresh command  
( RAS = L, CAS = L, WE = H, CKE = H, BS, A0~A11 = Don’t care)  
The Auto Refresh command is used to refresh the row address provided by the internal refresh counter.  
The Refresh operation must be performed 4096 times within 64 ms. The next command can be issued  
after t  
RC  
from the end of the Auto Refresh command. When the Auto Refresh command is issued, All  
banks must be in the idle state. The Auto Refresh operation is equivalent to the CAS -before- RAS  
operation in a conventional DRAM.  
2001-06-11 33/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
1-13 Self Refresh Entry command  
( RAS = L, CAS = L, WE = H, CKE = L, BS, A0~A11 = Don’t care)  
The Self Refresh Entry command is used to enter Self Refresh mode. While the device is in Self Refresh  
mode, all input and output buffers (except the CKE buffer) are disabled and the Refresh operation is  
automatically performed. Self Refresh mode is exited by taking CKE “high” (the Self Refresh Exit  
command).  
1-14 Self Refresh Exit command  
(CKE = H, CS = H or CKE = H, RAS = H, CAS = H)  
This command is used to exit from Self Refresh mode. Any subsequent commands can be issued after  
t
RC  
from the end of this command.  
1-15 Clock Suspend Mode Entry/Power Down Mode Entry command  
(CKE = L)  
The internal CLK is suspended for one cycle when this command is issued (when CKE is asserted  
“low”). The device state is held intact while the CLK is suspended. On the other hand, when the device is  
not operating the Burst cycle, this command performs entry into Power Down mode. All input and output  
buffers (except the CKE buffer) are turned off in Power Down mode.  
1-16 Clock Suspend Mode Exit/Power Down Mode Exit command  
(CKE = H)  
When the internal CLK has been suspended, operation of the internal CLK is resumed by providing  
this command (asserting CKE “high”). When the device is in Power Down mode, the device exits this  
mode and all disabled buffers are turned on to the active state. Any subsequent commands can be issued  
after one clock cycle from the end of this command.  
1-17 Data Write/Output Enable, Data Mask/Output Disable command  
(DQM = L/H or LDQM, UDQM = L/H)  
During a Write cycle, the DQM or LDQM, UDQM signal functions as Data Mask and can control every  
word of the input data. During a Read cycle, the DQM or LDQM, UDQM signal functions as the control  
of output buffers.  
The LDQM signal controls DQ0~DQ7 and the UDQM signal controls DQ8~DQ15.  
2001-06-11 34/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
2. Read Operation  
Issuing the Bank Activate command to the idle bank puts it into the active state. When the Read command is  
issued after t from the Bank Activate command, the data is read out sequentially, synchronized to the  
RCD  
positive edges of CLK (a Burst Read operation). The initial read data becomes available after CAS Latency  
from the issuing of the Read command. The CAS latency must be set in the Mode Register at power-up. In  
addition, the burst length of read data and Addressing Mode must be set. Each bank is held in the active state  
unless the Precharge command is issued, so that the sense amplifiers can be used as secondary cache.  
When the Read with Auto Precharge command is issued, the Precharge operation is performed automatically  
after the Read cycle, then the bank is switched to the idle state. This command cannot be interrupted by any  
other commands. Also, when the Burst Length is 1 and t  
(min), the timing from the RAS command to the  
(min) must be satisfied by  
RCD  
start of the Auto Precharge operation is shorter than t  
RAS  
(min). In this case, t  
RAS  
extending t  
RCD  
(Figure 9, 15).  
When the Precharge operation is performed on a bank during a Burst Read operation, the Burst operation is  
terminated (Figure 20).  
When the Burst Length is full-page, column data is repeatedly read out until the Burst Stop command or  
Precharge command is issued.  
3. Write Operation  
Issuing the Write command after t  
from the Bank Activate command, the input data is latched  
RCD  
sequentially, synchronizing with the positive edges of CLK after the Write command (Burst Write operation).  
The burst length of the Write data (Burst Length) and Addressing Mode must be set in the Mode Register at  
power-up.  
When the Write with Auto Precharge command is issued, the Precharge operation is performed automatically  
after the Write cycle, then the bank is switched to the idle state. This command cannot be interrupted by any  
other command for the entire burst data duration. Also, when the Burst Length is 1 and t  
(min), the timing  
RCD  
(min). In this case,  
from the RAS command to the start of the Auto Precharge operation is shorter than t  
RAS  
t
(min) must be satisfied by extending t (Figure 10, 16).  
RCD  
RAS  
When the Precharge operation is performed in a bank during a Burst Write operation, the Burst operation is  
terminated (Figure 20).  
When the Burst Length is full-page, the input data is repeatedly latched until the Burst Stop command or the  
Precharge command is issued.  
