TPD7107F [TOSHIBA]

MOSFET Driver;
TPD7107F
型号: TPD7107F
厂家: TOSHIBA    TOSHIBA
描述:

MOSFET Driver

文件: 总34页 (文件大小:1030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD7107F  
TOSHIBA Intelligent Power Device Silicon Power MOS Integrated Circuit  
TPD7107F  
1 channel High-Side N channel Power MOSFET Gate Driver  
1. Description  
TPD7107F is a 1channel high-side N channel power MOSFET gate  
driver. This IC contains a charge pump circuit, allowing easy  
configuration of a high-side switch for large-current applications.  
TPD7107F  
P-WSON10-0303-0.50-002  
2. Uses  
Junction Boxes for Automotive.  
Power distribution modules for Automotive.  
Semiconductor relays.  
3. Features  
AEC-Q100 qualified.  
Built in the charge pump circuit.  
Built in the various protection feature and diagnostic output function.  
The abnormalities in power supply voltage (a voltage fall, excess voltage, reverse connection of  
power supply)  
Current sense of load line.  
Over current (short circuit of load line)  
Overheating  
The abnormalities in Drain-source voltage of external FET  
Active clamp of external FET  
Protection for disconnection of GND terminal.  
VDD short of load line (Short circuit between source of external FET and VDD)  
Disconnection of load line (open).  
WSON10A package for surface mounting.  
Note: Due to its MOS structure. This product is sensitive to static electricity.  
Start of commercial production  
2020-03  
© 2020  
1
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
4. Block Diagram  
.
Note: Since a function is explained, it may have omitted in part and may have simplified the functional  
block in a block, the circuit, the constant, etc.  
Figure 4.1 Block Diagram  
© 2020  
2
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
5. Pin Assignments  
10  
9
1
2
3
4
VDD  
GND  
DIAG  
MIRROR  
N.C.  
Die pad 1  
Die pad 2  
8
GND-TAB  
STBY  
7
SHUNT  
6
GATE  
IN  
5
Figure 5.1 Pin Assignments (top view)  
6. Pin Description  
Table 6.1 Pin Description  
Pin No  
Symbol  
Description  
1
2
3
4
GND  
Ground pin.  
Current sense output and diagnostic output.  
DIAG  
GND-TAB Ground pin.  
STBY  
IN  
Standby mode control pin.  
5
Input pin. Built in pull down resistor.  
Output pin for an external FET drive  
6
7
GATE  
SHUNT Input pin for shunt resistance connection.  
N.C. No-Connect pin.  
MIRROR An external FET source pin and a shunt resistance connect pin.  
VDD Power supply pin.  
8
9
10  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
3
2020-04-09  
TPD7107F  
7. Operational Description  
7.1. Protection for reverse connection of power supply  
Reverse connection circuit turns on external FET via M1 in the figure and reduces external FET loss to  
prevent thermal destruction.  
Figure 7.1 Reverse connection circuit.  
7.2. Active clamp  
Active clamp is a function that keeps the voltage between drain and source of external FET below at the  
break down voltage. When the surge voltage is generated by the inductive load, the voltage between VDD  
and SHUNT increases and the active clamp circuit in Figure7.2 outputs the voltage to the GATE pin.  
Therefore, the external FET will be in ON state and the voltage between drain and source of external FET  
will be clamped.  
Figure 7.2 Active clamp circuit.  
© 2020  
4
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
Active clamp.  
VIN  
VDD  
VSHUNT  
Vclamp  
VGATE  
VIN: IN pin input voltage  
V
V
V
SHUNT: SHUNT pin input voltage  
GATE: GATE pin output voltage  
clamp: Active clamp voltage  
Figure 7.3 Timing chart of Active clamp operation.  
7.3. Gate drive of Power MOSFET (Off driver)  
Three kinds of drive circuits which control the turn-off of external FET exist in this products. Operation of  
each drive is explained below.  
7.3.1. Normal off, rapid off  
The normal off driver makes the external FET an OFF state via the IN pin. The rapid off driver operates  
and draws out the gate charge of the external FET quickly, when the latch is stopped by the anomaly  
detection. Whenever the rapid off driver operates, the normal off driver operates in parallel.  
Figure 7.4 Off driver circuit.  
© 2020  
5
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
7.3.2. Protection for disconnection of GND terminal  
GND disconnection protection is a function that keeps an OFF state in order to prevent a malfunction of  
the external FET, when GND terminal wiring of a unit is disconnected.  
In OPEN state as shown in Figure7.5, the off driver of GND disconnection operates, and turn off the  
external FET regardless of the condition of an input signal.  
