TD62082AFG [TOSHIBA]

8ch Darlington Sink Driver; 8CH达林顿驱动程序库
TD62082AFG
型号: TD62082AFG
厂家: TOSHIBA    TOSHIBA
描述:

8ch Darlington Sink Driver
8CH达林顿驱动程序库

晶体 小信号双极晶体管 开关 光电二极管 驱动
文件: 总13页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TD62081~084APG/AFG  
Toshiba Bipolar Digital Integrated Circuit Silicon Monolithic  
TD62081APG,TD62081AFG,TD62082APG,TD62082AFG,  
TD62083APG,TD62083AFG,TD62084APG,TD62084AFG  
8ch Darlington Sink Driver  
The TD62081APG/AFG Series are high-voltage, high-current  
darlington drivers comprised of eight NP darlington pairs.  
All units feature integral clamp diodes for switching inductive loads.  
Applications include relay, hammer, lamp and display (LED)  
drivers.  
The suffix (G) appended to the part number represents a Lead  
(Pb)-Free product.  
Features  
Output current (single output)  
500 mA (max) (TD62081APG/AFG series)  
High sustaining voltage output  
50 V (min)  
(TD62081APG/AFG series)  
Output clamp diodes  
Inputs compatible with various types of logic.  
Package type-APG: DIP-18 pin  
Package type-AFG: SOP-18 pin  
Input Base  
Resistor  
Type  
Designation  
Weight  
DIP18-P-300-2.54D: 1.47 g (typ.)  
SOP18-P-375-1.27 : 0.41 g (typ.)  
TD62081APG/AFG  
TD62082APG/AFG  
TD62083APG/AFG  
TD62084APG/AFG  
External  
General purpose  
10.5-kΩ + 7 V  
Zenner diode  
14 V to 25 V  
PMOS  
2.7 kΩ  
TTL, 5 V CMOS  
6 V to 15 V  
PMOS, CMOS  
10.5 kΩ  
Pin Connection  
(top view)  
O1  
18  
O2  
O3  
16  
O4  
15  
O5  
14  
O6  
13  
O7  
12  
O8 COMMON  
11 10  
17  
1
2
3
4
5
6
7
8
9
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8 GND  
1
2006-06-13  
TD62081~084APG/AFG  
Schematics (each driver)  
TD62081APG/AFG Common  
TD62082APG/AFG Common  
Output  
TD62083APG/AFG Common  
Input  
Input  
Input  
7 V  
10.5 kΩ  
Output  
Output  
2.7 kΩ  
7.2 kΩ  
7.2 kΩ  
7.2 kΩ  
GND  
GND  
GND  
TD62084APG/AFG Common  
Input  
Output  
10.5 kΩ  
7.2 kΩ  
GND  
Note: The input and output parasitic diodes cannot be used as clamp diodes.  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Output sustaining voltage  
Output current  
V
0.5 to 50  
500  
V
mA/ch  
V
CE (SUS)  
I
OUT  
Input voltage  
V
IN  
I
IN  
(Note 1)  
0.5 to 30  
25  
Input current  
(Note 2)  
mA  
V
Clamp diode reverse voltage  
Clamp diode forward current  
V
50  
R
I
500  
mA  
F
APG  
AFG  
1.47  
Power dissipation  
P
W
D
0.96  
Operating temperature  
Storage temperature  
T
40 to 85  
55 to 150  
°C  
°C  
opr  
T
stg  
Note 1: Except TD62081APG/AFG  
Note 2: Only TD62081APG/AFG  
2
2006-06-13  
TD62081~084APG/AFG  
Recommended Operating Conditions (Ta = −40 to 85°C)  
Characteristics  
Symbol  
Test Condition  
Min  
0
Typ.  
Max  
50  
Unit  
V
Output sustaining voltage  
V
CE (SUS)  
T
= 25 ms, Duty = 10%  
pw  
0
347  
8 circuits  
APG  
Output current  
AFG  
T
= 25 ms, Duty = 50%  
pw  
0
0
0
0
123  
268  
90  
8 circuits  
I
mA/ch  
OUT  
T
pw  
= 25 ms, Duty = 10%  
8 circuits  
T
pw  
= 25 ms, Duty = 50%  
8 circuits  
Except  
TD62081APG/AFG  
Input voltage  
V
30  
V
V
IN  
TD62082APG/AFG  
TD62083APG/AFG  
TD62084APG/AFG  
TD62082APG/AFG  
TD62083APG/AFG  
TD62084APG/AFG  
14  
2.5  
8
30  
30  
Input voltage  
(Output on)  
V
IN (ON)  
30  
0
7.4  
0.5  
1.0  
Input voltage  
(Output off)  
V
V
0
IN (OFF)  
0
Only  
Input current  
I
0
5
mA  
IN  
TD62081APG/AFG  
Clamp diode reverse voltage  
Clamp diode forward current  
V
50  
400  
0.52  
0.4  
V
R
I
mA  
F
APG  
Power  
P
W
D
dissipation  
AFG  
3
2006-06-13  
TD62081~084APG/AFG  
Electrical Characteristics (Ta = 25°C)  
Test  
Circuit  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Ta = 25°C  
Ta = 85°C  
50  
1000  
50  
100  
500  
500  
1.6  
1.3  
1.1  
1.25  
1.35  
0.5  
1.45  
Output leakage  
current  
I
1
2
V
= 50 V  
µA  
CEX  
CE  
TD62082  
TD62084  
V
IN  
V
IN  
= 6 V  
= 1 V  
I
I
I
= 350 mA, I = 500 µA  
1.3  
1.1  
0.9  
0.82  
0.93  
0.35  
1.0  
65  
OUT  
OUT  
OUT  
IN  
Collector-emitter saturation voltage  
V
V
= 200 mA, I = 350 µA  
CE (sat)  
IN  
= 100 mA, I = 250 µA  
IN  
TD62082APG/AFG  
TD62083APG/AFG  
V
V
V
V
= 17 V  
= 3.85 V  
= 5 V  