When the Burst Read and Single Write mode is selected, the write burst length is 1 regardless of the read  
burst length.  
2001-06-11 35/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
4. Precharge  
There are two commands which perform the Precharge operation: Bank Precharge and Precharge All. When  
the Bank Precharge command is issued to the active bank, the bank is precharged and then switched to the idle  
state. The Bank Precharge command can precharge one bank independently of the other bank and hold the  
unprecharged bank in the active state. The maximum time each bank can be held in the active state is specified  
as t  
RAS  
(max). Therefore, each bank must be precharged within t (max) from the Bank Activate command.  
RAS  
The Precharge All command can be used to precharge all banks simultaneously. Even if banks are not in the  
active state, the Precharge All command can still be issued. In this case, the Precharge operation is performed  
only for the active bank and the precharged bank is then switched to the idle state.  
5. Page Mode  
The Read or Write command can be issued on any clock cycle.  
Whenever a Read operation is to be interrupted by a Write command, the output data must be masked by  
DQM to avoid I/O conflict. Also, when a Write operation is to be interrupted by a Read command, only the input  
data before the Read command is enable and the input data after the Read command is disabled.  
6. Burst Termination  
When the Precharge command is issued for a bank in a Burst cycle, the Burst operation is terminated. When  
the Burst Read cycle is interrupted by the Precharge command, read operation is disabled after clock cycle of  
(CAS latency-1) from the Precharge command (Figure 20). When the Burst Write cycle is interrupted by the  
Precharge command, the input circuit is reset at the same clock cycle at which the Precharge command is issued.  
In this case, the DQM signal must be asserted “High” to prevent writing the invalid data to the cell array  
(Figure 20).  
When the Burst Stop command is issued for the bank in a Full-page Burst cycle, the Burst operation is  
terminated. When the Burst Stop command is issued during Full-page Burst Read cycle, read operation is  
disabled after clock cycle of (CAS latency-1) from the Burst Stop command. When the Burst Stop command is  
issued during a Full-page Burst Write cycle, write operation is disabled at the same clock cycle at which the  
Burst Stop command is issued. (Figure 19)  
2001-06-11 36/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
7. Mode Register Operation  
The Mode register designates the operation mode for the Read or Write cycle. This register is divided into  
three fields; A Burst Length field to set the length of burst data, an Addressing Mode selected bits to designate  
the column access sequence in a Burst cycle, and a CAS Latency field to set the access time in clock cycle.  
The Mode Register is programmed by the Mode Register Set command when all banks are in the idle state.  
The data to be set in the Mode Register is transferred using the A0~A11, BS0, BS1 address inputs. The initial  
value of the Mode Register after power-up is undefined; therefore the Mode Register Set command must be  
issued before proper operation.  
Burst Length field (A2~A0)  
This field specifies the data length for column access using the A2~A0 pins and sets the Burst Length to be  
1, 2, 4, 8, words, or full-page.  
A2  
A1  
A0  
Burst Length  
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
1 word  
2 words  
4 words  
8 words  
Full-Page  
Addressing Mode Select (A3)  
The Addressing Mode can be one of two modes; Interleave mode or Sequential mode. When the A3 bit is 0,  
Sequential mode is selected. When the A3 bit is 1, Interleave mode is selected.  
Both Addressing modes support burst length of 1, 2, 4 and 8 words. Additionally, Sequential mode supports  
the full-page burst.  
A3  
Addressing Mode  
0
1
Sequential  
Interleave  
2001-06-11 37/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Addressing sequence of Sequential mode  
A column access is performed by incrementing the column address input to the device. The address is  
varied by the Burst Length as shown in Table 2.  
Table 2. Addressing sequence for Sequential mode  
DATA  
Access Address  
Burst Length  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
n
2 words (Address bits is A0)  
not carried from A0 to A1  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
4 words (Address bits is A1, A0)  
not carried from A1 to A2  
8 words (Address bits is A2, A1, A0)  
not carried from A2 to A3  
Addressing sequence of Interleave mode  
A column access is started from the input column address and is performed by inverting the address bits  
in the sequence shown in Table 3.  
Table 3. Addressing sequence for Interleave mode  
DATA  
Access Address  
Burst Length  
2 words  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
A8  
A8  
A8  
A8  
A8  
A8  
A8  
A8  
A7  
A7  
A7  
A7  
A7  
A7  
A7  
A7  
A6  
A6  
A6  
A6  
A6  
A6  
A6  
A6  
A5  
A5  
A5  
A5  
A5  
A5  