Figure 7.5 Protection circuit for disconnection of GND terminal.  
GND open.  
VIN  
VDD  
VGND  
< VUV3  
VGATE  
OFF drive for GND open.  
Decrease of VGATE  
VIN: IN pin input voltage  
VGND: GND pin voltage  
VGATE: GATE pin output voltage  
V
UV3: Low voltage latch threshold  
Figure 7.6 Protect operation of disconnection of GND terminal.  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
6
2020-04-09  
TPD7107F  
7.4. Load current sense at time of Power MOSFET drive  
For A/D-converter detection via the DIAG pin, the current sense amplifier and the pull up for diagnosis  
circuit in Figure7.7 carry out the conversion from the current which flows into the shunt resistance Rs to  
the voltage.  
Figure 7.7 Current sense amp circuit.  
Load current sense output voltage is calculated as below. In addition, when abnormalities are detected,  
a load current sense output mode is changes to a diagnostic output mode. And the fixed voltage according  
to the diagnosis results is outputted.  
2  
( )  
× × + ꢀ  
ꢂꢈ  
ꢁꢂꢃꢄ  
=
1  
V
DIAG: DIAG pin output voltage  
IO: load current  
VIO: Input offset voltage  
7.5. The abnormalities in power supply voltage (VDD over voltage, VDD under voltage)  
When the voltage of a VDD terminal is more than the over voltage detection threshold (VOV), the off-  
driver usually operates and the external FET turns off. After that, if the VDD terminal voltage is less than  
the over voltage threshold voltage, the external FET is driven again.  
In the case of VIN=H and VDD>VOV, the off-driver operates after the mask time of TOV (200us max)  
(VGATE=H to L).  
In the case of VDD>VOV and VIN=L to H, it keeps VGATE=L.  
When VDD terminal voltage is less than VUV3 (2.7V (typ.)), the rapid off-driver operates, carry out latch-  
off of the external FET, and outputs H state to DIAG.  
In case VDD<VUV5, the off-driver operates and VDD goes up. After that, if VDD is more than VUV5, the off-  
driver will change to normal operation.  
Even if VDD terminal voltage falls under the conditions of VGATE=H, VGATE keeps H state, and external  
FET will be ON in VDD>VUV3.(Low-voltage extension operation)  
© 2020  
7
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
Normal  
UV5  
UV3  
OV  
VOV  
26V  
5.75V  
VUV5  
VUV3  
0V  
VDD  
VIN  
VGATE  
VDIAG  
TDIAG  
TLATCH  
TOV  
VIN: IN pin input voltage  
VGATE: GATE pin output voltage  
V
DIAG: DIAG pin output voltage  
VUV3: Low voltage latch threshold  
VUV5: Low voltage detection threshold  
VOV: Over voltage detection voltage  
TDIAG: DIAG clear standby time  
TLATCH: Latch clear standby time  
TOV: Over voltage detection mask time  
Figure 7.8 The abnormalities in power supply voltage  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
8
2020-04-09  
TPD7107F  
7.6. Over current protection  
When the current sense voltage (VDIAG) turns into more than over-current detecting voltage (VOC), the  
rapid off-driver operates to protect the external FET. After that, it becomes an OFF & latch state and  
outputs diagnostic contents.  
The filter (Over current detection delay time 2.5us (typ.)) is built in so that the over-current caused by a  
power supply variation may not be detected incorrectly.  
In case VIN=H to L, the over current protection circuit releases latches. When a latch of DIAG is  
released, the clear standby time from the falling edge of VIN(TDIAG) is set to 10ms (minimum). In a  
period of the standby time, the IN terminal cannot control the GATE terminal.  
Normal.  
OC.  
Normal.  
TDIAG  
VIN  
Latch off.  
VGATE  
VDIAG  
VOC  
VDIAG  
TOC  
TLATCH  
VIN: IN pin input voltage  
VGATE: GATE pin output voltage  
DIAG: DIAG pin output voltage  
VOC: Over current detection voltage  
DIAG1: DIAG output voltage (High Level)  
V
V
TOC: Over current detection delay time  
TLATCH: Latch release mask time  
T
DIAG: DIAG clear standby time  
Figure 7.9 Over current protection  
The over current threshold voltage changes according to the power supply voltage and the junction  
temperature.  
VOC1: VDD=3V,Tj=25°C  
VOC2: Tj=25°C  
VOC3: VDD=3V,Tj=125°C  
VOC4: Tj=125°C  
The over current detecting voltage falls to 66% (typ.) of VOC2 and VOC4, when the abnormalities in  
voltage between drain and source of the external FET occur.  
The over current detection voltage falls to 50% (typ.) of VOC2 and VOC4, when the under voltage  
detection (UV5) occurs.  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
9
2020-04-09  
TPD7107F  
VOC2  
VOC4  
VOC1  
VOC3  
125  
25℃  
Tj()  
Figure 7.10 Junction Temperature dependency of over current detection  
7.7. Over temperature protection.  
