TPD4113AK_07 [TOSHIBA]

High Voltage Monolithic Silicon Power IC; 高压硅单片电源IC
TPD4113AK_07
型号: TPD4113AK_07
厂家: TOSHIBA    TOSHIBA
描述:

High Voltage Monolithic Silicon Power IC
高压硅单片电源IC

高压
文件: 总24页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD4113AK  
TOSHIBA Intelligent Power Device High Voltage Monolithic Silicon Power IC  
TPD4113AK  
The TPD4113AK is a DC brush less motor driver using  
high- voltage PWM control. It is fabricated using a high-voltage  
SOI process. The device contains a level shift high side driver,  
low side driver, IGBT outputs, FRDs and protective functions for  
under-voltage protection circuits, and a thermal shutdown circuit.  
It is easy to control a DC brush less motor by just putting logic  
inputs from a MPU or motor controller to the TPD4113AK.  
Features  
Bootstrap circuit gives simple high-side power supply.  
Bootstrap diodes are built in.  
A dead time can be set as a minimum of 1.4 μs, and it is the  
best for a Sine-wave from drive.  
3-phase bridge output using IGBTs.  
FRDs are built in.  
Included under-voltage protection and thermal shutdown.  
The regulator of 7V (typ.) is built in.  
Package: 23-pin HZIP.  
This product has a MOS structure and is sensitive to electrostatic  
discharge. When handling this product, ensure that the environment  
is protected against electrostatic discharge.  
Weight  
HZIP23-P-1.27F : 6.1 g (typ.)  
HZIP23-P-1.27G : 6.1 g (typ.)  
HZIP23-P-1.27H : 6.1 g (typ.)  
1
2006-11-01  
TPD4113AK  
Pin Assignment  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
VBB  
1
VREG  
GND  
HU HV HW LU LV LW IS1 NC BSU  
U
BSV  
V
BSW W VBB 2 NC IS2 NC DIAG VCC  
Marking  
Lot No.  
A line indicates  
TPD4113AK JAPAN  
lead (Pb)-free package or  
lead (Pb)-free finish.  
Part No. (or abbreviation code)  
2
2006-11-01  
TPD4113AK  
Block Diagram  
V
21  
23  
9 BSU  
CC  
12 BSV  
14 BSW  
11 V  
16 V  
1
BB  
BB  
Under-  
voltage  
Protection  
Under-  
voltage  
Protection Protection  
Under-  
voltage  
7 V  
V
REG  
2
Regulator  
Under-  
voltage  
High-side Level  
Protection  
Shift Drver  
HU 1  
HV 2  
HW 3  
LU 4  
LV 5  
LW 6  
Thermal  
10  
U
Input Control  
Shutdown  
13 V  
15 W  
Low-side  
Driver  
DIAG 20  
18 IS2  
7 IS1  
GND  
22  
3
2006-11-01  
TPD4113AK  
Pin Description  
Pin No.  
1
Symbol  
Pin Description  
The control terminal of IGBT by the side of U top arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
HU  
HV  
The control terminal of IGBT by the side of V top arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
2
3
The control terminal of IGBT by the side of W top arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
HW  
The control terminal of IGBT by the side of U bottom arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
4
5
6
LU  
LV  
The control terminal of IGBT by the side of V bottom arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
The control terminal of IGBT by the side of W bottom arm. It turns off more than by 1.5V.  
It turns on more than by 3.5V.  
LW  
7
IS1  
NC  
BSU  
U
IGBT emitter and FRD anode pin.  
8
Unused pin, which is not connected to the chip internally.  
U-phase bootstrap capacitor connecting pin.  
U-phase output pin.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
1
U and V-phase high-voltage power supply input pin.  
V-phase bootstrap capacitor connecting pin.  
V-phase output pin.  
BB  
BSV  
V
BSW  
W
W-phase bootstrap capacitor connecting pin.  
-phase output pin.  
V
2
BB  
W-phase high-voltage power supply input pin.  
Unused pin, which is not connected to the chip internally.  
IGBT emitter and FRD anode pin.  
NC  
IS2  
NC  
Unused pin, which is not connected to the chip internally.  