A5  
A5  
A4  
A4  
A4  
A4  
A4  
A4  
A4  
A4  
A3  
A3  
A3  
A3  
A3  
A3  
A3  
A3  
A2  
A2  
A2  
A2  
A2  
A2  
A2  
A2  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
A0  
4 words  
8 words  
2001-06-11 38/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Addressing sequence example (Burst Length = 8 and input address is 13.)  
Interleave Mode  
Sequential Mode  
DATA  
A8  
0
A7  
0
A6  
0
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0 ADD  
ADD  
13  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
1
0
1
0
1
0
1
0
13  
12  
15  
14  
9
13  
0
0
0
0
0
1
1
0
13 + 1  
13 + 2  
13 + 3  
13 + 4  
13 + 5  
13 + 6  
13 + 7  
14  
calculated using  
A2, A1 and A0 bits  
0
0
0
0
0
1
1
1
15  
8
0
0
0
0
0
1
1
1
not carry from  
A2 to A3 bit.  
0
0
0
0
0
1
0
0
9
0
0
0
0
0
1
0
0
8
10  
11  
12  
0
0
0
0
0
1
0
1
11  
10  
0
0
0
0
0
1
0
1
Read Cycle CAS Latency = 3  
0
1
2
3
4
5
6
7
8
9
10  
11  
Command  
Address  
Read  
13  
DQ0~DQ7  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Data  
Address  
Interleave mode  
Sequential mode  
13  
13  
12  
14  
15  
15  
14  
8
9
9
8
11  
11  
10  
12  
10  
CAS Latency field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to the first data  
read. The minimum values of CAS Latency depends on the frequency of CLK. The minimum value must be  
set in this field.  
A6  
A5  
A4  
CAS Latency  
0
0
1
1
0
1
2 clock  
3 clock  
Test mode entry bit (A7)  
This bit is used to enter Test mode and must be set to 0 for normal operation.  
Reserved bits (A8, A10, A11, BS0, BS1)  
These bits are reserved for future operations. They must be set to 0 for normal operation.  
Single Write mode (A9)  
This bit is used to select the write mode. When the A9 bit is 0, Burst Read and Burst Write mode are  
selected. When the A9 bit is 1, Burst Read and Single Write mode are selected.  
A9  
Write Mode  
0
1
Burst Read and Burst Write  
Burst Read and Single Write  
2001-06-11 39/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
8. Refresh Operation  
Two types of Refresh operation can be performed on the device: Auto Refresh and Self Refresh. Auto Refresh is  
similar to the CAS -before- RAS refresh of conventional DRAMs and is performed by issuing the Auto Refresh  
command while all banks are in the idle state. By repeating the Auto Refresh cycle, each bank refreshed  
automatically. The Refresh operation must be performed 4096 times (rows) within 64 ms (Figure 11). The period  
between the Auto Refresh command and the next command is specified by t  
.
RC  
Self Refresh mode is entered by issuing the Self Refresh command (CKE asserted “low”) while all banks are in  
the idle state. The device is in Self Refresh mode for as long as CKE is held “low”. In Self Refresh mode, all  
input/output buffers (except the CKE buffer) are disabled to lower power dissipation (Figure 12).  
In the case of 4096 burst Auto Refresh commands, 4096 burst Auto Refresh commands must be performed  
within 15.6 µs before entering and after exiting the Self Refresh mode.  
In the case of distributed Auto Refresh commands, distributed Auto Refresh commands must be issued every  
15.6 µs and the last distributed Auto Refresh command must be performed within 15.6 µs before entering the  
Self Refresh mode. After exiting from the Self Refresh mode, the refresh operation must be performed within  
15.6 µs.  
9. Power Down Mode  
When the device enters the Power Down mode, all input/output buffers (except CKE buffer) are disabled to  
lower power dissipation in the idle state. Power Down mode is entered by asserting CKE “low” while the device  
is not running a Burst cycle. Taking CKE “high” exit this mode. When CKE goes high, a No-operation command  
must be input at next CLK rising edge of CLK (Figure 13) and CKE should be set high at least 1CLK + t  
at  
CKS  
Power Down Mode Exit.  
10. CLK suspension and Input/Output Mask  
When the device is running a Burst cycle, the internal CLK is suspended by asserting CKE “low” and the  
burst operation is frozen from the next cycle. A Read/Write operation is held intact until the CKE signal is taken  
“high”.  
The Output Disable/Write Mask signal (DQM) has two functions, controlling the output data in a Read cycle  
and performing word mask in a Write cycle. When the DQM is asserted “high” at the positive edge of CLK, the  
output data is disabled after two clock cycles in the case of a Read operation and the write data is masked at the  
same clock cycle in the case of a Write operation. The timing relations between the CKE timing and DQM are  
described in Figure 21 (a) and 21 (b).  
2001-06-11 40/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 15. Auto Precharge timing (Read cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(1) CAS Latency = 2  
(a) Burst Length = 1  
Command  
Read AP  
Act  
t
RP  
DQ  
Q0  
AP  
(b) Burst Length = 2  
Command  
Read  
Act  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q1  
Q1  
Q1  
(c) Burst Length = 4  
Command  
Read  
AP  
Q2  
Act  
t
RP  
DQ  
Q3  
(d) Burst Length = 8  
Command  
Read  
AP  
Q6  
Act  
t
RP  
DQ  