The over temperature protection prevents destruction due to the temperature rise of this product and  
MOSFET, so if junction temperature exceeds Thermal detection temperature, normal off driver operates  
and turns the external FET off. When junction temperature drops below hysteresis set temperature, this  
product returns to normal operation.  
VIN  
TOT  
TOT - Thys  
Tj  
VGATE  
VDIAG  
VIN: IN pin input voltage  
VGATE: GATE pin output voltage  
VDIAG: DIAG pin output voltage  
TOT: Over heat detection temperature  
Thys: Hysteresis of thermal detection  
Figure 7.11 Over temperature protection  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
10  
2020-04-09  
TPD7107F  
7.8. Abnormalities in voltage between Drain and source of the external FET (VDS error)  
The voltage between drain and source of the external FET supervises the differential voltage between  
the VDD pin and the SHUNT pin. If the voltage between drain source exceeds the VDS error detection  
threshold (1.5V (typ.)), the rapid off-driver operates and changes the external FET into the OFF & latch  
state. Therefore, the diagnostic output will be in H state.  
When a low-voltage (UV5) state occurs simultaneously with the abnormalities of the voltage between  
Drain and source, the rapid off-driver operates and makes the external FET into an OFF & latch state  
because of no detection time. The diagnostic output will become the H state.  
GATE pin and DIAG pin latches are released by VIN=H to L.  
When an error is detected, it is judged as abnormal after the detection time (TVDSerr) to prevent  
malfunction due to noise.  
VDSerr  
UV5 VDSerr  
VDD  
VUV5  
VIN  
VGATE  
VDD-VSHUNT  
VDSerr  
VDIAG  
TVDSerr  
VIN: IN pin input voltage  
VGATE: GATE pin output voltage  
VDD-VSHUNT: Voltage between VDD pin and SHUTN pin  
VDIAG: DIAG pin output voltage  
T
VDSerr: VDS error detection time  
Figure 7.12 Abnormalities in voltage between Drain and source of external FET  
© 2020  
11  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
7.9. Load open / VDD short of load line and diagnosis output  
The load open detects the disconnection of the load connected to SHUNT pin. The VDD short of load line  
detects the VDD short of the load connected to SHUNT pin. A circuit example is shown below (figure  
7.14). The detection condition and DIAG pin output voltage for each item are as shown in the table below.  
Table 7.1 Load open detection / VDD short of load line detection  
item  
Detection condition  
DIAG output voltage  
VOP < VSHUNT  
VDSerr < VDD-VSHUNT  
Load open detection  
2.3V(minimum)  
VDDS < VSHUNT  
VDD-VSHUNT < VDSerr  
VDD short of load line  
4.3V(minimum)  
The DIAG output voltage changes from rise edge of VIN to normal operation after a DIAG clear  
waiting time (TDIAG). See the timing chart below.  
VIN  
VDSerr  
VDD  
VDDS  
VSHUNT  
VOP  
VGATE  
VDIAG1  
VDIAG2  
VDIAG  
TDIAG  
TDIAG  
VIN: IN pin input voltage  
VSHUNT: SHUNT pin input voltage  
V
GATE: GATE pin output voltage  
VDIAG: DIAG pin output voltage  
VDIAG1: DIAG output voltage (High level)  
DIAG2: DIAG output voltage (Load open)  
V
VOP: Load open detection voltage  
VDDS: VDD short detection voltage  
T
DIAG: DIAG clear standby time  
Figure 7.13 Load open / VDD short detection  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
12  
2020-04-09  
TPD7107F  
VDD  
MIROR  
N.C.  
GND  
DIAG  
GND-TAB  
STBY  
IN  
VDD short.  
SHUNT  
GATE  
Load open.  
Figure 7.14 Load open / VDD short circuit example  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
13  
2020-04-09  
TPD7107F  
7.10. Truth Table  
Table 7.2 Truth Table  
Operation.  
STBY  
IN  
SHUNT,MIRROR  
GATE  
DIAG  
Normal operation (Standby)  
L
X
X
L
L
Normal operation  
H
H
H
H
H
H
H
H
H
H
H
H
L
H (VDD  
)
H
analog  
Over voltage detection (1)  
L
L
L
(VOV < VDD  
)
Over voltage detection (2)  
(VOV < VDD  
H
X
X
X
X
X
X
L
H (VDD  
)
L (Note1)  
L (Note1)  
)
Over temperature  
X
X
X
X
L
L
L
L
UV5 (VDD < VUV5  
UV3 (VDD < VUV3  
)
)
L
H
(Latch off)  
(Latch)  
L
H
Over current detection  
(Latch off)  
(Latch)  
L (Note2)  
(Latch off)  
H (Note2)  
(Latch)  
VDS abnormal  
VDSerr > (VDD-VSHUNT  
)
)
VDS abnormal && UV5  
L
H
V
DSerr > (VDD-VSHUNT  
(Latch off)  
(Latch)  
(VDD < VUV5  
)
Load open detection.  
VDD short.  
VOP > VSHUNT  
L
L
VDIAG2  
L
H (VDD  
)
H
Note1. Mask time 400μs (typ.)  
Note2. Mask time 13ms (typ.)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
14  
2020-04-09  
TPD7107F  
7.11. State Transition Diagram  
11) Battery Reverse  
connection.  
-VDD  
1) VDD open, GND open.  
FET = OFF  
FET = ON  
DIAG = L  
4) Abnormal off mode.  