With the diagnostic output terminal of open drain , a pull-up is carried out by resistance.  
It turns it on at the time of unusual.  
DIAG  
21  
22  
23  
V
Control power supply pin.(15V typ.)  
Ground pin.  
CC  
GND  
V
7V regulator output pin.  
REG  
4
2006-11-01  
TPD4113AK  
Equivalent Circuit of Input Pins  
Internal circuit diagram of HU, HV, HW, LU, LV, LW input pins  
5 kΩ  
5 kΩ  
2 kΩ  
HU/HV/HW  
LU/LV/LW  
To internal circuit  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
Internal circuit diagram of DIAG pin  
DIAG  
To internal circuit  
26 V  
5
2006-11-01  
TPD4113AK  
Timing Chart  
HU  
HV  
HW  
LU  
LV  
Input Voltage  
LW  
VU  
Output voltage  
VV  
VW  
6
2006-11-01  
TPD4113AK  
Truth Table  
Mode  
Input  
Top arm  
Bottom arm  
DIAG  
HU HV HW LU LV LW  
phase  
ON  
phase  
OFF  
OFF  
ON  
phase  
OFF  
OFF  
OFF  
OFF  
ON  
phase  
OFF  
OFF  
OFF  
ON  
phase  
ON  
phase  
Normal  
OFF OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF OFF  
OFF OFF  
OFF OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Thermal shutdown H  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Under-voltage  
Notes: Release of Thermal shutdown protection and under voltage protection depends release of a self-reset .  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
V
500  
V
V
BB  
CC  
out  
out  
Power supply voltage  
V
18  
Output current (DC)  
Output current (pulse)  
Input voltage  
I
I
1
A
2
0.5~7  
50  
A
V
V
IN  
VREG current  
I
mA  
mA  
W
REG  
VDIAGcurrent  
I
20  
DIAG  
Power dissipation (Ta = 25°C)  
Power dissipation (Tc = 25°C)  
Operating temperature  
Junction temperature  
Storage temperature  
Lead-heat sink isolation voltage  
P
P
4
C
C
20  
W
T
jopr  
20~135  
150  
°C  
°C  
°C  
Vrms  
T
j
T
stg  
55~150  
1000 (1 min)  
Vhs  
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even  
if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum  
ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/Derating Concept and Methods) and individual reliability data (i.e. reliability test report  
and estimated failure rate, etc).  
7
2006-11-01  
TPD4113AK  
Electrical Characteristics (Ta = 25°C)  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
V
V
50  
13.5  
280  
15  
450  
16.5  
0.5  
5
BB  
CC  
BB  
CC  
Operating power supply voltage  
V
I
V
V
V
V
V
V
V
V
V
V
= 450 V  
= 15 V  
BB  
CC  
BS  
BS  
mA  
μA  
V
I
1.1  
260  
230  
Current dissipation  
I
= 15 V, high side ON  
= 15 V, high side OFF  
410  
370  
BS (ON)  
I
BS (OFF)  
V
= “H”  
= “L”  
= 5V  
= 0 V  
3.5  
IH  
IN  
Input voltage  
V
1.5  
150  
100  
3
IL  
IN  
I
IH  
IN  
Input current  
μA  
V
I
IL  
IN  
V
H
= 15 V, IC = 0.5 A  
= 15 V, IC = 0.5 A  
2.4  
2.4  
1.6  
1.6  
7
CEsat  
CC  
CC  
Output saturation voltage  
FRD forward voltage  
V
L
3
CEsat  
V H  
IF = 0.5 A, high side  
IF = 0.5 A, low side  
2.0  
2.0  
7.5  
1.2  
185  
F
V
V L  
F
Regulator voltage  
V
V
= 15 V, I = 30 mA  
6.5  
V
V
REG  
CC  
O
BSD forward voltage  
V
(BSD)  
IF = 500μA  
0.9  
F
Thermal shutdown temperature  
Thermal shutdown hysteresis  
VCC under-voltage protection  
VCC under-voltage protection recovery  
TSD  
ΔTSD  
V
V
= 15 V  
= 15 V  
135  
V
CC  
CC  
50  
V
V
UVD  
10  
10.5  
8
11  
12  
CC  
CC  
UVR  
UVD  
UVR  
11.5  
9
12.5  
9.5  
10.5  
0.5  
3
V
V
V
under-voltage protection  
V
V
V
V
BS  
BS  
BS  
BS  
under-voltage protection recovery  
8.5  
9.5  
V
DIAG saturation voltage  
Output-on delay time  
Output-off delay time  
Dead time  
I
=5mA  
V
DIAGsat  
DIAG  
t
on  
t
off  
V
V
V
V
= 280 V, IC = 0.5 A  
= 280 V, IC = 0.5 A  
= 280 V, IC = 0.5 A  
= 280 V, IC = 0.5 A  