IN  
IN  
I
2
4
mA  
IN (ON)  
Input current  
IN  
TD62084APG/AFG  
= 12 V  
IN  
I
I
= 500 µA, Ta = 85°C  
µA  
IN (OFF)  
OUT  
TD62082APG/AFG  
TD62083APG/AFG  
V
CE  
V
CE  
V
CE  
V
CE  
V
CE  
V
CE  
V
CE  
V
CE  
V
CE  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 2 V, I  
= 300 mA  
= 200 mA  
= 250 mA  
= 300 mA  
= 125 mA  
= 200 mA  
= 275 mA  
= 350 mA  
= 350 mA  
13  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2.4  
2.7  
3.0  
5.0  
6.0  
7.0  
8.0  
Input voltage  
(Output on)  
V
5
V
IN (ON)  
TD62084APG/AFG  
DC current transfer ratio  
h
2
6
FE  
Ta = 25°C  
Ta = 85°C  
(Note)  
(Note)  
50  
Clamp diode reverse current  
I
µA  
R
100  
2.0  
Clamp diode forward voltage  
Input capacitance  
Turn-on delay  
V
7
I
= 350 mA  
F
V
F
C
15  
0.1  
0.2  
pF  
IN  
t
R
R
= 125 , V  
= 125 , V  
= 50 V  
ON  
L
OUT  
8
µs  
Turn-off delay  
t
= 50 V  
OFF  
L
OUT  
Note: VR = VR max  
4
2006-06-13  
TD62081~084APG/AFG  
Test Circuit  
1. I  
2. V  
, h  
3. I  
IN (ON)  
CEX  
CE (sat) FE  
Open  
Open  
Open  
I
I
IN (ON)  
CEX  
V
I
I
OUT  
IN  
Open  
Open  
V
IN  
CE  
V
IN  
V
, V  
CE CE (sat)  
I
OUT  
h
FE  
=
I
IN  
4. I  
5. V  
IN (ON)  
IN (OFF)  
6. I  
R
Open  
Open  
I
R
I
I
I
OUT  
IN (OFF)  
OUT  
V
R
Open  
V
V
CE  
IN (ON)  
Open  
7. V  
F
I
F
V
F
Open  
Open  
5
2006-06-13  
TD62081~084APG/AFG  
8. t  
t
ON, OFF  
Input  
Open V  
OUT  
R
L
Pulse  
generator  
Output  
= 15 pF  
(Note 2)  
C
L
(Note 1)  
(Note 3)  
Input  
condition  
t
t
f
r
V
IH  
90%  
50%  
10%  
90%  
50%  
Input  
10%  
0
50 µs  
t
t
OFF  
ON  
V
OH  
OL  
Output  
V
Note 1: Pulse width 50 µs, duty cycle 10%  
Output impedance 50 , t 5 ns, t 10 ns  
r
f
Note 2: See below.  
Input condition  
Type Number  
R1  
V
IH  
TD62081APG/AFG  
TD62082APG/AFG  
TD62083APG/AFG  
TD62084APG/AFG  
2.7 kΩ  
0 Ω  
3 V  
13 V  
3 V  
0 Ω  
0 Ω  
8 V  
Note 3: C includes probe and jig capacitance  
L
Precautions for Using  
This IC does not include built-in protection circuits for excess current or overvoltage.  
If this IC is subjected to excess current or overvoltage, it may be destroyed.  
Hence, the utmost care must be taken when systems which incorporate this IC are designed.  
Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed  
due to short-circuit between outputs, air contamination fault, or fault by improper grounding.  
6
2006-06-13  
TD62081~084APG/AFG  
I
– V  
I
– V  
IN IN  
IN  
IN  
3
2
1
0
3
2
1
0
TD62082APG  
TD62083APG  
max  
max  
typ.  
min  
typ.  
min  
12  
16  
Input voltage  
20  
V
24  
2
3
4
5
(V)  
Input voltage  
V
(V)  
IN  
IN  
I
– V  
I – V (sat)  
OUT CE  
IN  
IN  
3
2
1
0
600  
400  
200  
0
TD62084APG  
typ.  
max  
typ.  
25°C max  
min  
5
7
9
11  
0
0.5  
1.0  
1.5  
2.0  
Input voltage  
V
(V)  
Collector-emitter saturation voltage  
IN  
V
(V)  
CE (sat)  
I
– V  
I
– Duty cycle  
OUT  
OUT  
CE (sat)  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
8 circuits active  
I
IN  
= 500 µA  
Ta = 85°C  
Ta = 25°C  
25  
30  
85  
0
0.4  
0.8  
1.2  
1.6  
0
20  
40  
60  
80  
100  
Collector-emitter saturation voltage  
(V)  
Duty cycle (%)  
V
CE (sat)  
7
2006-06-13  
TD62081~084APG/AFG  
h
FE  
– I  
h – I  
FE OUT  
OUT  
10000  
10000  
TD62083  
TD62084  
5000  
3000  
5000  
3000  
V
CE  
= 2.0 V  
V
CE  
= 2.0 V  
1000  
1000  
85°C  
85°C  
500  
300  
500  
300  
40  
40  
25  
100  
100  
25  
50  
30  
50  
30  
10  
10  
5
3
1
5
3
1
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Output current  
I
(mA)  
OUT  
Output current  
I
(mA)  
OUT  
P
D
Ta  
2.0  
1.5  
1.0  
0.5  
0
(1) Type-APG Free air  
(2) Type-AFG Free air  
(1)  
(2)  
0
50  
100  
150  
200  
Ambient temperature Ta (°C)  
8
2006-06-13  
TD62081~084APG/AFG  
Package Dimensions  
Weight: 1.47 g (typ.)  
9
2006-06-13  
TD62081~084APG/AFG  
Package Dimensions  
Weight: 0.41 g (typ.)  
10  
2006-06-13  
TD62081~084APG/AFG  
Notes on Contents  
1. Equivalent Circuits  
The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory  
purposes.  
2. Test Circuits  
Components in the test circuits are used only to obtain and confirm the device characteristics. These  