Q2  
Act  
Q3  
Q4  
Q5  
Q7  
(2) CAS Latency = 3  
(a) Burst Length = 1  
Command  
Read AP  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q0  
(b) Burst Length = 2  
Command  
Read  
AP  
Act  
t
RP  
DQ  
Q1  
AP  
(c) Burst Length = 4  
Command  
Read  
Act  
t
RP  
DQ  
Q1  
Q2  
Q2  
Q3  
Q3  
(d) Burst Length = 8  
Command  
Read  
AP  
Q5  
Act  
t
RP  
DQ  
Q1  
Q4  
Q6  
Q7  
Note) •  
Read represents the Read with Auto Precharge command.  
AP represents the start of internal precharging.  
Act represents the Bank Activate command.  
When the Auto Precharge command is asserted, the period from the Bank Activate command to the start of internal  
precharging must be at least t (min).  
RAS  
2001-06-11 41/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 16. Auto Precharge timing (Write cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(1) CAS Latency = 2  
(a) Burst Length = 1  
Command  
Write AP  
Act  
t
t
WR  
RP  
DQ  
D0  
(b) Burst Length = 2  
Command  
Write  
AP  
Act  
AP  
t
t
WR  
RP  
DQ  
D0  
D1  
(c) Burst Length = 4  
Command  
Write  
Act  
t
t
RP  
WR  
DQ  
D0  
D1  
D1  
D2  
D2  
D3  
(d) Burst Length = 8  
Command  
Write  
AP  
Act  
t
t
RP  
WR  
DQ  
D0  
D3  
D4  
D5  
D6  
D7  
(2) CAS Latency = 3  
(a) Burst Length = 1  
Command  
Write AP  
Act  
t
t
RP  
WR  
DQ  
D0  
(b) Burst Length = 2  
Command  
Write  
AP  
Act  
t
t
RP  
WR  
DQ  
D0  
D1  
(c) Burst Length = 4  
Command  
Write  
AP  
Act  
t
t
RP  
WR  
DQ  
D0  
D1  
D2  
D2  
D3  
(d) Burst Length = 8  
Command  
Write  
AP  
Act  
t
t
RP  
WR  
DQ  
D0  
D1  
D3  
D4  
D5  
D6  
D7  
Note) •  
Write represents the Write with Auto Precharge command.  
AP represents the start of internal precharging.  
Act represents the Bank Activate command.  
When the Auto Precharge command is asserted, the period from the Bank Activate command to the start of internal  
precharging must be at least t (min).  
RAS  
2001-06-11 42/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 17. Timing chart for Read-to-Write cycle  
In the case of Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(1) CAS Latency = 2  
(a) Command  
Read Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
(b) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
D2  
D3  
(2) CAS Latency = 3  
(a) Command  
Read Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
(b) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
D2  
D3  
Note)  
The output data must be masked by DQM to avoid I/O conflict.  
2001-06-11 43/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 18. Timing chart for Write-to-Read cycle  
In the case of Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(1) CAS Latency = 2  
(a) Command  
Write Read  
DQM  
DQ  
D0  
Q0  
Q1  
Q2  
Q3  
(b) Command  
DQM  
Write  
Read  
DQ  
D0  
D1  
Q0  
Q1  
Q2  
Q3  
(2) CAS Latency = 3  
(a) Command  
Write Read  
DQM  
DQ  
D0  
Q0  
Q1  
Q2  
Q3  
(b) Command  
DQM  
Write  
Read  
DQ  
D0  
D1  
Q0  
Q1  
Q2  
Q3  
2001-06-11 44/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 19. Timing chart for Burst Stop cycle (Burst stop command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(1) Read Cycle  
(a)  
Latency = 2  
CAS  
Command  
Read  
BST  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b)  
Latency = 3  
Command  
CAS  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write Cycle  
Command  
Write  
D0  
BST  
DQ  
D1  
D2  
D3  
D4  
Note)  
BST represents the Burst stop command.  
2001-06-11 45/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 20. Timing chart for Burst Stop cycle (Precharge command)  
In the case of Burst Length = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
(1) Read Cycle  
(a)  
Latency = 2  
CAS  
Command  
Read  
PRCG  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b)  
Latency = 3  
Command  
CAS  
Read  
PRCG  
Q2  
DQ  
Q4  
(2) Write Cycle  
(a)  
Latency = 2  
CAS  
Command  
Write  
PRCG  
t
WR  
DQM  
DQ  
D0  
D1  
D2  
D3  
D4  
(b)  
Latency = 3  
CAS  
Command  
Write  
PRCG  
t
WR  
DQM  
DQ  
D0  
D1  
D2  
D3  
D4  
Note)  
PRCG represents the Precharge command.  
2001-06-11 46/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 21 (a). CKE/DQM Input timing (Write cycle)  
CLK Cycle No.  
1
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
2
D3  
3
D5  
5
D6  
7
DQM MASK  
(1)  
CKE MASK  
6
CLK Cycle No.  
4
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
2
D3  
3
D5  
6
D6  
7
DQM MASK CKE MASK  
(2)  
CLK Cycle No.  
4
5
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
(3)  
2001-06-11 47/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
Figure 21 (b). CKE/DQM Input timing (Read cycle)  
CLK Cycle No.  
1
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q1  
1
Q2  
2
Q3  
3
Q4  
Open  
Open  
Q6  
7
(1)  
CLK Cycle No.  
4
5
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q1  
1
Q2  
2
Q3  
3
Q4  
Open  
Q6  
7
(2)  
CLK Cycle No.  
4
5
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
(3)  
2001-06-11 48/49  
TC59SM716/08/04AS/ASL-70,-75,-80  
PACKAGE DIMENSIONS  
Unit: mm  
2001-06-11 49/49  