1.5  
1.2  
μs  
μs  
μs  
ns  
BB  
BB  
BB  
BB  
3
tdead  
1.4  
FRD reverse recovery time  
t
200  
rr  
8
2006-11-01  
TPD4113AK  
Application Circuit Example  
15V  
V
CC  
21  
9
BSU  
BSV  
BSW  
+
12  
14  
11  
C
C
5
4
V
V
1
BB  
BB  
7 V  
Under-  
voltage  
Under-  
voltage  
Under-  
voltage  
23  
16  
Regulator  
V
REG  
2
+
Protection Protection Protection  
C
C
7
6
Under-  
voltage  
Protection  
High-side  
Level Shift  
Driver  
C
1
C C  
2 3  
1
2
HU  
HV  
HW  
LU  
10  
13  
15  
Thermal  
U
V
Control IC  
or  
Shutdown  
3
Input Control  
4
Microcomputer  
W
5
Low-side  
Driver  
LV  
6
LW  
20  
DIAG  
18  
7
R
IS2  
IS1  
R
22  
GND  
9
2006-11-01  
TPD4113AK  
External Parts  
Standard external parts are shown in the following table.  
Part  
Recommended Value  
Purpose  
Remarks  
C , C , C  
25 V/2.2 μF  
0.62 Ω ± 1% (1 W)  
25 V/10 μF  
Bootstrap capacitor  
Current detection  
(Note 1)  
(Note 2)  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 3)  
(Note 4)  
1
2
1
4
3
R
C
C
V
power supply stability  
CC  
25 V/0.1 μF  
16 V/1 μF  
V
for surge absorber  
CC  
C
V
REG  
power supply stability  
6
7
2
C
R
16 V/1000 pF  
5.1 kΩ  
V
for surge absorber  
REG  
DIAG pin pull-up resistor  
Note 1: The required bootstrap capacitance value varies according to the motor drive conditions. The capacitor is  
biased by V and must be sufficiently derated for it.  
CC  
Note 2: The following formula shows the detection current: I = V ÷ R1  
O
R
Do not exceed a detection current of 1A when using this product.  
(Please go from the outside in the over current protection.)  
Note 3: When using this product, some adjustment is required in accordance with the use environment. When  
mounting, place as close to the base of this product leads as possible to improve the ripple and noise  
elimination.  
Note 4: The DIAG pin is open drain. Note that when the DIAG pin is connected to a power supply with a voltage  
higher than or equal to the V , a protection circuit is triggered so that the current flows continuously. If the  
CC  
DIAG pin is not used, connect to the GND.  
Handling precautions  
(1) Please control the input signal in the state to which the V  
voltage is steady. Both of the order of  
CC  
the VBB power supply and the V  
power supply are not cared about either.  
CC  
Note that if the power supply is switched off as described above, this product may be destroyed if the  
current regeneration route to the V power supply is blocked when the V line is disconnected by  
BB  
BB  
a relay or similar while the motor is still running.  
(2)  
The excess voltage such as the voltage serge which exceed the maximum rating is added, for example,  
may destroy the circuit. Accordingly, be careful of handling this product or of surge voltage in its  
application environment.  
10  
2006-11-01  
TPD4113AK  
Description of Protection Function  
(1)  
Under-voltage protection  
This product incorporates an under-voltage protection circuit to prevent the IGBT from operating in  
unsaturated mode when the V voltage or the V voltage drops.  
CC  
BS  
When the V  
power supply falls to this product internal setting (V UVD = 11 V typ.), all IGBT  
CC  
CC  
outputs shut down regardless of the input. This protection function has hysteresis. When the  
UVR (= 11.5 V typ.) reaches 0.5 V higher than the shutdown voltage, this product is  
V
CC  
automatically restored and the IGBT is turned on/off again by the input.  
When the V supply voltage drops (V UVD = 9 V typ.), the high-side IGBT output shuts down.  
BS  
BS  
When the V UVR (= 9.5 V typ.) reaches 0.5 V higher than the shutdown voltage, the IGBT is  
BS  