FET = OFF  
IN = H  
+VDD  
OV = True |  
OT = True  
UV5 = False &&  
OV = False &&  
OT = False  
STBY=H  
STBY=L  
2) Standby mode.  
FET = OFF  
8) Output open or VDD  
short detection.  
UV5 | OV | OT  
DIAG = L  
3) Normal operation.  
FET = ON  
STBY = L  
IN = L  
Output open |  
VDD short  
False  
Over Current = True |  
UV5 && VDSerr = True |  
UV3 = True |  
True  
7) On Standby mode.  
FET = OFF  
DIAG = L  
VDSerr = True  
9) Output open or VDD short Detection  
a) Output open : DIAG = VDIAG2  
b) VDD short : DIAG = H  
IN = L  
6) Latch clear.  
DIAG clear.(10ms)  
5) Latch off mode..  
FET = OFF (Latch)  
IN = H  
10) DIAG clear.(10ms)  
Figure 7.15 State Transition Diagram  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
15  
2020-04-09  
TPD7107F  
8. Absolute Maximum Ratings  
Table 8.1 Absolute Maximum Ratings  
(Ta = 25°C unless otherwise specified)  
Characteristics  
Symbol  
Rating  
Unit  
Comment(s)  
VDD(1)  
VDD(2)  
VDD(3)  
VIN(1)  
-16 to 26  
-36 to 36  
-40 to 40  
-16 to 26  
V
V
V
V
Supply voltage  
t400ms  
Supply voltage  
t20ms  
IN,STBY,SHUNT,MIRROR  
IN,STBY,SHUNT,MIRROR  
VIN(2)  
VIN(3)  
IGATE(+)  
IGATE(-)  
-36 to 36  
-40 to 40  
V
V
Input voltage  
t400ms  
IN,STBY,SHUNT,MIRROR  
t20ms  
Output source current  
Output sink current  
Internal ability  
5
mA  
mA  
GATE  
GATE  
Output voltage  
VGATE  
-0.3 to 40  
V
GATE  
DIAG Output voltage  
DIAG Output current  
Power dissipation  
VDIAG  
IDIAG  
PD(1)  
Topr  
Tj  
-0.3 to 6  
5
V
mA  
W
DIAG  
DIAG  
1.84  
-
-
-
-
Operating temperature  
Junction temperature  
Storage temperature  
-40 to 125  
150  
°C  
°C  
°C  
Tstg  
-55 to 150  
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage  
and the significant change in temperature, etc.) may cause this product to decrease in the  
reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage,  
etc.) are within the absolute maximum ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability  
Handbook (“Handling Precautions”/“Derating Concept and Methods”) and individual reliability  
data (i.e. reliability test report, estimated failure rate, etc.)  
8.1. Thermal Resistance  
Table 8.2 Thermal resistance  
Charateristics  
Symbol  
Rth (j–a)  
Rating  
67.6  
unit  
Thermal resistance, junction to  
ambient  
°C / W  
Note: Glass epoxy board  
Material: FR-4(4 layer) Board size: 76.2mmx114.3mmx1.6mm  
Via: φ0.3mm(2 points)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
16  
2020-04-09  
TPD7107F  
9. Operating Ranges  
Table 9.1 Operating Ranges  
Characteristics  
Symbol  
Condition  
Min  
Typ.  
Max  
Unit  
Operating supply voltage  
VDD  
Tj = -40 to 125°C  
5.75  
12.00  
26.00  
V
10. Electrical Characteristics  
10.1. Electrical characteristics 1  
Table 10.1 Electrical Characteristics 1  
(Unless otherwise specified, Tj = -40 to 125°C, VDD = 5.75 to 26V)  
Characteristics  
Symbol  
Pin  
VDD  
VDD  
Test Condition  
Min  
5.75  
-
Typ.  
12.00  
-
Max  
26.00  
3
Unit  
V
Operating supply voltage VDD(opr)  
-
VDD = 16V, Standby,  
Tj=25°C  
IDD(off)  
μA  
Supply current  
VDD=12V,VIN = VIH,  
Tj=25°C  
IDD(on)  
VDD  
-
2
3
mA  
High level input voltage  
Low level input voltage  
Hysteresis  
VIH  
VIL  
VIhys  
IIH  
IN,STBY  
IN,STBY  
IN,STBY  
IN,STBY  
IN,STBY  
-
2.4  
-
-
-
0.6  
-
V
V
-
-
-
-
0.5  
21  
-
VIN= 5V  
VIN= 0V  
-
50  
1
Input current  
μA  
IIL  
-1  
VDD = 3V, VIN= VIH,  
GATE-SHUNT =  
200kΩ  
VDD  
+6.5  
VDD  
+8.6  
High level output  
voltage(1)  
VGATEH1  
GATE  
-
V
VDD =5.75 to 26V,  
VIN= VIH,  
GATE-SHUNT =  
200kΩ  
VDD  
+7.5  
VDD  
+10.0  
VDD  
+12.5  
High level output  
voltage(2)  
VGATEH2  
GATE  
V
V
VDD=-12V  
Measurement 1  
High level output  
voltage(3)  
VGATEH3  
VGATEL  
Vclamp  
GATE  
GATE  
6
-
-
Low level output voltage  
Active clamp voltage  
VIN = VIL  
-
-
0.5  
-
V
V
VDD  
,
VIN=VIL,  
VGATE=2V,VSHUNT=0V  
35  
39  
SHUNT  
Latch release mask time  
TLATCH  
Td-ON  
Td-OFF  
Tr  
-
VIN= VIL  
-
-
-
-
-
50  
35  
-
μs  
55  
154  
321  
138  
195  
460  
176  
Measurement 2,  
Tj=25°C  
Switching time  
GATE  
μs  
Tf  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
17  
2020-04-09  
TPD7107F  
10.2. Electrical characteristics 2  
Table 10.2 Electrical Characteristics 2  
(Unless otherwise specified, Tj = -40 to 125°C, VDD = 5.75 to 26V)  
Characteristics  
Symbol  
Pin  
Test Condition  
Min  
Typ.  
Max  
Unit  
Off impedance at GND  
open  
RGO  
GATE  
Measurement 3  
25  
51  
80  
kΩ  
GATE-SHUNT resistance  
Rapid off state current  
RGSH  
IGL  
GATE  
GATE  
DIAG  
DIAG  
DIAG  
DIAG  
-
500  
100  
-