components and circuits are not guaranteed to prevent malfunction or failure from occurring in the  
application equipment.  
IC Usage Considerations  
Notes on Handling of ICs  
(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment. Do not exceed any of these ratings.  
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
(2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in  
case of over current and/or IC failure. The IC will fully break down when used under conditions that  
exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal  
pulse noise occurs from the wiring or load, causing a large current to continuously flow and the  
breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of  
breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are  
required.  
(3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the  
design to prevent device malfunction or breakdown caused by the current resulting from the inrush  
current at power ON or the negative current resulting from the back electromotive force at power OFF.  
IC breakdown may cause injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable,  
the protection function may not operate, causing IC breakdown. IC breakdown may cause injury,  
smoke or ignition.  
(4) Do not insert devices in the wrong orientation or incorrectly.  
Make sure that the positive and negative terminals of power supplies are connected properly.  
Otherwise, the current or power consumption may exceed the absolute maximum rating, and  
exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result  
injury by explosion or combustion.  
In addition, do not use any device that is applied the current with inserting in the wrong orientation  
or incorrectly even just one time.  
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load  
components (such as speakers), for example, power amp and regulator.  
If there is a large amount of leakage current such as input or negative feedback condenser, the IC  
output DC voltage will increase. If this output voltage is connected to a speaker with low input  
withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause  
smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied  
Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.  
11  
2006-06-13  
TD62081~084APG/AFG  
Points to Remember on Handling of ICs  
(1) Heat Radiation Design  
In using an IC with large current flow such as power amp, regulator or driver, please design the  
device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at  
any time and condition. These ICs generate heat even during normal use. An inadequate IC heat  
radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In  
addition, please design the device taking into considerate the effect of IC heat radiation with  
peripheral components.  
(2) Back-EMF  
When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to  
the motor’s power supply due to the effect of back-EMF. If the current sink capability of the power  
supply is small, the device’s motor power supply and output pins might be exposed to conditions  
beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into  
consideration in system design.  
12  
2006-06-13  
TD62081~084APG/AFG  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
RESTRICTIONS ON PRODUCT USE  
060116EBA  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others. 021023_C  
The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E  
13  
2006-06-13  

相关型号:

TD62082AP

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62082APG

8ch Darlington Sink Driver
TOSHIBA

TD62082CP

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62082F

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083AF

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083AFG

8ch Darlington Sink Driver
TOSHIBA

TD62083AFG(O,N,EL)

Trans Darlington NPN 50V 0.5A 18-Pin SOP T/R
TOSHIBA

TD62083AFN

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083AFNG

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083AP

8CH DARLINGTON SINK DRIVER
TOSHIBA

TD62083APA

8CH DARLINGTOR SINK DRIVER
TOSHIBA