turned on/off again by the input signal.  
(2)  
Thermal shutdown  
This product incorporates a thermal shutdown circuit to protect itself against excessive rise in  
temperature.When the temperature of this chip rises to the internal setting TSD due to external  
causes or internal heat generation all IGBT outputs shut down regardless of the input. This  
protection function has hysteresis (ΔTSD = 50°C typ.). When the chip temperature falls to TSD −  
ΔTSD, the chip is automatically restored and the IGBT is turned on/off again by the input.  
Because the chip contains just one temperature-detection location, when the chip heats up due to the  
IGBT, for example, the differences in distance between the detection location and the IGBT (the  
source of the heat) can cause differences in the time taken for shutdown to occur. Therefore, the  
temperature of the chip may rise higher than the initial thermal shutdown temperature.  
Safe Operating Area  
1.0  
0.9  
0.9  
0.83  
0
0
0
400 450  
(V)  
0
400 450  
(V)  
Power supply voltage  
V
Power supply voltage  
V
BB  
BB  
Figure 1 SOA at Tj = 135°C  
Figure 2 SOA at Tc = 95°C  
Note 1: The above safe operating areas are at Tj = 135°C (Figure 1) and Tc = 95°C (Figure 2). If the temperature  
exceeds these, the safe operation areas reduce.  
Note 2: The above safe operating areas include the over current protection operation area.  
11  
2006-11-01  
TPD4113AK  
V
H – T  
V
L – T  
CEsat  
CEsat  
j
j
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
V
= 15 V  
V
= 15 V  
CC  
CC  
I
= 700 mA  
C
I
I
= 700 mA  
= 500 mA  
C
C
I
I
= 500 mA  
= 300 mA  
C
C
I
= 300 mA  
C
20  
20  
60  
100  
140  
140  
18  
20  
20  
60  
100  
140  
140  
18  
Junction temperature  
T
(°C)  
Junction temperature  
T
(°C)  
j
j
V H – T  
F
V L – T  
F
j
j
1.6  
1.4  
1.2  
1.0  
0.8  
1.6  
1.4  
1.2  
1.0  
0.8  
I
= 700 mA  
F
I
I
= 700 mA  
= 500 mA  
F
F
I
I
= 500 mA  
= 300 mA  
F
F
I
= 300 mA  
F
20  
20  
60  
100  
20  
20  
60  
100  
Junction temperature  
T
(°C)  
Junction temperature  
T
(°C)  
j
j
I
– V  
V
– V  
REG CC  
CC  
CC  
2.0  
1.5  
1.0  
0.5  
0
8.0  
7.5  
7.0  
6.5  
6.0  
20°C  
25°C  
135°C  
20°C  
25°C  
135°C  
I
= 30 mA  
reg  
12  
14  
16  
12  
14  
16  
Control power supply voltage  
V
(V)  
Control power supply voltage  
V
(V)  
CC  
CC  
12  
2006-11-01  
TPD4113AK  
t
– T  
t – T  
OFF j  
ON  
j
3.0  
2.0  
1.0  
0
3.0  
2.0  
1.0  
0
V
V
= 280 V  
= 15 V  
BB  
CC  
I
= 0.5 A  
C
High-side  
Low-side  
V
V
= 280 V  
= 15 V  
BB  
CC  
I
= 0.5 A  
C
High-side  
Low-side  
20  
20  
60  
100  
140  
20  
20  
60  
100  
140  
Junction temperature  
T
(°C)  
Junction temperature  
T
(°C)  
j
j
V
UV– T  
V
UV – T  
BS j  
CC  
j
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
10.5  
10.0  
9.5  
V
V
UVD  
UVR  
V
V
UVD  
UVR  
CC  
BS  
BS  
CC  
9.0  
8.5  
8.0  
20  
20  
20  
60  
100  
140  
20  
60  
100  
140  
Junction temperature  
T
(°C)  
Junction temperature  
T
(°C)  
j
j
13  
2006-11-01  
TPD4113AK  
I
– V (ON)  
BS  
I
– V (OFF)  
BS BS  
BS  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
20°C  
25°C  
135°C  
20°C  
25°C  
135°C  
12  
14  
16  
18  
12  
14  
16  
18  
Control power supply Voltage  
V
(V)  
Control power supply Voltage  
V
(V)  
BS  
BS  
Wton – T  
j
V
– T  
j
F (BSD)  
250  
200  
150  
100  
50  
1.0  
0.9  
0.8  
0.7  
0.6  
I
I
= 700 mA  
C
I
= 700 μA  
F
= 500 mA  
= 300 mA  
C
I
C
I
= 500 μA  
F
I
= 300 μA  
F
0
20  
20  
20  
60  
100  
140  
20  
60  
100  
140  
Junction temperature  
T
(°C)  
Junction temperature  
T
(°C)  
j
j
Wtoff – T  
j
50  
40  
30  
20  
10  
0
I
= 700 mA  
C
I
I
= 500 mA  
= 300 mA  
C