1000  
237  
1.75  
3.45  
1.4  
2000  
500  
-
kΩ  
mA  
V
Latch off state.  
VDD=3V,Tj=25°C  
Tj=25°C  
Over current detection(1)  
Over current detection (2)  
Over current detection (3)  
Over current detection (4)  
VOC1  
VOC2  
VOC3  
VOC4  
3.25  
-
3.65  
-
V
VDD=3V,Tj=125°C  
Tj=125°C  
V
2.6  
2.8  
3.2  
V
Over current threshold  
down rate at VDS error  
-
-
VDSerr detection.  
-
-
66  
50  
-
-
%
%
Over current threshold  
down rate at Low voltage  
-
-
UV5 detection.  
Over current detection  
delay time  
TOC  
TOT  
Thys  
VUV3  
-
-
-
2.5  
169  
16  
10.0  
200  
-
μs  
°C  
°C  
V
Over heat detection  
temperature  
-
-
VSTBY = VIH  
-
150  
-
Hysteresis of thermal  
detection  
Low voltage latch threshold  
(UV3)  
VDD  
VSTBY = VIH  
2.5  
2.7  
3.0  
Low voltage detection  
threshold (UV5)  
VUV5  
VUV5R  
VOV  
VDD  
VDD  
VDD  
VSTBY = VIH  
VSTBY = VIH  
VSTBY = VIH  
4.15  
4.9  
4.40  
5.1  
4.65  
5.4  
V
V
V
UV5 release voltage  
Over voltage detection voltage  
(OV)  
26.0  
27.4  
30.0  
Over voltage detection mask  
time  
TOV  
VDD  
VSTBY = VIH  
150  
1.0  
400  
1.4  
650  
2.0  
μs  
VDD  
SHUNT  
VDS error detection threshold  
VDS error detection time  
SHUNT leakage currnet  
VDSerr  
VSTBY= VIH, VIN=VIH  
V
VDD  
SHUNT  
TVDSerr  
VSTBY= VIH, VIN=VIH  
VIN=VSTBY=L,  
10  
13  
20  
ms  
ISHUNTS  
ROP  
SHUNT  
SHUNT  
-
-
1.5  
20  
μA  
kΩ  
V
SHUNT=0V,VDD=16V  
Load open detection  
resistance  
-
5
11  
Load open detection voltage  
VDD short detection voltage  
VOP  
SHUNT  
SHUNT  
VSTBY=VIH,VIN=VIL  
VSTBY=VIH,VIN=VIL  
VSTBY = VIH,  
2.0  
2.6  
-
-
V
V
VDDS  
VDD-2  
VDD  
DIAG clear standby time  
TDIAG  
DIAG  
10  
-
20  
ms  
Error detection is  
canceled  
DIAG output voltage  
(High level)  
Abnormality is detected  
VDIAG1  
VDIAG2  
DIAG  
DIAG  
4.3  
2.3  
-
-
5.0  
3.8  
V
V
DIAG-GND = 10kΩ  
DIAG output voltage  
(Load open)  
Open is detected.  
DIAG-GND = 10kΩ  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
18  
2020-04-09  
TPD7107F  
10.3. Current sense amp Electrical Characteristics  
Table 10.3 Current sense amp Electrical Characteristics  
(Unless otherwise specified, Tj = -40 to 125°C, VDD = 5.25 to 26V)  
Characteristics  
Symbol  
Pin  
Test Condition  
Min  
Typ.  
Max  
Unit  
SHUNT,  
MIRROR  
Common mode input  
voltage range  
CMVIN  
-
2.5  
-
VDD  
V
SHUNT,  
MIRROR  
V
V
DD=13.5V,Tj=25°C  
Measurement 4  
Input offset voltage  
VIO  
VIOT  
-2  
-10  
-
-
-
-
-
2
10  
5
mV  
μV/°C  
μA  
SHUNT,  
MIRROR  
DD=13.5V,Tj=25°C  
Measurement 4  
Input offset voltage  
temperature drift  
V
SHUNT=VDD  
,
SHUNT terminal current  
ISHUNT  
SHUNT  
VIN=5V  
V
MIRROR=VDD  
,
MIRROR terminal current IMIRROR  
MIRROR  
-
5
μA  
VIN=5V  
11. Test Circuit  
11.1. Test circuit 1 High level output voltage (3)  
Figure 11.1 Test circuit 1  
11.2. Test circuit 2 Switching time (Td-ON, Td-OFF, Tr, Tf)  
Figure 11.2 Test circuit 2  
© 2020  
19  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
11.3. Test circuit 3 Off impedance at GND open  
Figure 11.3 Test Circuit 3  
11.4. Test circuit 4 Input offset voltage  
Figure 11.4 Test Circuit 4  
© 2020  
20  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
12. Characteristic curves  
The below characteristics curves are presented for reference only and not guaranteed by production test,  
unless otherwise noted.  
IDD(off) - Tj  
IDD(off) - VDD  
10  
8
10  
8
VDD=16V  
Standby  
Tj=25  
Standby  
6
6
4
4
2
2
0
-80  
-40  
0
40  
80  
120  
160  
0
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD(V)  
IDD(on) - Tj  
IDD(on) - VDD  
10  
8
10  
8
Tj=25℃  
VDD=12V  
VIN=VIH  
VIN=VIH  
6
6
4
4
2
2
0
0
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD(V)  
VIH,VIL - Tj  
VIH,VIL - VDD  
4
3
2
1
0
4
3
2
1
0
VDD=12V  
Tj=25℃  
VIH  
VIH  
VIL  
VIL  
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD(V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
21  
2020-04-09  
TPD7107F  
VIhys - VDD  
VIhys - Tj  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Tj=25°C  
VDD=6V  
0
6
12  
18  
24  
30  
-80  
-40  
0
40  
80  
120  
160  
Operating supply voltage VDD(V)  
Junction temperature Tj()  
IIH - Tj  
IIH - VIN  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=5V  
Tj=25°C  
-80  
-40  
0
40  
80  
120 160  
0
2
4
6
8
10  
Channel temperature Tj()  
Terminal voltage VIN(V)  
VGATEH - VDD  
VGATEH - Tj  
20  
15  
10  
5
20  
15  
10  
5
VDD = 12V  
GATE - SHUNT=200kΩ  
Tj=25°C  
GATE - SHUNT = 200kΩ  
0
0
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
22  
2020-04-09  
TPD7107F  
VGATEH3 - VDD  
VGATEH3 - Tj  
20  
15  
10  
5
20  
15  
10  
5
Tj =25℃  
GATE - SHUNT = 200kΩ  
VDD = -12V  
GATE - SHUNT = 200kΩ  
0
0
-80  
-40  
0
40  
80  
120  
160  
160  
160  
-30  
-24  
-18  
-12  
-6  
0
Junction temperature Tj()  
Operating supply voltage VDD (V)  
VGATEL - Tj  
VGATEL - VDD  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj =25°C  
VDD = 12V  
IO = 1μA  
IO = 1μA  
-80  
-40  
0
40  
80  
120  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
Vclamp - Tj  
50  
45  
40  
35  
30  
VIN=VIL  
VSHUNT=0V  
VGATE=2V  
-80  
-40  
0
40  
80  
120  
Junction temperature Tj()  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
23  
2020-04-09  
TPD7107F  
Td-off - Tj  
Td-on - Tj  
170  
160  
150  
140  
130  
50  
40  
30  
20  
10  
VDD=12V  
VDD=12V  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
Junction temperature Tj()  
Junction temperature Tj()  
Tf - Tj  
Tr - Tj  
200  
180  
160  
140  
120  
100  
400  
360  
320  
280  
VDD=12V  
VDD=12V  
-80  
-40  
0
40  
80  
120 160  
-80  
-40  
0
40  
80  
120 160  
Junction temperature Tj()  
Junction temperature Tj()  
RGO - Tj  
RGO - VDD  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
VDD=12V  
Tj=25°C  
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
24  
2020-04-09  
TPD7107F  
RGSH - Tj  
2,000  
1,700  
1,400  
1,100  
800  
VDD=12V  
500  
-80  
-40  
0
40  
80  
120 160  
Junction temperature Tj()  
IGL - Tj  
IGL - VDD  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
VDD=26V  
Tj=25°C  
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
VOC - VDD  
VOC - Tj  
5
4
3
2
1
5
4
3
2
1
0
Tj=25°C  
VDD=12V  
0
0
-80  
-40  
0
40  
80  
120  
160  
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
25  
2020-04-09  
TPD7107F  
TOC - VDD  
TOC - Tj  
5
4
3
2
1
0
5
4
3
2
1
0
Tj=25°C  
VDD=12V  
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
TOT - VDD  
Thys - VDD  
200  
190  
180  
170  
160  
150  
50  
40  
30  
20  
10  
0
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
Operating supply voltage VDD (V)  
Operating supply voltage VDD (V)  
VUV3 - Tj  
VUV5 - Tj  
10  
8
10  
8
VDD=VUV5  
VDD=VUV3  
6
6
4
4
2
2
0
0
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
Junction temperature Tj()  
Junction temperature Tj()  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
26  
2020-04-09  
TPD7107F  
VOV - Tj  
VUV5R - Tj  
30  
28  
26  
24  
22  
20  
10  
8
VDD=VOV  
VDD=VUV5R  
6
4
2
0
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
Junction temperature Tj()  
Junction temperature Tj()  
TOV - Tj  
600  
500  
400  
300  
200  
100  
VDD=VOV  
-80  
-40  
0
40  
80  
120  
160  
Junction temperature Tj()  
VDSerr - VDD  
VDSerr - Tj  
2
2
1.8  
1.6  
1.4  
1.2  
1
Tj=25°C  
VDD=12V  
1.8  
1.6  
1.4  
1.2  
1
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
27  
2020-04-09  
TPD7107F  
TVDSerr - VDD  
TVDSerr - Tj  
20  
18  
16  
14  
12  
10  
20  
18  
16  
14  
12  
10  
Tj=25°C  
VDD=12V  
-80  
-40  
0
40  
80  
120  
160  
160  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
ISHUNTS - Tj  
2
VDD=16V  
1.5  
1
0.5  
0
-80  
-40  
0
40  
80  
120  
Junction temperature Tj()  
ROP - VDD  
ROP - Tj  
20  
15  
10  
5
20  
15  
10  
5
Tj=25°C  
VDD=12V  
0
0
-80  
-40  
0
40  
80  
120  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
28  
2020-04-09  
TPD7107F  
VOP - VDD  
VOP - Tj  
5
4
3
2
1
0
5
4
3
2
1
0
Tj=25°C  
VDD=12V  
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
VDDS - VDD  
VDDS - Tj  
30  
25  
20  
15  
10  
5
15  
13  
11  
9
Tj=25°C  
VDD=12V  
7
5
0
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
VDIAG1 - VDD  
VDIAG1 - Tj  
5
5
T=25°C  
j
VDD=12V  
DIAG - GND = 10kΩ  
DIAG - GND = 10kΩ  
4.8  
4.8  
4.6  
4.4  
4.2  
4
4.6  
4.4  
4.2  
4
0
6
12  
18  
24  
30  
-80  
-40  
0
40  
80  
120  
160  
Operating supply voltage VDD (V)  
Junction temperature Tj()  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
29  
2020-04-09  
TPD7107F  
VDIAG2 - VDD  
VDIAG2 - Tj  
4
3.5  
3
4
3.5  
3
T=25°C  
DIAG - GND = 10kΩ  
VDD=12V  
DIAG - GND = 10kΩ  
2.5  
2
2.5  
2
-80  
-40  
0
40  
80  
120  
160  
0
6
12  
18  
24  
30  
Junction temperature Tj()  
Operating supply voltage VDD (V)  
VIO - VDD  
VIO - Tj  
2
1
2
1
Tj=25°C  
VDD=13.5V  
0
0
-1  
-2  
-1  
-2  
0
6
12  
18  
24  
30  
-80  
-40  
0
40  
80  
120  
160  
Operating supply voltage VDD (V)  
Junction temperature Tj()  
ISHUNT,IMIRROR - Tj  
5
3
1
VSHUNT=VMIRROR=VDD  
VIN=5V  
MIRROR  
-1  
-3  
-5  
SHUNT  
-80  
-40  
0
40  
80  
120 160  
Junction temperature Tj()  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
30  
2020-04-09  
TPD7107F  
13. Package Information  
13.1. Package Dimensions  
Unit: mm  
Weight: 0.02 g (typ.)  
Figure 13.1 Package Dimensions  
© 2020  
31  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
13.2. Marking  
Part No.  
7 1 0 7 F  
1610  
(or abbreviation code)  
Lot No.  
Last 2digits of the A.D. + week code (2 digits)  
□□□□□□  
Administrative code (6 digits)  
The lower left marking No. 1 terminal is shown.  
Figure 13.2 Marking  
13.3. Land Pattern Dimensions for Reference only  
Unit: mm  
Figure 13.3 Land Pattern Dimensions for Reference only  
© 2020  
32  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  
TPD7107F  
14. IC Usage Notes  
14.1. Notes on Handling of ICs  
(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be  
exceeded, even for a moment.  
(2) The voltage more than current sense voltage or diagnostic output voltage may be outputted to a  
DIAG output by the injection of a power supply, interception conditions, the input condition to  
current sense amplifier, etc. Please confirm problem existence by a set in the case of use.  
Moreover, please give me a measure by a capacitor etc. if needed.  
14.2. Notes on mounting.  
(1) Please make Die pad 1 into GND and the potential.  
(2) Please make Die pad 2 into SHUNT (7pin) and the potential.  
10  
9
1
2
3
4
VDD  
MIRROR  
N.C.  
GND  
DIAG  
Die pad 1  
8
GND-TAB  
STBY  
7
SHUNT  
Die pad 2  
6
GATE  
5
IN  
Figure 14.1 Pin arrange (Bottom View)  
© 2020  
Toshiba Electronic Devices & Storage Corporation  
33  
2020-04-09  
TPD7107F  
RESTRICTIONS ON PRODUCT USE  
Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA”.  
Hardware, software and systems described in this document are collectively referred to as “Product”.  
TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.  
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's  
written permission, reproduction is permissible only if reproduction is without alteration/omission.  
Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for  
complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which  
minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to  
property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the  
Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information,  
including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and  
conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product  
will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited  
to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the  
applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any  
other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO  
LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.  
PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE  
EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY  
CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT  
("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation,  
equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment,  
equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or  
explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE,  
TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our  
website.  
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.  
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any  
applicable laws or regulations.  
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any  
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any  
intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.  
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR  
PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,  
INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING  
WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2)  
DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR  
INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,  
ACCURACY OF INFORMATION, OR NONINFRINGEMENT.  
Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for  
the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass  
destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations  
including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export  
and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and  
regulations.  
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please  
use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including  
without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT  
OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.  
https://toshiba.semicon-storage.com/  
© 2020  
34  
2020-04-09  
Toshiba Electronic Devices & Storage Corporation  

相关型号:

TPD7200F

IC 0.5 A HALF BRDG BASED MOSFET DRIVER, PDSO20, 0.225 INCH, 1MM PITCH, PLASTIC, SSOP-20, MOSFET Driver
TOSHIBA

TPD7201F

POWER MOSFET GATE DRIVER FOR 3-PHASE DC MOTOR
TOSHIBA

TPD7202F

POWER MOSFET GATE DRIVER FOR H BRIDGE
TOSHIBA

TPD7203F

POWER MOSFET GATE DRIVER FOR 3 PHASE DC MOTOR
TOSHIBA

TPD7203F_07

Power MOSFET Gate Driver for 3-Phase DC Motor
TOSHIBA

TPD7210F

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PDSO24, 0.300 INCH, 1 MM PITCH, PLASTIC, SSOP-24, Motion Control Electronics
TOSHIBA

TPD7211F

Power MOSFET Gate Driver for half-bridge
TOSHIBA

TPD75A12

SINGLE UNIDIRECTIONAL BREAKOVER DIODE,100V V(BO) MAX,300MA I(S),TO-220
STMICROELECTR

TPD75A18

SINGLE UNIDIRECTIONAL BREAKOVER DIODE|100V V(BO) MAX|300MA I(S)|TO-220
ETC

TPD75B12

SINGLE UNIDIRECTIONAL BREAKOVER DIODE,91V V(BO) MAX,300MA I(S),TO-220
STMICROELECTR

TPD75B18

SINGLE UNIDIRECTIONAL BREAKOVER DIODE,91V V(BO) MAX,300MA I(S),TO-220
STMICROELECTR

TPD7S019

7-CHANNEL INTEGRATED ESD SOLUTION FOR VGA PORT WITH INTEGRATED LEVEL SHIFTER AND MATCHING IMPEDANCE
TI