相关型号:

TC59SM708ASL-80

IC 16M X 8 SYNCHRONOUS DRAM, 6 ns, PDSO54, 0.400 INCH, 0.40 MM PITCH. PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FT

IC 16M X 8 SYNCHRONOUS DRAM, PDSO54, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FT-10

IC 16M X 8 SYNCHRONOUS DRAM, 7 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FT-80

IC 16M X 8 SYNCHRONOUS DRAM, 6 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FTL

IC 16M X 8 SYNCHRONOUS DRAM, PDSO54, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FTL-10

IC 16M X 8 SYNCHRONOUS DRAM, 7 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM708FTL-75

TC59SM708FTL-75
TOSHIBA

TC59SM708FTL-80

IC 16M X 8 SYNCHRONOUS DRAM, 6 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM716AFT

IC 8M X 16 SYNCHRONOUS DRAM, PDSO54, TSSOP2-54, Dynamic RAM
TOSHIBA

TC59SM716AFT-75

IC 8M X 16 SYNCHRONOUS DRAM, 5.4 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA

TC59SM716AFTL

IC 8M X 16 SYNCHRONOUS DRAM, PDSO54, TSSOP2-54, Dynamic RAM
TOSHIBA

TC59SM716AFTL-70

IC 8M X 16 SYNCHRONOUS DRAM, 5.4 ns, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54, Dynamic RAM
TOSHIBA