C
20  
20  
60  
100  
140  
Junction temperature  
T
(°C)  
j
14  
2006-11-01  
TPD4113AK  
Test Circuits  
IGBT Saturation Voltage (U-phase low side)  
HU = 0 V  
HV = 0 V  
HW = 0 V  
LU = 5 V  
LV = 0 V  
LW = 0 V  
V
= 15 V  
VM  
CC  
FRD Forward Voltage (U-phase low side)  
VM  
15  
2006-11-01  
TPD4113AK  
V
CC  
Current Dissipation  
IM  
V
= 15 V  
CC  
Regulator Voltage  
VM  
V
= 15 V  
CC  
16  
2006-11-01  
TPD4113AK  
Output ON/OFF Delay Time (U-phase low side)  
HU = 0 V  
HV = 0 V  
HW = 0 V  
LU =  
PG  
LV = 0 V  
LW = 0 V  
V
= 15 V  
CC  
U = 280 V  
IM  
90%  
LU  
10%  
90%  
10%  
IM  
t
t
OFF  
ON  
17  
2006-11-01  
TPD4113AK  
V
CC  
Under-voltage Protection Operation/Recovery Voltage (U-phase low side)  
HU = 0 V  
HV = 0 V  
HW = 0 V  
LU = 5 V  
LV = 0 V  
LW = 0 V  
15 V 6 V  
V
=
VM  
CC  
6 V 15 V  
U = 18 V  
*:Note:Sweeps the V  
pin voltage from 15 V and monitors the U pin voltage.  
CC  
The V  
pin voltage when output is off defines the under voltage protection operating voltage.  
CC  
Also sweeps from 6 V to increase. The V  
recovery voltage.  
pin voltage when output is on defines the under voltage protection  
CC  
V
BS  
Under-voltage Protection Operation/Recovery Voltage (U-phase high side)  
HU = 5 V  
HV = 0 V  
HW = 0 V  
LU = 0 V  
LV = 0 V  
LW = 0 V  
V
V
BSU =  
= 15 V  
= 18 V  
VM  
CC  
BB  
15 V 6 V  
6 V 15 V  
*:Note:Sweeps the BSU pin voltage from 15 V and monitors the V pin voltage.  
BB  
The BSU pin voltage when output is off defines the under-voltage protection operating voltage.  
Also sweeps the BSU pin voltage from 6 V and changes from the HU pin voltage at 0 V 5 V 0 V.  
The BSU pin voltage when output is on defines the under-voltage protection recovery voltage.  
18  
2006-11-01  
TPD4113AK  
V
BS  
Current Consumption (U-phase high side)  
HU = 0 V/ 5 V  
HV = 0 V  
HW = 0 V  
LU = 0 V  
LV = 0 V  
LW = 0 V  
V
= 15 V  
CC  
BSU = 15 V  
IM  
19  
2006-11-01  
TPD4113AK  
Turn-On/Off Loss (low-side IGBT + high-side FRD)  
HU = 0 V  
HV = 0 V  
HW = 0 V  
LU=  
PG  
LV = 0 V  
LW = 0 V  
V
V
= 15 V  
CC  
/U = 280 V  
VM  
L
IM  
BB  
5 mH  
Input (HU)  
IGBT (C-E voltage)  
(U-GND)  
Power supply current  
Wtoff  
Wton  
20  
2006-11-01  
TPD4113AK  
Package Dimensions  
Weight: 6.1 g (typ.)  
21  
2006-11-01  
TPD4113AK  
Package Dimensions  
Weight: 6.1 g (typ.)  
22  
2006-11-01  
TPD4113AK  
Package Dimensions  
Weight: 6.1 g (typ.)  
23  
2006-11-01  
TPD4113AK  
RESTRICTIONS ON PRODUCT USE  
20070701-EN  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties.  
Please contact your sales representative for product-by-product details in this document regarding RoHS  
compatibility. Please use these products in this document in compliance with all applicable laws and regulations  
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses  
occurring as a result of noncompliance with applicable laws and regulations.  
24  
2006-11-01  

相关型号:

TPD4113K

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4113KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4113KLBF

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4113KLBR

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4113K_07

High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4121K

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4122K

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4123AK

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4123AK(Q)

IC SGL CHIP INV 500V 1A 26-DIP
TOSHIBA

TPD4123K

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4124AK

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4124K

Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA